toji abstract--i a collocation solution of the flutter and vibration problems for a multiple...

198
UNCLASSIFIED AD NUMBER AD859289 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; APR 1969. Other requests shall be referred to Naval Air Systems Command, ATTN: AIR-6022, Washington, DC 20360. AUTHORITY USNASC ltr dtd 26 Oct 1971 THIS PAGE IS UNCLASSIFIED

Upload: others

Post on 24-Apr-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

UNCLASSIFIED

AD NUMBER

AD859289

NEW LIMITATION CHANGE

TOApproved for public release, distributionunlimited

FROMDistribution authorized to U.S. Gov't.agencies and their contractors; CriticalTechnology; APR 1969. Other requests shallbe referred to Naval Air Systems Command,ATTN: AIR-6022, Washington, DC 20360.

AUTHORITY

USNASC ltr dtd 26 Oct 1971

THIS PAGE IS UNCLASSIFIED

Page 2: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

IM O Report No. MSD-P69-14 4

Contract No. 00019-68-C-02%41 '7

00

oCOLLOCATION

VFLUTTER ANALYSISSTUDY

This document is subject to special export controls and transmittal

to foreign governments or foreign nationals may be made only with

prior approval of the Naval Air Systems Command (AIR44696*).

VOLUME IV.

C617A - COMPUTER PROGRAM TO PERFORIV'.UTTER

ANALYSIS BY THE COLLOCATION METHOD

APRIL 1969

MISSILE SYSTEMS DIVISION

----------------'HUGHES'V UGHLS AI7C-AT COMPANY

Page 3: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I

I

COFA

COLLOCATION FLUTTER ANALYSIS STUDY

II

IVOLUME IV

I COFA - COMPUTER PROGRAM TOPERFORM FLUTTER ANALYSIS BY THE COLLOCATION METHOD

I

I Prepared by Dynamics & Environments Section PersonnelHughes Aircraft Company, Missile Systems Division

I Contract No. 00019-68-L-0247

I1 APRIL 1969

This document is subject to special export controls and transmittalto foreign governments or foreign nationals. may be made only withprior approval of tha Naval Air Systems Command

I

I,

Page 4: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

K

j[ TABLE OF CONTENTS

Section PageF

ABSTRACT . .. . . . . . . . i

1 INTRODUCTION. . . . . . . . I

2 SIGN CONVENTION ..... 2

"T" 3 DERIVATION OF EQUATIONS ..... 3

4 REFERENCES . . . . . . .. . 13

1. 5 DESCRIPTION OF PROGRAM INPUT ... 14

4 6 DESCRIPTION OF PROGY RAM OUTPUT . 40

7 EXAMPLE PROBLEMS .... 42

8 PROGRAM LISTING ..... 62

9 FLOW DIAGRAM . . .1.. 1 01

r 10 NOMENCLATURE . . . . . . . . 188

III

II

Ji

Page 5: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

ABSTRACT

--i A collocation solution of the flutter and vibration problems for a

multiple component system is presented. The formulation utilizes

structural, aerodynamic, and inertial characteristics in the form of

matrices of structural and aerodynamic influence coefficients and a

mass matrix, respectively, for each component. The use of a rigid-

body modal matrix permits a general analysis for a 'system free in

space with up to six rigid-body degrees of freedom.

The computer prog ram provides the flutter or 'vibration solution

for a system composed of as many as 20 flexible components with aj:. i :' x- ximum total of 49 collocation control points. An option is provided

to vary the density as well as the reduced velocity. Another coti. isprovided to yield the modes from a vibration analysis in a punched-

card format for use in flutter analysis by modal methods. I

jIf

i"i

__ _____

Page 6: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

r

SECTION 1

[ INTRODUCTION

The mathematical formulation of the flutter problem results in a

fset of integral equations whose closed form solution is impossible to

obtain for most practical problems. One of the most useful approximate

methods of solving these equations is by direct collocation. A solution

by collocation is one in which the equations are satisfied at a finite num-

ber of selected points on the structure. These points, known as collo-

cation points, are satisfied simultaneously. The collocation solution

results in a matrix formulation which when cast in the canonical form

will yield eigenvalues that are directly related to the flutter stability

parameters. This manual presents a digital computer program that

will perforrr collocation flutter analyses. The computer program,

Which is written in Fortran IV, was developed by Rodden, Farkas, and

Malcom in Reference 1.

The collocation formulation of the flutter problem has been pre-

sented in Reference 2. The equations are presented for analysis of

single component systems restrained (cantilevered) in space and for

sysnmetrical systems free in space undergoing either symmetric or

antisymmetric flutter. A method of generalizing the matrix equation

for free-free flutter to include up to six rigid-body degrees of freedom

has been given in Reference 3. The present program extends the form-

ulation of Reference 2 to include an arbitrary combination of rigid-body

degrees of freedom (Ref; 3), and to consider more than one flexible

component. In addition, an option has been provided to vary the altitude

(i. e. density) as well as the reduced velocity. Finally, options have

been added to darry out a vibration analysis (which requires no aerody-

nami' data) and tc; provide vibration modes in punched -card format for

j tse in a modal flutter or vibration analysis.

I;

Page 7: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SECTION 2

Thi- NASA body axis system with the x, y, and z axes directed

forward, starboard, and downward, resoectively, is recommended for

consistency with the formulation of the static aeroelastic probleras in

Reference 4. However, the usual flutter convention with the x, y and z

gaxes directed aft, starboard and downward, respectively, may be used

instead. In either case, the- vertical normal force and deflection are

positive downward.

YCIX

z

- 2

2

Page 8: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SECTION 3

DERIVATION OF EQUATIONS

The integral equations of aeroelasticity consist of two basic

ro'lationships: The first is the relation between the structural deforma-

Y' IT tioi., the structural influence function, and the inertial and aerodynami,

loadings; the second is the relation between the aerodynamic disturbance

(downwash), the aerodynamic influence (kernel) function, and the aero-

dynamic pressure. A collocation formulation of the deformation inte-

r' gral equation for a vehicle free in space may be written in matrix form

L by requiring that the integral equation be satisfied at a discrete set of

control points. We choose a single type of coordinate, viz., the deflec-

[ ftion h, as an adequate measure of both the deformation.and the free-

:5 stream disturbance, not only for'simplicity in the resulting equations

but also because deflections have a more general meaning on a camberedt vehiie and deflection. influence coefficients are more readily obtained

from a structural analysis than slope (or twist) influence coefficients.

I. The resulting deformation matrix equation is

hl} {h - {ho} - a (F i } + IFa})

'where {hl} is the set of components of the absolute deflections of the

4 f control points,:{ ho } is the set of components of the deflections of the

control points due to the rigid-body motion of some reference points,

I a) is the set of structural influence coefficients (SICs, or flexibility

natrix) for the s;stem cantilevered from (or otherwise restrained at)

the reference point, { Fi } is the set of 4nertial force components inte

grated throughout the region adjacent to each control point, F is the

set of aerodynamic force components integrated over the vehicle surface

adjacent to each control point, and the scaler K has heen introduced as

z. factor to the SICs for convenience in investigating variations in stiff-

ness levels. The inertial forces may be written in terms of a riass

matrix (MI and the control point accelerations.

13

Page 9: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

-.j

{F1} -(l/386)[II] fhl (2)]

whete the diagonal elements of the mass matrix are found from inte-

grating the structural mass density throughout the region adjacent to the

control points. (N. B. , the mass matrix need not be diagonal, and, in

general, will not be so if the elements must be derived from a set of

weight data previously lumped at a system of control points different from

those required in the aeroelastic analysis. The use of a coupled mass

matrix permits simulation of given inertial characteristics at a set of

control points freruently dictated by more difficult aerodynamic consid-

erations.)

A collocation formulation of the aerodynamic integral equation is

more difficult than in the case of the deformation integral equation bi-

cause of the "singularities in the aerodynamic kernel function. The de-

termination of three relationships is necessary to derive a- set of aero-

dynamic influence coefficients (AICs) that relate the control point forces

to the deflections. The most basic and difficult is the pressure-downwash

relation that is derived from numerical analysis of the aerodynamic inte-

gral equation. The simpler relations are the numerical integration of

thr pressure to obtain the force, and the -numerical substantial differ en-

tation of the deflection to obtain the downwash. The effort involved in

each step depends or the planform, Mach number regime, and frequency

range; a survey of the status of unsteady AICs is given in Ref. 4. 'For

present purposes, it is sufficient to state the definition of the AICs in the

oscillatory case. We write the ae'.odynamic control point forces in

terms of the control point deflections as

{F} = (4v 2 /12)pb 2s[ W][1{l.} (3)

where I Ch I is the theoretically derived dimensionless (complex) matrix

of oscillatory AICs, f is the frequency of the assumed harmonic motion,

p is the atmospheric density, br is the reference semichord, a is the

reference span, and I W I is an empirically derived weighting matrix

4

Page 10: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

for modification of the theoretical AICs. A method for obtaining the

elements of the weighting matrix has been suggested in Ref. 4.

The sum of the force components may be written now from Eqs.

(2) and (3) for the case of harmonic motion.

fFi} + {Fa} = (4r.if /386)([ MI + 32.174 pb s[W][Ch]){ul} (4a)

I= (4wrf 21386)[1.I]{h1} 4b

We next discuss thie manner of inclusion of he rigid-body degrees

of freedom in Eq. (I). The matrix {ho} has been defin d as the set of

components of the deflections of the control points due ;o the rigid-body

motion of the reference point. Each component of the control point de -3 flections h° is linearly related to the rigid-body translations and rota-

t tions, provided the 'otations are small. Therefore, we may define a

I rigid -body modal matrix I hRI as the transformation

3 {h} = [hR] faR}

3 where {aR} is the set of amplitudes of rigid-body translations and ro-

tations of the reference point, As an example, if we consider symme-S3trical vertical motion, [h R.'s cvnpoued of two columns: the first is

a unit column corresponding to-the plunging mode, the second consists

i of the x-coordinate of each control point corresponding to the pitching

mode; JaRi is composed of two elements: the first is the plunging

displacement z0 , the second is the pitching angular displacement 0.

.3 Before proceeding in the derivation, we should review the format

of the various matrices in the case of a multiple flexible component

3 system. As an example, we consider a symmetrical flutter analysis

of an aircraft whose wing, aft fuselage, and tail are flexible, and whose

I forward fuselage may be assumed to be rigid. We assume that thereference point (cantilever point) can be located in the vehicle such that

I5

II

Page 11: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

its various components are independent. If we choose a point at the

intersection of the wing and fuselage, then the wing As independent -ofthe aft fuselage -tail combination, but the tail and aft fuselage nturt beconsidered together. The motion of the rigid forward fuselage is deter-

mined by the motion of the reference point, and the forward fuselage

will not enter into any flexible considerations but only into the free-free boundary conditions. From the foregoing, it is seen that the vari-ous matrices will. appear in partitioned form. If we denote the wing

and aft fuselage -tail system by the subscripts I and 2, respectively,then the flexibility matrix appears as

ran

[a] -(6)

I a

the mass matrix as

[M] = .. .(71)_0

the weighting matrix.' as

[wi ] (8)

6

Page 12: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

!

the A[Cs as

ECh] h

ri o i

and the rigid-body modal matrix as

[RIl[hR[hI = - (10)

-Two requirements should be emphasized with regard to the AICs. The

first concerns the proper inclusion of the reference geometry associated

with the nondimenslonal AICs. The dimensional form of Eq. (9) may be

[written.b C01

b~s(ChI [ sIchl j2 2 [

0 b ZCh8 j

r where br and s are the reference semichord and span of the compositer1 are the reference geometry for the first component,system, b, and are the reference geometry for the firs component,and b2 and aare the reference geometry for the second component.

The second requirement is that the AICs for each component must be

determined for the same "dimensional" reduced velocity V/w. If the

reference reduced velocity is

1/k r = V/b rw (12)

thc - the reduced velocity for the first component must be

7A

Page 13: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I

1/k I O r/kr)(br/bl) (13)

and, for the second component,

ilk = ( r/k)(br/b 2 ) (14)

Both of these requirements can be met in formulating the composite

AICs by choosing the same reference geometry in determining the AICs

for each component.

The rigid-body modal matrix provides the basis for a general

statement of the boundary conditions for the free-free flutter of the

composite system. The boundary conditions for harmonic motion may

be written as

hRIT [V] {h 1 ) + [A-m] {aR) = {0} (15)

where [Am 1 is an incremental generalized mass matrix, including aero-

dynamic effects, of any rigid component of the system attached to the

reference point (e. g., the forward fuselage that was assumed to be

rigid in the foregoing example),* and is not considered in the formula-

tion of the flexible component mass and aerodynamic matrices. The

form of the matrix [Ain] may be illustrated by the previous example

with n rigid forward C'selage again in symmetrical motion. We may

wri

[a'~ [ am] + IIAQI i'

*N. B.: It is assumed that no dynamic coupling exists between the rigid

and flexible components. A suitable disiinction can always be made be-tween the rigid and flexible components such that this requirement canbe met.

8

Page 14: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

NOTICE TO USERS

Portions of this document have been judged by the Clearinghouseto be of poor reproduction quality and not fully legible. However, inan effort to make as much information as possible available to the pub-lic, the Clearinghouse sells this document with the understanding thatif the user is not satisfied, the document may be returned for refund.

It you return this document, please include this notice togetherwith the IBM order card (label) to:

ClearinghouseAttn: 152.12Springfield, Va. 22151

Page 15: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

[ !

r where the generalized rigid component mass matrix of the forward

fuselage is

F

[am] [ Z (17)*"S 0 y °

in which M , S , and I are the mais, static unbalatnce about the ref-erence poiht, and pitching moment of inertia about the reference point,respectively, of the forward fuselage, and the generalized aerd'-yarr.ric

forces on the forward fuselage (if not negligible) are found from

[AQ] = 32.174 pb2S [hRo T[C ][hRol (18)

where [h RoI is the rigid-body modal matrix, [Cho I is the set of AICs,and b and s o are the reference geometry for the forward fuselage.Again the AICs mrvst be found for the reduced velocity of the composite

systerm.

We are now in a position to eliminate the r gid-body degrees offreedom and to formulate the eigenvalue problem for the flutter of theflexible free-free system. Substituting Eqs. (4b) and (5) int' Eq. (1),

and adding the structural damping factor 1/(I + ig) to the flexibilitymatrix to provide the artificial structural damping necessary to sustain

the assumed harmonic motion of the flutter system, we obtain

S{h} - [hRI {a R} = (4wr2Kf2/386(l + ig))[a] [ M- ] {h (19)

or X({h)- [hRI {aR()=[a] [M {h (Z0a)

[U] h1 } (20b)

,!

Page 16: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

where X denotes the eigenvalue

R I= R + iX (Z1a)

386(1 + ig)/4 2 Kf2 (21b)

Premultiplying Eq. (20b) by [hR]T [ V ] , and multiplying Eq. (15) by X

and subtracting, permits solution for the amplitudes of the rigid-body

motion

X(aR } = 1 [ t-hR]TI [tU]{h 1 ) (22)

where

[im = (hR ]T[] [ R]) + j] (23)

Finally, substituting Eq. (22) into Eq. (20b) yields the generalized

matrix equation for free-free flutter

{h = ((I] - (haI (ln hR]T(gll)uI {hl) (24)

The ')lution of Eq. (24) for the complex eigenvalues leads to the free -

fre frequency and the required structural damping. From Eq. (21),

we obtLin the frequency

f = (l/2w)386-/KXR (25)

and the required structural damping

g = X/XR (26)

10

Page 17: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I Since the formulation of the AICs requires the assumption of a reduced

velocity I/kr, the velocity follows from that and the frequency obtainedt in Eq. (25)

u = 0.5921 (2nfbr)(I/kr) (27)

I Equation (24) is seen to be completely general, being applicable

frorm the cantilever case (in which we let [hRl vanish) to the case of

six rigidbcdy degrees of freedom, and for a vibration analysis for

which the aerodynamic terms and required structural damping are de-

leted. We observe that Eq. (24) is a matrix formulation of the algebraic

procedures for free-free vibration analyals described in Ref. 4 (Par.11.2).

,1 From a series of solutions of Eq. (24) for vario is reduced velo-

cities, the conventional required damping versus velocity stability

curve can be constructed for a specific altitude, and the flutter pointis

determined as the velocity for which the required damping and actual

damping are equal. An alternative approach to the flutter analysis is

based on a single representative reduced velocity and a series of solu-

tions of Eq. (24), carried out for various densities. The density at

Iwhich the required damping and actual damping are equal may be used

to find a stiffness -altitude similarity parameter for flutter from which

the flutter stability may be determined. However, at present, the va-lidity of this latter approach requireb further investigation, particularly

Ithe sensitivity of the results to the choice of representative reduced

velocity.

The generalized mass corresponding to each free vibration mode

is of interest in various modal analyses of flying qualities, stability

and control characteristics, or transient response of flexible vehicles.

If Eq. (24) is solved for the free vibration modes (by deleting the aero-

dynamic terms) then the n'th generalized mass is given by

I (n)M~h' + a{n)T[ ]a~n)) (28)

R I

Page 18: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

where {h,~' is the n'th itree vibration mod and the corresponding rigidI

component mode it found fromn Eq, (42)

2{a() 4 f-5~ (I fl Th 1"l] j]{h,'n) (29)R386

F--

12

Page 19: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SECTION 4

REFERENCES

W1. WP. Rodden, E. F. Farkas and H. A. Malcom. "Flutter and

Vibration Analysis by a Collc. ation Method: Analytical Devalop-

ment and Computation Procedure". Aerospace Corporation Re-

port No. TDR-169(3230-11)TN-14, 31 July 1963.

2. W. P. Rodden, "Matrix Approach to Flutter Analysis" Institute

of the Aerospace Sciences Fairchild Fund Paper No. FF-23,

May 1958; based on North American Aviation, Inc., Report

NA-56-1070, I May 1956.

3. W. P. Rodden, "On Vibration and Flutter Analysis with Free -

Free Boundary Conditions". Journal of the Aerospace Sciences,

28 (1961) 65.

4. W. P. Rodden and J. D. Revell. "The Status of Unsteady Aerody-

namic Influence Coefficients". Institute of Aerospace Sciences

Fairchild Fund Paper No. FF-33, 23 January 1962; preprinted

in Aerospace Ccrporation Report TDR-930(2230-09) TN-2,

22 November 1961.

5. R. L. Bisplinghoff, H. Ashley, and R. L. Halfman. Aeroelasticity.

Reading: Addison-Wesley Publishing Company, Inc., 1955.

6. R. H. Scanlan and Robert Rosenbaum. Introduction to the Study

of Aircraft Vibration and Flutter. New York: The MacMillan

Company, 1951.

13

Page 20: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SECTION 5

DESCRIPTION OF PROGRAM INPUT

UNITS

The dimensional data required for each component consist of the

mass matrix in pounds, the flexibility matrix in inches per pourn., andWr

the reference semichord and semispan in feet. The aerodynamic influ-

ence coefficients are dimensionless. In ie case of free-free analysis,

the rigid-body mass matrix, e.g., in a symmetrical analysis if S and

I are given in the foot-pound system, the x-coordinates which corre- -yospond to the rigid body pitching mode must be measured in feet, whereas -

if S and I are given in the inch-pound system, the x-coordinate must0 yobe measured in inches. The dentity is required in slugs per cubic foot.

CLASSES OF DATA AND PROBLEMS

Five classes of data must be provided: mass, aerodynamic influ-

ence coefficients (AICs) and their weighting matrices, structural influ- "'

ence coefficients, the rigid-body motion modal matrix, and the rigid

component generalized mass characteristics. The cantilever case does -

not require either the rigid body modal matrix or the generalized masses.

(For a vibration analysis, the aerodynamic input is not required.)

Several classifications of problems may be analyzed using the

collocation flutter analysis program. They are cantilever flutter

analyeis -the structure is restrained from plunging motion. Free-

free -,utter analysis the structure is free to pitch, plunge, and roll.

The 9-free cases may have rigid components and flexible components.

However, when flexible components are coupled together, the structural

atta'-hment between component must be statically determinate. When

rigid body components are used, any nurmber up to six rigid body modes

may be used. Also vibration analyses may be performed when zero

aerodynamic forces are used.

14

a

Page 21: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

PROGRAM RESTRICTIONS AND OPTIONS

1. The maximum number of contr6l points that can be used for

all flexible components of any system is 49. A maximum of 49 control

points may also be used for the rigid component for the purpose of de-

riving the generalized aerodynamic force.

2. The maximum number of flexible components is 20.

3. The maximum number of values used in the reference reduced

velocity (I/KR) series is 20.

4. The maximum number of values used in a density series is 20.

5. The program provides for varying the densities with each

(I/KR) or for using the same densities w4ith all (l/K)'s.

6. The maximum number of output modes is 25.

7. The maximum number of rigid-body motion mrdes is 6.

8. It is possible to reserve a partition in the upper left-hand

corner of the flexible components AIC matrices ior control points whose

aerodynamic forces may be neglected or found from.an alternate theory

to that used for the primary control points. This partition is termed

the external stores region since external stores are an example of asource of additional control points requiring such special consideration.

The maximum number of control points that can be reserved on each

flexible component for external stores is 48.

9. A weighting matrix is an optional input for each flexible compo-

nent. The order of this matrix must be identical with the order of

the AIC matrices for the particular comporent.

