toward active current density profile control in nstx-u ... · z. ilhan, w. wehner, et al. (lu...

28
Toward Active Current Density Profile Control in NSTX-U: Performance Assessment via Predictive TRANSP Simulations Zeki Ilhan 1 , William P. Wehner 1 , Eugenio Schuster 1 , Mark D. Boyer 2 , David A. Gates 2 , Stefan P. Gerhardt 2 , Jonathan E. Menard 2 1 Department of Mechanical Engineering & Mechanics Lehigh University 2 Princeton Plasma Physics Laboratory zeki [email protected] 18 th International Spherical Torus Workshop November 4, 2015 Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 1 / 28

Upload: others

Post on 02-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Toward Active Current Density Profile Control in NSTX-U:Performance Assessment via Predictive TRANSP Simulations

Zeki Ilhan1, William P. Wehner1, Eugenio Schuster1,Mark D. Boyer2, David A. Gates2, Stefan P. Gerhardt2, Jonathan E. Menard2

1Department of Mechanical Engineering & MechanicsLehigh University

2Princeton Plasma Physics Laboratory

zeki [email protected]

18th International Spherical Torus Workshop

November 4, 2015

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 1 / 28

Page 2: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Motivation for Current Density Profile Control in NSTX-UThere is growing consensus that the path to an economicalpower-producing reactor is the “Advanced Tokamak” (AT) concept.AT operational goals for the NSTX-U include [1]:− Non-inductive sustainment of the high-β spherical torus.

(Fusion power scales as Pfus ≈ β2B4)− High performance equilibrium scenarios with neutral beam heating.− Longer pulse durations.

Active, model-based, feedback control of the current density profileevolution can be useful to achieve these AT operational goals.

Relation between ι-profile and the toroidal current density (jφ) profile [2]:

ι(ρ, t) =R0µ0

ρ2Bφ

∫ ρ

0jφ(ρ′, t)ρ′dρ′ = −dΨ

dΦ︸ ︷︷ ︸−(∂ψ/∂ρ)/Bφ,0ρ2

Control of the ι-profile is equivalent to control of the current densityprofile, jφ(ρ, t), and the control of the poloidal flux gradient profile, ∂ψ/∂ρ.

[1] GERHARDT, S. P., ANDRE, R., and MENARD, J. E., Nuclear Fusion 52 (2012).[2] J. Wesson, Tokamaks (Oxford University Press, 3rd edition, 2004).

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 2 / 28

Page 3: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

First-Principles-Driven (FPD) Current Profile Modeling

The evolution of the poloidal magnetic flux is given by the MagneticDiffusion Equation [3]

∂ψ

∂t=

η(Te)

µ0ρ2bF2

∂ρ

(ρDψ

∂ψ

∂ρ

)+ R0Hη(Te)

< jNI · B >

Bφ,0, (1)

with boundary conditions

∂ψ

∂ρ

∣∣∣∣ρ=0

= 0,∂ψ

∂ρ

∣∣∣∣ρ=1

= −µ0

2πR0

G∣∣∣ρ=1

H∣∣∣ρ=1

I(t), (2)

where Dψ(ρ) = F(ρ)G(ρ)H(ρ), and F, G, H are geometric factorspertaining to the magnetic configuration of a particular equilibrium.

[3] OU, Y., LUCE, T. C., SCHUSTER E. et al., Fusion Engineering and Design (2007).

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 3 / 28

Page 4: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

First-Principles-Driven (FPD) Current Profile ModelingNSTX-U-tailored [4] empirical models [5] for the electron temperature,electron density, plasma resistivity, and noninductive current drives [6]take the form

ne(ρ, t) = nprofe (ρ)un(t) (3)

Te(ρ, t) = kTe(ρ, tr)Tprof

e (ρ, tr)ne(ρ, t)

I(t)√

Ptot(t) (4)

η(Te) =ksp(ρ, tr)Zeff

Te(ρ, t)3/2 (5)⟨jni · B

⟩Bφ,0

=

6∑i=1

⟨jnbii · B

⟩Bφ,0

+

⟨jbs · B

⟩Bφ,0

=

6∑i=1

kprofi (ρ)jdep

i (ρ)

√Te(ρ, t)

ne(ρ, t)Pi(t)

