trinth

Upload: arif-arashi

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 trinth

    1/6

    Trigonometric integrals

    Previous lecture

    sin x cos x= 1

    2

    sin2x dx= 1

    4cos2x+C,

    sin

    2

    x dx= 1

    2

    (1 cos2x) dx= x

    21

    4sin2x+C

    cos2 x dx=

    1

    2

    (1 + cos 2x) dx=

    x

    2+

    1

    4sin 2x+C

    Integrals of the form

    sin ax cos bx dx,

    sin ax sin bx dx,

    cos ax cos bx dx, a =b

    Two basic identities:

    sin(x+y) = sin x cos y+ cos x sin y

    cos(x+y) = cos x cos y sin x sin y

    (for small x, y sin is increasing, +, cos is decreasing, )

    Change y toy

    sin(x

    y) = sin x cos y

    cos x sin y

    cos(x y) = cos x cos y+ sin x sin y

    2sin x cos y= sin (x+y) + sin (x y)

    2cos x cos y= cos (x+y) + cos (x y)

    2sin x sin y= cos (x y) cos(x+y)

    Application to integrals.

    Example

    sin2x cos3x dx=

    1

    2

    (sin(2x+ 3x) + sin (2x 3x)) dx=

    =1

    2

    sin5x dx 1

    2

    sin x dx=

    = 110

    cos5x+1

    2cos x+C.

    MATH115 T2 Winter 04, A.Potapov 1 www.math.ualberta.ca/apotapov/math115.htm

  • 8/10/2019 trinth

    2/6

    Example

    cos3x cos5x dx=

    1

    2

    (cos (3x+ 5x) + cos (3x 5x)) dx=

    =1

    2

    cos8x dx+

    1

    2

    cos2x dx=

    =

    1

    16sin 8x+

    1

    4sin2x+C.

    Example

    sin3x sin5x dx=

    1

    2

    (cos (3x 5x) cos (3x+ 5x)) dx=

    =1

    2

    cos2x dx 1

    2

    cos8x dx=

    = 1

    4sin2x 1

    16sin8x+C.

    Integrals of the form

    sinm x cosn xdx,

    tanm x secn xdx,

    cotm x cscn xdx.

    Idea use substitution to transform to integral of polynomial

    Pk(u)du or

    Pk(u)

    us ds.

    Actual substitution depends on m, n, and the type of the integral.

    Typical substitutions: u= sin x, cos x, tan x, sec x, cot x, csc x.

    Task: find, which substitution integral can be transformed

    P(u)duwithout

    1 u2 or similar.

    Even or odd powers in

    cosmx sin

    nx dx

    cosm

    x sinn

    x dx= cosm1

    x sinn

    x cos xdx

    cos xdx= d (sin x), u= sin x, but have to express cosm1 x through sin x.

    Ifm= 2k+ 1 (odd) we can: cos2k x=

    cos2 xk

    =

    1 sin2 xk = 1 u2k

    Ifm= 2k (even) we can not without

    1 sin2 x.

    Similarly

    cosm

    x sinn

    x dx= cosm

    x sinn1

    xsin xdx

    MATH115 T2 Winter 04, A.Potapov 2 www.math.ualberta.ca/apotapov/math115.htm

  • 8/10/2019 trinth

    3/6

    Ifn= 2k+ 1 (odd) we can useu= cos x, ifn= 2k (even) cannot.

    sincos rule: if one has odd power, use other for substitution.

    1) Odd power at cos x, u= sin x, du= cos x dx, cos2 x= 1 u2

    cos

    2k+1

    x sin

    n

    x dx=

    cos

    2k

    x sin

    n

    xcos xdx=

    1 u2k

    u

    n

    du

    Example: no sin x, but still u= sin x

    cos5 x dx=

    cos2 x

    2cos x dx=

    1 u2

    2du=

    =

    1 2u2 +u4

    du= u 2

    3u3 +

    1

    5u5 +C=

    = sin x

    2

    3

    sin3 x+1

    5

    sin5 x+C.

    2) Odd power at sin x, u= cos x, du= sin x dx, sin2 x= 1 u2

    cosm x sin2k+1 x dx=

    cosm x sin2k x sin xdx=

    um

    1 u2

    kdu

    3) Odd powers at both: use for uone with bigger power:

    Example: a) u= cos x

    cos3 x sin9 x dx=

    cos3 x sin8 xsin xdx=

    u3

    1 u2

    4du=

    =

    u3

    1 4u2 + 6u4 4u6 +u8

    du=

    = 14

    cos4 x+4

    6cos6 x 6

    8cos8 x+

    4

    10cos10 x 1

    12cos12 x+C

    b) u= sin x

    cos

    3

    x sin

    9

    x dx=

    cos

    2

    x sin

    9

    x cos xdx=

    1 u2

    u

    9

    du=

    =

    u9 u11

    du=

    1

    10u10 1

    12u12 +C=

    1

    10sin10 x 1

    12sin12 x+C

    which is simpler?