10. Any number of complete sets (decks) of input data may be

stacked and run in one ma':hini, pass.

DATA DECK SETUP

LJ oading Order

The data decks are assembled using cards punched from keypunch

forms and/or card that are punched-card output from appropriate com-

puter programs. The data items in each deck have the following order,

15

Page 22: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

with the vxi.eption that some of the items may be omitted if indicators

usend in the control cards specify their absence.

1. Title card

Z, Data deck general control card

3. K card (flexibility matrix scale factor)

4. Data card for change in matrix iteration tests

5. Control card(s) for external stores and weighting matrices

(1/k6. Reference semichord (br) and reference reduced velocities

rrN, (I/kr ,, •J

S7. Reference semichord (b ri) and reference semispan (S.) for

rigid and flexible components (surfaces)8. series densities are used for allDensity seis(if sae(/k)'S

9. Generalized mass matrix ([Am]) for rigid component- q

10. Mass matrix ([M]i) for each flexible surface

11. Rigid-body motion modal matrix ([hRo]) for rigid component

12. Rigid-body motion modal matrix ([hRi]) for each flexible Isurface

13. Flexibility matrix ([a]i)

t 14. Weighting matrices ([W]i)

15. Aerodynamic input repeated for each (Il/kr) -

a. Density series cards (if densities vary with each (I/k.)

b. AIC matrix ([Cho]1) for rigid component (if present)

C. AIC matrix ([C for each flexible surfacc

Inpu Data Description

1. The title card may contain any alphanumeric characters

desired in Columns 2 through 72.

2. Data deck general control card (FORMAT 1814):

Col 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36

Name NSUR NAERO NRIGID NFUS NDENS MODES NDELM NPUNCH NCOM

Field (1) (2) (3) (4) (5) (6) (7) (8) (9)

16

Page 23: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

IINSUR: Number of flexible components (surfaces), < 20.

NAERO: Number of reference reduced velocities, s 20; NAERO

0 is used for vibration analyses.

NRIGID: Number of rigid-body motion modes to be input (= num-

ber of columns in ([hR]); NRIGID = 0 for the cantilever

I case.

NFUS: NFUS must 1 If AICs ([Ch] j = I, NAERO are input

for the rigid components; NFUS =0 if [Chol is not input.

NDENS: If NDENS = 0 the densities are to vary with each I/kr

and are input as part of Item 15; if NDENS>0 this number

of densities must be input as Item 8, and each density

MODES: value will be used for all (l/kr)'s.

MODES: Number of output modes, 5 25.

NDELM: NDELM = 0 if no rigid component generalized massjmatrix ([Am)is input; NDELM = I if [Am] is input.

NPUNCH: This indicator is used to obtain a printout of the dynamicj matrix ([U]) and to obtain the frequencies and modes in

punched-card format; NPUNCH = 0 if no printout of [U]or punched output is desired; NPUNCH = I if only punched-

card output is desired and NPUNCH = -I will provide theprintout of [U] and the punched output. (The minus sign

1must be in Column 29 and the I (one) in Column 32.)

NCON: This indicator provides for changing five program test

I numbers used in the matrix iteration subroutine; NCON =0 if no changes are desired and NCON 0 if any of the

jtests is to be changed.

3. K card (FORMAT 6E12.8)

Col 1-2

Name K

Field (I) .

17

Page 24: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

II

Field I contains K, the flexibility matrix normalizing constant; if the

[a] matrix has not been normalized, enter K = 1.0. The flexibility

matrix calculated by the program FLUENC has not been normalized.

4. Dat, card for changes in matrix iteration tests (FORMAT

3E12.8 and 214). Omit this card when NCON = 0. There are three

test numbers and two control numbers that define the convergence cri-

teria for tha flutter eigenvalue solution. A suggested set of numbers

are built into tlie program; these, however, may be changed by the

program user. To alter any number, all five numbers must be reentered. ifCol 1.12 13-24 25-36 37-40 41-44

Name EPSP EPDP AITKEN NITRSP NITRDP

Field (1) (2) (3) (4) (5)

EPSP 0.5 x 10 or input number; test for eigenvector conver-

gence when the iteration procedure is approaching a single root.EPDP = 0.5 x 10- 7 or input number; test for convergence when the

interation procedure is approaching a pair of close roots.

AITKEN = 0.9 or input number; if this test is met, the programuses a procedure (known as Aitken's 62 method) to

accelerate convergence.

NITRSP = 40; a maximum of 40 single precision arithmetic itera-

tions will be performed for each eigenvalue if its eigen- -

vectors have not converged in a lesser number.

1TRDP 100; if the eigenvectors for any one eigenvalue have not

converged in NITRSP single precisions iterations, the

program will then use up to a maximum of 100 double

arithmetic iterations.

5. Control card(s) for external stores and weighting matrices

(FORMAT 181); omit this data when NAERO = 0.

18

Page 25: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I

Col r 1-4 5-8 9-12 13-16

Name ISXT 1 ]SW 1 ISXT 2 ISW 2

Field 1 ?. 3 4

IContinue on successive cards to ISWi x ISWNSUR.

ISXT i z Number of control pointa reserved for the external

F stores on surface i.SISW = 0, no weighting matrix is to be input for surface i.

i= , weighting matrix is to be input for surface i.

Continue on next card, until i = NSUR.

r 6. Reference semichord, br and reduced velocity (l/kr) series(FORMAT 6E12.8): These reference parameters are used in computing

the flutter velocities.

Col 1-12 13-24 25-36 37-48 49-60 61-72

jjName br (1/kr)1 (1/kr) 2 (1/kr)3 (1/kr)4 (1/k) 5

Field (1) (2) (3) (4) (5) (6)

Continue (1/kr)i's on next card(s); i-520. The br(feet) may be any value;but it is noted that the (1/kr)i predetermines the (1/ki) used when com-

puting the AIC matrices for each surface. The l/k i for surface i isfound from the relationship (I/ki) = (1/k r)(br/bri) where bri is the

reference semichord for surface i.

7. A reference semichord (bri) and semispan (si) must be input

for the rigid component if NFUS = 1, and for each flexible surface if[ NAERO>0.

I! '9

a

Page 26: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

When NFUS 1 (FORMA'I 6E12.8)

Column 1-12 13-,24 25-36 37-48 49-60 61-72Name bro a bri 5rl br 2 r2

Field (1) (2) (3) (4) (5) (6)

Where bro and Sro are the reference semichord and semispan for the

rigid component. Continue on next card(s) until bri brNSUR

Sri SrNSUR'

When NFUS 0 (FORMAT 6E12.8)

Column I-12 13-24 25-36 37-48 49-60 61-72

Name brl rl br2 'r2 br 3 r 3

Field (1) (2(? )) (4) (5) (6)

Continue on next cardls) until bri brNSUR and Sri N

8. Density series (FORMAT 6E12. 5): Omit this input if NDENS=O

in Item 2. If NDENS>0 begin in field I of this card and NDENS densities,

.20. Continue on successive card(s).

C ,iumn 1-12 13-24 25-36 37-48

Nap 1 P2 P3 P4

Field | I2 3 4

9. Rigid component generalized mass matrix [rn].The [Am] matrixfor the rigid component(s) of the. system must be compatible with the flex-

ible surfaces product matrix given by [hR[M] [hR i.e., each element

in [Am] is based upon the same rigid-body motion generalized coordin-

ate as the respective element in the produ%:t matrix. Input by column

beginning each zolumn on a new card. Orit this data when NDELM = 0.

20

:1

Page 27: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I:I Col 1-12 13-24 25-36

Nam I '1l b2, 1 3,1 ~ (NRIGID-1), 1 NRGIM. IField (1) (2) (3) (NRIGM- 1) (NRIGID)

Continue on.successive card(s) until

1 10. Mass matrix [M]: The mass matrix is partitioned as shown

on page A-10, only the nonzero partitions are input; i.e., a separate

jmass matrix ([Mi]) is input for each surface. The sequence for con-

sidering the surfaces is the same as that used in Item 5 and 7 if

j NAERO>0. Repeat the following input for each surface from i I to

NSUR.

Size Control Cards

Column 1-4 5-8 9-12

* Name NSIZE i

Fi.eld (1) (2) (3)

NSIZEi = the order of [M]i

Ofte, n,any of the elements in a mass matrix are zero; the following

I 1 forma. tias been provided so that most of the zero elements will not

need to be entered into the program as data.

.I Control Card(s) for Omitting Zeros (FORMAT 1814)

Column 1-4 5-8 9-12 13-16 17-20tI

Name LOW1 LHIGHI LOW2 LHIGH 2 LOW3 LHIGIi

Field (1) (2) (3) (4) (5) " (2)

21

!I

Page 28: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I.

LOW. The row iiumber in which the first nonzero element

appears in Column i..

LHIGH. The row number in which the last nonzero element>1 Iappears in Column i.

If only one nonzero element appears in Column i (i. e., a diagonal mass

matrix) the row number in which it appears must be used for both LOW -

and LHIGH.

Mass Matrix Elements (FORMAT 6E12.8)

Col 1-12 13-24 25-36

Name behl, LOW Al, LOY+I Aml, LOW+Z rnl, LHIGH- l, LHMG

Field (I) (2) (3) .

The elements are entered by column; each column begins on a new card.

Any zero elements in rows between LOW and LHIGH must be entered

or their respective fields left blank. If external stores are present "

(ISXT>0) all store control points must be entered before the surface

control points; i. e., the elements representing the external stc rea

mass must occupy the upper left-hand corner of the mass matrix. V

11. Rigid component nodal matrix, [hRo] (see page. 7 ). Omit

this input when NFUS = 0. The number of rows in [hRo] must be the '

same as the number of control points considered when computing the

[Ch( 1 matrices; the number of columns must agrf.e with NRIGID.

Size Control Card(s) (FORMAT 1814)

Column 1-4 5-8

Name NROWS

Field (1) (2)

NROWS The number of rows in [hRo"

22

dPi

Page 29: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Matrix [hRo] Elements (FORMAT 6E12.8)

Column 1-l 13-24 25-36 37-48 49-60 61-72

Name hR0l, I hRo2, l hRo3 I .... hRoNROWS, V

- Field (1) (2) (3) (4) (5) (6)

IrI The elements are entered by column, with each column beginning on a

new card.

12. Rigid-body modal matrix, [hR] (see page 7). Omit this in-

put if NRIGID = 0. [hR] is to be input by partitions [hR]i , each partition

j Jis of order (NSIZE x NRIGID) for each surface. The following data. is

to be repeated for i'= 1, NSUR.

Size Control Card (FORMAT 1814)

Column 1-4 5-8

SName NSIZE

Field (1) (2)

NSIZE Number of control points on each surface

Matrix [hR] i Elements (FORMAT 6E12.8)

Column 1-12 13-24 25-36 37-48 49-60 61-72

l Name hR 1 1 hR 2 ,1 hR 3 ,1 .... .... hRNSIZE, 1

Field (1) (2) (3) (4) (5) (6)

The elements are entered by column, with each column beginning on a

new card.

13. Flexibility matrices, [a] (see page 6).-The flexibility matrix

Sis partitioned, only the nonzero partitions [a]i corresponding to the

I| 23

Page 30: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

flexible surfaces are entered. The matrix may be formed by any of

the well-known procedures using elementary bearn theory, force or

displacement methods. The program FLUENC will generate this matrix

using the displacement method. The punched output from FLUENC may --

be used as direct input into this program. The following data is re-

peated for i = INSUR.

Control Card (FORMAT 1814):

Column 1-4 5-8 9-12 13-16

Name m. (BLANK) FORM IROW

Field (I) { ) (3) (4) ___

4

Ir = The number of rows ih [aIFC'-M = 0 if the elements are to be input using column

binary format.

= i If the elements are to be input using FORTRAN

(FORMAT 6E12.8) or FLUENC output is to be used

directly.

LROW = 0 if the matrix elements are to bc entered by

column.

= I if the matrix elements are to be entered by row.

Matrix [a]i elements (use format specified above):

For IFORM = 1 and IROW = 1 (FORMAT 6E12.8)

C, -nn 1-12 13-24 Z5-36 37-48

Name a a a l _a1, 1 1,2 a1,3 1,4 ,_

Fi,.Id (I) (2) (3) (4)

Each row starts on a new card.

24

Page 31: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

For IFORM 1 and IROW =0 (FORMAT 6E12.8)

Colum 1 _1_1_2 25-36 37-48 - -

Field (1) (2) (3) (4)

Each column starts on a new card.

If IFORM = 0, then IROW must = 0: The matrix elements are input

using column binary format; Column 1 starts. in Origin 1. Column 2

U I ,tarts in location (1 + mi); Column 3 starts in location (1 + ?.mi); etc.

A TRA card must end each Jai] deck. (The column binary forrhat should

be used only if the data are available as punched-card output from .p-

propriate computer programs.) The only advantage of the C-B format

is the minimum card storage space required.

1 14. Ifeighting matrix, (W] (see page 6). The weighting matrix

is partit(-ned, only the nonzero partitions [WIi corresponding to the

flexible uzfac .. are entered. No provisions have been made for enter-

ing a iWJi matrix fu- the rigie component; any adjustment to [Cho ]

3 must bc. made before it is input as data. If ISW. = 0 omit this data.

Repeat the following data for i = I,NSUR.

For (19W). = 0 and (ISXT)i>0

ConLrol card fe- externa. stores elements (FORMAT 1814)

Column 1-4 5 -8 9-:2 13-16

Name NXST. ,BLANK) NFORM NROW

Field (1) (7) (3) (4)

*The 'RA card has a 7 and9 punch in Column 1. Column 2 through72 are blank and Ciumn 73 through 80 will contain the characters usedfor identification and sekuencing in the punched card output deck.

, 25

Page 32: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

NXST i = 0 if no [W~i matrix is input for the external stores

area (the program will use a unit matrix, I)

n the number of control points reserved for stores.

NFORM I if the [W]i matrix elements will be input using

FORTRAN (FORMAT 6E12.8)

0 if the elements are to be input using column

binary format

NROW = 0 if the [Wi] matrix elements are to be input by

column

= 1 if the matrix elements are i input by row

External stores elements W]i. Format given on control card above.

For NFORM= 1 NROW= I

Column 1-12 13-24 25-36 37-48

Name W,1 WI, Wl, WI

i ieI 111 12 13 14:i

Field (1) (2) (3) (4)

Each row starts on a new card.

For NFORM I NROW 0

Cc, nn 1-12 13-24 25-36 37-48

N, ., W 2 ,1 W 3 ,1 W4, 1

Field (1) (2) (3) (4)

I

Each column starts on a new card.

26 4

Page 33: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I If NFORM 0, then must NROW 0: The matrix elements are inu.

using column binary format; Column 1 starts in Origin 1. Column 2

-starts in location (1 + IXSTi); Column 3 starts in location (1 + ZaXSTi);

etc. A TRA card must end each [ai] deck. The column binary format

should be used only if the data are available as punched-card outputfrom appropriate computer programs. The only advantage of C-B-

format is the minimum card storage space required.

Cor.trol card for flexible srface weighting matrix [W]i

(FORMAT 1814) The [WI] -. trix is often sparse, rometimes

diagonal and may be of large order, s 49; for this reason we provide

~ ior partitioning of the matrix and entering only the nonzero partitions.

Column 1-4 5-8 9-12 13-16

Name NSIZE I NPART NFORM NROW

Field (1) (2) (3) (4)

NSIZE = The number of control points used on surface i.

Do not include control points for external stores.

NPART = The number of partitions in the [Wi]j surface matrix

NFORM = I if the [W], will be input using FORTRAN (FORMAT

6E1Z,8)

= 0 if the elements are to be input using column

4binary format

NROW = 0 if the [Wi] matrix elements are to be input by

column

1 if the matrix elements are to be input by row

f2t

27

!

Page 34: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

A.

Repeat the following two data item for each partition j 1, NPART.

Control card for partition [W.] j FORMAT (1814)

Column 1-4 5-8 9-12 13-16 17-21

Name N.

Field (1) (2) (3) (4) (5) _ _

II N. The order of partition j of [Wi]

Elements in partition [Wij.. Format given on the coiU'oU. card for

flexible surface weighting matrix.

NFORM I NROI. I"

Column 1-12 13-24 25-36 37-48 -

Name. WII W1, 2 W _,3 W,4, _3~1 1,2___ 1,3____1,4__

Field (1) (2) (3) (4)

Each row starts on a new card.

NFORM = I NROW = 0

C u.nn 1-12 13-24 25-36 37-48

Name W, 2 W, 1 W3 1 W1 2 - - A

Field (1) (2) (3) (4)

Each column starts on a new card.

28

.~,- --

Page 35: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

! If NFORM 0, then must NROW - 0: The matrix elements are input

using column binary format; Column I starts in Origin 1. Column 2

I starts in location (1 + IXSTi); Column 3 starts in location (I + 2EXSTi)

Uetc. A TRA card must end each (ai] deck. The column binary format

should be used only if the data are available as punched-card output

from appropriate computer programs. The only advantage of C-B

format ic the minimum card storage space required.

For (ISW)i = 0 and (1SXT). = 0

Control card for flexible surface weighting matrix [W], (FORMAT 1814).

The [Wi] matrix is often sparse. sometimes diagonal and may be of

large order, t 49; for this reason we provide for partitioning of the

matrix and entering only the nonzero partitions. Repeat the following

data for i= INSUR.

Column 1. - ! 5-8 9-12 13-16 17-20

Name NS"." " NPART NFORM NROW

Field (1, ' (2) (3) (4) (5)

-

NSIZE The number of control points used on surface. i

NPART 1rhe number of partitions in the [Wi]j surface matrix

±5 NJORM r I if the [W]1 will be input using FORTRAN (FORMAT

6EIZ.8)= if the elements are to be input using column

binary format

NROW 0 if the elements are to be input by column

I if the elements are to be input by row

I Repeat the following two data items for each partition j = 1, NPART.

I

Page 36: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Control card for pirtition [W FORMAT (18H)

Column 1-4 5-8 9-12 13-16

Name N.

Field (1) (2) (3) (4)

N. = The order of partition j of [Wi]

Elements in partition [W format given on the control card for flexible

surface weighting matrix.

NFORM I NROW 1

Column 1-12 13-24 25-36 37-48

Name W 1 W, 2 W, 3 W, 4

Field (1) (2) 1(3) 1(4)

Each row ctarts on a new card.

NFORM = I NROW 0

Column 1-12 13-24 25-36 37-48

Na -ne WI, 1 W2,1 W3 , I W 4 ,1Fcld (1) (2) (3) (4) _._

Each column starts on a new card.

If NFORM -- 0, then must NROW = 0: The matrix elements are input

using column binary format; Column I st'.rts in Origin 1. Column 2

starts in location (I + mi); Column 3 starts in location (I + 2mi); etc.

A TRA card must end each iai] deck. The column binary format should

30

T

Page 37: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

[ 'qed only if the data are availabli as punched-card output from ap-

propriate computer programs. The only advantage of C-B format is

the minimum card storage space required.

15. Aerodynamic data: The aerodynamic input consists of

NAERO sets of AIC's. Each set of AIC's consists of the AIC's for

I each surface which have the same reference i/kr (see Item 6). If

NDENS = 0 a density series will precede each set of AIC's. Input the

l density series (if Item 8 was omitted) and the AIC matrices for each

surface with the following input order. Repeat the order for each

(1/k ).j 1,NAERO.

*1 Control card for density series (FORMAT 1814). Omit this input if

NDENS>O.

Column 1-4 5-8 9-12 13-16

Name NRHO

Field (1) (2) (3) (4)

NRHO = The number of densities to be entered for

I (1/k ).:-20rj

I Density Series (FORMAT 6E12.8)

I Column I 1-12 13-24 25-36 37-48

Name P 1 P2 P3 P4

Field (1) (2) (3) (4)

Rigid component AIC matrix [ChoI. Omit this input if NFUS 0. The

* IChoI matrix may be sparse; thus, provision has been made to parti-

Ua tion the matrix and enter only the nonzero partitions.

31

Page 38: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Reference I/k for [Cho] (FORMAT 6EI2.8)

Column 1-12 13-24 25-36 37-48Name 1/k -

Field (1) (2) (3) (4) " __

I/k The reduced velocity used in computing the rigid Icomponent [Cho]. The AIC's in [Cho] must be

0computed for a l/k which properly relites them to

thejth 1/k JIr

Control card for [Cho] matrix (FORMAT 1814) I

Column 1-4 5-8 9-12 13-16

Name NSIZE NPART NFORM NROW, - -

Field (1) (2) (3) (4) ._ii~

NSIZE = Number of control points on the rigid component

NPART = Number of nonzero partitions in LCho]

= 1 for an unpartitioned matrix

NFORM = I if the [Cho]. matrix is to be input using FORTRAN

(FORMAT 6EI2.8)

0 if the [Cho], matrix is to be input using column

binary format

NROW = I if the [Cho], matrix is to be input by row

0 if the [Cho] matrix is to be input by columnj

Repeat the f6llowing data for each partition, K 1, NPART. I

32

Page 39: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Partition Size Card (FORMAT 1814)

Column 1-4 5-8 9-12 13-16

Name N_

Field (I) (2) (3) (4)

N = The order of partition k

Elements in partition K of [Cho ]j. Format is given on the control cardIfor [Choli matrix. All the elements in the AIC matrices are complex

numbers, but the complexity is considered in the program. Thus, each

partitio)n may be input as though it is a real matrix of size Nx2N. The

real elements form the odd number columnst and the imaginary ele-

ments in the even numbered columns.