+kJeVR0

F(ρ)

(∂ψ

∂ρ

)−1[2L31Te

∂ne

∂ρ+{2L31 +L32 +αL34}ne

∂Te

∂ρ

](6)

[4] ILHAN, Z. O. et al., 55th Annual Meeting of the APS DPP (2013)[5] BARTON, J. E. et al., 52nd IEEE CDC (2013)[6] SAUTER, O. et al., Physics of Plasmas (1999), (2002)

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 4 / 28

Page 5: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Possible Uses of the FPD Model

Schematics of the plasma profile control system

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 5 / 28

Page 6: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Feedforward Actuator Trajectory OptimizationObjective: Design the actuator trajectories that can steer the plasma to atarget state characterized by the safety factor profile qtar(ρ, tf ) or rotationaltransform profile ιtar(ρ, tf ) at a specified time tf during the discharge suchthat the achieved plasma state is as stationary in time as possible.Cost functional defined as:

J(tf ) = kqJq(tf ) + kssJss(tf )

where kss and kq are the weight factors representing the relativeimportance of the plasma state characteristics and

Jq(tf ) =

∫ 1

0Wq(ρ) [qtar(ρ)− q(ρ, tf )]

2 dρ (7)

Jss(tf ) =

∫ 1

0Wss(ρ) [gss(ρ, tf )]

2 dρ, (8)

where Wq(ρ) and Wss(ρ) are positive weight functions and

gss(ρ, t) =∂Up

∂ρ= −∂Ψ

∂t= −2π

∂ψ

∂t, (9)

where Up is the loop-voltage profile which can be related to the temporalderivative of the poloidal magnetic flux.

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 6 / 28

Page 7: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Formulation of Various ConstraintsActuator Trajectory Parametrization: The trajectories of the i-th controlactuator (ui) can be parametrized by a finite number npi ofto-be-determined parameters (xi) at discrete points in time (tpi ), i.e.,

tpi = [t1, t2, . . . ., tk, . . . , tnpi= tf ] ∈ Rnpi

xi =[u1

i , u2i , . . . , u

ki , . . . , u

npii

]∈ Rnpi

Combining all parameters to represent individual actuator trajectories intothe vector x, where x ∈ Rntot

p and ntotp =

∑nacti=1 npi , the control actuator

trajectories can be written compactly as

u(t) = Π(t)x (10)

Actuator Constraints: The actuator magnitude and rate constraints aregiven by Imin

p ≤Ip(t) ≤ Imaxp ,

Pmin ≤Pi(t) ≤ Pmax, i = 1, . . . , nnbi

−Id′

p,max ≤dIp/dt ≤ Iu′p,max,

The above actuator constraints can be written compactly as a matrixinequality as

Alimu x ≤ blim

u (11)Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 7 / 28

Page 8: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Statement of the Optimization Problem

The optimization problem is written mathematically as

minx

J(tf ) = J(θ(tf ), θ(tf )), (12)

such that

θ = g(θ, u), (13)u(t) = Π(t)x, (14)

Alimu x ≤ blim

u , (15)

where the poloidal flux gradient, θ = dψ/dρ represents the plasma state,u represents the actuators, and g is a nonlinear function representing theplasma dynamics as an additional constraint ((13) is derived from (1)-(6)).

The optimization problem (12)-(15) can be solved iteratively in MATLABby using the Sequential Quadratic Programming (SQP) method [7].

[7] J. Nocedal and S. J. Wright, Numerical optimization, (Springer, New York, 2006).

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 8 / 28

Page 9: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Feedforward Optimization: Weighting only the q-profile

For this application, kq = 1 and kss = 0 in the cost functional.The goal is to hit a target q-profile at tf = 1 sec.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

Time (sec.)

Pla

sm

a C

urr

en

t (M

A)

(a) Optimal plasma current Ip(t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

Time (sec.)

Lin

e A

ve

rag

e D

en

sity (

10

19 m

−3)

(b) Line Averaged Density ne(t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.5

1

1.5

Time (sec.)

NB

I P

ow

er

2 (

MW

)

(c) Optimal NBI beam power #2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.5

1

1.5

Time (sec.)

NB

I P

ow

er

3 (

MW

)

(d) Optimal NBI beam power #3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.2

0.4

0.6

0.8

1

Time (sec.)

