”transfer functions for natural gas pipeline systems” dr. hans aalto

15
Neste Jacobs Oy / Hans Aalto 1 ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Upload: ciaran-oneil

Post on 01-Jan-2016

35 views

Category:

Documents


0 download

DESCRIPTION

”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto. Main pipeline system components: Compressor stations, pipeline segments and offtakes. 50-100 km. Compressor station discharge pressures are usually used to operate the pipeline. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto1

”Transfer Functions for Natural Gas Pipeline Systems”

Dr. Hans Aalto

Page 2: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto2

Page 3: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto3

Main pipeline system components:Compressor stations, pipeline segments and offtakes

50-100 km

Compressor station discharge pressures are usually used to operate the pipeline

Page 4: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto4

The dynamics, i.e. response to discharge pressures (and offtake gas flow changes) is slow or very slow

How would we obtain the transfer function between 2 variables of a given pipeline?

- Identify from true pipeline system data- Identify from dynamic simulator data

“Direct method”: from design data to transfer functions!

Page 5: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto5

Start with the PDE for a (=each!) pipeline segment

This is the simplest isothermal PDE model for pipelines in the horizontal plane only and with small gas velocities!

0P b q

t A z

2

0q P b q

A ft z DA P

Page 6: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto6

Discretize w.r.t to the space co-ordinate z, using N elements (nodes) for each segment (!) i=1,2,….N

1( )i ii i

i i

dP bq q

dt A z

2

1( )i i i ii i i

i i i i

dq A b qP P f

dt z D A P

Compressor station between node “k-1” and “k” : PI-controller of discharge pressure manipulating gas flow:

11 ,( ) ( )k

k k k k SET ki

dq KK q q P P

dt T

PI

Page 7: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto7

… Linearize this large ODE model in a given steady state operating point

where x ^ [ΔP1 Δq1 ΔP2 Δq2 … ΔPN ΔqN ]T

2,

1 2, ,

( ) 2 i SS ii ii i i i i

i SS i SS

q Pd q qP P

dt P P

1( )ii i i

d Pq q

dt

or:( )

( ) ( ),

( ) ( )

d tt t

dtt t

xAx Bu

y Cx

Page 8: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto8

Matrices A (2Nx2N) and B (2Nxm) depend on the geometry, physical parameters, node partition and steady state data = design (engineering) information

C (1x2N) is needed just to select which state variable is of interest

( )( ) ( ),

( ) ( )

d tt t

dtt t

xAx Bu

y Cx

The rest is easy, obtain the transfer function from (A,B,C) using standard methods ??? eg. ss2tf of Matlab

1 2 3

( 1)( 1)...( )

( 1)( 1)( 1)...a bK T s T s

G sT s T s T s

Page 9: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto9

NO! Transfer function from large system is difficult, even if dominating time constants may be obtained. In our case, numerator dynamics has relevance!

Page 10: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto10

=> Use Linear Model Reduction techniques!Truncation: Solve P and Q from

=

T T

T T

AP + PA +BB 0

A Q+QA+C C 0

Compute Hankel singular values i iσ λ (PQ)

Arrange eigenvectors of PQ into: 2 2N[ 1T v v v

The upper Nr <<2N submatrices of:provide a greately reduced linear state space system

-1

-1

A T AT

B T B

C CT

Page 11: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto11

Balanced truncation: P and Q required to be diagonal . . .

Transfer function from reduced model with Nr = 3…4 is easily obtained with standard methods!

Page 12: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto12

Pipeline system w. 6 segments, 8 offtakes, 4 compressor stations and 70 nodes=> 2N=140

CS1 CS2 CS4

10

20

2 3 4

56

7

20 10

20 30

15 45

PbPa

Page 13: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto13

Transfer function from CS2 discharge pressure to “Pa”, far downstream CS2 [time constant]=minutes!:

1.44

(190.6 1)s ~

1.44(116.9 1)

(117.7 1)(190.6 1)

s

s s

Dito for “Pb”, close to CS2:

1.16(83.5 1)

(11.2 1)(183.6 1)

s

s s

Page 14: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto14

Compare nonlinear ODE model and linear reduced order model (step response of Pa to CS2)

Time, minutes

0 250 500 750 1000 1250 1500-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Pa [bar] deviation from steady state

Page 15: ”Transfer Functions for Natural Gas Pipeline Systems” Dr. Hans Aalto

Neste Jacobs Oy / Hans Aalto15

Further development

- Non-isothermal pipeline- High gas speed- Vertical direction

- Reduce nonlinear ODE model first, then linearize = Proper Orthogonal Decomposition

LOPPU!