For NFORM = I NROW =1

Column 1-12 13-24 25-36 37-48

E Name a(Re)l 1 a(1)l 1 a(Re)l 2 a(I 1) 2 _

Field (1) (2) (3) (4)

Each row starts on a new card.

.For NFORM = 1 and NROW 0

Culunri 1-12 13-24 25-36 37-48 49-60

Name ei(Re), a(l) ,I a(Re) 2 1 a() 2 , I

Field (1) (2) (3) (4) (5)

Each column starts on a new card.

33

I

Page 40: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

III;

For NFORM 0, NROW must 0. Use column binary format. Column

1 starts in card Origin 1, Column 2 in location (1 + 2N), Column 3 in

location (1 + 4N), etc. A TRA card must end each deck. The column

binary format should be used only if the data are available as punched-

card output from appropriate computer programs. The only advantage

of C-B format is the minimum card storage siace required.

Flexible component AIC matrix [Chi. The AIC matrices are

often sparse; thus, a provision is made ptrtitioning the matrix and

entering only the nonzero partitions. The following data is repeated

for i = 1, NSUR.

For JSXT i>0.

Control card for external stores partition of the surface i

AIC matrix [Chiij (FORMAT 1814)

Column 1-4 5-8 9-12 13-16

Name NXST (BLANK) NFORM NROW _

Field (1) (2) (3) (4)

NXST. = Number of control points reserved for external storesI

NFORM 1 of the matrix elements are to be input using

FORTRAN (FORMAT 6EI2.8)= 0 if the matrix elements are to be entered using

column binary format

NROW = 1 if the matrix elements are to be entered by row

= 0 if the matrix elements are to be entered by column

Elements for external stores partition of AIC matrix [Ch]ij

For NFORM = I and NROW = 1

Column 1-12 13-24 25-36 37-48

Name a(Re)l 1 a(P1,1 a(Re) 1,2 a(I, 2 "

Field (1) (2) (3) (4)

Each row begins on a new card.

34

Page 41: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

For NFORM l and NROW =0

iColumn 1-12 13-24 25-36 37-48

Name a(Re)i, I a(I)l, 1 a(Re)2, 1 a(Re)Z, 1

Field (1) (2) (3) (4)

U If NFORM = 0 then NROW must = 0 use column binary format.

Column I starts in card origin 1, Column 2 in L;,:ation (I+ZNXTi),

Column 3 in Location (1+4NXSTi), etc. A TRA Card must end each

deck. The column binary format should be used only if the data are

I available as punched-card output from appropriate computer programs.

The only advantage of C-B format is the minimum card storage space

SI requirements.

Reference 1/k i card for control point AIC matrix 1Chij

* FORMAT (6El2.8)

Column 1-12 13-24 25-36

Name I/k

LI--Field (1) (2) (3)

Il/k. The reduced velocity used in computing the flexible

component [Ch Ii The AIC's must be computed for a

I/k. which properly relates them to the jth 1/k* r

| 35m

Page 42: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Control card for control point AIC matrix.C hlij (FORMAT (1814)

Column 1-4 5-8 9-12 13-16

Name NSIZE NPART NFORM NROW _

Field (1) (2) (3) (4)

ItNSIZE =Order of control point AIC matrix IChj

NPART =Number of partition. in [Cil

NFORM = I matrix elements are to be input using FORTRAN

(FORMAT 6EI Z. 3)

= 0 matrix elements are to be input using column binary

format INROW = 1 elements input by row.

= 0 elements input by column. j

Repeat the following data for j 2, NPART. j = 1 corresponds to the

external stores partition

Control card for partition size of partition j FORMAT (18J4)

Column 1-4 5-8 9-12

Name N

Field (1) (2) (3)

N = Order of partition j

36

Page 43: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I i Elements of control point AIC matrix [CHJL j partition j

For NFORM = I and NROW = I (FORMAT 6E12.8)

Column 1-12 13-24 25-36 37-48

}i Naine a(RE)I, 1 a(I)l, 1 a(Re)l, 2 a(I)l, 2

F ield (1) (2) (3) (4) .

Each row starts on a new card

For NFORM = I and NROW = 0 (FORMAT 6E12.8)

Column 1-12 13-24 25-36 37-48

J Name a(Re)l, I a(I)I, 1 a(Re)2, I a(I)2, 1

Field (2) (3) (4)

II Each column starts on a new card

For NFORM = 0 then NROW must = 0 use column binary format.

| IColumn 1 starts in card origin 1, Column 2 in Location (I + 2N),

Column 3 in Locatit n (1 + 4N), etc. A TRA card must end each deck.I The column binary format should be used only if the data are available

as punched card output from appropriate computer programs. The only

SI advantage of C-B format is the minimum card storage space

requirem ents

I,N 37

Page 44: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

For ISXT. 0

Reference I/ki card for control point AIC matrix ICh l ij

FORMAT (6E12.8)

Column 1-12 13-24 25-36

Name ILNi. TmField (1) (2) (3) •

1 /k The reduced velocity used in computing the flexiblecomponent [hij" The AIC's must be computed for a:

IA i which properly relat.s athem to the jth I/kr S

Control card for control point AIC matrix ij FORMAT (1814)

Column 1-4 5-8 9-12 13-16- iName NSIZE NPART NFORM NROW ,, _,,_ ,____

Field (1) (2) (3) (4)

NSIZE = Order of control point AC matrix [ChIjNPART = Numbek of partitions in IChNFORM = I matrix elements are to be input using FORTRAN

(FORMAT 6El2.8)

0 mat.ix elements are to be input using column binary

format.

NROW = I elements input by row

= 0 elements input by column

38

Page 45: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Repeat the following data for j 1, NPART.

Control card for partition size of partition j FORMAT (1814)

Column 1-4 5-8 9-12

F Name N

Field (1) (2) (3)

N Order of partition

j Elements of cntrol pintAIC matrix iC partitionj

I For NFORM = I and NROW = I (FORMAT 6E1 2.8)

Column 1-12 13-24 25-36 37-48

Name a(Re)l, 1 a(I)1, 1 a(Re)l, 2 a(I)1, 2[ Field (1) (2) (3) (4)"

Each row starts on a new card

For NFORM = land NROW = 0 (FORMAT 6E12. 8)

Column 1-12 13-24 25-36 37-48

Name a(Re)l, 1 a(I)1, I a(Re)2, 1 a(I)Z, 1

f Field (1) (2) (3) (4) _

For NFORM = 0 then NROW must = 0 use column binary format.

I Column I start in card origin 1, Column 2 in Location (I + 2N),

Column 3 in Location (I + 4N), etc. A TRA card must end each deck.

j The column binary format should be used only if the data are available

as jp.;ched card output from appropriate computer programs. The only

I advantage of C-B format is the minimum card storage requirements.

39

Page 46: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

II

SECTION 6

DESCRIPTION OF PROGRAM OUTPUT I

A. Printed Output

1. All input data.

2. The dynamic matrix or flutter determinant if NPUNCH = -1

is used in the general control card.

3. For the vibration analysis or Lor each 1/kr in a flutter analysis

a. The eigenvalue for each output mode followed by the

number of single- and double-precision iterations and

the number of Aitken accelerations.

b. The normalized eigenvectors (modes) followed by the

check eigenvalues and eigenvectors.

c. The frequencies (omegas) in cycles-per second followed

(in a flutter analysis) by the structural damping coefficient

and the velocity (knots) assoicated with each frequency.

d. If NPUNCH = *1, the sequencing numbers used for identi-

fying the punched-card output (frequencies and modes);this will conclude the printout for each 1/k used in a -r

rflutter analysis.

4. In a vibration analysis, the generalized mass corresponding

to each output (free vibration) mode will follow the atove Aprinted output [see Eq. (28), Section I).

5. A number of different statements may be printed which indicate

machine or program detected errors In input data (wrong for-

mat or incompatibility in the number of rows input for a matrix

and the number designated).

6. If the program or the machine fails in the iteration portion of

the program, a note will be printed stating the type or cause

(j failure.

40

Page 47: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

7.I ovreceiio bane ntealwal ubroiterations, a note will be printed and the program will con-

fri tinue. (In this case the eigenvalues and eigenvectors should

1--e compared with the check elgenvalues and eigenvectors to1 ' determine if the convergence is sufficiently accurate.)

~' 1 8.The printed output for the example problem is shown on the

41

Page 48: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

IiSECTION 7

EXAMPLE PROBLEMS

As example problems, we choose a cantilever flutter analysis and

a free -free symmetric flutter analysis of the jet transport wing (and

rigid fuselage) treated throughout Ref. 5 and shown in Figure A-I. The

wing mass, flexibility and aerodynamic matrices and the fuselage aero- -

dynamic matrix (symmetric case) can be seen in the example problem

printed output (pages 41-62) and will not be repeated with the list of in-

put Jata to follow. The flexibility matrix normalizing factor is K = I0".

The wing weighting matrix is taken as unity ([I]) and, in this case, re -

quires no input. The symmetrical rigid component (one-half of the

fuselage) generalized mass matrix is given below in the pound-inch

system

0m 0 17,400 1,370,250(Am] =So 1 1, 370, 250 4. 457, 907, 200

2,6' CHORD35-A ELASTIC AXIS

I II M

1 -100

,~ ~ ~ M 3'..\s ~e

rT

IB

PITCH ROLL AXIS S 2 2 1"21 500 .5

[,'igurc A-I. Jet transport wing geometry.

x2 MI

Page 49: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

HI

In the antisymmetric case, the rigid component generalized mass matrix

would be [Am] - (I.., and in the composite longitudinal-lateral case,

the generalized mass matrix would be

M S 0oi 00oI [Amj = I 0I0 o

The symmetrical case requires the two rigid-body degrees of freedom

of plunging and pitching. The rigid-body modal matrix, therefore, con-

sists of two co-umns: a unit column, and a colamn of the x-coordinateii/ of each control point. The rigid-body modal matrix for the wing is

I

120.25'1 -81.001 17.851 -71.40

[hR] = (I x]- 1 15.801 -63.201 13.30

1 1 -53.201 11.051 -44.20

The rigid -body modal matrix for the fuselage is,1

1 -373. 301 -248. 30

[hR] = [D x] 1 -123.30I + 1.70

L1 +126.70.

Note that the above matrix is used in computing the incremental gen-

eralized mnass which results from the aerodynamic loads on one-half of

the fuselage and, therefore, the x-coordinates must be given in the

43

II

Page 50: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

proper order for the control points used in computing the fuselage AICs.

[In this problem the fuselage AICs are hypothetical, but the x-coordi-

nates are given in the order necessary for the slender-body theory AICs.]The reference geometry for the wing is r 5. 468 ft ands

37. 917 ft. The reference geometry for the fuselage is b = 5.468ftand s o 18. 9585 ft. [We assume that the wing reference geometry

was used to nondimensionalize the fuselage AIC matrix, and, because

we require only one-half of the fuselage aerodynamic force, it can be

obtained by setting ao (li2)sw ] Both example problems are carried

out for the single reduced velocity 1/k = 16. 67 with the reference

semichord for the system br = 5. 468 ft and with sea-level density !

p = 0. 002378 slugs/ft3 .

The output modes, the flutter frequencies and velocities, and the

required structural damping can be seen in the example problem printed

output (pages A-55 through A-65).

The input keypunch sheets are given, followed by the computer

output.

I

II

44

Page 51: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Il I C ol .1 1 -- I

a 10 I 0 a04~

Ir w_

FAIn

MC 1- 1 I on

Ii I C 10

z A ,IIWI

I 17 . sa~w- .21w 1 V F I

-g 0 " 1 H5

rIl 10 7

Page 52: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Li-.0..P~*'N~Dt.Jc 0

L -A

F_ __T --- I

-- jT: T-1

t _j

WII

4146

Page 53: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Q 0 00 0 0a 0 0 *

II

I 2I I A I

I ON 0

0 CI 0k 0 0

TI 1TIr , Ia

Il I11 472

Page 54: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

rtJc7Pf (O. 0.0 CO C

P

If

Z viCZ ; 1- 1 al

........LL.li a I ~ * * ,_

*21

of

4,48

Page 55: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I L44-2I~0 0

t 1; Az I _

-~- -a Ole -0 __ _ ___ -

R I TI

Il I 1A 21 717 1 1 - -

I.. a '5 - -t- I &9 % - 1 -- -1 + -I- e

_ 1 YN N

i it

II1 : 01 I

Al I

II

1 49

Page 56: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

--

* ---- '-4- t

-. .. 1 .'iH~TI . 4 4 t 4 ,11I

_ _

I r k4

~~u - - -

t IA;L j5 Ix

4~ ~ N - --7

I - T-

50

Page 57: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Ij uPQ;

i.i3

9L.

WA0*i~ In

I.In

rrJac

luwuj

Z IC

I ' :I

z ca

U, 3....

Ii

Iia,0,c

I~ 4

1

Page 58: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

4% le D Nj

a I,

zoc I I t 1'WU 0J JJUUW

~m c. io'co v~ N M..! ;;it c C-;av 101

6-I

ae~ce~.4i~~eec~cZia

:i 02~J WWW UW WJWW W WJU

.= z I .aao .

!w ,, w ivZu ( 4iui. a ww

-4A -r." -11, 11: c

-JS 1A -1 !,J QN 10C) Icl - N r, Lo

; '% wf, Z L

c 2c l

c n lTvw -

*Z~.C ~ e~c: ~ =in

U) 4. IuvA uw ju . U uIz 52 ac ,

Ix

Page 59: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

w LUwI*mi N~ I

;o 0 IIIwl, IO ON, 0.

-4~4 I W

'; WI ID 21

IITaI~ a! A~~ w I *j

~ 4 '

AI af. 'Al!

2 I~ LLI

It

-- Ir 0 aN.ar '

Page 60: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

IDI10 ; I

Ii I *aD

I0 I0

Ou Cz10,00 - 0ko a c a m a

I I I

.11 CY k 0 1acl l o *4 kO 4

I I I P. IOI II

IO a

Itasas

LL -- J 0 T P £9-

I 9 Ito P ~4

I 4 .

Page 61: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

.1.1

U ISO r II i II

Zi I40Zw I I im iL

N, I0O )a0 :Vv

U% IT I;,N ; 7T 74le I I

N..4.tLU 4 -1I I

u tN r a 0* *1 co USA u

10 Q c I c

1ML L ULUWL40 m~:;: ol~N= LU zU L; U) LU

US .1 U

N! IN NI 4 w:1 1111j Ii wuuI W.& iUJw

LI 0, V V.'

A! aI A~7 c~ II x

v* %U .4 Qj NX N a 3 fp

C' 1 %. 11-jU *I= "-cWC pI

c I I I1A 9-1o 1

LWL w .MUI W L L. Uj.LUwUJW W W WJ U

I w ~ ' JD ~ a, - I u

- c 0- c -I% ,bIIITc

W WoI jrN a 'CirN0 if ! :cVI Lu =-i 43vAr1

VLI 0' !

V i~II I Iin W;U 'cl

I:c i M % I cC

* ~ CCI ~ 55

Page 62: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I 0

w vz I 4*o 1 1 "2 i I

-! I . .

I . .Uj 'INN IC.

I. I,1

:z 1CD z z

2- s

IAI

It:

fj. - -.