    4) Even powers at both. No good substitution. Transform with double angle formulas (x 2x) to smaller

    powers:

    sin

    2 x=

    1

    cos2x

    2 ,

    cos

    2 x=

    1 + cos 2x

    2 ,

    sinx

    cosx

    =

    sin2x

    2

    MATH115 T2 Winter 04, A.Potapov 3 www.math.ualberta.ca/apotapov/math115.htm

  • 8/10/2019 trinth

    4/6

    Example:

    sin4 x cos6 xdx=

    (sin x cos x)4 cos2 x=

    =

    1

    16sin4 2x

    1 + cos 2x

    2

    1

    2d (2x) = [z = 2x]

    = 1

    64 sin4 zdz [double angle] + 1

    64 sin4 zcos zdz [u= sin z] =

    = 1

    64

    1 cos2z

    2

    2dz+

    1

    64

    u4du=

    = 1

    256

    1 2cos2z+ cos2 2z

    dz+

    1

    320u5 +C=

    = z

    256 1

    256sin z+

    1

    512

    (1 + cos 4z) dz+

    1

    320sin5 z+C=

    = x

    128 1

    256sin2x+

    x

    256+

    1

    2048sin4z+

    1

    320sin5 2x+C=

    = 3256 x 1256sin2x+ 12048sin8x+ 1320sin5 2x+C.

    Even or odd powers in

    tanm x sec

    n x dx

    Ifm= 2k+ 1 is odd, you can rewrite and use the substitution u= cos x

    tan2k+1 x secn x dx=

    sin2k+1 x

    cos2k+1+n xdx=

    1 u2ku2k+1+n

    du.

    Example:

    tan x dx=

    sin x

    cos xdx [u= cos x] =

    du

    u = ln |cos x| +C

    Example:

    tan3 x dx=

    sin3 x

    cos3 xdx= [u= cos x] =

    1 u2

    u3 du=

    =

    u3du+

    u1du=

    1

    2u2 + ln |u| +C=1

    2sec2 x+ ln |cos x| +C

    Other possibility to use substitutions

    a) u= tan x, du= sec2 xdx, sec2 x= 1 +u2

    so the power at sec x must be even, power at tan x may be any;

    b) u= sec x, du= tan x sec xdx, tan2 x= u2 1

    So the power at tan xmust be odd, power at sec xmay be any;

    MATH115 T2 Winter 04, A.Potapov 4 www.math.ualberta.ca/apotapov/math115.htm

  • 8/10/2019 trinth

    5/6

    1) Even power at sec x, n= 2k+ 2, u= tan x,

    tanm x sec2k+2 x dx=

    um

    1 +u2

    k

    du.

    Example:

    tan4 x sec4 x dx=

    u4

    1 +u2

    du=

    u4 +u6

    du=

    =1

    5u5 +

    1

    7u7 +C=

    1

    5tan5 x+

    1

    7tan7 x+C

    Example: no tan x, but still u= tan x

    sec4 x dx=

    sec2 x sec2 x dx=

    1 +u2

    du=

    =u+13 u3 +C= tan x+13tan

    3 x+C.

    2) Odd power at tan x, m= 2k+ 1, u= sec x,

    tan2k+1 x secn x dx=

    tan2 x

    k

    secn1 xtan x sec xdx=

    u2 1

    k

    un1du.

    Example:

    tan xdx= tan1 x sec0 xdx= (sec x)1 tan x sec xdx= u1du=

    = ln |u| +C= ln |sec x| +C= ln |cos x| +C

    Other types:

    tan2k+2 x dx

    Reduction formula

    tan2k+2 x dx=

    tan2k x sin2 x sec2 x dx=

    =

    tan2k x

    1 cos2 x

    sec2 x dx=

    tan2k x sec2 x dx [u= tan x] +

    +

    tan2k x dx=

    u2kdu+

    tan2k2 x

    1 cos2 x

    sec2 x dx= ...

    MATH115 T2 Winter 04, A.Potapov 5 www.math.ualberta.ca/apotapov/math115.htm

  • 8/10/2019 trinth

    6/6

    Other types:

    seckx dx, k = 1, 3, 5, ...

    Denote for brevityJk =

    seck x dx

    k= 1

    J1=

    sec xdx=

    dxcos x

    =

    cos xdxcos2 x

    = [u= sin x]

    =

    du

    1 u2 =1

    2

    1

    1 +u+

    1

    1 u

    du=

    =1

    2(ln |1 +u| ln |1 u|) +C=1

    2ln

    1 +u1 u +C=12ln

    1 + sin x1 sin x +C=

    =1

    2ln

    (1 + sin x)2

    (1 sin x) (1 + sin x)

    +C=1

    2ln

    (1 + sin x)21 sin2 x

    +C= ln (1 + sin x)cos x

    +C=

    = ln

    |sec x+ tan x

    |+C

    k 3: reduction formula

    Jk =

    seck x dx=

    seck2 x sec2 xdx=

    seck2 x (tan x) dx=

    = seck2 x tan x

    tan x(k 2)seck3 x tan x sec xdx=

    = seck2 x tan x

    (k

    2) tan

    2 x seck2 xdx=

    = seck2 x tan x (k 2)

    sec2 x 1

    seck2 xdx=

    = seck2 x tan x (k 2) (Jk Jk2)

    Reduction formula

    Jk = 1

    k 1seck2 x tan x+

    k 2k 1 Jk2

    Application:

    J3=1

    2sec x tan x+

    1

    2J1=

    1

    2sec x tan x+

    1

    2ln |sec x+ tan x| +C

    Integrals ofIk =

    csck x dx can be evaluated in a similar way..

    MATH115 T2 Winter 04, A.Potapov 6 www.math.ualberta.ca/apotapov/math115.htm