triroc!asic! - indico.cern.ch

17
TRIROC ASIC TIPP 2014, Amsterdam 5 June 2014 Salleh AHMAD The research leading to these results has received funding from the European Union Seventh Programme under grant agreement n° 602621 Christophe DE LA TAILLE a , Julien FLEURY b , Nathalie SEGUINMOREAU a ,Ludovic RAUX a , Stéphane CALLIER a , Gisele MARTIN CHASSARD a Frederic DULUCQ a , Damien THIENPONT a a OMEGA/IN2P3/Ecole Polytechnique b Weeroc SAS

Upload: others

Post on 30-Jul-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TRIROC!ASIC! - indico.cern.ch

 TRIROC  ASIC  

TIPP  2014,  Amsterdam  5  June  2014  

Salleh  AHMAD  

The   research   leading   to   these   results   has   received   funding   from   the  European  Union  Seventh  Programme  under  grant  agreement  n°  602621  

Christophe  DE  LA  TAILLEa,  Julien  FLEURYb,  Nathalie  SEGUIN-­‐MOREAUa,Ludovic  RAUXa,  

Stéphane  CALLIERa,  Gisele  MARTIN  CHASSARDa  

Frederic  DULUCQa,  Damien  THIENPONTa    

aOMEGA/IN2P3/Ecole  Polytechnique  bWeeroc  SAS    

Page 2: TRIROC!ASIC! - indico.cern.ch

Weeroc  and  Omega  

•  Weeroc  is  a  spin-­‐off  company  from  OMEGA  lab  •  CEO:  Julien  Fleury    •  Weeroc  addresses  industrial  needs  for  

microelectronics  in  Aerospace,  Medical  imaging,  Scien[fic  instrumenta[on,  Homeland  security,  Nuclear  industry  …  

•  Weeroc    and  OMEGA  (13  microelectronics  engineers)  provide  :  –  off-­‐the-­‐shelf  FE  ASIC  (the  ROC  chip  family)  –  customer-­‐specific  ASICs  –  Services,  Audit,  Exper[se  

 

Research  Ins[tute  

Educa[on  University  

Industry  company  

•  OMEGA  :  formerly  a  microelectronics  group  of  LAL  ORSAY,  became  an  independent  lab  (IN2P3/CNRS/Ecole  Polytechnique)  in  June  2013.  Located  in  Palaiseau,  directed  by  Christophe  de  La  Taille  

Weeroc  :  www.weeroc.com  OMEGA:    omega.in2p3.fr  

2  

Page 3: TRIROC!ASIC! - indico.cern.ch

TRIMAGE  European  Project  

•  Cost  effec[ve  tri-­‐modality    (PET  –  MR  –  EEG)  imaging  tools  for  schizophrenia:  •  Find  new  biomarkers  and  define  a  suitable  mul[modal  paradigm  with  already  available  

PET,  MR,  EEG  and  PET/MR  systems  that  provides  clinical  evidence  on  the  feasibility  of  advanced  schizophrenia  diagnosis.  

•  Construct  and  test  an  op[mized  cost-­‐effec[ve  trimodality  imaging  instrument  (brain  PET/MR/EEG)  for  diagnosis,  monitoring  and  follow-­‐up  of  schizophrenia  disorders.  

•  Validate  the  trimodal  imaging  device  built  by  this  Consor[um  with  regard  to  the  results  and  the  clinical  data  obtained  from  objec[ve  1.  

   

3  

Page 4: TRIROC!ASIC! - indico.cern.ch

A European Collaborative project supported through the

Seventh Framework Programme for Research and Technological Development

The problem Schizophrenia affects about 7 per 1000 of the adult population but

because the disorder is chronic the overall incidence is higher, at around

1% of the population. The cost per person with psychotic disorders is

close to 20.000€ per year on average. The earlier the treatment is

initiated, the more effective it is, however the majority of people with

schizophrenia do not receive treatment, which has the effect of

prolonging their illness.

TRIMAGE aims to create a trimodal, cost-effective imaging tool consisting of PET/MR/EEG using cutting edge technology with performance beyond the state of the art. The tool is intended for broad distribution and will enable effective early diagnosis of schizophrenia and possibly other mental health disorders.