Page 63: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

us I" Ijw u lul

2. N .

z N

l1WL W IIWW W W wW

IN q. 2a I0 V) n - N N R

aI- -,

I -.12223r 2fAu~u M I W

~~~cta WK -. -. -a ' -cc -bC o. . .

I1 a1 a a~n o e 0I -Z 1 .

I.= It' I Ic

-. ; la~e O 0 0 -.a.

x E I. . .J .

w uJ W LUWWL "IlUIwL uWwwwwwMza- m -I zaa=.Iwa0

ZOO3* 320O211 'l

I %N1z-0 1 -1 ~N 0

E.J a N 01 O Ij

nm m m0e 11' qa a=.2' z040 a.3 am a: 4 C

jr so1 ~ j .NF U ,I.2~~~~F 4' Q 0t t:~2222£3~ 2222

12 UN Ic ~O~

V 57

N .-. .. PI n mM)n

Page 64: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

IZI

O*IX

at~ "M.

10.

Page 65: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

i IV 14 N N

C, I.IiI

I i I vi 'i

iu Ij IIj jbg I

I II"

K IC

.I LL w=16

QC vj CWIW

-t 5

Page 66: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

rN

U, .9Il 1 , I 1 '

V4~ ~~ 41 4 .to1 I~t

44.0 & fr) 0

. 1 C.44

all 1, 0 )

40 .. . . t-4~" U., *4,u

Lo - 'Ui41 *

W ~ ~ ~ ~ d ' N.I.0 @l

I &A , - ~

W 0 A

~~a~ NI -

c vWUJUJU U 8l~ N r4

Page 67: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I I o

CC 1 4 IDI -41 V %CP

WWWW IUJUJL u wIL

F I T

a IV 33140

UN IN Y3Z ai.414I.01

% IT 0041

C'b I

w j w li JI JI

CY CD 0. e)i oI !cC,4' ' .2

z! . -3 4 0 "J x G

.- IN A ~ ~ I 'o 4

zl ~~~ ~ ~ I alOINIIS.~

-c I) 010 -40

C 0 de l f l

I 61,

Page 68: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SECTION 8

PROGRAM LISTING

62

Page 69: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

1 63

OPTION FORTRAN3 ~ FORTRAN L-SinU.mF;x

r m MI N F1 iTTFR OVERLAYc JAN IS. 1067

r CHANOE BCD TAPES TO IRINARY TAPES10 Chll LLINK (AHPARITT)

AI.I. PAPTII ~ A. ALLJ11K (AHPARATT)

CAI I PART?'1 00 TO 10

5 FORTRAN LSIOij.DFC;K

C I4PRINT

PIMlNS!ON AMi, 17(6), C(6) 14114007FOIIIVALFNCE (JT.C) !i140117r FORMAT (Ill 4X, 6( 6X, 71ICOt UFN 114 ) /) 411400R

-I3FORMAT (1H 114, X, (()E 11.81)) HM14008Ni= HM 114110ORN42=6 14M414 008rN3i: 14144004N4=:1 PM114008

4 IF (143i-Ni) 6,A,) 14M14108ff ' I4=Nl-Ni+6 liM14008

Ni: Ni H14609A KZfl 1P'4040 I

no0 7 I= N4.N4 NP141199iI K=K( . 14104 Q 0~917(IK)=! 14MI404(091

WRITE (NTAPF/')(IJ):14)no 9 1:1,14 H1 40409.

K~~14114009t :Iij*(N4-] )tJ 14M14009nO A J=N4 ,N3 HM144009

K=K+1 1414010r(K)=A(L) HM1140101

A .=L * D 14M14010r0 WRITE (NTAPF,4) 1,(C(K),K=1.NP)IF (NS-Ni ) )no,1toll 141140111

10 NI:3=13+ 14M14010

I 44=N4+6 .A M14010

IRE TURN 0.1414011 AlrFNP HM(140101T, FORTRAN LSlnhieUFI;K

r M11Nr4H'IWOfJTINI MPOINCH(A,MNN,Ili)UT.ITRA,!ORG,g4C1J,NAXIINTAPF,NCARDS) 1101

1.1111411451014 A(l) 00flo

F NI 004s FLITNK PARt IT

19 FOTRANLSIOIj.OFCKr PARTI

SIIRROIITINF PARTI 0031r NSIR=TOTAL NIIMRFR OF SIIRFACES ALL.OWED. (102r NrFNS:TnTAL NIIMRFR OF flFNSITIES ALLOWED. 0113r, NRIUI):TOIAI NUMBIER OF RiGID uOD!ES ALLOWED 004r NSI7F=TOTAt. NIlMI!FR CONTROL POINTS ON ANY OINE SURFACE ALLOWED 005r NmOI)FS=TOIAI NIItRIR MODEFS INPUT ON AWY ONk SURFACE. 006

Page 70: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

64

n IMI NSqI nN I;;; I SW2U :R92;.RO2111OM(1 fi,1/I IMthR ( b.1). ARMRR 6,j) LOW 01) L4 I OR'0

4 HT (". in ("1) (6, tll" 016

THF VOILI.0NG S14TFMFNT(S) HAVE REFN MANUFACTURED BY THE TRANSLATOR TO A1

COMMON IT I ll

I .(IT(fii),NTAPE1), (IT(6?),NIAPF2)# (IT(61).NTAPE3). .,

3 (IT(67),NTAPE7). (IT(6A.,N7APF5), (IT(brc)-NTAPE96), i

3(IT(/fl)pNSURE). (IT(I),NIAPD), (IT(6)RR E9 Esf5( IT ( /Ai).AERO )s ( 1(/4),NF5) UIT (75 ,,DF3NS)1) 036(IT(/6)*MODES),p (11(/7),NPOINT), (IT(78i,NPhJNCA), 0313 J

47 CIT( /9)#MAXR), (ITVH;1).HAXQ). ( IT(81 )#MAXS), I33

9 (IT00I")PHR). (IT1(J6).S)# (I1c1?7.#VELCtY),

(IT(I'iA),PiCON), (IT(154),NVEL), (IT(15v).NCARJS), 33 (IT()0I%).AITKFN)# (IT(157)#NGO)' (F.Go,~ MFA01#1oHT) U3Ii

6 1(T?i6) NbELH4)a1Tc(In.A IK -(IT.l(PirNPAR1) 04'rI FORMAT (18 14 043

rORMAT (6PE14 014f

IrORA1T...(fH416X, 4114 FLUTTER ANALYSIS BY'A COLLOCATInN MTHOD 034'I 'd?N IISING AERODYNAMIC INFLUENCE COEFFICIENTS //QUH NSUR 0463 11?, 1(11H NTIENS =114. 14H -MODFS OUT = 1I'1 04 14 * 9.4 NDlELM = 1110H NPUNCO I I e I) 4~

A VORMAT ( 1 HO .AX. p t B ( REF) Y 1 F? A.*A tPX. 414K =Fr.A,/1U Zs X) 05n1 7HSIURFArE )AX, 1HR 19X* IRS 1flX.?lHFXTEDNAL STORErS SIZE II)

5 FORMAT (IR11 lOX. 21'1 R RI'GID COMPONFNT 1F18.8, 5Y, 8Hl S RI9G9II)I AtiN COMPONENT 1t.8 )053

A FORMn.i (Il H 121. ?( '5x. I_?I1.R). 1 11? ) f35~10 FORMAT (111 A$JX# 17H MASS MATRIX ) 35jii FORMAT (41140 NIJMIIFR OF CONTROI POINTS IHIS MATRIX, 114, (156

I48t141) ANfl TOTAL NUMBER oF CONIROI_ POINTS EXPFCTWD, 114, 057S$71i) I DO NOT AAREE. PROGRAM CONTINUIED...., 05),

12 FORMAi (1 4>X'..,4H RIGID BODIY MODAL MATRIXvIi rORMAr (I H VAX lHSURFACE 137, 194H 116. 1594 rO'TRO. POINTS) 06014 FORMAl (1341 44X. 7IiH FLEXIBILITY MATRIX )f6i ; rORMAT 1141i 46X, 1AH WEIGHTING MATRIX1A FORMAT (IHI ,11X. 2Q14 RiGID COMPONFNT AERO MATRIX, 1T9, 9H CONTROL w

I /3H POINTS ) 06-17 FIIRmAi (1A41 li1X- ?OH AF-RODYNAMIC MATRIX 8X, LOH4 i./KIR 06'

1AI FORMAT (lii ilix. ?.%1 RinIn C'OMPONFNT MOPE~S, 1110, 0671 1/ii rONTROI POINTS. )06 1)

I Q FOIRMA I (1111i ilX '?'Y RIGID CJMPI)KFNT MASS MATRIX ) 6*,,13 rnRmAT (47111 FRROR IN INVFRSE RnUTINE. PROoRAM TERM'NATE;IJ 070'l FOIRMA T ( 111 SAX. IINSIRFACF 1!. 1 IN, ()X, 13H4 NO .EIGHrING 0/

1 7H4 M AT RI X ) " 1,O 2 FORMAT ( .ifl?.tl ;114 )0713/1 FORMAT ( 14111)lPSP l~~I x 3 Pi E6R X I4

3 04ArK N =1E16.14, 1X, 1014 NITRSP 114, IX, 071.I 13H N I RI)P = 114 07

,14 FOPMAT (114o1 4:)X. ?l'N GENFRAL7F1fl MASSES i/i (1" -J0X# 177',MASS 1 14, .AN lF1f6.8 ) 17

Page 71: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

65

PS FORMAT ( 111 3X, 23N RG! COMPONENT MODES // ) 079'6 FORMAT ( ?14., X, 1A6, 114 ) 0807 FORMAT ( 1140 .08X, 23N PUNCHFb CARDS NU1ERS IA6, 114, .6H.H441 oat

I A 6 1 14 )082Fly FORMAT (HO ?0IX, 3H Ku 1E1t ) 0,lATA Q0flCT/O?"nn,$f44000/RCD7 08599CT

s OPTION FORTRANs FORTRAN LSIOlt.DECKr. MAIN F|IITTFR OVFRLAY

I C JAN 1.lQ,67COMMON IT(.IR)

C CHANCE BCD) TAPES TO HINARY TAPES

I 3 i CALL LLI.IK (4HPARITT)CAl.L PARTICALL LLINK (6HPARTT)

I

1~ I

I

Page 72: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

661

OP! I ON FORTRANFORTRAN LSntO. IJFt;KI

r. HAAEBC OVPESLAY HINARY TAPESI

10 A11LLINK (6HPARIT)CALPARTICALI LOK (AHPAR')TT)3

CALPART2

rFNDT FORTRAN LSTO)IJ.DFCK

CMPP14ATSUROUTINE MPRIt4T (A.M#N*MDNTAPE) 14141007

9 1I4FNS ION A(1 ). IT(6), C(6) H107F EOiIIVALE Nf;F (T,G) H141 400(79

P FORMAT (IH 4X, t. AX# 7HCOLIJNN 114 ) II )HM140011i:s FORMAT (IH 1 14, X., (6E 1 /.8) ) H1414008H

41mN H4Ml 40OR 4N?:6 1HM1 40081

43=(. lMl 40 0 AI4 1 A. ,HIM i4 00FtjIF (NS-Ni) A69HM1 400I)l

5N?=N1-N346 HH11 401085N 3 N 1 ~4144009)

A x:0 HM1 40r,91

0O 7 I= N4.N1 HM1 41191K K + 1HM1 41109I7 141(K ) =I H1440094

,WRITE (N-TAPF,9) (IT(I)-,I=1#N?)

4 n Mo*(NI:1M H MI 4009b

.1m- R J=N4 .N3 I4M1 4009j'K:K+i l4 i1

C(K):A(I ) 14008 ,L +MD HMI 4010'l~

9 WRITE (NTAPF.1) I(()K1N'I F ( Ni-Ni ) 10n,1 I 11 HM1 4l104

a 10'.i:N3+1, H M14 0 10 5N4TN4+6HM1 4010

(;TI e 4 11 0 n

11 RFTulRN 14M1 4008

FNn 141lfj

1; FOPIRAN I.stflhI.D-K

SIIPRUIITINt MPINCH(AMNIOUJ.ITRA,ORI4CZ,MAXMNAEDNCARDS) (01t(U)IMI-NSIoN AM 07RE T (RN )031ENI) 0 04 U

T I INK PARlYTT

C P ART IISrRO11TINFi PARTI 0010U

r NsiiR= TnTAL N(DMAER OF SURFACES ALLOWED. 1?ir NlIWNS=TOTAI. N1IMRFR OF nFlNSI TIES ALLOWED. 0030j

C NRfl;11O:TOTAI N11MR1,IR OF RIGID HODIES ALLOWED 04C NST/F=TOTAL NIIMRFR CONTROL POINTS ON ANY ONE SURFACE ALLOWED 00503C NMOiES=TOTAL NIIMRF-R 140DES INPUT ON ANY tiNF SURFACF. . I~.

Page 73: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

67

1 I)J(~.ti, IMRAR(6.11)). RARMRR(6.1?), LOW(;o)o 01H(50O) 0130IT(9.)R). VELCTY(ef'). NSIZES(2o). 0140

A00l,141 0), 17151.100)t U00slU&O), 1R(0,65). IRT(6sluo()s 0 10,u4 TAinGii1q 16r THF FOllOWING STATFMF-NT(S) H4AVE REFN MANUFACTURED BY THE TRANSLATOR To 01711r COMPFNSATF FOR THE FACT THAT FOUIVALNCE, DOE,.' NOT REORDnER COMMON- 0180

COMMON Ir 0100S1 EQUIVALENCE (IT(1),ISXST). (IT(91)*ISW~v fIT4IbR110n) 02501 .(ITe,0)1h'TAPFI). (ITCA2),t4TAPE?), (IT(6-R)DNTAPE3), 0260

(IT(6").NTAPE4), (ITC6t;),NTAPF5)* %UT6.)NTAPE6), 0270II 3(JT(67),NTAPF7)v (1TC68),NTAPF8), (1T(6")sNTAPk9). 912804 (!TUO")1NSUR)- (IT(7),NRIGID), (IT(72).NREF)o 02905 (IT( /3hNAERO), 4 IT(14)oNFIJS)p ( IT(75).,140FNS), 06300I 6 (IT(/6).MODES)o (JT(/7),NPUINT), (IT(78i~NPlNCHh, 03117 (IT(/9),MAXR). (IT(FR0)pMAXU)* 0(T8j)*M~xS). 0320

9I~s)H) (IT(1I6).S.)* (IT(1?1lVELUtrY) 0340FOIJIVAIFNC;F ((47ht4TAPFO), (!TC148),NRHO), (IT(1A9)*NITRSP). - 035911 (IT( til' )vNITRDP). (IT(11hE,PSP), (IT(2rp),FpDp), 0,3602(IT(l'5.).PICON), (lTC154),NVEL)o (IT(159;),NCARDS), 0370

4f ((),LOW), (U(51,11),LHIOH), (IT(15t1)pFI.~(IT(59hvSQR 039015r,01) , (IT(160),NSIZES)o (IT(l11B),DM), CMARARR)0400

1 ORAT(11A ,(IT(216),NDELM). (IT(2,1 ),A1TKED),(Iy(PIA),KPART) 0410

FORMAT (iH16X, 4114 FL UTTFR ANALYSIS BY A COLLOCATIAnN MFTHOD 04404? UIN ERDYAMCINFLUENCE COEFFICIENTS ///101H NSUR 0460112I, 1IAH NAERO 114. 1114 NRIOIb 112, Y*' NFUJS 04711

S1!?, 1014 FS 1, 4 MODES OUT a. 11 04804 9H4 NPELM= 112.1IH NPUNCO 112 )0490

4 OMT(1H0 9''X, IIH H (RUr) = EF20eas 5XD 4HK st 1E2,.8 /1"d9 215 X,0o1 7HSJRFAE 18XI1NS 19X, 14S 1I1X,2IHFXTERNAL STORES SIZE I) 0516

SFORNAI (INI; 1AX. PiHVR RIGID COMPONENT uIFl8.6, 5y, 8m4 s RiGID 111314 COMPONFNT =1E18.ti 1 1530

6 FORMAT (IN 12~). ?( 5X- lF2fl.R). 1112 11954 (110i FORTAT (1IN] 43X, 129H MASS MATRIX )05503I I1 FORMAT (41940n NIJMHER OF CONTROl POINTS THIS MATRIX, (114, 0560

1 4890 AND TOTAL NUJMBFR OF CONTROL POINTS EXPpCTEn, C114, 057037H4) 09) NOT AGREE9 PROGRAM CONTINUED.... '~0580I 1? FORMAT (394 49 X.14H RIJGID B~ODY MODAL MATRIX 0 I59di

1i FORMAT A .RX. ftI4SIIRFACE 112, 114. 116, 1514 CO~iTROI. POINTS) 0600l14 FORMAT (1141 AIX# ?I114 FLEXIBILITY MATRIX )061011)j' FORMAT ( 11431 46X, 1814 WEIGHTING MATRIX )06201 A FORMAT (1143 ; X 2914 RIGI" COMPONFNT AbRO MATRIX, 119, AH. CONTkOL 0630

1 /H4 POINTS )06401 7 FORMAT (14 H lAiX.- ?AN AERODYNAMIC 14ATRIX '8X, 1911 1./K R 0650

1 11"11.8t )061I1A FO(RMA T (""If Si". 2,514 RIGID COMPONENT MODES, 1110, 0670L.~ ~ IrRA /H C7ONTROl. POINTS. MSMARX06701

11FRA (471-11 ERROR IN IWVERSE ROUTINE. PROGRAM TERMINATED ) f7nO1FORMAT r 114 -SAX. AHSURFACF 112, 114, bX, 1314 NO IFEIGHTING 0710

2 OPAT 711' MATRIX )

F ? O PM A T ( I . $ ? 4 I1 1 N T R P l 4 X ,0 7 3 0

,. F1RA I( HIPSP *11.8 X. MH EPIIP IE16.A., IX, (1740j

1',H MASS 114, 3N4 IFiA.8 11117 0

Page 74: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

68

olh FORMAT ( IHII "I ?'AH RIGIDI COMPONENT MO[ES / )dqI7A FO0RMAT ( -'14. 1,,'X, I Ah, 1 14 )1 A~ 1f )I?I FORMAT ( 1i411 -iX, ?3H PUNCHFI) CARDS NU)MBERS IA6, 114. 6H r Hku oil 01

I I to%. 1 14 )I28 FORMAT (iMO ?IIXv 3SH K: 1E16.A )

flATA OOIIOCT/0n?fl1fl440fl05/Renz? SOO0iICT fe

c T-APnO = PUN11I4 OUTPUT TAPE41 F2=INPIUT TAPE I)b

r, NTAPE3 = OUTPUT PRINT TAPE 6Q.r NTAPF4 = 1 lf.r NTAPF'i = AR~E UTILITY TAPFS,c NTAPF6 = /I9? 0C NTAPF/ = I

r NTKPF6 01~9I~r, NJAPF9=/

I F ( NflO-9076N909#4 (997 1 F ( NAFRO a Q8D0?,9 9 0 97 o

)8 NAFRO =NAEIFl1 99,H9DI)

99 NTAPF0 = 8 10t

NTAPF3i~fN'TAPF4 9NTAP5: 3 1 s41NTAPE6 4 TN TAPP7 11NTAPFIF1

I4AXR-=501911AXO 6 11 )NCON=0

991 REWIND) NTAPE4 11201

kREWIND) NTAPFi 11 30REWIND) NTAPFA 114111R FWINI4 ) NTAPP9 115 0

tSORCON SORT( 38l6,11) 1 (?.floi.141b9 )1 0

FPSIP = VFi:-u 117 j 8

AITICFN .9 1 190A ITKFI) .9 1 ?A oi

irICN I? I"fl3l4~ 1?uNCARTIS 11 1 220w.NVFI ii ?uNC~ 1 ?4oiNITISP=411 1?o1,41 T elPt 11 lii16RHO (1 o i 27tj

r qj:A0f IN 7TLF, VONTWfLS AND) CONSTANTS AND PRINT. t290"I ift CAIlI RDI N (NIAPF' 0NTAPF3,1) 13 30u

RFAIi (NTAPI9,1)NSUJR. NAFRO. NRIflIDs. NFUS. NOENS, MOnESiNDi M. NPIJNIHo NCON I toREAII (NTAPI*',?)FK 13:s5 uWRTIF (NTAPI 1.1)NSt1RvNAFRO, NRJGID.NFUS, NDENS.IIOUES 14-

1 *NIFI N. NPIINCH 1350

NS11;FSzNSUR4 NVHIS 137oeIf NCON )1l.0,U ~ ~

107? RFA0e (NTAPE','??)I.PSP,FPD)P.AITKFN# N90PNIRP-

Page 75: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

69

REA 1) (NTAPfq.'2P)A!TKFP 14001

WRITF (NTAPF1,9.I)kPSP, EPDP# AITKEN* NITRSPo NITROP 14101014 1IF( NAFRO 10500.3,i10r, 1420

1 143 WRI'TF (NTAPE3I,',1)FK 1 4311n OTC) Ill t440

* 05i READ (NTAPE:2.1)(ISYST(I),ISW(J).Ixl1NSUR) 1450READ (NTAPF9.9)RREF, (VFLCTY(I)o!'1,NAERO) 1468

NC=? 1470r 4R~z NRIGID *C1aREAP (NTAPEPP)(8R( I .S(11. I:1,NSURFS) 1490IF ( NDENS 106.117,01l6 I1f0U

1916 RFAII (NTAPE9.')(RHO(f)#Ix1#NDFNS) 15101117 IF ( NFIJS ) 108.109,11)8 I pIuR WRITE (NTAPE<3,q)RR(j), S(1) 153)1119 WR17F (NTAP:- I,A)RRFF DFK 1541)1 )1 lifl Js1,NS11R

II+NFUS 15611Il 111 PITF (NTAPF3.A) It FR(J* S(J) .ISXST(I) 1570

RE-AD IN FIiSF' Ot MASS CHARACTERISTICS 1590rJIll IF ( "R..ifi I 112,117,11? 1611Q119 I F ( NnFIN I 11113115 16101 1. 00 114 I:1,NRIGII) 1 621

1)0 114 J=1 NRIGID 1630

DM(JJ:117 f 16511

1.1 1 s n0 ii i Npinif) 1660116 RFI-A) (NTAPE9,9)(l)M(.J#j)pJz1.-N#I6IID) 16870

WRIIE (NTAPEI'019) 18CALL MPRINT (DMNRIAID0,NRItGID.MAXO.NTAPEA5) 1691)

READ MASS MATRIX FOR EACH SURFACE. STORE SYSTEM MASS MATOIX ON NTAPfi4 1710

WRITE (NTAPF4,11) ,4no 1;00I=1, NSIIR 141F A0D~ (NTAP E?9.1)NSIZF175RI-Al) (NTAPF'.1 )(LOW(J),LHIOH(if),J:1,N4SIZE) I 761rin 119 I=1,NSIZF 1 771

DO 118 K=1.NSIZE 7*lip A (K.p J )='i . 1179

N1Il (W(J) 1 C4 It

CALL MPI4INT (A.NSIZF.NSIZE.MAXR#NAP.4) 1 861)I SI/FS( I )NSIZF 1870f ?1 tin KI+NSIZF 1881

JP NPO TTAL NIMRE OF C ONTROL POINTS ON ALL SURFACES* 19100NPnJNT=K1 19tu

RI-An IN RI(IJO ROPY MIODAL MAIRIX FOR FACH SYSTEM. 1920I IF' ( NFIIS ) 2,2.2 1930

1;11 RFAD (N1APl-',1)NSIZF 19401)1?? J:,.NRIGID) 1950

1 '2 Rf AD) (NTAPF-'.:))(llR(IJ). azl NSIZE) 1960URTII (N7APti,'18)NSIZ- 2970CAll MPRINT (llRNSI1FNRIII.MAXS,NTAPF.a) 1980

WRIIF (NTAPI')NSI/F. NRIGID# ((HR(IJ).Il1NSIZE),J:-,NRIGID) '1990

1,04 K 1-1 200?o

Page 76: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

70

WRI IF (NTAPfi l? 113

Pr-A 1) (NTAPF2.1 l)NSIZF

Do1~J1NRIGII) '0 7 11

WRI[F (NTAPFi#1i)ISUR&NSIZF ?0 9tCALL I4PRII4T (HR(Kl,1),NS17I..NRIOJD,M'AXSNTAPE3) 20

126 KI=KI#NS17F 1Ir

1 ~~NRIGJI) 13IF (K1-NPOINT-1) 127,129,127

ii?7 WRITE (NTAPE3.11)Kl. NPOINT

RphD IN FLFXIBILITY MATRIX FOR~ EACH SURFACE, SIORF -N NTAPLS

WRITF (NTAPPA,14) 2o0~00 153 1 =1 -NSJR ;121 uiREADI (NTAPf),1)NSIZE. J, IFORM, IROWS 2?? V-CAI*N MRFAD (A.,NSZF,NSZE,IFOlM,IROWSH1,1,MAXRNTAE?*NTAPES)4WRITE (NTAP1II,1.11)I,NSIZE .2oACACI MPR-INT (A,NSIZF,NS.IZ.P.MAXR.NTAPPJ) ?50

I %3 Kt:Vl4NSIZE 2 s 114IF ()1NPIN 158,164,15ARs

101 W0ITE .(NTAPE2I,1t)K1, NPOINT 230 V*164 I-F*1t NAERO )161~.616i 5 RHO:I1

fiJb Sf 1 J01.INRnI 234 L .

4 .-17(NTAPFli(IM(*)IzsRGfl.=IRG 2360.

GOT)A ?IS ? 39&LC READ IN WFIGHTIN11 MATRIX FOR EACH SURVACr.....STORF ON NtAPE6* 141L0-

166 .WPITE (NTAPE3, 1'))110 111 I=1.4S11R ?43o;'

IF CIS(I) ) 6,1716?440_167 N1ISYST() 4 5(

I F (NJ ) 1 6A*1916 46.(,A 1101 '1 J: N 24701

1) 1) li.9 t:1 .MAXRP4 1 !'2A ( J . .) -I I * I 2 4 9 t

1 6L9 A (L J)rll 0 PI)I1/fl A (.j -J)=l I1 5 L

PlAD (NTAPi'),1)NXStp J, IFORM. IROW .?IF NXSI )171 170,1 71 53 (pj

ill (TAIL MRI-AI (A.NXS1.NXST.IFOHM,IROW,O,1,F,MAXR,NTAPP?,NTAPEi) 154j

RIAI) (NTAP1-2,#1)NSIZF, NPART. IFORMP IROWI I IFORM 11 174,1/1,1?4 ?570J

/I r-61L M'1A11 (ACK.K ),NSIZFNSIZF,POAA,1,V,MAXRNAII?,NTAPE5) 25 A NX-K eNSI /F 2 1)9 IL,mjITI) 1 /6 20

11 1) h~l 1 /5) t-I .NPARI ?>61 1)PFAG (NTAPF,),1)NSIZF 6Q

'4: 4 N : 263 u-'III0 1/41 L:-K ,N 6 641u

nil 1141 M=1 pK 611741A M )= .n(I

Page 77: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

71