NB

I P

ow

er

4 (

MW

)

(e) Optimal NBI beam power #4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.5

1

1.5

2

Time (sec.)

NB

I P

ow

er

5 (

MW

)

(f) Optimal NBI beam power #5

Time evolution of the optimized feedforward actuator trajectories

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 9 / 28

Page 10: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Feedforward Optimization: Weighting only the q-profile

Comparison of the target and achieved q-profiles at various times:

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

Normalized Effective Minor Radius

Sagety

Facto

r

Target

Optimized Feedforward (Simulation)

(a) t = tf = 1.0 sec.

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

Normalized Effective Minor Radius

Sagety

Facto

r

Target

Optimized Feedforward (Simulation)

(b) t = 2.0 sec.

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

Normalized Effective Minor Radius

Sagety

Facto

r

Target

Optimized Feedforward (Simulation)

(c) t = 3.0 sec.

Time evolution of the safety factor at various radial locations:

0.5 1 1.5 2 2.5 30

5

10

15

20

25

Time(sec.)

Safe

ty F

acto

r

Optimization Interval

Target

Optimized Feedforward (Simulation)

q(0.4,t)

q(0.6,t)

q(0.9,t)

q(0.8,t)

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 10 / 28

Page 11: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Feedforward Optimization: Weighting only Steadiness

For this application, kss = 1 and kq = 0 in the cost functional.The goal is to maintain a steady q-profile throughout the simulation.

0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec.)

Pla

sma

Cur

rent

(M

A)

(a) Optimal plasma current Ip(t)

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

Time (sec.)

Line

Ave

rage

Den

sity

(10

19 m

−3 )

(b) Line Averaged Density

0.1 0.2 0.3 0.4 0.50

0.5

1

1.5

2

Time (sec.)

NB

I Pow

er 2

(M

W)

(c) Optimal NBI beam power #2

0.1 0.2 0.3 0.4 0.50

0.5

1

1.5

2

Time (sec.)

NB

I Pow

er 3

(M

W)

(d) Optimal NBI beam power #3

0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (sec.)

NB

I Pow

er 4

(M

W)

(e) Optimal NBI beam power #4

0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (sec.)

NB

I Pow

er 5

(M

W)

(f) Optimal NBI beam power #5

Time evolution of the optimized feedforward actuator trajectories

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28

Page 12: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Feedforward Optimization: Weighting only Steadiness

Comparison of the target and achieved q-profiles at various times:

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

Normalized Effective Minor Radius

Sagety

Facto

r

Target

Optimized Feedforward (Simulation)

(a) t = tf = 0.5 sec.

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

Normalized Effective Minor Radius

Sagety

Facto

r

Target

Optimized Feedforward (Simulation)

(b) t = 1.0 sec.

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

Normalized Effective Minor Radius

Sagety

Facto

r

Target

Optimized Feedforward (Simulation)

(c) t = 2.0 sec.

Time evolution of the safety factor at various radial locations:

0.5 1 1.5 2 2.5 30

5

10

15

20

25

30

Time(sec.)

Safe

ty F

acto

r

Optimization Interval

Target

Optimized Feedforward (Simulation)

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 12 / 28

Page 13: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Feedforward Optimization: Weighting q + Steadiness

For this application, kss = 1 and kq = 1 in the cost functional.The goal is to hit a target q-profile at t = 0.5 sec. and maintain itthroughout a 3 sec. simulation.

0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

Time (sec.)

Pla

sm

a C

urr

ent (M

A)

(a) Optimal plasma current Ip(t)

0.1 0.2 0.3 0.4 0.5

1

2

3

4

Time (sec.)Lin

e A

vera

ge D

ensity (

10

19 m

−3)

(b) Line Averaged Density

0.1 0.2 0.3 0.4 0.50

0.5

1

1.5

2

Time (sec.)

NB

I P

ow

er

2 (

MW

)

(c) Optimal NBI beam power #2

0.1 0.2 0.3 0.4 0.50

0.5

1

1.5

2

Time (sec.)

NB

I P

ow

er

3 (

MW

)

(d) Optimal NBI beam power #3

0.1 0.2 0.3 0.4 0.50

0.5

1

1.5

2

Time (sec.)