TRIMAGE Objectives The main TRIMAGE S&T objectives are:

x Find new biomarkers and define a suitable multimodal paradigm with

already available PET, MR, EEG and PET/MR systems that provides clinical

evidence on the feasibility of advanced schizophrenia diagnosis.

x Construct and test an optimized cost-effective trimodality imaging

instrument (brain PET/MR/EEG) for diagnosis, monitoring and follow-up

of schizophrenia disorders.

x Validate the trimodal imaging device built by this Consortium with

regard to the results and the clinical data obtained from objective 1.

The Consortium The TRIMAGE consortium brings together 11 multi-

disciplinary partners from 5 European countries, and is

based on high-level scientific expertise from Universities,

Research Centres and SMEs.

Acknowledgment The TRIMAGE project is supported by the European Commission through the

Seventh Framework Programme for Research & Development.

The 4 year project will run from 1st December 2013 until 30th November 2017.

An optimised TRImodality (PET/MR/EEG) imaging tool for schizophrenia

Project Partners Role in the project

University of Pisa (UNIPI) Coordinator & PET system development

Technological Educational Institute of

Athens (TEIA)

Dissemination & Monte Carlo simulations

Forschungszentrum Juelich GmbH (FZJ) Coil design & PET/MR/EEG integration

JARA BRAIN, RWTH (JRB) Clinical application

Technische Universitat Munich (TUM) Image quantification & clinical application

University of Zurich (PUK) Patient recruitment & clinical data analysis

Istituto Nazionale di Fisica Nucleare (INFN) PET system development & characterization

AdvanSiD (ASD) SiPMs and chip-scale package development

WeeROC (WRC) PET modules production & testing

Raytest GmbH (RAY) Mechanical parts design & market strategy

RS2D (RS2D) Design, assembly, test 1.5T MRI

Contact Scientific Coordinator Prof. Alberto DEL GUERRA

University of Pisa, Italy

[email protected]

Exploitation Manager Jean-Luc Lefaucheur

Raytest, France

[email protected]

Project website www.trimage.eu

Dissemination Manager Ms. Theodora Christopoulou

TEI Athens, Greece

[email protected]

Project Office Project Trimage Office

University of Pisa, Italy

[email protected]

TRIMAGE  Project  Partners  

4  

Project  Partners   Role  in  the  project  

University  of  Pisa  (UNIPI)     Coordinator  &  PET  system  development    

Technological  Educa[onal  Ins[tute  of  Athens  (TEIA)    

Dissemina[on  &  Monte  Carlo  simula[ons    

Forschungszentrum  Juelich  GmbH  (FZJ)    

Coil  design  &  PET/MR/EEG  integra[on    

JARA  BRAIN,  RWTH  (JRB)     Clinical  applica[on    

Technische  Universitat  Munich  (TUM)    

Image  quan[fica[on  &  clinical  applica[on    

University  of  Zurich  (PUK)     Pa[ent  recruitment  &  clinical  data  analysis    

Is[tuto  Nazionale  di  Fisica  Nucleare  (INFN)    

PET  system  development  &  characteriza[on    

AdvanSiD  (ASD)     SiPMs  and  chip-­‐scale  package  development    

Weeroc  (WRC)     PET  modules  produc[on  &  tes[ng    

Raytest  GmbH  (RAY)     Mechanical  parts  design  &  market  strategy    

RS2D  (RS2D)     Design,  assembly,  test  1.5T  MRI    

Page 5: TRIROC!ASIC! - indico.cern.ch

The  TRIMAGE  system  

FP7-HEALTH-2013-INNOVATION-1 TRIMAGE Part B - Stage 2

12

Fig. 4: (left) Arrangement of the 54 staggered LYSO crystals to form the PET ring; (center) schematic illustration of the staggered crystal-detector assembly; (right) example of a 4x4 array of SiPMs integrated on a common compact substrate with minimum footprint and SiPM-to-SiPM spacing produced by ASD.