CAIL mPEA;, (A(K.K),NSIZF.NSI7E.I.RWO0FMXVA&.4AE) ??

KK.NI7 7680I'.I V~ KK-1P690

*......e 700WRITE (NTAPF4.1 01, 9 9710

~<CALL MPRINT (AK.K.MAXR.MTAPF3) .1720WRITF (NTAPFA)K, go ((ACJ.L).J=1.K),Lzl,K) 2730 K

U OOTO t78 274(t

K1?7 WRITE (NTAPPI.P'l)I 717A CONTINUE

27.60

*1QREWIND NTAPI-I 77

REWIND NTAPF7 2770

'JC K:NC 2790o '

4VFt = NVFL+1 2800

U*; ERII-S OnF*DEFNSITTIES FOR EACH V/R OMEGA# READ IN THAT 9ERIES. 28RP

IF (NDiFNS ) 8,8,$l2830180 4a RNOrNnENS 24

WinO 162 ?S40

181 REAl) (NTAPEi'.l)NRHO 21169I REArD (NTAPE'.7)(RHO( I)* 1:1 NRI4Ol 81

REAW)IN COMPLEX AFRODYNAWIC MATRIX FOR kACH SUPFACE A1

imq no pla l:,,NSIJOFS 4

I Kr1 29? oI F C FUS ) 8,8.812930

*19.3 I F 1 -1 184,1811.184 P940

1184 1:I-NFIiS 2950IF C SXST(I.) ) 185.188,18 296

185 KzISXST(L) 297o

1 ~ ro 16J=l.l 2990

00 186 Lz1.K9 30100

I RI-AD (NTAPE9,1)NYST. Jo IFORM. IRON oW

IF I NXST ) 178,8730*301417 N: NXST *NC 3040

rAll IIRFAI) (A.NXST.IFORM.IRtOW,fli,1.AXRNTAPE2,NTAPFj) 3050c

14A RkPA) (NTAPF5',?)VFLC Ju 6 0 3PF A U (NTAPE-,,1)NSIZF* NPART. IVORM. IROW -3070

*IF [ FORM 1 90,184a,19l 3080

I[ 111 N: NISI ZF *NCR.RO .1lJMXR090.'NAPJrAll MRFAI) (A(K.K?),NSIZE,N IFR-RWqlAXNAP7NPF)10NS17F:-NSIZE4K-1 3110

I oiTo 193 31201901 DO IQ?' .iz.NPART 31301

RFAI) CNTAPP,1)NSIZE ~3340

DO11MZK?,N -1160 4

DO0 191 l'l .K 3170A (1 0 ) =A .11 3180

CAI RI-AI (A(Kog?),NSIZE,N,1,IROW.0,lMAXR,NTAPF2.NTAPk3) 32no

K=K#NSI 7F 13210314? K,':K?.N 32

5 NSIIF=K-1 3230 ~N:K?-l3240

1v 9- 1F 1 -1 1990194119Q 3 2 r 1I194 IF NFI)S I 9,9,932601 4r, WRITF (NTAPFiI-.:aNSIq7E 3270 '

Page 78: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

721

3290 9

C COMPUTF (T)O) (HR)T *(CM) *(MR) 6S3 Ai 0

CALI MMtULTO (A.M.Ut,r,.FNSIZENSI AFNRIt3II,MAXRI4MAXR.I4AXR) .3no0 196 L=1 .NSiZE i

D() 196 J=1 .NRIGID Sjj7 11I )A A(J.L)':IJ(L.J) 13gu

r.All MMILTP (A.9 .F.M, D0,NRIGIO.NS17E,NRIGID,MAXR,-MAX).HAXUO) 33Q1;nOTO ?101 34A0i

197 no 19k. L=1 -NRI(;ID 1101

lift WPI1F (NTAPI-Y)NSIZE, No (.(A(J.M),J:1,NSIZlFJ.MuI.NNV4f

?ii? READ) (NTAPI-A)h .- ((r(J,I4),J=I.L),I4:1L) A49L

90l4 WRI,1F (NTAPEI.11UNS)ZE.L ilr7u6~ CALI IMOLTO (r.AhoNC-1,ust.,Lti.,MAXRHAXRDMAXR) 35

I.RITE(NTAPF/)NSIZE, N. ((U(JM).J1I,NSIZE),M=1,N) A5307U WRITE (NTAPFA,17)VELC 3 5 5 1

L= I-WFIS. 3 56 vWPMT (NTAPE4.1-S)L- NSIZE r,71cAI.j 4pmPR -A ANSI2E.N.MAXR.NTAPE') 35830

710 r.ON T I NUF 5

C, CARRY ON FROM HFRi Tfl END ONCE FOR EACH DENSITY. 36111?15 no 100) IRMO=1,NRHO U

* K:XNC.NOOINT ,4

0O 216 I1,NPOINT A6 4Tio ?16 J=I.K361,

REOIN) NTAPF4 o5 7 ,

REWIND NIAP~i- iijREWI*ND N'APF I

IV F NPI1Ir 9lA,p;?D1R 35/10? :=14RIGIfl ?

PMRAR( I,.1*1 )=CONeDQ( i.j+i) 34KrJ/Nl:#Nr!.1 3 79 1

7)p DMHAR( I.JI)=IM( IK).CON*DO(IJ) 31760,

r DF4NIIRF MR MATRIX. .S / R

DO) ?4A ISIIR=1,NSIJR .383uKz ISIJR*NFIIS 3821

r f RAD I) 'M) I li 850

If ( NAFRO P2 9 )At 738u..? 1 1111 2,'A 1 1N SI Z1 h5814It

n)(1 ;0 o 6 h1 NSl~ 1 7f ,4490

Page 79: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I =NSIZE 0916OTO 7132

r ~~RFAD ()(*H 91REAP (NTAPE7MI7FEAD ((A( I J) . 11.NSIZE)a Jzlj,L-) 35

r -COMPUTE (M BAR) =((k),RHO.AR**9.SeCW).*(CH) ) '397u

no728 I~j.NsIZF 38no DO ?H ).L.NCX 199-

r RF-Al Flf-YIRILITY MATRIX-FOR SURFACF 4040

UKL.NC*K141 4060[CALL MMULTD (F. (.A.NC-1 ~U(KI +1 # U'S IZM,NUS I ZF S I ~A X R.KA XR 4070IF ) 73,44)74090

I F NRIGIDJ MX) 408 0~-~- 41flt)

C FIND. lITTLE M PtAR M DL. + (H R)TRANSPOSE)'C BAR) *(WH R) 4110

Do 240 Jil.NRIGIDl 414-i7zK40 n(~)IRK 4 15 4

K:N(**Kl.1 4 1 i iCAl.1 MHIIITD (O,0O.A.NC-1,HRTC1,K().NRIGIDDNSIZE,.NSZ-'AX(U.MAXR. 4170

1 MAXO) 4181)CAlt MMIJLTD (HHT(1,K).NC-1D-HR(Kl.ID1,lIl,ANRIGID,NSZEDNeIGI~s 4190

no ?44 I=1.NRIAI0l 4210

flA 944 Jz 1 .NR, 427 07 44 RARMRR(I .):RARMRR(IJ)+A(Io.1) 423024 KI:K1#NSIZE 4240

L:NC*NPOINT 4250~-IIF ( NRICIC' ) A47,76A,947 4260

747 POTO (?5,2,?4R)sNC 427o74R n0 7'50 I1,NRIAID 428o

DOG ?lift J=1.NR.'.NCX 2oK=J/?+-l43n 1)

G(IK)=HARMRR(I,J141) 4,31t)),)nf RARMRR(I.K)=RARMRR(I,J) 4.37.)

1; TH-FN (IITI h- 1 4AR)INVFRSF AND fINAL U MATRIX STORFU ON &tTApFq. 4 -4 0

' r All MNVRSX (14ARMR.ODA(lvl)# A(1.MAXQ)DNRIGIO.JR*NC-1) 435o)1 R)319sP544 1f 4 36 u

'4 (101f) i ? 61 0 q # t Nr X437000 A =I.N~nlf)43711

nof :A0 S'F AI I N A #f ID , 4,$90

ii rnlI MMI Jn(tA*RMRRNrX,HR) - F*NRIG;DsNRIGID), POINT,.44

MAXI),MAXO,MAXR) 445(lr4) II ilTO FND,1N-j1RNIUDNONPITMXPA 4 45'

rCl MMOLITI) (IRlfN-~,NON.~GDNONAfZMXAR 460)*0 ?f4 1=.NPOJNT 4470

FC I J)=11(1I.J) 4490

Page 80: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

74

- ~K=*NC-NC41 1,

IrA MIILTn (A.N -1,NC-l-il.NPOl%4T,NPOINTPNP(IINTMAYR-MA,,,MAXR) 451q

66REAPNTAP F 5W1R I.TF (NTAPF'5)((HRT(IJ), I1.NRiaIh),J=1.NPOINT) 1 56,;

7,)R WAdlE (NTAPFQ)NPOINT, L, C(U(I.J),I=1,NPOINT)#J=1,1) 4SI1#1 CONTINUJE 4f

RtWINO NTAPF') 4616'REWIND NTAPFS 46? 0REWIND) NTAPF/461

4REWIND NTAPF8 -14(4 4RFWIN) N1APF9 6o'(PAR! . 4 6 A,RE T 1R N'-4

I In WR~IF (NTAP~ ',,)Q) 4 6 #9eOTA 901 - 4 69 u

A;) 6 RIEWINO - NTAPF4 4711RFWINO N IA PF'J 471 'I F (NRJGJP A 3004711?9i3A 472?)

AiRF.AI (NTAPEI) Isf, A( 1 47 3-r*/

no 0.34 1I -.NPO INT 4 1'flf) 334 J=1,NPOINT 4 7 6

334 F(1,J)=oi.o 47700 34 A ISUR=1,NSUP 47 RVW

K;,=Ki.NSIZFS( ISUR)) 4 7 9 0READ' (NTAPI']I1,I, A(I*l) 4 '1107RFAD (NTAPF4)NSIZF, NSIZE. ((F(I,J)#I=K1,K?)1 J=K1 K?) 481'

Ah K)=KlNS!7F '182 0REAP (NTAPF4 )NSIZE, MflDE, ((A( I,J), 1 NSJZE),Jvt,MnDF) 831t4:NO[E./NC 484!(AII MMIJITI) (F,nA,NC-1D'UNPOINTDNPOINT,M,MAXR,MAXR.MAXR) 4 fS 5 toIF CNOFIM )3.17,14R,,ciJ7 ,486o

107 IF MR 1 fiIj A 3R,14fl, 338 4 h7~

IPREA h (NTAPPq)C((D(I,.J).I=I*NR1O-II),J:1NHID)419(10 Iliq I=) NeoIGID '10

DO( '.sQ Jr.iNPrIINT 490,

U~l I Mmo't ID (flf,Af1HRTNRIGID.NPINT,.MAXQ,MAXR,,AXI)491RFAI) (NIAPF4) ((I1,:M)401~

DO A40 I =1 -M 4 ?~11nl 14l) J-1l.NRIGIP

A ) n( j, I) 11R T (J M/R ( 1.1)I 4947WWI IF (NTAPV'1.9') )fCAI I MPRINT (r;NRiRID, M,MAXU.NTAPEA) 0 1luI F ( NPIINC11 3.14is i4'A, 141

1 -1 WR II F (N TA Pf 11, ,'NR0111, M. RCf)Z, NCARDs 3NVARO N(:AInS II 140

WRIIF (NTAPt 4.9/)4CI)7D NCAROS, HCOZ' NCAR) 0 hiiNC;AHr1S:NCARI1 .fl

141) r.ON II N1iF 0iC~AI 1 0101111l DMlt. G.GD0HRT NRlGin,NI(D.M,MAX,MAXU.MAXO) ~Q

DO 146 Jrj I.MODJE 11t14"If MR( JJ5 I) = n( I .J14 A t 0l .3101 l11NPOJINT

nflu i'ail it .mfh)F ,An

Page 81: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

75

CAIL MM1ILTD (F,f1IU.0.,M,NPOINTM.MAXR,4AXR,NAXR) 15160IF ( NDELM )352.,305 1i7 U

V3 7h 1F ( NRlGIlP 1544,3:54 )IU183-7 CLIMMIJLTD (HR.".H1RT,fl,F'.94.NRIOlflMMAXRoMAXONAXB, 19

35AIRIIF (NTAPFI.74) ( 1, 5230).~lMAOTO 991 "240FORRA LS7011JI *r(JI) AC

CNRFAnN~rFAP 110010

MAT4IX READ1 SUBROU)ITINE 11n02OCAI I MRFAI) (AM.N.IFVORM.IROW.ITRAIORGT,M0,NTAPF2.NTAPE' ) 1i3

A = MATRIW TO RFAni IN ITRA n f, TRA CARD APFTIER fATRIX -H r 0 .0

4I z NUMPIIR OF ROWIMS AR;R OLUM N') M47

ICOLUMN RIAR TNDXN TEMPORARY GrLLSrtit FORMAT(f.E12.tI) Mfla DIMENSIONED NIIMr-ERt (i RO.WS r101hld

rIROW a .1), MATRIX BY COLUMNS fm A (0110Inx 1. MATRIX BY ROWS NTAPE? = INPUT TAPE mo 17.0

NTAPE3 = OUTPUT TAP' 10130SURROUTINE MRFAO (A.11N,IFORN.IROW.IIRA,IORGTMD.N'TAPE7?,NIA-t4 ) 10140OII4NSION ACI). T(I) M01.50

I FORMAT C6E1..8) M40171)'7 FORMAT (l?Ats) "10180I FORMAJ ( // '16H THAIS ALL- YOUR DATA. 1 ~~~f 4 FORMAT C4EIA.1i) M0195

'4N=MflN Mfl2pu

IF C [FORM ) 'q49 rj is- M1A240j. A IF I !ROW ) o t 11 25..

7 Kwl "0266,

K6~M-1 1029u

OOTI) 9 "0111)iP KP':MN 110PIK4i:PI M030t

K MO0351)MO .i6

11 It .=IK4 11037tiKIIK'i-IC". MO 381It(K) 1.1'i1ifl 110390

X K':K1 .K6 M040111114 RI-AlI (NIAPFV.4) (A(L) .1 KiK2.K3) 110404

010 10 11 M104116li 171 10 PA0 (NTAPI 1)(A (.),LxKI.K',#KJ) M10410)

r, CON II Nif0M(41PlITfl 36 11042U

11) KI=Nl M10430K?=M M04411

Page 82: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

76 I

IF (jORG?-1 I1./17 MI)461i)K M(1470 1

M0~490IMobil if

9 KP mfl K.

aK,,mA 'rCAN t IN9RD (T(K4), KS~, I.- NTAPF ?. 5TPE 7

3 K K Kmit1I F ( I ROW ) 1 ~ ,4 PM l

Ir F I ORG-i ?6~6? M" 16.? oiL =I ORG- I m0h31

$400 p1I I =I M641

110 917 K~l 'm Mfl66:1JtJf1 MI1167 )

t.--I +1 M 16 i 11

4070E 36 074

I F (IORO-1 .411 .30 .?9 Mil /? iQ~ L=IDRG-1 MU 17 133") 00 31 K =I, N M 0 7 41

J= KMD-MI) M071)111, 11 1 =1 .MN, N KO0761)j =J+ MO 1k1:L4 I MO/A i

A(J)=T(KI ) M17911

36RFTI'RN M11800.

(OO 3. m 118 5 1

T FORTRAi I ()If - DFCKr RINRfl

qlfPPnIITIN- 1'INPII (T.K#t .NTAPFi .NTAPIP) 111NI)MINSIIIN I'm~RI TllRN O'ij

FNR 141

-tFnlTRAN t.I O11. IFl:K ( 1

rRutI NSIIRHOIT I NE RIJI.N (NTAPF?, NTAP~i , I ) 1i

I )O H II ( 8 11 HI

16 ~ PMI~ ll If~;;j

RfI AlI (NTAPI, ' i, 1l tin (IT 0 (4. 1) ) . 1I10 14P WYI f NTAPI ,'11/t

6a WH I JI (NIAPI .) li

RUTIIRN lg

Page 83: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

ill 77

VOIJTRAN LS1Ohi-0FlCK 01

SUPROIJTINE NNMit TI (AN1DO.N?.C.M,M.K*MA#NRvNC) 0010nlMNSION AM*) H(1), CM W!cr1 1040IA=MC*K 0050I .24A* N 1060

ID:TMA 00741IHrmC 0000

IJ=MC0090I V ( NI 4 4.3, 4 49fl

iIF (NP V ~iito194 18=?.iR OlP0

TIF(N .. 3S IC: 05;A0ls

qOTO 7 016V~ ~ A I H:',* 1" 0170h

I C=: 111887 IA=:joIA 0198

110 11 J:191A,114 0230Ct J)= ft* ii02.40

02S

O10 il :,II 26UINcIN41 0 12701

in C(J):C(J)#A(L).i4(IN) .020011 INCzINCeI4H 0290A INC:Ii 0300

OIOTO (IAe1P.1")*IC 031 ii1? no0 14 J=19IA.IJ 03.20

IF:1*f4A 0.4.50IF:J.4C 0340INvINC 0350nn 13s LzIF.IRDID *0366

IN:1N41 11370tfl:IN*MR f13ADCC Ir)xC( IF )A(L )*4IM I) 03911

11 140014~ IzC)f:J)A( (1~ 1410

nTo IN4 04211Ir iJ II4MC 043o

I F I MA 044011 1 7 J:-IF.IAoIJ 0450

*N CN1 0460C j): 01I 0470t

DII 16 Lz:IF1,IRI04)1 N I N4 10490

I I NV mI NC#414 015109 4 r. 0"11III WO2

Il1 1IIN 0530tF NP 0 !,4 0FITHAN LMlluii-iw:K

~ nVimtm A10I'..6). AI(A*6). (,).CAA 0020SlIR~O~ljNI NVRS (A.AI. 1OK7~TO~r0.O0400

Page 84: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

78

IF ( NAP II )'i.. lf ? .lIE) '150144 l 'A INVFRS cAR.KS7.IGO)1FD) flo(1l

n n~ r 0 7 n (1 0 1 0

1)~~1) (41K= Sno 1 0:,S 1i ?

CALI I4VFRS(4.KS7,Nn) 4 I1IF (NO) p 13' 101

,i C~ RFA. mATRIX NOT SINGLULARHI i1r, "MLT ReAl STO. r 1I

3 DO 4 K=1,KSZ 0 17no 4 L=I,KSZ01RC(K * ):i * 019014 10 A I:1,KSZ R? 2 6 1

C MULT. AJ.C 4 AR STO. R " 1

$ DO '- K:1KSZ i 1

no 1 L=1 ,KSZ 1 14 ( K L):A(Kof).I) KI*rI

CA I INV[RS11R,KS7.NO) 0i

CSFCON) MATRIX NOT SINGULAR ijIC MOL. C STO. AlI ALSO SET ARzH 03?0

7 no k =1DKSZ S01 bi L=1 #KS? fl1 0S

AR(l(-L)=9(K,. ) l,6110 e' 1 P 1KSZ 0 37o

no1. in 70 039 HSC I4FAL MATRIX OR SI CONI MATRIX SINGIILAR1 TRY IMIAG. ROllr 0'1UT

110 9 K:1,KSZ 1 I.

9 R(i.L)=AI (K.L) 04.3qo0:1, el, 44.C Al I NVH1*R(4.KS7.NO) 4 .4,T

~r IMAE). NOT SINllIIIAP 10 4 er~ MUi T . 11 A E Sinl. c 1148

I I 0 DO K = ,KIS 7 -0401)

V1 0 L:.-IKS7 11

DI) 1? I:1KS? '

116 1 11 1=1 KS7

40=11

rAllI INVrRS(R,KS7,Nl) (I~1EIf (NO) lilt I'l.1'l 06? U

( 14 I 40 MA TRI X NOT S I N0CIJ AN 1.r mill T -lullt STO AR ALSOl SET A I:-R 064015 Ili) Ih 9=1 *KS7

Page 85: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I Ino 10A 1:1.KS7 0690

n0 10 ?11 0710

in I ROOF 11=1 0720

170l RETURN 0739F Nrl 0740

1 FnRTRAN LSTn1OI.ICKI NVFIRS

qUARI)4fhTINE INVFRS (AN.I GOOF 0)) 0O1ICfIMUNSInN A(A.A). 1.A). M(6) IWlOI C(AI I OVERFI (K1,1111FX) 00140

q4~ C~AI I OVFRFL(K1oh0rE) 0060GO TO(%Pl.6iql),K(1AIIFX Ofl7f

GO TO(1'A,15b'I) DK1101FX 0)090

~SEARCH FOR LAREST ELEMENT 411 11n0 P 0 K:1,sN Vi1; 11

i .(K)--K 0t1304(KK 140Q IflAzA(5pK) 01sO

J0 no0 I=K#N 0160010 P0 *t:K#N 037uIrcARS(FIIGA)-ARS(A(I,J)))10#2l.'IIft 0160

1n RA=A(IJ) 0190

Ir M(I( )zJ 0210?a O I INIIF0220

INTFRCMANGE ROWS021JRAW=L(K) 02401

IF(I ( K) -K ) 315t. %9 -25

I A(K, I):A(JROW, ) 0?80A0 A( POW ,I) :HOL 1) I' 290

r INTFRCHANGE rI.IIMNS130

401 11-A ( JK)04I A(.J.I()=A(J. 1110 , 0 3to0

4 4n A I. I C~t )--H1I 11 0360C flIvtiW COt1UMN AY MINUS PIVOT 0370

.4' 110 1 S IC:r.=1N 0380j4 AS If ( I r-K)"Pill'P, .%0 039115n~f A(I(9.K):A(IC.K)/(-A(K.K)) 0400~5 CAN I I NF 041u

Ir R(.tIICF MATRIX 04P11

4) 00 I') 1 = DN 0430no 1.61 J=1,N 11440

S A J F( I I-K ) 1i I s. ).17 0450'.7 (.lK)6fA"6II0460

0 A( h .J?( I K).A(K .1)A I Jg 11470

. ON TI NUF P481)r nVOF. ROW 14Y PIVOT 0490

00) /JRZ1 N 0100

Page 86: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

80

Is O"II N11F UI 153 iir rn.NIINuIJ~) pknIIIICT OF PIvflTS 05~402

r R PIACF PIVOiT RY HFV.PROCAL fn i

r jr" ONTINUF COMPLFTF OPFRAIION 15 7 f1CALL D)VCIK (KIOFX) (15911

00 TO(510,bfl.0)K'I0flFX (1f01)5 l3 CAI t 0VFRFL(K0A0FX) R6 t,

GO TO(S10*to04 ) .K~l'0FX5n4 CALI, OVFRFL(KfIAOFX) 06 '

G0 TO(510.p5fl5h)ofi'FX (164 1i

C FINAL ROW ANti COLUJMN I~tERC.HANOE 1)6 v

54", K:N 06t u

I F K IS 0 , 150 (1 1, lA (IIfl1 1--l(K) "1690

M) no 110) J~t#N 1171 u401 fl:A(J. K) nl 779'jA(JI.K)=-A(J&1) 117 if)I

liiA(lI')=HOLD P'740

IF1 ,iz4K ) Ii no 1s 1 , 16f -ti 11 30 1 10 /7 040L0=A(KI) 117 Ali

11790

(10 TO 1110 81 111, 0 EVION li? u

Sin I IROOF P21 (18 i U-. O150 11840

It O0RAN SO.FK

C URUTN PARTT2il

CPARti.... ? VIBRATION ANDI Ft IiTTR ANALYSIS NY A COLLOCAlIU' MI-THOD. 1(1211

flIMFNSIOfI IT(:,1 q,,VFLCTY(?0),NSIZES(pO),IH(6,6)RHO(I)

1 1sMP,134), NAKSR(?S), NAKOR(?)P, NIIER(/), 0014U2 ()MI0A(-r),v DAKP(?rs). VELC(ZS)

r T4F FOllOWINrG SIATFMFNT(S) HAVF REFN MANUFACTURED RY THk TRANSLATOR TO 07r COMPFNSATU Fnk THE lACT THAT EOUIVALFNCEI)OES NOT REOR"FR COMN--- 0080o

COMMON IT 11(

FOII1 VALFICE U1i).ISXSTh. (IT(P1)o,!SW), (IT(41),RHnr, 111(Ir(ft1),NTAPEl). (IT(A2)vNlAPFV)* (IrT(61),NTAPE3). 11160

4 ( I (I M.SIJR). 17(c71 )NRIOID) , ( ITC /P) .HRf-F)n 1l9 0( Mll/)*NAFPRl), ( IT(/4),NFUS). ( iT(7!;)1,'DENS), (1200l

/(If(/Q)#MAXR). (IT(811I),MAXO), (IT(O1),MAXS), 02p0A (IT(,I?)pNr), (IT(Ah3),NStRFS), (I7(84)pN02)# (12309 (I(IiI~ I(IA )0240F(JlIIVAIFNE (TT(i?/),VFLCTY). (1T(I41),NrAPEO), (1714H),NRHO)a, p 25 0T

1 1 (IT ( 144)). NI TRSP) (T(1'ih N ITROIP ) 1I 115I1 FPSP) I ?6isup ( I T ( 1 ))FP)P ) o (I T(t j, P ICON) ( I(T 15 NVE) 1) ?7 03 ( tir(I%').NCARDS), (tI(I56),AIT0IN). (1'I"/).NGO). (121?84 ( I T(1I S FK) (1(1% 9),SURGON) (I T(1611, NS I ZES) WQfl

Page 87: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

81

6 (I~l8IlDM, (I(~17.AITED).(IT(21P).KPAPT) 1320)0 FORMAT (114. 4R)X, 1IVH OUTPUT DATA IN 114 p ONK FLUTIFR 0Sli

5P~H ANALYSIS BY A COLLOCATION MF,14OI) USING AERODYNAMIC 033U

~?4H INFLUFNCE COEFFICIENTS // 1140 14X. 11to DENSITY 0340ii' IEF?1.R. iX. '20H4 REDUCED VFLOCITY : E20*.1v IHO10 .X 03504 116. 37H IGID01 BODY DFOREES OF FREEDOM //N)30

7~10 FORMAT (111 ?-PX. 5H14MOE 7X, 1214 OMEGA (CPS) loX. NN1 DAMPING 0370- 1 0K. 17g4 VFLOfCITY (KNOTS) I ( 11 2K.o 114p.3k

2 3F111.8 ) ) A3939IP FORMAT ( 214. 62X, IAAp 1.14 ) 400

I11 FORMAT I Hft 3AX. ?3H4 PUINCHED CARDS NUMBERS 1A6v 1f4* 6H TI4ROI 14101 IAA, 114 1.1420

71A rOPMAT (1H41 45Y, JAM4 DYNAMIC MATRIX )114307115 rORMAT (.SIM IEXIRLF MO0DE SHAPES. SURFtCE 114 )0440

76FRA(IMMO 1193214a GIVFS ANIMAC1NARY FHEOIILmCY. 0400flATA Ofthi0CT/O7nl.j144QI0I5/

RCP?=000ICT0470

MYFI INVEL 0480

K=NC.R4POINT 00

TI0 P90 J=1.K 0520

RFWIN) NTAPIQ ar1f

MOnFzMOOFS 454b~K[READ) (NTAPIFQ)NSIF.. NIRjZV, ((U(IJ)*Iz1.NSIZF~s (0571)IJul #"SIZE,;,) 13580

1 F INPUNCH 1 02,3i040A04 1590U1. WR17F (NTAPFi.9114) (16010

CAIL MPRINT (11NP0INTtK*MAXPNTAPE') 06103134 WRIIF (NTAP 4.2'0R140(IRHO)v VFLrCTY(NVEL)* NRIOID 0670

f NAKDRC I )ml 06403I1 NAKSR(I)l; 0650

CA1MITFRS (U.GIIESS .0 PNPOINTP140DE *MAXP *NC .EPSP *0660

304 RITF (NTAPF4) NPOINT, MWE. ((1(IpJ).ImJ.NPOINT)iJ2i.MODE) 0700Q RITF (NTAPF4) (EIOC I). 1:1 MOOE).NPOIMT.MODENPOII.MODFMODE 071 0

A 1 .ON I I N1F 0720MODIS;) u NC#MOIIF 0730