NB

I P

ow

er

4 (

MW

)

(e) Optimal NBI beam power #4

0.1 0.2 0.3 0.4 0.50

0.5

1

1.5

2

Time (sec.)

NB

I P

ow

er

5 (

MW

)

(f) Optimal NBI beam power #5

Time evolution of the optimized feedforward actuator trajectories

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 13 / 28

Page 14: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Feedforward Optimization: Weighting q + Steadiness

Comparison of the target and achieved q-profiles at various times:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

Normalized Effective Minor Radius

Sagety

Facto

r

Target

Optimized Feedforward (Simulation)

(a) t = tf = 0.5 sec.

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

Normalized Effective Minor Radius

Sagety

Facto

r

Target

Optimized Feedforward (Simulation)

(b) t = 1.0 sec.

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

Normalized Effective Minor Radius

Sagety

Facto

r

Target

Optimized Feedforward (Simulation)

(c) t = 2.0 sec.

Time evolution of the safety factor at various radial locations:

0.5 1 1.5 2 2.5 30

5

10

15

20

25

30

Time(sec.)

Safe

ty F

acto

r

Optimization Interval

Target

Optimized Feedforward (Simulation)

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 14 / 28

Page 15: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Optimal Feedback Control of the Current Density Profile

Linear-Quadratic-Integral (LQI) Optimal feedback controller has beendesigned in MATLAB based on the FPD, control-oriented model.

The effectiveness of the designed controller is first tested in MATLAB bysimulating the nonlinear magnetic diffusion equation (1).

Early results on control design and numerical testing have beenpresented in [8], [9].

The proposed feedback controller is now implemented in TRANSP forperformance assessment before experimental testing in NSTX-U.

Recently developed Expert routine [10] provides a framework to performclosed-loop predictive simulations within the TRANSP source code.

[8] ILHAN, Z. O. et al., 56th Annual Meeting of the APS DPP (2014)

[9] ILHAN, Z. O. et al., IEEE Multi-Conference on Systems and Control (2015)

[10] BOYER, M. D., ANDRE, R., GATES, D. A., et al., Nuclear Fusion 55 (2015)

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 15 / 28

Page 16: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Closed-Loop Control Simulation Study in TRANSP

The control objective is to track a target state trajectory ιr(ρ, t) withminimum control effort.The target state trajectory ιr(ρ, t) is generated through an open-loopTRANSP simulation with the following constant reference inputs.

ne(m−3) 5.0× 1019

P1(W) 0.2× 106

P2(W) 0.4× 106

P3(W) 0.6× 106

P4(W) 0.8× 106

P5(W) 1.0× 106

P6(W) 1.2× 106

Ip(A) 0.7× 106

Starting from the first second of the simulation, the controller is testedagainst perturbed initial conditions and constant input disturbances, i.e.,

u(t) =

{ur + ud, t ≤ 1 s.ur + ud + ∆u(t), t > 1 s.

where ur represents the constant reference inputs, ud stands for theconstant disturbance inputs (15% for Ip, 10% for P1, P3, P5 and P6), and∆u(t) is the output of the feedback controller.

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 16 / 28

Page 17: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 1: Actuation with Ip and Neutral BeamsCASE 1A CASE 1B

(without Ip rate saturation) (with Ip rate saturation)

0 1 2 3 40.2

0.3

0.4

0.5

0.6

0.7

Time (s.)

ι(t)

ιr(ρ=0.1)

ι (ρ=0.1)ιr(ρ=0.2)

ι (ρ=0.2)ιr(ρ=0.3)

ι (ρ=0.3)

0 1 2 3 40.2

0.3

0.4

0.5

0.6

0.7

Time (s.)

ι(t)

ιr(ρ=0.1)

ι (ρ=0.1)ιr(ρ=0.2)

ι (ρ=0.2)ιr(ρ=0.3)

ι (ρ=0.3)

0 1 2 3 40.05

0.1

0.15

0.2

0.25

Time (s.)

ι(t)

ιr(ρ=0.5)

ι (ρ=0.5)ιr(ρ=0.6)

ι (ρ=0.6)ιr(ρ=0.7)

ι (ρ=0.7)ιr(ρ=0.8)

ι (ρ=0.8)ιr(ρ=0.9)

ι (ρ=0.9)

0 1 2 3 40.05

0.1

0.15

0.2

0.25

Time (s.)

