tran dang thuan, ph.d advanced biomass rd center, republic of korea

24
Utilization of microalgal- derived ash as a mineral reinforcement material in biocomposite formulation with poly(vinyl alcohol) TRAN DANG THUAN, Ph.D Advanced Biomass R&D Center, Republic of Korea Biopolymers and Bioplastics, August 10-12, 2015 San Francisco, USA

Upload: shawn-heath

Post on 18-Jan-2018

215 views

Category:

Documents


0 download

DESCRIPTION

Contents Introduction Experimental Characterization of materials Properties of composite materials Summary & conclusions Contents

TRANSCRIPT

Page 1: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

Utilization of microalgal-derived ash as a mineral reinforcement material

in biocomposite formulation with poly(vinyl alcohol)

TRAN DANG THUAN, Ph.DAdvanced Biomass R&D Center, Republic of Korea

Biopolymers and Bioplastics, August 10-12, 2015 San Francisco, USA

Page 2: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

Contents

I. Introduction

II. Experimental

III. Characterization of materials

IV. Properties of composite materials

V. Summary & conclusions

Page 3: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

I. IntroductionBest Mi-croalgae strain

Cultivation Harvest Lipid Extrac-tion

Biodiesel Production

Best Mi-croalgae strain

Cultivation Harvest Lipid Ex-traction

Biodiesel Production

Lipid-extracted algal biomass (LEA)(C, H, N, S, mineral element, etc.)

Chemical composition of LEAElement Average (%) STDEV

N 5.63 0.01C 42.81 0.33H 6.25 0.06S 3.94 0.15

Nannochloropsis salina

Carbon-richmaterial forgasification

Page 4: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

I. Introduction

Lipid-extracted algal biomass (LEA)(C, H, N, S, mineral elements, etc.)

Gasification

Steam (CO, H2, etc.)Tar, Soot, Sulfer compounds

Ash (SiO2, CaO, MgO, P2O5, SO3, etc.)Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y. Catal Today 1998;45(1–4):399–404.

How to utilize it?Potential filler for

composite fabrication

Page 5: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

II. ExperimentalS

impl

e G

asifi

catio

n Lipid-extracted algal biomass (LEA)(C, H, N, S, mineral elements, etc.)

Burning in a Furnance(575 oC, 3 hrs)

Raw ASH (RASH)

ActivationCharacterization

Composite Fabrication

Page 6: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

II. ExperimentalH

ydro

-che

mic

al A

ctiv

atio

n RASH

NaOH 1N (10 g RASH/60 mL NaOH)110 oC, 400 rpm, 1 hrs

Filter & Wash until pH 7.0

Dry (105 oC, 24 hrs)

PASH

Page 7: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

II. Experimental

PASH dispersed in H2OpH adjusted with NaOH 1N

to 10

Poly(diallyldimethylammonium chloride) (PDDA)

Page 8: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

8

1. Heating & stirring Solution

2. Casting 3. Ambient drying

Hot plate Knife coating device Composite films

II. Experimental

Storage(ASTM E104-02)

Saturated K2CO3, 25 oC,

RH = 43.2%

Mechanical propertiesThermal properties

Page 9: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

RASH PASHComponent Proportion (wt%) Component Proportion (wt%)

B2O3 4.71 C 3.21Na2O 1.86 Na2O 2.39MgO 2.57 MgO 2.99Al2O3 4.34 Al2O3 4.96SiO2 24.40 SiO2 27.80P2O5 13.20 P2O5 17.10SO3 23.30 SO3 3.61K2O 2.13 K2O 0.96CaO 17.60 CaO 22.20TiO2 0.51 TiO2 0.60MnO 0.09 MnO 0.11Fe2O3 4.45 Fe2O3 4.64ZnO 0.53 ZnO 0.60

Others 0.31 Others 8.83Surface area (m2/g) 4.8 Surface area (m2/g) 65.2

Chemical composition determined by XRFIII. Characterization of RASH and PASH

Page 10: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

III. Characterization of RASH and PASHCrystal composition determined by XRD

Inte

n sity

(a.u

)

2Theta (deg.)

RASH PASH

*

*

* ** *

* * * ** * * * * * * * * *

Q

Q

*

* Q Q Q Q Q Q

Q

Q QQQQΔ Δ ΔΔ◊

Δ

◊ Q Δ

Q

∆∆

(Q) Quartz (SiO2)(*) Anhydrite (CaSO4)(▽ ) Calcium magnesium phosphate (Ca7Mg2P6O24)(◊) Clacium peroxide (CaO2)(Δ ) Calcium silicate (Ca8Si5O18)

Page 11: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

III. Characterization of RASH and PASH

400100016002200280034004000Wavenumber (cm–1)

RASH

PASH

1088

1028

798

799

603

674

3405 16

36

1418

552

460

594

611

563

447

IR spectra of RASH and ASH determined by FT-IR

O-H stretching

Si4+ in silicate Ca8Si5O18

Si─O and Si─O─Al asymmetric stretching vibrations

C─O and/or C─H bonds in carbonates

form

ation

of r

elati

ve la

rger

in

terp

artic

le p

ores

Page 12: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

III. Characterization of RASH and PASHFE-SEM micrographs of RASH and PASH

(A) (B)

(C) (D)

Platelet-like particles

with sm

ooth surfa

ce

Particles with

irregular

shape, rough, and craters

on its su

rface

RASH

PASH

Page 13: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

III. Characterization of RASH and PASHParticle size distribution of RASH and PASH determined by DLS

Particle size (µm)0 1 2 3 4 5 6

Vol

ume

(%)