no 3t n zl.MDFSPNC,0740KtI/NC *Nr -1 07% 0

I 1 4 0 b t.4 0 111; 20761,,A% q N IWIIF (NTAPt i 'lA K 0770

MF (1,A ( ) = 11 0700nIt i119 n Is 0910 1~)lMIwA(K)c S(JRCON ICSORT( FKoFIOC I)) IOR0hiIhI 0 Th 1071 30 6 , AI I9 It 1 NC WU81it ilS' 1AMPI1-oi (K :0.0 0

01VI C(K)3'A.l 0830mihio 3 10 00'40

1119 fAMPW=) [10,(141) / P1(I) 01150V11.1(1KV PI(;0N*I)M)*A(K)*RRFF* VFI.CTY(NVEL) 0860

3 1 n CON II N1F 0 F17 03 RITF INTAPI 4,701)(K, OMFGA(K). DAMPIK), VFLCIKI 08801K~1.MOlIjE ) 0*190

I F CNPUNCH I12341?091)Q

Page 88: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

82

WR17F (N~~~oNIFM MOIIFS7, IHCJ7D NCARDS 119?UJNCRICS =NCAPIS~t VroCAI.I MPIlNCI4 (nMEGA.I4Q1FS?D1,ftilD RCDZMAXP,N1APEu.N'RDS) 119411WRIIF (NTAPf-i- I3)RCDZ, NCA~nS. RCIIZ. NCRDS 0 9 $NCAIIDSzNCRDS. 1Q

NfRI)S=NCARDS41 Ib0

I 1;0 NrISzt~rARDS1 /

INcI1Ds ) A1P4 0WlIIF (N1APt.iD)tPi)ISIR1WRTJF cNTAPI..IPo3RC)ZDNCAR9SDRCnZ.thP't,,16NCAHI1SZNCRDS.1 1 071Is

313. X1:K14NSIZFS(ISIJR) I1(IRU114 CONIINIE10

jREWINO NTAPF9)l~,onO~ z 944765 ~lKPAPT m I1RETIuPN 1-ro-.'TR&N LS7 nil. FCK

r NOPM7SURPr'UTINE NOR14 (A.H.N#,INOFX.MAXR#NC,kp) mTR40iI,0s

IF INDEX ) I? ef lJlPJ 0lnb1110 (10 70 (110,1441),NP MT R40001

11115 (1-TO 4 olo1 NC; 1TR40II0b

' 41S r:Af.l WNIRM iA-RvNoCiMAXR&WC*T) MTR4nflI.0 TO 7t1in M TRA 4(1013

!Nrs X~1MTR400154STAP1=NPst 1F'R 00 I1tST(oP=N.NP MTP400I17*K-Nt,*MAXR MT'41H 0IF N~tARI 4qTO')?lip'i4i 14 R40 ,11r

115 l) 10 toII 4'0.N~ m ~.1r

7 n 1 X= IM1R41fh'2j.

it11. AIl A(I MTR4(10I?Y810 In 4(11111M R !0 (

3 111! 14111 Af 1 )Q#'" a A(K41 )*o#MR4 I3I-0l 0:"1u1 It 1=S1ART.NSTOP,NP MTR400I3?

..~. I MTR40"134~

ncr; Af I.. A(Je.?MTR4 00 31.TNnFX =I MT R40036

un fINT NIIFMTR46103641111 n-I=NP* RC 1T4111

I:IN1)lX#(NrC-' )*K.(NP-i) M TR4 00 4

C~i)~( I)MTR40014?-(NP-I I MTR01043 -

I(N I MT R- II04)~M T) 4 1) 0 4

Page 89: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

83

* 1:NPIX*(NP 1) 10R41IP46'

C(N1)A(N) 1TR40047

3 0 10 (410,t40lhNP ~~~441n n TO (5IJ0.Asto).NC -PyT~o , R40s

5410fl l o t 121.N 40 5

no0 TO 700 I'TR40OOS5 1

0RIP, :C1."C(eTR40057

J=I+MAXI TR40060

rT A(1)*C(1)sA(J).C(2) SI 9t*40061R(S 2 A(J)*C(1)-A(3).C(;') BIG4B6

7110 JNOFx a INDFX/14P *NP-I, tTR40064RET URN PTR40065{ J1 FORTRAN LSIOiII.FCK t14 6

S11PROIJTINF IINU)RM, (A#9IDNoCDplAXPNC.T) 140R4W09

Sin1 A(1)sA(1)/r.0) MTR4Q0o7',

no To 701 N*441175

4,Ifl 10c(i)*C(j) * (?*(2 TR400765

00 fito 121.14 PT114f074

J=1,94AXR 9%1R4008O 0T= A(i)*Cft)*A(J)*CtP) >~~R401 ]91(J) a C A(.I).C(1)-A(I).Ct') B IG JIfR4S 082

i (J): T/isIO.T470RFT11RN "4Tft4004

1:Np '14TR410065 FORtTRAN LSIOII.OF.CK

1' OHSIJAPOIJTINE POM (L.4RfNLNRDiIIRO#NNNN1H1H2Nhr) 14TR409fiMF9NSInN 119041,LNAftI1). 194002(1)p *44(), N1(-')# 141()s MTR44091

H;1(1). AM?' 14TR4O92r)011PLF PRECISI104 LMROt4, 1948111 114002 HND *4*11, Rip U?, A 14TR40 09.,0 it) (Pon0.1IiO.NC PR09

1:1.14 4TR4441K:? 14 1TR40099jA0I) LMIIFl*41()*HN()-LPADNC).H1N(K) 4TR441 01

A0) L944nN().Hlb'(K)+LMS00()*HN(I) IOP00*"I 94() LRI()H lI-L0)N.W()A1TR40104

H( I) A(I)-LMNII(,.HN()L48h)(2)1414(K) 94TR41110 7

1194 N,'( K) A('l) -LM1401 ( I)04N ( K)-L14011 (2) 014N1I) I TR411106 1JF qT11RN I4TR40 111171 )0) ;A10 1:1.14 9TR40112 .

A(1)z tMHtIN(1).9N(t) 9TR40114

91 14 1 () L AI )*P4OH1I )AMR0710 M) )-L1411 *H1 IMTR4011

QFTIIRN 147R40119FNP MTR40121

IT VnSRlTRAN LSIOII.I)FI;K

SPHTI.11AIKNS (141, 41.IN',HNFWok,N.94AXRNC.NPIR% MTR40124

RT11 PhTR401271.=NP*N TR40 129

Page 90: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

84

no1 Mb :..PPTR4f 13iupI PTR4 013i

Pt?) "TR4,1134

n 1110 :T 11 . (HNK-N'K). PTP411 136-f1 too DM? IWO~) i(HN(K)-14N1(K))**7 MYRIO 141IF no fl1 ) ) '5IQl PTR4014I I; CONTI NUE MTR4 0 144I F IWO n),f( I) - C 1 ) ll0I fit,~ OT P4n 3 4lie CONT INUE

1T401n0 TO C30 0,Ali t).NP MTR401 4d7 110 CA1.1 AITXN) (HNAHNI.HN2,HNEWDN.MAXR.NC,4D,,CD) 14TR411149100 10 701) MTP4 111 51)3 U a no) 600 I11N MTR441 S?~~r.(0 TO 4C40f, 50oejNC MTR4 AI" 14

I F C0I 410#6h11#4111 Mr R401564 LA I4NFW(I) :HN2(l) -C(HN1CI)-lN?(J))*#e /CC1) ) tTR4015An n TO 600 MT1 42)159

Site Aft 0 . P T*4(-1Ar'1 2.

1T4~

K =t1CJ-1).MAXR PTR4016%4

C =C*CHNCK)-NN9(K)) - MTR40168

A~ = : ;'M - HN;IK)l..9 -A t4TR4f169tF C I) ) 0,UfS MJR41)17-1 F' S~e0 6 n 5MTP4111 725/i HN FWMI a HN;Cl - DOl.(l.c)Cx)/1() f'TR4017J'14140400 x HN:)CK) - CRC1)*Cfl)-R(C')*AC(M/ Dcl) 147R41174S o CrNT I NE PMTR4'176710 IP:

MJR401 7814 j a R 7ON 40 ti

F N pMTR41fsij -'FORTRAN LSTnII. O~t"K HRO

C AlITK'4DqURPO11TI .AITKND (HNDHN1DHNN,HNFWD?DIAXP,NCA,AH.D) PRORI MFNS 111% HNt) 14N1 (1I N)HN NNW ( 1 A ( 1 8C? U V) I( OTR401~ P-511011141 F '1-CI S ION HN. HN1. MN?. I4NFW, A, H, C, 1) MTR4AIP I _il"no 611 1nn 1~ IN MIR461 A9AVl TO 41111i *~f i NC P'1R4(01C 41fln (I( IN ( I )-;P. PN1 I ).HN'CI) MTR4IQ2IF ( ARS(CC I ) ) -. 1111110110, Oi A 0 0o 6t 0 #4 1 It P R i I9'4111 NNFW'.I)=1,NlI) - (HNl(I)-HNPcI)).ceN1(I)-HN2EI) /C(1) M 11311 19 6110i

MT R 4119 Q6St~' ill A0 ) 2 11, M1R40,UQ8rl (I)=;.

MTR40 109DII) MTR4O2II2J0o S In .I;p MTR40J2111I-K: = 1CJ-I)*MAXR

MTR40O11.,R(J) M NK-.HtKNC)~TR4i?l)4

C: C&(1e4lCK)-HN7(K)) MTR40l211'1.A -( 4 NO(K)-14NJ(K))CMN1(K)-HN2(K)) )-A MTR4 O2Obt

It D) 5200011n , 011 MT R 4020915/11 HNFWI 1) 1 HN" I) (I FJ )A (l )R C~j 11/(11 MTR41121 (Iii INFW(K) H-N.'K 10(1 )'CCI)-RI')*A(l )/ 1)(1) MR(?6110 r(INI I UE lPAfli

Page 91: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

CNII HIR40219I~ FOPTRAN LSlfllI.OFCKcI. F IsS

SlIPROIJTINE lFrqdS (LAHHJAPOS#EF1#.NC&IIOMR41?)0IMENSION LAMRAA(). PUO) 9PJR4O2?4I fOIILE PRECISION LARnHA# POS, Rip RPAP M~ My0f27'

no O 01D 9(1)fl..iMTR4.Nl9t~fnR AHS( I AMAIJAC )-LAHReDAC)) ) )/F1 MTR4(123Q2 v R7A APS1I1fAl1.q(PUS(?)/POSft))-1.) / 1:9 PTR~lf'?3t '"

RoA DAI4S( IA4S(PQS(4)/POSWi)-1.) / kP ktR402iJ PC~AII MPRJNT (R I p 1?#6) M1R402.44-

Ch 'Ii MPRINT (R2A,:0.t.P,6) PTR4Il236I IF ( RI-R?A ) tdfl14fle14t "TRA11238

1,11 IF ( R1-RPR ) 13~1 1101411 I'TR40l?4OI 1f IR=N- 1TR40242140 QFTIIRN lltPR4444;p it0 RI OSORT( CLAM91)A(I)-LA0I0A(M))(LAK.BUM(1)-LANSODA(1) M (LA.9PA OOTP411241

I (?)-LAMROA(4))(LAM4RDAC;')-LANSDA(4)) ) / F1 01104 I

POS(I)*POS(4)) * (POS('i)*POS(?)-PQS(4)*P@S(J%)*(POS(3)0 HIR411?49PQS('))-POS(4)*POSCI)) )/(P0S(1)*PUS(1)+P0Sf2)*P0S(P)) N MR4O1?5o j-L,. ) / F? 1110411251

RP ) ARS( nSORT( ( (POS(7)*POS('i).POS(h)#POS(8)) / (POS(S)*PO5 141P40?%-51 (5) + POS(6).PQS(6)) )*( (POS(7)*PQsC",I.POS(6,.PS(I)) "1T0411754

1 cPuSe'I.POSeh) + POS(A)*POS(6)) + ( (PQS(?)*P0S(6) - PUS(K1TRA11p'090$)*OS',) /(POSV0*)POSV5) * POS(6).POS(6)) * (POSM/ 1740256A

4 .PIJS(A) -POS(ii).PQS('i)) /(POS(!))*PlJS(S) *P-S(6'I.POS(6)) 4TR4fl2rt6) ) -1.) IFP MTR4020$8

110 To 11l a TR4R?6uFNII HTR40?22Iq WAD FTRAN LSTfsllDFGK

SliRROliTINE IIADS (A#B,ICDNSIZF#WC) 14TR40:0 4nOU8PLE PRECISION A(I). 91). ir(1) PTR40?655K:NC.NSIZE Ml P41267

I RFPIlRN MP'?INfM)MR07FORTYRAN LSlflh.0F1K

ISUPROOJT INF MilliT (A.R,I?LiZ.MIZ.MIZHAXA.HAXR.NAXCPNNcNP I 94R402,'5

KArN(CuMAXA MTR40279 ~K11rNC.MAXH MTR4il281IK(:=NC.MAXC PTR40281

n~j 0 ( ft i p Iit i NpMTRAIAPRJ

I t I AII D1111IL (A.Hd.LIZ#NIZ.MIZ*KA#Ke.KC#NC) MTR4029!,

oIli 710TR401286

,7i I o6io1 .1 11 MTR4O?95

Ki:ifl CM'Kfl MTR40290It MTR40292

(1O -TO K ~~1.ITR40293noT 11 ,4-1 ,N MTR40?97

.4110 1100 31", N=I.NI7 MTR40299J=Nw*AiMR00

Page 92: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

86

JII (N-1 )+9 MIR 4 16 0;310 C(I)ezC(I)+A(J).8(JR) MTR41)30,i 17

n0 TO 51:n MTR403041L410 C =+mhXc M"T R403 0i

1) ) 410 N = ,N 17 MTR4fifl9Ja (-t).ALMTR4IIIA1 1

JI~x (N-1) *K 14T P 40 (1/.)Cc: J.MAXA PTRI3i jiJHC= JR.MAX14 MTP40,514C(I ):C.( I).A(J).R(JR)-A(Jr).s(JRC') "TP4fJS 6

S~ilo CON T I NU I*74nj,

740n RFTURN P

-~ VFORTRAN LSTOII#DFCK

S UflPOuITINE nMIILT (APlbC.LIZ.WIZ.H1ZKA*KN-KU,NC) tTRAIU;"11)OILE PRECISION AM), R11, CMl PTR1403?94AXAeKA/2 MTR4CA1

IA XP=KR/P MT R 40.13 1;I0 Itno Alinf 1:1.1!?7 fTR4'1J32?

noI %nf a m=1.mIZ MTR40O.134K:(H-t).KR 4 TR40ii 6

1z (14-1 )*KC *1 PTIR4I.-3 /

00 TO 41111,4110f r. MTR403413111110 '4110i NZIONIZ 141R4tl3

J:(N-I)KA.L TR40,345JR:(N1)I MTR40,ii464i

111 (I):CI)4AJ).R(R) (TR40347 -

0 0 TO 5010 MTR40l34834110i jC=j*KC;/' MTR1403'~U ,

110 410 N=1.N1Z MTRv40: 03 T,

J: (-1 )*KA.L MIR403-155JAc (N-1) +K ?4TR403r~hJCX J'4MAXA M I R4 411.55 P7JA' '1JR#MAXH M T R 4 01515r(():C(I)*A(J)*H4(JR)-A(JC)j(JRC) MTRqn36iJA

4fIn C; 'I C)A(j).RJRC 4 A (I. *1JH9 M IR 4 036 15 110i CON I I W MI 16 ,61111 CrlNI I N1* " MR 1Il'i 6 57oin RETuIRN MTR403'A/,

FNP MT R 40 ,s69s FORTRAN LSIOhI.DF(K 14J6

*C PULIJsqIIRRflhITINf- P0114 (PN.PNl,ON.ONi,I-,IMRI11.LMPqV,NC,IR,;Ooj MTR411IJ7?.

1)011;411 PPICISION PN. P141, ON, 01 114801, 11480?. AM' M IR4 1 .)IU:II MT R 40 .$7

091 0 (091. lit .~sO)* tO 1TR4046/*11111 qO 10 1i 10 NC MTR40n374~IIll'i I f ( nAi4S( (PN-PNi)/(ISQRT( 11ANS(ON) I) -F? ? 12 1?,1dI 12l MIR40$.1.1)' IF ( DAHS( PN-PNI - F?..9 ) 1kl'1?i,1/f MTR40,iA2:1I on IF ( IA HS( ON/ UN II )-.) F2 ) 139,/o MTR40~P41 ill IM ti' =(PNOPN -4.00N) T4ib

I.MPII? = SOR! (DAIIS(ImRD?) )MTR40U38)I.MPfl1 =(-PN #I M1411:) /7. MTR403RdI.MRIP? =(-PN - L.MRII?) I".MTR4O0iRQ

Page 93: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

87

I F (ARS(LMRD)- ARS(LND2)) 4Dfl6OMTR40391.I1401 1: M IHD MTR403i92

r"O 1 160MTR40395

lln REUR )1TR40400

21I0 A=DSflRT( UN(1 )*QN(1 0()*N2 O000

1/ A 42-F) 2P413~ TR40406?Inl A =ONI*ON1 0 N1(.)OUNI(?) W 00

IF ( ( ( (QN.ON1-QN(;o).ON1(2))/A I*( (Q*N-N~.~~?)A) + HT064fl4fh

;nA~il) =PN*ON -PN(P).PN(P) -4..QN *R01

1.F CA~l) 23 )00poakR01

AC7),= A(?) / (2.*A(l)) MTR4041'8

SI LMRD1C?) =C-PN(2)*ACI))/2. MTR404?1LMRDP(1) =(-PN-A(?))/?. MTR4042?oI t.MRf)?(P) z (-PN(2)-A(l))/,-'. MTR40423DI C DSORTC LNRDIeLMRO1.+LHRD1(?').LN8D1(Z)) - DSORT( LMH1)?.LM8fl2 +MTR40425

1 LM8D?(?o).LMBO?(P)) ) 40,16O0t60 MTR40426740 4:IMR01(2) MTR40427

LMRDI (7)=LMPO',C2) MTR40426LHMRI)p(p)z A MTR40429I GO TO 140 MTR40430

A(I)A~p)MTR40 435

A(9)LMPDI R03Go to ?32 MT RAI43J FNfl MTR40l439

FORTRAN LSIOII.DFCK

7URUTN PQ(FH 4N1 N,7* NW39 Po 0, NC* MAWR ) PIR40441

A) .NIONFI)sIN, -NI~ HLC 6) H NXR. ) HS ),P2,(lo MTR40442~~1~ '(( ) 1 Fl( 14(11R ), FL''HTR40443

MAWR = FLAR)HICAR1,L4* MTR40447I)0 10 FIi. NCIX.)VL ,. MTR40448100Ai) =AC$)*HN~ - VR()HN(NAR1-()HN C)HAXRXR.) MTR40450j PA01) = FCA)*.HNI -(4Rl.()N-()*HN(MAXR.1-r(). MTR40451

A4) = I()aINV(M-X.1)( )HN(MA )*H~NX.)~3.N MTR40452,

4(-i') =H )PCI))OHN2MAXI)*FP( )41N MTR4046P(7 =5R' A(3)fePU') - H1)#P(l)*HI-41*N(ARl-0*N MTR40459

A(?) = A(I)'O( ) k*P()() MTR40 461

Page 94: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

R()=A() .O(') 90 8)*0(1 MTR40470_4(l) =A(1)eA(1) + (,R1 MTR4O47,A(?) = A(2f)/A(1) MTR4047ie.R(p) a()&i MTR40474403) a A(S)/A(1) M7R4047'-

P(1) a FL(3)*A(2 FL(4)*R(?) MTR40478P(P) a FL(3'I0(2 FL(4).A()) MTR 4O4 79rA(7) arL(.I)*Fi.(F) FLc4)'FL 6) MTR40401;R(?) z F1.t,4).f1t(') * FL(3)'FL( 6) MYR404R9001) z()AA-()R3 MTR40484

0(7) :A(?).().A~).(M MT404A'TNAXP PO7MAXR MTR40A4

R~T~iPNMTR40488o R0 A01 (FL0~).H4NI*HNl - FL(3)*HN7*HN?) MTR4049Pt

PCI):z (FL(iJ)#HN9(1).HN1(l) - FL(1)*HN(1)*HNd1))/ A~i) MTR40491J4(l) = ( FL(1)*HNC1).HN2(l) - FL(2)*HN1Ct).14N1(1) )/A(1.) MTR4049e

PCI): P1).F(')MYP40494Q01 0 Q1)*FFL(?)*FL(3.) 14TR40491''IAXR ?*MAXR "TR40491RETURN M7R40499FND) MT R405j0FORTRAN LSTAij.DECK .

C SOBROUTINE CLOSE. COMPUTES 2 CLOSE ROOTS. MTR405l0C MTR 4050O

1) * MATRIX, DIMENSIONED (MAXR,2*NCOMAXR) M4TR40501,3C H xSTARTING OUFSS, DIMENSIONED((MAXR,2.NC*4)P*)C*N) MTR40506

C NSIZE z SIE OF MATRIX MT R4 050 741C 14AXR a DIMFNSIONE) NUMBER OF ROWS OF U AND H MTR4056,C M4AXTRY c MAX11MUM NUMBER OF DOUBLE PRECISION ITERATIONS. H7R40509C EPSI 2 SINGLE ROOT CONVERGENCE CRITERIA MTR4051I -C EPS2 a hO0JPLF ROOT CONVERGFNCE CRITERIA MTR4051 ',

CRa AITKENS CONVERGENCE CRITERIA MTR4051I .

C -2 IIECEKHROIIRR a ERROR RFTIURI INDICATFR. '1. OVERFLOW MTR40513

C c3, BOTH OVERFLOL AND DIVIDL MTR4051':4CHC.MR01

c ITERSz NllMER OF ITERATIONS PEFREo- FOR DOULE CHECK MTR4fl51-PEF+MO FOR SINnLE ROOT "TR4051j,

r NC =1I REAL Pt COMPLFX MTR4051 9SIJRROUTINE ClOSES (UH,NStZE,MAXR,REPS1,EPS?,NC,,IR.MAXTRYITRS,TR4l5?1,

1 AITKN,INDEX1,INDEX2,VALUEMSIZE) MTR405?

CAll 0VFPFI IOVfLW) MTR40526rCAll DVCHK WDVf)C;T )MTR4n5? ?lRR--0 MTR4l52.-NX:='oNsI7E MTR40529N?'C=?#NC MTR41153-C31 1 CHANUE (JMS17FNC*MSIZE-MA4,,*) MTR4fl53,CAll CHANGE (NNS17FNCNSIZE.1) MT R4053IA:N?c*NSIZI M R 4053511=1 MTR4n53iTIPIl .16 PTR40531'ISM19+.I6 MT R40153814=11#16 MTR4053'115z14.16 M~T R4 0154 i 4*

KIC1 FM.T R4054114=12 MTR40542

K A 11MTR405 4K7=14 MTR40544

Page 95: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

89

I~~i JTFRS a0 44,5100 Kan 14f4P4J

I?180 : 1 1014405401 'fl ITFRSxITERS.1 l4ff40549

SIF ( ITERS#4AXTRY )140:s1:0:130 'I14R40550

13P ITFRS a ITERS-t "HTR48552go TO 800e 141R40553K I 14fn KCK41 T4~1:1(1 M'tR40556KI :K4 PIR405S7K4=93 NT414SSS5

CAtl "OiLT (if ,N(K?).H(K1):NSIZF:NSIZ'E,.AXR.WqI1ZE.NSIZE, 141R40562

INFIEKfl MY140564

CAI OVRF ( O475"J40568

IIIRR=IRR.1 MT45670

COTO) 1711.R, l invc I KC TR4057210IRR:IRR+P MT45673

t> 0' IF CIRRSo 90 0ffl5if,411 MTR40574C TEST FOR CONVFROFNCE TO A SINGLE ROOT 14TR40576

Pun flno 220 I81.16,2 "T454570Jv': K?'1-1 MT4540579J6i a 9111 P4 R4 0$811

IF ( ABS(H(J .P)-H4(J3) )-EPSI M&0.20,.300 14JR401581P2 ~0 CONTINUE IN41140542

COTO 7'S0 141400543311A COTO (?,"lI .ifKpP14.6,A

J2=1+(IO+5 *N2 PT45 O

J~i=l+J TR405,91

~ IJi=K3.J 1T4545939K4.J M145694

c nPIE P Ni AND 0 N. I'TR405,96CII PC (H(l11), I(J3. H( J5' H(J7) H(J19) 1(JI) u(J?) NC, hX)MT4T540597

10.11: i.%')4*NPUMT400Ijr J).NPc MR00

J *93 r.J ? C 14TR40603.14= J.5.NPC 14tR40604I,)~= l'i.N?C 147540606,

C~ TFST FOR DOULE ROOT OVRENCE AND ISO,C('OMPUF LANvA IAND 2. MTR411608I.A: J'O.N? (1415ii)1(4o~3)E~o(5)NJ),,C#R10 40610nOTn (.144#344#40lI09jf00 11540611

144 1 F C 5)I ,R4 f 14TR40612146 11 ITFRS-PIAXTRY )347#404#(llRI 14TR40613W4 0)0 4 A I aI.N'Cr 14TR4061 4

HJI ) H (J?) 14140616.1,1 =H 45Y4061/6

a ~:JI 41 11TR40617

JiJ3.1 11492

Page 96: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

L 90U148 J4:J4+1 MR02

TGO=7MTR4 96?5 -

90 354 jmIA MR4')62?6=1+13J NC MTR406?4

00 3541)= NC T466

14(11)~H(LMTR4fl677

14(L11):HL,1)MTR40630

I F I R I)A W

9(1:1 frMITR43/

K4=Kl.K 5 PMTR4964US

K221 MTR40641NAIlKN z NAITKN.1 1MTR41164?GOTO Inn MTR40643

400 CAI.I POH (H111 H(5) H(6) H(I) H(2) H() I(K4 NSIZL, MTR40645NC.) MTR406463

401 (494v4A?)tNC 1T414492 VALlIF(9%zg$(JS+')) MTR401649

VAtLUE0 )=H(JA+'> MTR406504034 INDfFX:0 MTR40h6SO

V~t 1j(1)=H(J5) MTR4065?VALLJE(NC4I):14(J6) NTR4 065?1AtI. NORM (HK)HK)NIEHJIINFSZOC7 MTR4065A5!PFXl INrDFX PTR40656 -

ITFRS = -ITFRS 04TR40657i:K4,2.!NDEX.? MTR406S7 -

M(JI):14(1) PIR40455914(J1.1)XH(I#.1 "TR6090010 (4?0#41n).NC IWTR40661

410 1 z 1.NX "TR4116614(J1.?)=H(I) IITR404663

420 INflFX=-ItPDFX MTR401666CAIL. Nfl.M (H(K4hNK4,4SIZEH(J),I4DFX,NSIZENC.. MTR40666'IF (K -P? 440 D 5Qfl 480 MTR40668

440 J32:j3 MT R 40669447 *J4=4 MTR406709470 K:1 MTR4067146P n0 46? J=1.IA MTR4067?

.11 =J.J MTR0i74 ?J4*J-1 MT R40 1674~

46? 9(J1)=H(J?) MTR4fl674;00111 (5PO) ,i It fl . 1 4 . 6011 K MTR40l676

4/11 .1.5v I1 MT R 40)71IQ0TI 44? MTR4067/

4 1 IF K 3-13 490*491171 M MTR 4(67 9

l3~l1MTR4A6#io*i4?13MTR40681

011r 1. MTR411602On i 46 MTR4 06 83

SlinK =0MTR4flbR4

01 0: 1 MT R4 1i , '40TO 460MTR40ARI

Page 97: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

91

giI9 14TI? MTR4A9flOT(l 4 &j I 14JR40690I J~ ri!I3 "T0411601Iqn 517 14T010692