ι(t)

ιr(ρ=0.5)

ι (ρ=0.5)ιr(ρ=0.6)

ι (ρ=0.6)ιr(ρ=0.7)

ι (ρ=0.7)ιr(ρ=0.8)

ι (ρ=0.8)ιr(ρ=0.9)

ι (ρ=0.9)

Figures (left & right): Time evolution of the optimal outputs (solid) with their respective targets (dashed).Controller is off in the grey region.

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 17 / 28

Page 18: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 1: Actuation with Ip and Neutral BeamsCASE 1A CASE 1B

(without Ip rate saturation) (with Ip rate saturation)

0 1 2 3 40

0.5

1

1.5

2x 10

6

Time (s.)

Bea

m P

ower

s (

W)

P

1(t)

P2(t)

P3(t)

P4(t)

P5(t)

P6(t)

0 1 2 3 40

0.5

1

1.5

2x 10

6

Time (s.)

Bea

m P

ower

s (

W)

P

1(t)

P2(t)

P3(t)

P4(t)

P5(t)

P6(t)

0 1 2 3 46

6.5

7

7.5

8

8.5x 10

5

Time (s.)

I p(t)

(A)

0 1 2 3 46

6.5

7

7.5

8

8.5x 10

5

Time (s.)

I p(t)

(A)

Figures (upper left & right): Time evolution of the optimal beam powers.Figures (lower left & right): Time evolution of the optimal plasma current.

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 18 / 28

Page 19: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 1: Actuation with Ip and Neutral Beams

CASE 1A CASE 1B(without Ip rate saturation) (with Ip rate saturation)

0 0.5 10

0.1

0.3

0.5

0.7

normalized effective minor radius

Rot

atio

nal T

rans

form

ιref

(t=1)

ι (t=1)ι (t=1.2)ι (t=1.3)ι (t=1.8)ι (t=2.5)ιref

(t=4)

0 0.5 10

0.1

0.3

0.5

0.7

normalized effective minor radiusR

otat

iona

l Tra

nsfo

rm

ιref

(t=1)

ι (t=1)ι (t=1.2)ι (t=1.3)ι (t=1.8)ι (t=2.5)ιref

(t=4)

Figures (left & right): Time evolution of the rotational transform (ι-profile).

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 19 / 28

Page 20: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 2: Actuation with ne, Ip and Neutral BeamsCASE 2A CASE 2B

(without Ip&ne rate saturation) (with Ip&ne rate saturation)

0 1 2 3 40.2

0.3

0.4

0.5

0.6

0.7

Time (s.)

ι(t)

ιr(ρ=0.1)

ι (ρ=0.1)ιr(ρ=0.2)

ι (ρ=0.2)ιr(ρ=0.3)

ι (ρ=0.3)

0 1 2 3 40.2

0.3

0.4

0.5

0.6

0.7

Time (s.)

ι(t)

ιr(ρ=0.1)

ι (ρ=0.1)ιr(ρ=0.2)

ι (ρ=0.2)ιr(ρ=0.3)

ι (ρ=0.3)

0 1 2 3 40.05

0.1

0.15

0.2

0.25

Time (s.)

ι(t)

ιr(ρ=0.5)

ι (ρ=0.5)ιr(ρ=0.6)

ι (ρ=0.6)ιr(ρ=0.7)

ι (ρ=0.7)ιr(ρ=0.8)

ι (ρ=0.8)ιr(ρ=0.9)

ι (ρ=0.9)

0 1 2 3 40.05

0.1

0.15

0.2

0.25

Time (s.)

ι(t)

ιr(ρ=0.5)

ι (ρ=0.5)ιr(ρ=0.6)

ι (ρ=0.6)ιr(ρ=0.7)

ι (ρ=0.7)ιr(ρ=0.8)

ι (ρ=0.8)ιr(ρ=0.9)

ι (ρ=0.9)

Figures (left & right): Time evolution of the optimal outputs (solid) with their respective targets (dashed).Controller is off in the grey region.

