towards a first-principles chemical engineering · towards a first-principles chemical engineering...

28
Technische Universität München Towards a First-Principles Chemical Engineering Karsten Reuter Chemistry Department and Catalysis Research Center Technische Universität München

Upload: buinhan

Post on 31-Aug-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Technische Universität München

Towards aFirst-Principles Chemical Engineering

Karsten Reuter

Chemistry Department and Catalysis Research CenterTechnische Universität München

Challenges across the scales

Quantitative transient and steady-state surface kinetics

Self-consistent coupling to reactive flow field and appropriate

heat balance

Accurate (first-principles) energeticsof individual elementary processes

Surface chemistry:adsorption, diffusion,reaction, desorption

Multiscale modeling

Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functionsK. Reuter, C. Stampfl, and M. Scheffler, in: Handbook of Materials Modeling Vol. 1,

(Ed.) S. Yip, Springer (Berlin, 2005). http://www.fhi-berlin.mpg.de/th/paper.html

I. „Bottom up best practice“:

Multiscale modeling approach toin-situ CO oxidation at RuO2(110)

Electronic regime: Energetics of elementary processes

K. Reuter and M. Scheffler, Phys. Rev. B 68, 045407 (2003)

COcus + Ocus→ CO2

Density-Functional Theory

Vxc = GGA (PBE…)

0.9 eV

A

B

MolecularDynamics

TS

Mesoscopic regime: Tackling rare-event time scales

kA→B

kB→A

kineticMonte Carlo

N

t

B

A

∑∑ →→ +−=j

jijj

ijii tPktPkdt

tdP)()(

)(

∆EA→B ∆EB→A

∆−Γ=

=

→→

Tk

E

Z

Z

h

Tkk

ji

i

jiji

B

)(TSB

exp

o

Transition State Theory

First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status and frontiersK. Reuter, in “Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System”,

(Ed.) O. Deutschmann, Wiley-VCH, Weinheim (2011). http://www.fhi-berlin.mpg.de/th/paper.html

Molecular Dynamics:the whole trajectory

Kinetic Monte Carlo:coarse-grained hops

ab initio MD:up to 50 ps

ab initio kMC:up to minutes

Kinetic Monte Carlo: essentially „coarse-grained MD“

RuO

Building a first-principles kinetic Monte Carlo model

26 elementary processes (site-specific):

- O2 adsorption/desorption (dissociative/associative)- CO adsorption/desorption (unimolecular)- O and CO diffusion - CO + O reaction

K. Reuter and M. Scheffler, Phys. Rev. B 73, 045433 (2006)

O

CO

K. Reuter, Oil&Gas Sci. Technol. 61, 471 (2006)

CO oxidation @ RuO2(110)

600 K

CObr/-

pO (atm)2

1

CObr/COcus

Obr/Ocus

p CO

(atm

)

1

10-5

105

10-5 10+510-15 10-10

Obr/ -

CObr/COcus

Obr/Ocus

Surface structure and composition in the reactive environment

K. Reuter, D. Frenkel and M. Scheffler, Phys. Rev. Lett. 93, 116105 (2004)

T = 600 K, pO = 1 atm, pCO = 7 atm2

CO oxidation at RuO2(110)

TPR

Steady-state and transient parameter-free turnover frequencies

x

xx

xx

xx x xxx

x

x

xxx

xx x

pCO (10-9 atm)

Exp.

Theory

0.0 1.0 2.0 3.06

4

2

0TO

FC

O2

(101

2m

ol/c

m2

s)

pO2= 10-10 atm

350 K

M. Rieger, J. Rogal, and K. Reuter, Phys. Rev. Lett. 100, 016105 (2008)

K. Reuter and M. Scheffler, Phys. Rev. B 73, 045433 (2006)

Macroscopic regime: Heat and mass transfer

T, pCO, pO2

T

pCO2

p

pO2

pCO

ComputationalFluid Dynamics:

Stationary stagnationpoint flow

Chemical source termsfrom 1p-kMC

S. Matera and K. Reuter, Phys. Rev. B 82, 085446 (2010)

Isothermal limit: Mass transfer limitations

S. Matera and K. Reuter, Catal. Lett. 133, 156 (2009)

T = constuinl = 1 cm/sec

T = 600 KpO2

= 0.3 atm

II. Towards error-controlled

first-principles microkinetic models

Key ingredients to „predictive-quality“ microkinetic modeling

Accurate rate constants:

Transition state theory and beyondDFT functionals: „self-interaction“

van der Waals interactions

Reaction mechanism:

Process identificationLattice mapping / spatial distributions„Hot chemistry“ beyond Markov

CO + * ↔ CO*O2 + 2* ↔ O* + O*CO* + O* ↔ CO2…

∆−Γ= →

→ Tk

Ek ji

jiB

expo

Mean-field approximation: Phenomenological rate equations

∑∑ →→ +−=j

jijj

ijii tPktPkdt

tdP)()(

)(

),CO( ),O(

),CO,O(

cusbr

cusbr

tt

tP

θθ ⋅↓

θ(Ocus)θ(Obr)θ(COcus)θ(CObr)