f) vlee A AIL CHANGE (H(I11.NSIZE#2NC,NSIZFDP?) MTR4Q7OIJ

I 11 .)=C4IIE INFX4TR4O f"69j7

lOAfl NORMi,(h(i) .I(JVFLW #H1)IDESEPCI M70447098I 41fl I tFRR l POTR4(1709

* 430 J )=RftR. MIR4'70i4440 CAl = CHNE (iDII.CFIZ.AXP MTR4O71 ,

P41 1 REVuR IOF4W TR40l707

410 IK:15= 4-K.Nd '1TR407096? j AllI( )VH ( IDK)C tTR4 0711

QITI 6F0#411)NDVDC MTR4O713 440 tl.CAG '1MIFN*SIkMXv)1TR40712

7 ') q ETURN TR40711

75 IK= S(4K*9 MTR40Y?/VAL GOF 1 1 PTR407?11

INDIFX1:INIE MTR407?3K= Jib MR40724JS* ii 1.*r.-tR40725

1 CAl LEI ()Hi)FS.P9NR)?TR40726

N15 14JR4071

FORRANLST(':..DFCKr MITFRS,IC A IS STORFDI) N CORE AT A. (HAXR X NCONP.NSIZE ) PTR40738IC NYAPIJT IS A liT ItITY TAPFD FOR CHECK VPCTORS IF DESIREp. 14TR40739r VIPSP = PSILON ONE SINGlE PRECISION CONVERUFNCE TEST oiUMHFR 14TR40741ir I:PDP =FPSIION TWO DO11RIE PRECISION .. a. *.YR40741

r Nr c1. IF RIAAI NP z. . Ir SINGLE PRECISION MJR411742r , IF copi Fx =I.I If DOUBLE .. 14TR40743I NnIIFSS = it IF FIRST GIIFSS IS TO RE A COLUMN OF ONES- MTR40744

r, motonIT =NO. Of MOIIFS 10 RF COMPUTED.e MTR14n74'rNAKqH NO. TIMFS AIfKNS ACCELERATION WAS USED IN SINOL' PRFCISION. MTR411746

r NAKI)R .. . .. . ** DOURLr a. * TR40741I CMAXS# MAXIMIJM ITFRATIONS ALLOWED IN SINGLE PRECISION. MTR411748V MAXnR .... .. DOUBLE . MTQ40749r, IR' -- I RROR UE1IIIRN 1. 0ro OVERFLOW 00TR141175

V. FOR nIVIDE CHECK HIR4l75iIc *io FOR ROTH OVERFLOW AND DIVyIDE CoECK MRO%C, NS I IF z NO. OF RoWS ANtI COLUMNS OF A MTR4075.3C RSP Ro AIIKFNS ACCFLIRATION CONVERGFNCE CONTROL FOR S'NGLF PRFCIS. MTR40754

J C RP R AIIKINS ACICFlRATION CONVFRAENCE CONTROL FOR OIIHI10E PRECIS.MTR41,Thbr MAYR DIMENSIO)NED NIIMHFR OF ROWS OF A AND GUESS M7R411756

SURROIITINE MITFRS(A,GIlFSSNGUIESS.NSIZE,MODOIUT,MAXRNp',FpPPI-PD MT;14O1751

Page 98: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

92

I NAKSR,NAKDRMAXSR,MAXIIR.RSPROP,IR'),HVECIOH. MTR4075 92 VALiIF,NITfR,NTAPI3,NTAP0T) MYTR4:: 76 0nIMINSION A(l). GtIFSS(l), H(l). NITER(1). NAKSR(1). NAKLJR(1). MTR4:76,5j

1 ATITII-(9). VrCTOR(1l. VALUE(l) MTP40764DATA (ATITLF(1).I:1.')) / lowH fVFRFLOW. *ION *MTR4O /6t)

I 1 ONH DI VIDE . I1111 CHECK 10 "O IN ,MTR40I6I

2 IiiH CLOSF # kill SWEEP , OHSUBROjINF IMTR40l766

liI 1 ON 1TR407691.0 FORMAT (tIfl >X. i'H MODE 1.4X. 11H EIGENVALUE lfox. MTR40771T1 ?4HITFRArIONS S.Po Pl.P. 6X, ?oH AITKFNq Sep. U.P. MTR44I72 II )MTR4077Ai

19 FORPMAT (114 11 , ji * ,F]9.R,, 11 ?. 11/ 1 119. i t ) MTR4fI77 4 j14 FORMAT (118 ii. I F29,.RD lli, ill, t1190 ill ) MTR40775hIA F6ORMAT (lHvi 1106, 41H4 HOOFS ARE* COHnRFCI, COMPUJATIIP T RI~NAiFIJ.)pTR4fl776~18R FORMAT (1',HoMOD)IFIFIJ HOOF 136, V214H IS CORRFCT. TolIF MUDk MTR401771.

1 PitH CANNOT HF COMPIJIED. )MTR4O 77cn'f r (RMA T (114n /// lil 46X, 14N FIGFNV CTORS / I/ MT4flI/

;o" FORMAT (193l111EX, AAH4 CHECK EIGFNVALUES AND EIGENVE'IOHS I M97d

?4 FORMAT (594 MOIJE 114, 2Q9H HAS NO? CONVLRGIED IN MAeIHUM ~ Rf7 .I 12 IH ITERATIONS )MT R 4"7R?6rORMAT (37941...*. FRROR IN ITERATION S11HROIJTINE PAID MTR4l78i4CAtL nVFRFL C IOVFLW )M7R4r7ArAtl DVCNK ( IOVnCT )T47/MSI7F =NS1ZF Ml R4 0A8ISIZF a NC*HAXR MTR4'789JUR=O 4TR40700

C FIND A AND STORE ON TAPF IF NECESSARY. MTR411792*IF CNTAPUT ,10?,102,100 MTR40l793

Ilnl -RFWfNO NTAPIIT MTR40794M=NSIZF.ISIZF MTR4O7Q

WPimF ( NTAPIJT (A(I)oT:1,M) MTRi Ii /9eRFIffNO NTAPIIT MTR,47Q/

I it? IF ( FPSP ) 1111101I1O A MTR407991414 FPSP z .15E-IIA MT R4 jft i C1436 IF ( FPIDP ) llipolll "TR401(1el1 oA FPrIP z'F>1 MTR4t8fl51 1in .IS17F=NqIZF*(Nr-1) )T40

C nFFINE FIRST GUESS. IF NOT GIVEN. MTR4O0fl/IF ( N(WISS ) 111,11,111 MTR40H139

Ill IF C M0~ -N4SI7F ) 1I601j~pu17 MTR40810"ovp DO 113 zi:,NSIZF MTR4U8I I

.3: NS1/1, 0 1 MTR4OI41 2.11r MAXH.I M7R41181 s

11.3 MY35()UrS.l TR4II 1)l 4GJTn 11t6 MTR40"1'l

1314 03)1 19) 1=1 NS171- MIR4081 I.1=.)SI ZF f I MIR40i81 8rOIIFSS(J) -- i M1R40819

r~ nFFI*1 PROGRAM l:ONSrANTS. MTR4 11 i? 2

I?11.JI1 MTR4OII?51; =I #~ 32.17F MTR408?6

r, SI I F riP Mflf- CnIIN I MTR40$?'2 -

1 iii '4rji = mAI 0 1 MT R40831KsI/F :,Nfoc.MSI/ MTROPl11 C M0111-- M11101h1 140t 1491,5l MTR4II 3-5.

1-wi NSRK~iIMTR40Hil,.

Page 99: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

93

jNnRfAKzfl PTR40836 ~

I ITFPSR=I1 t"TR40837

*K1=11 "TR40840

I K2:13 9R4fl841

DO PiflK~i.NC TR40842

Ji =(K(-1 )*NSI7E kTR40845

(K-1 l%0 J:IRIE4KqI-1 4fR4(1846

niI5 J:J l NSF wyQ41JA4i

I ) A=A~ MTR4fI,'5 .

IF ITFHSR-MAXSR ?.)0~fJ~

I IC :I~iMTR411859K3=1;3 MYR4O$61

K3=KP TR4Pb61K?: IfT402

CSIFT .... NOW MAKF ONFI~ TFRATION. MTR40864

rAI MOLT (A.14K7),N4K1,i1SIZE.NSIZEP,1MAXR,MSIZEI4SYZENCe1) MTR401466I~ !NTIFX= MP405166

TK2 IiKSIZf:*Nro(4-NAK) PqTR4OebA9rAll 4ORM (H(KI).H(K1),NSIZE.H(IK).INDEX,MSIZE,NCPl) w4TR40E,7

CALL OVFRFL 1 OVFLW ) PTR4O!'7OCAI I Y)CHIC IDVOCT ) TR4111473

11OTO C18QOiIA?) .IOVriW MTR4Oft75

140f JRRzTRR.I "1R40876I R? nOTO (184.iR046) .JflVOCT 14YR4087?184 IRR=IRR'-? MyR404'70

IHA IF CIRR PlI~Dtf MTR401480

911m1 no p 10 Imi.KSIZE 114408-144

.11 =K1+ 1-1 PTR40O R5A

IF~ ABS((It)-HCJ?))-EPSP ) ?02fDe)M-q4088?

'It n rNTINUE HIR40FRH8nOTn 4010 PMIR 41188I~9I 10 (1107 (1 IAllI1. ?1-1 NAK "TR4t'891riifl frAlt AITKNS ( $4(KI), 14(KP)s H(K.3). H(K3). RSPP M4SIZE. NS1ZFD NC, 14TR40893

1 I. JR )MTR4014IF C R P 400,,7~D411 MTR40895i

1 1. = 7' 0 NCTR40896 .1 =I h 1.MTR4089/

11) 7 S4 1=1.1.141 MTR401498jizJ#NC-I MTR40109

I?: -1.1MTR40900

1?-NC MTR40902l(I)RH(J'4) MiTR40904

1'4 H(X,) )H( J4) MTR40904nlT) 16? MTR40905i

~4 11 I-if I TR4O901X I - R~qMTR40 908

KI -rk ? MTR409119

* MTR40910NSRAK=NSRAK,1 tTR40911n010 1'li MTR40912

Page 100: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

94

r, Al I lvi-Rri I "ViV1 Lw) MTR41191 4f!AI I flVcHK ( IfvICT ) M1R40915

96lIRR:IRRI 4TR409I /9'IOTn 064#91;6) . inVfCT l"TR41191 8

7t. 4 T RR rIRR 4 ?1 tT R4 (1926 IF (IRR O 7h7t4jl ~TR4097077nl IF (KI-Il ) M,8,'7PTR40l922

777 ?074 Izi.KSIZEi *TR409?4

274 1401 H (J t'TRQ9'/79n W "j(11OF-l ).NC4 P T R4 A4,

ITFPSR:ITERSR-1 14?'tCA1 CLOSES(A.H(i1).MSIZEMAY!ZRDP,EPSP.EPP,NC,IRR.AXnRITRRIiTP4u . -

I NDRAKINDEX1.INnEX2VALJE(J)p NSIIE MY P0T4 fiJ Q 4I F ( IRR ) 7,1)6flMTR40;045

91IF ( ITYERDH ,aHj MIR40946243 1IF ( KSJZF:-TSIZF ) pt 9he *>DBP MYR4094j-44 1i. = 11+2.KSIO-r MTR409ThoJ

3J = 17.KSIZF MTR4099,100 7i46 IC1,g(SM.. MTR4I952 -

.j1= JI-1 t419.J:= J2-I M T R411s-,4

h 16 14(J2)zH(JI M MTR 4119 h 5

INDIX =INDFX M4TR4095,8791 M1 NSIZE-1 MTR4095,9

JiINDFX 00T P 4 ' Q Ai

IF ( .i1-NI 1 ~7P?~,78~99 no ?96 K=1 -IS17F P V1

L:(K-l )*I4AXR MYR411966Ll=L+II4DEX MYR40964

10:n A (L1) MTR4119A,Pin ?94 JjJMt PIR4 09f66

1=L+J MYR40961294 AMJ = A(l*1) HTR40968796 A(t+1)mHOL1) MTR40A969798 I.:.NS1?E-Mn~fF.I M7R4'i970

j = (monr-1 * Nr * MAXR +1 Ml R 4197CALI Sw. iPx (VEC TOP( J) A , H. A(L). VALUE, MODE, MScl'&D MAXR, NC# M1'R41197/

I I)IX, 1:PSP. NSIZi5. NITER(MIODOU14-I) ,IRR) MTlR4I97hsCAll MR11 ( 1OVFLW' ) M1R40979CAI I IVCHK ( ID)VPCT ) MTR409RO -(IT(O ( 3110. i,') IOVFIW MT R 40)91i

100l IRP:IRR41 MTR40996li? o' OO ( 44. i ii) I DVOC7 MJR 40984A 114 1 R; -I RR +P4 MR 4 098~

*'i I = ( Jr-1) n, 1n.1L' MTR411998

no 11 JZIIIXNSI?Ie MI4-?,

A1 IJFS:IFS SSqj,1 MIR4099?l

MSTIF 2MSI/F-1 MT R409 Q4NIh R(monF)- IIFRSR+ITEROR MYR4!9995NAK(cR(MOf)F NSRAK MIR40i99NAKI)R(14DI-): NI1RAK MYR40Q9/IF ( I TFRnp ?,1I.lf MTR40(998

1~lmon1I.mnpF.1 MTR411999I I F RRfl -I TFW nR MTR41 0 00

Page 101: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

95

I 4ITfR(NOD-I)= it. MR10I NfF Y: INDWX, MT041 411)?IF ( INDFX-NSIZF .11 A N$40t TR41 1103

U) AI F INEXI-N11W '111#411011 4TR41 004

I s p ~ .~I0X WADIfl'I'~ ilT041 on-.-INfIl X:INDEFX-l 14TR41006'fml W)? PTR41 on i

34n~ INAIX:'.INnFX MTR410111

I II (~N 1 151 F 14TP41 0118

Ivll1ISIZF IOTP41 IIIfLI.=1+IIZ "P~41 I) PI

NAKSR(MflD)F-i IT4 v fll1,4AKIR(MODE-1)1T11(OTIO 9 If

I =I?*1SIZE MYTR41 01

5 (OTO 110O MTR41 0219411 nF U KIl 41#1 MTR41 U21'

411 111 41? I1 1KS17E MTR41U 03j J:Kl+I-1 TR41024?

Ji :1.1-114JR410(12441") H(J1):H4(J) 'ITR410?6413 On0 414 Jal NC *1TR41D0'6

MIR41 02/.1 NC.(tlIF1 147 MR41 029

*414 Vh 1.OF ( I) H(.it 1TR41 060i

I INDIX=INDE.X M7R41 031

5.10 moflI-m')nF-i IR41 (134

I IF ( OF S1 $50 M T KR 411135I 5iIF INTAP(J HII'I MTR4 1036

r, 5114 QF. A 1) NTA'IIT (A(I)*'#:1 ,M) MTR4 1(137CI I MIilT CA.VEr~k, 4,NSIFl;DNSIZFoMODF.DMAXHDMAXR,MAXR, Nr,#1) MTR4H,039

n (0 s 46 Jzi.mni)F MYR41 o141jI SI- )I! 7E 1IR41 h4j

ji -1 ).Nri. 14YR41 044

I JNIEX=11 MTR41 lo14'~ 5A rA L 1. NORM ( 4J),14 lNS IZF ,AUr-SS it I DEX , NA XR '.C] MYR41046sin IF NTAPnI 6%) MIR410f4d~

nn00 5;7 I= I .mOHF MTR41 fir)j.11= MAXSR MTR4 illP'

*I?= WITU.W ) PTR4l 0i)%

S 514 11ImN IIFR(I I MTR41055,X' -11 PTR41 u1)11111 TO ')Il M1R41 1%/

I ~. Ii t i,/-mAxnI I7R~e MTR4lti',aii WR I F (NTAPI)T.:)4) I MTR41 059I/ (In 10) I~A , ?f). MTR41 0611lIR WRI IF (NTAPIIT.11) to- VALIJEWl) JIJ/9 NAKSR(I),NAK)R(I) 04TR41 otse

0(91( %/?MTR41 (16.1

*, 'II I: JoMT R41 ow>'Ik I11F (NTAPIII.A I . VAIVPE(,I-1 ), VALIIF(J). J1DJPD NAKOHII), MTR41066NAKDR( IMIR4111A?

lioN I I NII "T R 41116 A4Ir Nf v MPF 1TR41 o~yI UNIP INIAPI'f 11) PTR41070j

a All MPRINI (VIn1R.NSI~k,J.MAXR#NTAPOI) R407

Page 102: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

96

iF (NTAPIIT ~"fi'.5,14 wRl IF (NTAPnr.2i) (GiSl)f1j)) MTP4it Irh M0PRINI ( H.NSIZF.J,MAXR .NTAPOT) MR41(7d'

QE~R MTR41078,',"A l.-(MODpE) zITFRSFP.ITEROP T4o'*44KSP(HO1PE) =NSPAKNAAR(mflDF) =NORAKtoTR41iI F (NTAPOT )51l'tf~~~

nn(i (60;0, 611l4 *611h IRR P 4

r,1T i 1R1C

A Lit W14 TFl'PT.) ) ( TI ~ ( ) I1~j R41 oQ:

NAKSR(MODF) = NSQAK rI R41 09;,,MAKPIP(1ODE) NORAK T4OJ

IF C NTAPOr 5iiII i.#r 1 3 11R41 1#0(j9 2,

14 TR4 I ti9

GvOTfO 14 618 A1TR 4 1 iQ

cn~o Aiii I R41~~j o0010M Il MR41 J 0 o

tollR4 1 114-

WR17F (NI.APnT.?6) (Aj L~),-Jj) MTR41 1?u)(AT0L1J(1 (AITFielxhg tA1R411213F

Ml P4110?4MTR41 1I

F0HTIMIR41 I Sj iu 1;

C 141R41 11?1

110 6) 4 z) - S M :MIR4I Ii ?9

Cj V.)#- I F MO,'IMlMDLCIIMS~1CLM ~I~VL~. TR4I1 14,-,

C Ml flIENSNFFI *NVRIMRRo OSo JU..IR MTR411134

6.,4 V~mp( jitATR4 111C ~ I PHOH I-NIS COLP7 4R4 11 7

~IIR~OITIN Sw5~px ($TtUF Ii H. iS.FL.'401-, 3 ~NC.1N~.~3 MTR411?s -.WRITFEP MNivnT its INOIS41121

F~n "TR41 131Sl W FF FNSY I NI E~) M,5j) I( )' HIU~ I) L() () InI~1 T*

Page 103: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

97

f~ ~~~~ ~~ INI'(~I N1-TR41I SO

KJ .i4.NI) TR411%9

WN~N(~Mf) TR41159

KZ:ISIZE-N "TR41161

IF ( M ) 7fl.ifl9 O PYR411 f;.10 flOTO (1401,71) DNC 04IR4I Ao

09 1F ( NSIZE-Nl 74q,1434 ?efP41I A4

74 1=Kl +;)N* I PTP411 6t

7zl4II' 14T04116bt4TR411 #'ti

I :1-1 1TR411691.41K):H(L 3414117b

~' 1(L11 PTR411 71

PmTrh if 4 41R411 723 ) rrj 9', 1=1 0 M 14TR41 17.,

.;l mmnF* IMIR41 174

1 fin iF ( INDIX MIl?1IAli 1R41 176

1'0~ K ':K?4 +141R41 17 1

42".1 14TR41 1 7o51114 *11 K,*NC*t 1TR411 179

.i?:K1 +HsI ZE*NC: 14R41J Ru

11F ( J1-J? I1511~i,1~ MTR411I Rif i n k1 1 61 I J, j? H TR4t 1 1 A

(1A ( I 0 . 4TR41 1 R61117 Goi( 14 1 11 If C 1TR41 1041110 in41R

.1?=Nl1 K2@NC4 I MYR4118he

n 0 1 1n 1z1.K7 ITR41I1II ji :31-1 1411 ft

lip 4(.1 )cH(J?) MTR341 19o

IF ( M ) 1114.1)1tw111 14134)191

"4 I V fl. 141R41 1961 19 J;,:J9 1 1413R41 1041~ I C4 1 I 1 R.8120I M41 195

J 110 1.f M:.4T41191no 1 s I = i. m MR4, 19 1

J I :14011F 4 .1 P'TR41 1991 F ( I I INIIIS(JI ))1Mi12 411 ol

rO IN 111 MTR4I 121

11=1)11 9T4120 ?O

*t" I NO 71 I -0 1413141 204

11f ( INV) 1 et. ' HI , 1 4 1 /4O R4 I o5

1 .;4 1Nn S? MOM I-I 1 1, N(- I.41 14TR41 2?16

I 1 .J1 MT1R41 20 1

I I J ( I 4~~) 1 )$1? lR41? 20

P 0 1 : 4~ J- 1 1TR41 211

I? H ( 11 41 M 1 41T R4 1 ? I F)

Page 104: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

98

J':.1,(N-' )Mf'MTR41211/14(J. )ZO. MY R4121M 8HIJ? M 7O R 4 1 P 19

lif CI~fNTIN1IF MTR4 1 ?7uIrF ( INDhX 1 1 ~4 1 1, MTR41 ??I -

lip #4=M, - MTR41?221.11110 39 li MMTR41??3"'

.:iv z1.4 Sc MT4 ? 113,1 4$,1I.n1SMJ1EINPS 14T141 ?2-.)

lhlMTR41?9

n1 o (1 I 12 - MR41?.iII q 110:1134 J=110 MTP4 122

J Ia OO +Ji 1TR41?2,)-

11.94 H7R41?A34

lid o Di) i MT' ~,LN.R41 4?r

14% II, $:Jm1~- ml+nD~ O TR41?34?hA4 T R 4 1 ? A -,) 7

tAR IS(J?)r MTR41 2 io1411 13O14 J I1N MT7R 4 12 3

14't - &IRJFlh-(J ? tTR4 I??4IF F LH-N I i.R. 1 4M iTR4I?4%'.

K Jt41)DF-1 TR41?'5LL1:Nf 1 NfKI INTR4 124?-'

CA36 Mli A) =111 K) TU.G I S'E ,Nf(NI C ). OITR41 ;0IF I =0l -M 129.MTP 4 1 ?4

14 j IIIRR. i* 14TR1 -

J, VfNI I + VTR1?

14119 MAIIS(-VI (.P1.(OI).f)-j g, 51 MTR41?48tI% F :1 41 MYR41 2494

A 11) 12 p MTRH41? 25 .If f MOI D Fg.MDI)) MT R41251t~

I/ni li .il.HI1FMIR41 ?6'1-

rAL MUTII ()'(US1(1 HTRUFI(J G.I MZIMl t N.i 1TR41 21'it 10 2 ? 01 MT H41 ?/ g

o n I rIi, I i m TR41 ;f76oi nIsr()r.jI)r(-)r() / r(JI.~.F~).f ( n,)P41?7?.

14It M cr -Ik)/ 1.A1,?)J i) IP15 1 MTR41 ?6,,

' (1170 1i MTHN41 ?679-

MJR'4127u

PTM~ R4 ?e 1

Page 105: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

99?

I (4):(FL(l1-L(J))oni)(FL(K')FL(J-1))"G(?) 1T4

I~(~~: 0() / )(~)MTR41~8

I K?:J1 .11' ITR41'20lzI l P TR41299~

r('3)mHTP11F(J1 ) P1R4 1290

I ITRUEF(JI ) r14(L) + G(?)14TRUP(K2 -OI*tTUEJ 412?9 ,I7

? ~4 CohAIMUFS ' CONT1t4111,RI

9

CAiLL NORM HTRd4.I4TRU~f NSIZF. B It HD- NCO 1) ~J42'

I i01p1141 V10

L40 mon M:,~7~1TR41J310

IO~ IN=J1

I GOT'J1(NT.3A),NC

jmAj + .1 MR4106

I )IF ( 1( I -IPI (A)*S.CnWTINU PR41308

no:1. 14TR41 J1

I F:2 .1III(M ,1 1 V T41311$

.7 11M 2 1 USTR1$?

('aIT1O 41MR41 31

1 41 Lt: 1 +041 0TR4131/

J~s *p:2*nN 4R12

£ 4 AL4nN 1R413?1

I ~ (L z U(MSNl )*N4(J6NTR41&I1

H 14* (Ji).1D 1TR413321.1- 4.(SI7~d~fOF)' 14R413234

1?I TIIN 1TR41374

I I Sflhl.0F'~K14TR414

';,pplgTIN 41 tAI 4A4,NNX ,4Z) MTR4164 6

flII4NSIO AU)MTR4137/P41 4 Jo NNA MTR41328/

4. 1 10 L4#NN~) 1141 MTR413?9

1n o) 1') I14N1 MIR413,15

o( (I )e XR I4M1R41 336

Page 106: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

100

I OFT=K-,) MTR41 l,YPIIT:KK- *.I MT R 41 i)~4

ACIPOT ):A lOFT) ( tM

I? A(lpti1.I):fl. MTR4 I Pb110 TO 1001Mr4A

?Al K~ M T R 4 1 P,K K 0MT R41 Pii

no P4 1=1 N MTR4136,,.

lOvFT = NK.I- M7Q41io '--

AIPIIT) AE;F) MTR41 30A.* 7 A ( I P IA ) A M F T M T R 4 1 5 4

104 VYKK#MR MTR41 if,I" PETIIRt4 MTR4I 6/

N rl MTR41 Jf'i

Page 107: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

T 1 0ION 9

F LO0W D IA GR A MS

101

Page 108: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

JA% 11.194

COMMON fill@ PAGE

Is

START T44.SPVS TO NSuROWTIN TRANIPIR TOtiRlme RARVIII 70A

PA.?. *PARIS?

102

Page 109: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

1 0 9 0SOWINS 0V AM IAOL IS

syng Soa~ SPNS. SO~TMAG a11410s IOSAOIA SVM.f sTIsUIts 8VuSft soonsf

00 To

Nea 6 IA

STR IIPSAul P1.0S.. O

SEPIA?~fa TO II I~

II

10. .4103

Page 110: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

AYMIOI STORAGES SYMNfiL 310.4uWS syM.OM, STOMIA2t symBel. SVOaAGAt 3YMB00L ST044rg

A

St,"RnO,7IPIC "PUINCIA04. . 0t, I ToA IOnGCD&MAXM, TAPSit.CANDS1 PAIA6 I

104

Page 111: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

IY4) S TORGS S0144Z3 Sl7s MUzM3:'~ S9:RAG:S iW SOAGES Sy0. STOAE

04DOWN4A 0.1 GAA~l 68fh o

LH 0 T1is vmxlCy 114 Nt$I tA**to

::.100 u 6.100 I S e $0. "l? 6,00 Wf 6,100

10

Page 112: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

IURUTN tI ofG I

m- A T S O z O O TC N IM- A A .AIV O TAPE020

NTVEt CO NQOOC P ;Oe6S 4

hC4UOS*6 hITNOesIO '2 "

1

1060

Page 113: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

lo

1#IN~ OIIlsf

a l6S

368 tooI0 lobD~

lot