1.2.4.3 Progress in MRI technology The MR system will be based on a superconducting magnet with a homogeneous magnetic field of 1.5 T, as in most clinical studies performed to date. It will have high stability (better than 0.1 ppm/h), high homogeneity (better than 5 ppm) and 30 cm diameter of homogeneous spherical volume. The 5 Gauss line is roughly at 320 cm axially and 220 cm transaxially from the isocentre of the scanner making the room requirements less stringent than for standard clinical MR scanners. The MR magnet has a bore of 60 cm, an asymmetric gradient coil covering 25 cm axially, that allows the introduction of the shoulders of the patient in the full diameter of the bore and an optimized RF coil (8-channels parallel receiver) for head studies with an active B1 field with a 20 cm length and a 22 cm diameter. A key feature of the magnet is that it is cryogen-free making the system much more compact and cost-effective compared to standard MRI scanners. Also, the system does not require any special safety measures for handling cryogenic gas leaks as is required in cryogen cooled magnets in standard MRI scanners. All these characteristics will facilitate better physiological measures since the patient’s arm will be accessible outside the magnet. It will then be easier to measure the input function for PET as well as requesting simple motor tasks, e.g., finger tapping. To date, such a system does not exist and – to the best of our knowledge – is not being planned.

1.2.4.4 Progress in multimodal imaging technology The ultra-compact design of the superconducting magnet and the small installation requirements are critical factors for the cost-effectiveness and the wide availability of a dedicated system for human brain studies. The main drawback of fMRI is its dependence on the low temporal resolution BOLD effect. This restriction can be overcome by the simultaneous combination of fMRI and electrophysiology (Neuner et al, 2010). On the other hand, EEG is capable of measuring neuronal function at a millisecond time scale (Michel and Murray, 2012). Moreover, it is clear that PET assessment is also paramount in order to complete the pathophysiological frame of the disorder. It is not intended here to develop an EEG system from the ground up. Rather, building on the experience gained at the FZJ, a commercially available system that has already been tested in the hybrid PET/MR environment will be integrated into the PET/MR system proposed here. System integration will take care of synchronisation of the three modalities and the display of the data from them. As noted earlier, the integration of all of three modalities, PET, MR and EEG is per se a demanded step forward in this field. A design of the proposed integrated instrument is presented in Fig. 5.

Fig. 5: Dimensional outline (left) and artistic view (right) of the dedicated brain PET/MR/EEG system (the EEG cap is not shown).

5  

Page 6: TRIROC!ASIC! - indico.cern.ch

PET  ring  :    one  module  

6  Gamma  Camera  Module  

Page 7: TRIROC!ASIC! - indico.cern.ch

PET  ring  :  Gamma  Camera  Module  

•  256  channels  per  module  •  54  modules  per  ring,  14k  channels  –  64-­‐channel  ASIC,  216  ASIC  per  PET  ring  –  Front-­‐end  board  with  SIPM  on  one  side  and  FEE  on  the  other  side  

7  

Page 8: TRIROC!ASIC! - indico.cern.ch

Features:  •  64-­‐channel  SiPM  readout  :  posi[ve  &  nega[ve  polarity  

inputs  •  8-­‐bit  Input  DAC  for  SiPM  HV  tuning  •  Time  Stamp  and  ADC  charge  outputs  •  64-­‐channel  trigger  outputs  •  Power  Pulsing  :  Analog,  ADC  &  Digital    •  Event  rate  :  50k  events/s  •  Process:  AMS  SiGe  0.35µm  

Time  Stamp  

ADC  Charge  

8-­‐bit    input  DAC  

High  Gain  shaper  

Low  Gain  shaper  

Triroc  Design  

8  

Page 9: TRIROC!ASIC! - indico.cern.ch

Analog  Design  

–  High  Bandwidth  Common  base  pre-­‐amp  (4GHz  GBW)  •   accep[ng  both  polarity  inputs  

–  8-­‐bit  input  DAC  –  2  shapers  for  charge  measurements  

•  High  gain  :  up  to  100  pe,  Low  Gain  :  up  to  2000  pe  –  2  triggers:  Time    and  Charge  (events  valida[on)  –  10-­‐bit  DACs  for  threshold  +  6-­‐bit  trimming  in  each  channel    – Wilkinson  ADC,  Track  &  Hold/Peak  sensing   9  