0

5

10

15

20

25

30RASHPASH

Shifting of particle size distribution to

left side

Page 14: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

IV. Mechanical propertiesUTSs of neat PVA, PVA/PASH, and PVA/PASH/PDDA composites

Ash content (%)0 5 10 15 20 25

Ulti

mat

e T

ensi

le S

tren

gth

(MPa

)

0

10

20

30

40

50PVAPVA/PASHPVA/PASH/PDDA

Page 15: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

IV. Mechanical propertiesEBs of neat PVA, PVA/PASH, and PVA/PASH/PDDA composites

Ash content (%)0 5 10 15 20 25

Elo

ngat

ion

at B

reak

(%)

0

50

100

150

200

250

300

350PVAPVA/PASHPVA/PASH/PDDA

Page 16: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

IV. Mechanical propertiesYMs of neat PVA, PVA/PASH, and PVA/PASH/PDDA composites

Ash content (%)0 5 10 15 20 25

You

ng's

Mod

ulus

(MPa

)

0

500

1000

1500

2000PVAPVA/PASHPVA/PASH/PDDA

~ 1.6 GPa

Page 17: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

IV. Thermal propertiesDSC thermograms of PVA, PVA/PASH and PVA/PASH/PDDA

0 50 100 150 200 250

PVA

PVA95PASH5PDDA

PVA90PASH10PDDA

PVA85PASH15PDDA

PVA80PASH20PDDA

PVA75PASH25PDDA(B)

Temperature (oC)Temperature (oC)0 50 100 150 200 250

Hea

t fl

ow

(W

/g)

En

do

PVA

PVA95PASH5

PVA90PASH10

PVA85PASH15

PVA80PASH20

PVA75PASH25 (A)

Tg TgTm Tm

Page 18: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

IV. Thermal propertiesThermal properties of PVA, PVA/PASH and PVA/PASH/PDDASample Tc

(oC)Tm

(oC)ΔHm

(J/g)ΔHf

(J/g)Crystallinity

(%)

PVA 133.5 225.5 34 71.83 51.83

PVA95PASH5 134.4 226.7 36.41 49.94 37.93

PVA90PASH10 133.1 227.9 34.25 63.37 50.80

PVA85PASH15 130.5 225.6 28.83 50.56 42.92

PVA80PASH20 132.4 227.3 28.34 43.64 39.36

PVA75PASH25 135.7 229.8 32.15 38.60 37.13

PVA95PASH5PDDA 127.7 227.1 30.67 52.12 39.58

PVA90PASH10PDDA 128.6 227.3 28.51 47.63 38.18

PVA85PASH15PDDA 131.8 228.3 28.76 53.20 45.49

PVA80PASH20PDDA 127.9 227.9 24.75 51.55 46.49

PVA75PASH25PDDA 127.0 228.6 24.64 49.14 47.27Tm Heat resistance improvement

Page 19: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

IV. XRD pattern analysis

Inte

nsi

ty (

a.u

)

2Theta (deg.)

(B)

PVA

PVA95PASH5PDDA

PVA90PASH10PDDA

PVA85PASH15PDDA

PVA80PASH20PDDA

PVA75PASH25PDDA

Inte

nsi

ty (

a.u

)

2Theta (deg.)

PVA

PVA95PASH5

PVA90PASH10

PVA85PASH15

PVA80PASH20

PVA75PASH25 ∆Q

Q

Q

Q

Q

(Q ) Quartz (SiO 2)(∆) Calcium silicate (Ca 8Si 5O 18 )

(A)

Characteristics of semi-crystalline polymers

Page 20: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

IV. IR spectra analysis

400100016002200280034004000

Tran

smitt

ance

(%)

Wavenumber (cm–1)

PVA PVA75PASH25 PVA75PASH25PDDA

3280 29

37

1417 10

86

839

1655

1328

3250 29

38 1416

108513

27 844

1652

3267

2940

1416

1087

83216

51

1328

2910

2909

Shifting to lower wave number, and higher intensity

O-H stretchingC=O and C─O stretching

Page 21: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

IV. Morphological analysis (SEM)

(A) (B)

(B)

(C) (D)

PVA95PASH5 PVA75PASH25

PVA95PASH5PDDA PVA75PASH25PDDA

Full

cove

rage

Parti

al fu

ll co

vera

ge

Abun

danc

e in

terfa

cial

voi

dsVe

ry li

ttle

voi

ds

bridge-like connection brittle failure, poor filler-matrix adhesion

better polymer-reinforcement adhesion

Page 22: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

V. Summaries & Conclusions Hydrochemical activation made RASH become PASH with

smaller size, rough and crater surface, and high surface area Better dispersion and adhesion of PASH in PVA was observed

in presence of polycations (PDDA) Result in higher tensile strength of PVA/PASH/PDDA

compared to PVA/PASH composites at every loading of the filler

The process of pretreatment of RASH, utilization of PASH by composite formulation with PVA and polycation is easy and efficient, which can be integrated in downstream processing of microalgae-based biorefinery

Value-added composites produced from microalgal ash can partially improve economical feasibility of microalgal industry

Page 23: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

Acknowledgements This research was financially supported by the Advanced

Biomass R&D Center (ABC) of Korea Grant funded by the Ministry of Science, ICT and Future Planning (ABC-2010-0029728).

Supervised supports fromProf. Ji-Won Yang (CBE, KAIST)Prof. Min S. Park (CBE, ABC, KAIST)Prof. Yong Keun Chang (CBE, ABC, KAIST)

Many helps from my studentHyun-Ro Lee (M.S., CBE, KAIST)

Page 24: TRAN DANG THUAN, Ph.D Advanced Biomass RD Center, Republic of Korea

Thank you for your attention!