trigno metry fundas

20
In a right-angled triangle, Sinθ= Opposite Side/Hypotenuse Cosθ= Adjacent Side/Hypotenuse Tanθ= Sinθ/Cosθ = Opposite Side/Adjacent Side Cosecθ = 1/Sinθ= Hypotenuse/Opposite Side Secθ = 1/Cosθ = Hypotenuse/Adjacent Side Cotθ = 1/tanθ = Cosθ/Sinθ = Adjacent Side/Opposite Side SinθCosecθ = CosθSecθ = TanθCotθ = 1 Sin(90-θ) = Cosθ, Cos(90-θ) = Sinθ Sin²θ + Cos²θ = 1

Upload: amit-chaturvedi

Post on 13-May-2017

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Trigno Metry Fundas

In a right-angled triangle,

Sinθ= Opposite Side/Hypotenuse

Cosθ= Adjacent Side/Hypotenuse

Tanθ= Sinθ/Cosθ = Opposite Side/Adjacent Side

Cosecθ = 1/Sinθ= Hypotenuse/Opposite Side

Secθ = 1/Cosθ = Hypotenuse/Adjacent Side

Cotθ = 1/tanθ = Cosθ/Sinθ = Adjacent Side/Opposite Side

SinθCosecθ = CosθSecθ = TanθCotθ = 1

Sin(90-θ) = Cosθ, Cos(90-θ) = Sinθ

Sin²θ + Cos²θ = 1

Tan²θ + 1 = Sec²θ

Cot²θ + 1 = Cosec²θ

Addition and subtraction formula:-

Sin(A+B) = SinACosB + CosASinBSin(A-B) = SinACosb - CosASinBCos(A+B) = CosACosB - SinASinBCos(A-B) = CosACosB + SinASinB

Page 2: Trigno Metry Fundas

Tan(A+B) = (TanA+TanB)/(1-TanATanB)

Tan(A-B) = (TanA - TanB)/(1+TanATanB)

Cot (A+B) = (CotACotB-1)/(CotA + CotB)

Cot(A-B) = (CotACotB+1)/(CotB-CotA)

Sin(A+B)+Sin(A-B) = 2SinACosB

Sin(A+B)-Sin(A-B) = 2CosASinB

Cos(A+B)+Cos(A-B) = 2CosACosB

Cos(A-B) - Cos(A-B) = 2SinASinB

SinC + SinD = 2Sin[(C+D)/2]Cos[(C-D)/2]

SinC - SinD = 2Cos[(C+D)/2]Sin[(C-D)/2]

CosC + CosD = 2Cos[(C+D)/2]Cos[(C-D)/2]

CosC - CosD = 2Sin[(C+D)/2]Sin[(D-C)/2]

Sin2θ = 2SinθCosθ = (2tanθ)/(1+tan²θ)

Cos2θ = Cos²θ - Sin²θ = 2Cos²θ - 1= 1 - 2Sin²θ = (1-tan²θ)/(1+tan²θ)

Tan2θ = 2tan²θ/(1-tanθ)

Page 3: Trigno Metry Fundas

(Angles are given in degrees, 90 degrees, 180 degrees etc.)

I. Sin(-θ)=-SinθCos(-θ) = Cosθtan(-θ) = -tanθcot(-θ) = -cotθsec(-θ) = secθcosec(-θ)= - cosecθ

II.sin(90-θ) = cosθcos(90-θ) = sinθtan(90-θ) = cotθcot(90-θ) = tanθsec(90-θ) = cosecθcosec(90-θ) = secθ

III.sin(90+θ) = cosθcos(90+θ) = -sinθtan(90+θ) = -cotθcot(90+θ) = -tanθsec(90+θ) = -cosecθcosec(90+θ) = secθ

IV.sin(180-θ) = sinθcos(180-θ) = -cosθtan(180-θ) = -tanθ

Page 4: Trigno Metry Fundas

cot(180-θ) = cotθsec(180-θ) = -secθcosec(180-θ) = cosecθ

V.sin(180+θ) = -sinθcos(180+θ) = -cosθtan(180+θ) = tanθcot(180+θ) = cotθsec(180+θ) = -secθcosec(180+θ) = -cosecθ

Formulas which express the sum or difference in product

Formulae which express products as sums or difference of Sines and Cosines

Page 5: Trigno Metry Fundas

Trignometric ratios of Multiple Angles

Page 6: Trigno Metry Fundas

Trignometric ratios of 3θ

Trignometric ratios of sub-multiple angles

Page 7: Trigno Metry Fundas

Properties of Inverse Trignometric Functions

Page 8: Trigno Metry Fundas
Page 9: Trigno Metry Fundas

Properties of Triangles

Sine Formula (or Law of Sines)

In any ΔABC,

Cosine Formula (or Law of Cosines)

In any ΔABC,

Page 10: Trigno Metry Fundas

These formulas are also written as

Projection formulas

In any ΔABC,

Page 11: Trigno Metry Fundas

Half-Angles and Sides

In any ΔABC,

Page 12: Trigno Metry Fundas

Area of a Triangle

Hero's fromula

Incircle and Circumcircle

Page 13: Trigno Metry Fundas

A circle which touches the three sides of a traingle internally is called the incircle.The center of the circle is called the incentre and the raidus is called the inradius.

If r is the inradius, then

The circle which passes through the vertices of a triangle is called the circumcircle of a triangle or circumscribing circle. The centre of this circle is the circumcentre and the radius of the circumcircle is the circumradius.

If R is the circumradius, then

If Δ is the area of the triangle,

Page 14: Trigno Metry Fundas

Hyperbolic Functions

Relation between circular and hyperbolic functions

Page 15: Trigno Metry Fundas

Addition formulas for Hyperbolic functions

Periods of hyperbolic functions

Inverse Hyperbolic functions

Page 16: Trigno Metry Fundas