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 20 / 28

Page 21: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 2: Actuation with ne, Ip and Neutral BeamsCASE 2A (without Ip&ne rate saturation)

0 1 2 3 44

5

6

7

8x 10

19

Time (s.)

n e(t)(

#/m

3 )

0 1 2 3 44

6

8

10x 10

5

Time (s.)

I p(t)

(A)

0 1 2 3 40

0.5

1

1.5

2x 10

6

Time (s.)

Bea

m P

ower

s (

W)

P

1(t)

P2(t)

P3(t)

P4(t)

P5(t)

P6(t)

CASE 2B (with Ip&ne rate saturation)

0 1 2 3 44

5

6

7

8x 10

19

Time (s.)

n e(t)(

#/m

3 )

0 1 2 3 44

6

8

10x 10

5

Time (s.)

I p(t)

(A)

0 1 2 3 40

0.5

1

1.5

2x 10

6

Time (s.)

Bea

m P

ower

s (

W)

P

1(t)

P2(t)

P3(t)

P4(t)

P5(t)

P6(t)

Figures: (left) Time evolution of the optimal line-averaged electron density, (center) time evolution of the optimalplasma current, and (right) time evolution of the optimal beam powers.

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 21 / 28

Page 22: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 2: Actuation with ne, Ip and Neutral Beams

CASE 2A CASE 2B(without Ip&ne rate saturation) (with Ip&ne rate saturation)

0 0.5 10

0.1

0.3

0.5

0.7

normalized effective minor radius

Rot

atio

nal T

rans

form

ιref

(t=1)

ι (t=1)ι (t=1.2)ι (t=1.3)ι (t=1.5)ι (t=1.8)ι (t=2.5)ιref

(t=4)

0 0.5 10

0.1

0.3

0.5

0.7

normalized effective minor radiusR

otat

iona

l Tra

nsfo

rm

ιref

(t=1)

ι (t=1)ι (t=1.2)ι (t=1.3)ι (t=1.5)ι (t=1.8)ι (t=2.5)ιref

(t=4)

Figures (left & right): Time evolution of the rotational transform (ι-profile).

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 22 / 28

Page 23: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 3: Control Against Changing Confinement Factor

In predictive TRANSP simulations, ne and Te profile evolutions are notmodeled by first-principles calculations. [11]A reference ne profile is specified based on an experimental profilemeasured on NSTX and then scaled to achieve a particular Greenwaldfraction, fGW.Similarly, Te profile is also taken from an experiment and scaled toachieve a particular global confinement time [12]

τST = HST 0.1178 I0.57p B1.08

T n0.44e P−0.73

Loss,th

When performing closed-loop simulations in TRANSP, the simulationmust be constrained to follow a specific confinement level all the timealthough the actuators are varied based on the calculations of thefeedback controller⇒ This is achieved by manipulating the confinementfactor HST through a user-defined waveform. [13]However, the HST factor can deviate from the user-supplied waveform inthe NSTX-U experiments⇒ creating additional source of disturbance.

[11] GERHARDT, S. P., ANDRE, R., and MENARD, J. E., Nuclear Fusion 52 (2012).[12] KAYE, S. et al., Nuclear Fusion 46 (2006).[13] BOYER, M. D., ANDRE, R., GATES, D. A., et al., Nuclear Fusion 55 (2015).

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 23 / 28

Page 24: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 3: Control Against Changing Confinement Factor

Two closed-loop TRANSP simulations are carried out to verifydisturbance rejection against changing confinement factors:

Run 142301B66 has a step increase in the HST from 0.75 to 1.25.Run 142301B67 has a step decrease in the HST from 1.25 to 0.75.

Note that the target profile corresponds to the open-loop run 142301W20,which has HST ≈ 1 when t ∈ [1 5] s., during which the controller is on.Only Ip and neutral beams are used as actuators without considering ratesaturations.

Time evolution of the confinement factors.Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 24 / 28

Page 25: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 3: Control Against Changing Confinement FactorCASE 3A CASE 3B

(increasing HST - 142301B66) (decreasing HST - 142301B67)

0 1 2 3 4 50.2

0.3

0.4

0.5

0.6

0.7

Time (s.)

ι(t)

ιr(ρ=0.1)

ι (ρ=0.1)ιr(ρ=0.2)

ι (ρ=0.2)ιr(ρ=0.3)

ι (ρ=0.3)

0 1 2 3 4 50.2

0.3

0.4

0.5

0.6

0.7

Time (s.)