Page 10: TRIROC!ASIC! - indico.cern.ch

Digital  and  backend  

•  Reject  unwanted  events:  –  Valida[on  with  charge  trigger  

•  Ini[ate  data  conversion:  –  10-­‐bit  ADC  –  TDC  coarse  and  fine  [me  

•  Readout  –  80  MHz  LVDS  –  4x  {  DataOut  +  TransmitOn  }  –  Global  Counter  (Top  level)  

•  External  Pins:  –  Reset  Channel  –  External  Channel  Hit  –  Start  Conversion   10  

Page 11: TRIROC!ASIC! - indico.cern.ch

Input  DAC  linearity  :  •  Bit  :  8  •  Range  :  1  -­‐  3  V  •  LSB  :  8.18  mV  

Simula[ons  -­‐  Input  DAC  

11  

Page 12: TRIROC!ASIC! - indico.cern.ch

Simula[ons  –  Trigger  Threshold  DAC  

Time  Trigger  Threshold  DAC  linearity  :  •  Bit  :  10  •  Range  :  1.446  –  2.348  V  •  LSB  :  0.89  mV  

Charge  Trigger  Threshold  DAC  linearity  :  •  Bit  :  10  •  Range  :  0.998  –  1.889  V  •  LSB  :  0.87  mV  

Time  Trigger  Threshold  DAC  Trimming  :  •  Bit  :  6  •  Range  :  Time  Trigger  DAC  -­‐  40  mV  •  LSB  :  0.6  mV  

12  

Page 13: TRIROC!ASIC! - indico.cern.ch

Pre-­‐amp  simula[ons  •  Input  :  20  pe  

Posi[ve  input    

Nega[ve  input    

Posi[ve  input    

Nega[ve  input    

Linearity  for  both  inputs    up  to  30  pe  

40  pe  

40  pe  

Simula[ons  –  Pre-­‐amplifier  

13  

Page 14: TRIROC!ASIC! - indico.cern.ch

High  gain  shaper  linearity  up  to  100  pe  

High  gain  Shaper  simula[ons  •  Input  charge  :  20  pe  •  Shaper  peaking  [me  :  10  ns  

Shaper  peak  detec[on  

Shaper  Track  &  Hold  

Shaper  peak  detec[on  

Shaper  Track  &  Hold  

Posi[ve    input  

Nega[ve    input  

Simula[ons  –  High  Gain  Shaper  

14  

Page 15: TRIROC!ASIC! - indico.cern.ch

Low  gain  shaper  linearity  up  to  2000  pe  

Low  gain  Shaper  simula[ons  •  Input  :  1000  pe  •  Shaper  peaking  [me  :  20  ns  

2000  pe  

Shaper  peak  detec[on  

Shaper  Track  &  Hold  

Posi[ve    input  

Shaper  peak  detec[on  

Shaper  Track  &  Hold  

Nega[ve    input  

Simula[ons  –  Low  Gain  Shaper  

15  

Page 16: TRIROC!ASIC! - indico.cern.ch

Power  consump[on  

•  Bias  +  common  bloc  :  11.815  mA  *  3.3V  =  39mW  •  1-­‐channel  :  0.6mW  

•  64-­‐channel  :  125.76  mA  *  3.3V  =  415mW  •  1-­‐channel  :  6.5mW  

•  Digital  :  ~16  mA  *3.3V  =  53mW    (es[ma[on)  •  1-­‐channel  :  0.8mW  

•  Total  for  1-­‐channel  :  7.9mW  

VDD  =  3.3V,  without  Output  Buffer  power  consump[on  

16  

Page 17: TRIROC!ASIC! - indico.cern.ch

Conclusion  &  Status  

•  Design  of  dual  polarity  inputs  ASIC  at  Weeroc/Omega  –  Versa[le  ASIC  for  any  SiPM  on  market  –  Suitable  for  PET/PET-­‐ToF  protoyping  –  Low  external  component  counts  –  Shares  a  lot  of  characteris[c  with  Pe[roc2  (see  C.  de  la  Taille  talk)  

•  Tapeout  in  March  2014  •  ASIC  currently  in  packaging  :  –  BGA  353  balls  :  12  x  12  mm  –  Compact  front-­‐end  board  in  PET  ring  

•  Test  board  s[ll  in  design.  Fab  scheduled  in  June  2014  •  Tests  scheduled  for  July  2014  •  Front-­‐End  board  in  Sept  2014   17