{ }

{ }K

),CO(),,CO(),,O(),,O(, ),O(

),CO(),,CO(),,O(),,O(, ),O(

brcusbrcus2

br

brcusbrcus1

cus

ttttkfdt

td

ttttkfdt

td

ji

ji

θθθθθ

θθθθθ

=

=

B. Temel et al., J. Chem. Phys. 126, 204711 (2007)

Fitted rate constants deviate from “real” rate constants by up to two orders in magnitude for dominant processes

Effective parameters without microscopic meaning

The „power“ of fitting

pCO (atm)0.5 5 100

TO

F (s

ite-1

s-1 )

100

102

104

kMC

MFA( kDFT) MFA( kFit)

pO2= 1 atm, T = 600 K

CO oxidation at RuO2(110)

Diffusion at metal surfaces: surprises…

Hopping mechanism

Ag(100) ∆∆∆∆E = 0.45 eVAu(100) ∆∆∆∆E = 0.83 eV

B.D. Yu and M. Scheffler, Phys. Rev. B 56, R15569 (1997)

Exchange mechanism

Ag(100) ∆∆∆∆E = 0.73 eVAu(100) ∆∆∆∆E = 0.65 eV

Hyperdynamics

Automatized process identification

TAD

Accelerated molecular dynamics:

Other approaches: - metadynamics- dimer method…

Extending the Time Scale in Atomistic Simulation of Materials,A.F. Voter, F. Montalenti and T.C. Germann,

Annu. Rev. Mater. Res. 32, 321 (2002)

Error propagation through rate-determining steps

C.T. Campbell, J. Catal. 204, 520 (2001); Nature 432, 282 (2004)

Sensitivity analysis:pO2

= 1 atm T = 600 K

COcus + Ocus

Obr/Ocus ad

Ocus/Ocus ad

CObr ad

pCO (atm)

Χrc

,i

COcus +Obr

O-poisoned CO-poisoned

H. Meskine et al.,Ertl Special Issue

Surf. Sci. 603, 1724 (2009)

ij Kki

ii k

kX

,

rc,TOF

TOF

∂∂

=

CO oxidation at RuO2(110)

Source for „rough“ rate constants: Hybrid UBI-QEP ?!

[ ])()( ,b,b,bQEP-UBI

BAAB ABABBA EDEEPE +−−−=∆ +→ φ

Unity Bond-Index Quadratic Exponential Potential

E. Shustorovich and H. Sellers, Surf. Sci. Rep. 31, 5 (1998)

[ ]

+−

=−=∆ +→+→ )(

)()(min

2MEPTSQEP-UBI

BAABAB

ABABxBAAB DP

DPEEE

ABφφ

M. Maestri and K. Reuter, Angew. Chemie 123, 1226 (2011)

Pt(111),Rh(111)

Tackling complexity: Bottom-up meets top-down

Start with „working“ engineering microkinetic model(semi-empirical rate constants, rate equations…)

Refine rate constantsfor rate-determining steps

with first-principles calculations(switch to kMC if indicated)

All rate-determining stepsalready describedab initio?

Perform sensitivity analysis

Done☺☺☺☺

No Yes

C1 microkinetic model formethane conversion to syngas on Rh/Al2O3

M. Maestri et al., AIChE J. 55, 993 (2009)

H2oxidation

COoxidation

couplingH2 & CO

C1 microkinetic model formethane conversion to syngas on Rh/Al2O3

M. Maestri et al., AIChE J. 55, 993 (2009)

coup

ling

H2

& C

O

CH4 pyro-lisis

C1 microkinetic model formethane conversion to syngas on Rh/Al2O3

M. Maestri et al., AIChE J. 55, 993 (2009)

CH

4 py

rolis

isC

H4 ox

idat

ion

Identified key issues: Water-gas shift and r-WGS

CO2/CO ratio not well captured by the model, pointing at an incorrect description of WGS pathways

Same RDS for WGS/r-WGS inconsistent with experimental data

M. Maestri et al., Topics Catal. 52, 1983 (2009)

RDS RDS

First-principles refinement:When an „elementary step“ is not elementary…

„CO + OH → CO2 + H“

M. Maestri and K. Reuter (submitted)

WGS proceeds through carboxyl mechanism

New RDS consistent with all experimental data

RDS

RDS

Multiscale catalysis modeling: From hype to reality

State-of-the-art in catalysis modeling:- Prevalence of highly coarse-grained models

based on effective parameters without truemicroscopic meaning

rate equation theory based on empirical rate constants

- Emergence of ad-hoc dual-scale modelingfirst-principles kinetic Monte Carlo simulations for heterogeneous catalysis

Steps towards a predictive character multiscale catalysis modeling:- Replace effective parameters by first-principles data

fitted vs. DFT-based rate constants- Refined modeling at each individual level

necessity to resolve spatial arrangement at surfaceintegrate first-principles surface chemistry into reactor models

- Robust links between theories that enable reverse-mappingsensitivity analysis to control flow of error across scales

Technische Universität München

www.th4.ch.tum.de