ι(t)

ιr(ρ=0.1)

ι (ρ=0.1)ιr(ρ=0.2)

ι (ρ=0.2)ιr(ρ=0.3)

ι (ρ=0.3)

0 1 2 3 4 50.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s.)

ι(t)

ιr(ρ=0.5)

ι (ρ=0.5)ιr(ρ=0.6)

ι (ρ=0.6)ιr(ρ=0.7)

ι (ρ=0.7)ιr(ρ=0.8)

ι (ρ=0.8)ιr(ρ=0.9)

ι (ρ=0.9)

0 1 2 3 4 50.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s.)

ι(t)

ιr(ρ=0.5)

ι (ρ=0.5)ιr(ρ=0.6)

ι (ρ=0.6)ιr(ρ=0.7)

ι (ρ=0.7)ιr(ρ=0.8)

ι (ρ=0.8)ιr(ρ=0.9)

ι (ρ=0.9)

Figures (left & right): Time evolution of the optimal outputs (solid) with their respective targets (dashed).Controller is off in the grey region.

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 25 / 28

Page 26: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 3: Control Against Changing Confinement FactorCASE 3A CASE 3B

(increasing HST - 142301B66) (decreasing HST - 142301B67)

0 1 2 3 4 50

0.5

1

1.5

2x 10

6

Time (s.)

Bea

m P

ower

s (

W)

P

1(t)

P2(t)

P3(t)

P4(t)

P5(t)

P6(t)

0 1 2 3 4 50

0.5

1

1.5

2x 10

6

Time (s.)

Bea

m P

ower

s (

W)

P

1(t)

P2(t)

P3(t)

P4(t)

P5(t)

P6(t)

0 1 2 3 4 54

6

8

10x 10

5

Time (s.)

I p(t)

(A)

0 1 2 3 4 54

6

8

10x 10

5

Time (s.)

I p(t)

(A)

Figures (upper left & right): Time evolution of the optimal beam powers.Figures (lower left & right): Time evolution of the optimal plasma current.

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 26 / 28

Page 27: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

CASE 3: Control Against Changing Confinement Factor

CASE 3A CASE 3B(increasing HST - 142301B66) (decreasing HST - 142301B67)

0 0.5 10

0.1

0.3

0.5

0.7

normalized effective minor radius

Rot

atio

nal T

rans

form

ιref

(t=1)

ι (t=1)ι (t=1.2)ι (t=1.5)ι (t=2.0)ι (t=2.8)ι (t=4.0)ιref

(t=5)

0 0.5 10

0.1

0.3

0.5

0.7

normalized effective minor radiusR

otat

iona

l Tra

nsfo

rm

ιref

(t=1)

ι (t=1)ι (t=1.2)ι (t=1.5)ι (t=2.0)ι (t=2.8)ι (t=4.0)ιref

(t=5)

Figures (left & right): Time evolution of the rotational transform (ι-profile).

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 27 / 28

Page 28: Toward Active Current Density Profile Control in NSTX-U ... · Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 11 / 28. Feedforward

Conclusion and Future WorkA nonlinear, control-oriented, physics-based model has been proposed todescribe the evolution of the poloidal magnetic flux profile, which can berelated to the q-profile (ι-profile)⇒ the current density profile.Using this first-principles-driven (FPD), control-oriented model, atwo-component control design approach has been proposed for theregulation of the current density profile:

1 A feedforward trajectory optimizer (controller) to compute offline actuatorrequests to achieve specific plasma scenarios.

2 A feedback control algorithm to track a desired current density profile whileadding robustness against model uncertainties and disturbances to theoverall current profile control scheme.

The performance of the feedback controller has been validated inTRANSP simulations through the recently developed Expert routine,which provides a framework to perform closed-loop predictive simulationswithin the TRANSP source code.The immediate next step is to test the feedforward actuator trajectoryoptimizer in TRANSP and then in the actual NSTX-U machine.A longer-term next step is the implementation of the feedback controllerin the NSTX-U PCS with the ultimate goal of experimental testing.

Z. Ilhan, W. Wehner, et al. (LU & PPPL) Optimal current profile control in NSTX-U November 4, 2015 28 / 28