~~~I~ ta Va11 'N

00 To0

let led

I~le - _ _ _ _ _ _ _ _ _

I9

107

Page 114: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

lott~w Pu~

PLNKPR? TO Is#

Its

IFI

N~~FK40 TOgavIts

113108

Page 115: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

N I 010 1

* o i OINHI O ( J 0 9 400 TA ? P 9 , V A f .J P o ol 1 M 0 OU T C

IK .f~~%TAPE)tIr,.t.kiZ.hsIf .IA.J Nou 1.1411 *lI?111tAP113, till SAM

[ItGoT

let

1K406AAP11P411111 I %T

Is

1091

Page 116: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Sft O2M PARII 4 6 S I '

N~VTTO iu -NtfA?0

Its

eqPAI F: !.kS I t 1110T

Page 117: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

F I SUSROUTIMI PARTO ?ASIR

It

316

taO O,

of CAT TOA so: Its

SF t T

Igo, Ig ,_,.O1

1s ra111js~o11IsI6.0 ..04%

Page 118: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

StfeuTn PARTI:. PACE

*KKA TOIlII~TTsi 03 It

AaM~~hS~~hS To OS? _

c'"P48h.TU 1g nmIIN* I O "AA691), 3 K eINSII A1512,P11'l It. .6 . I . O, MA 4TA P K IMT 1

O112

F-m -1

4119rT t l o ilho l itI

Page 119: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

ma:jD "9OND I t Ma~nspli 00s TOlo

I I'N ~ s~g~S N~uS ft~flsi~t~S UOTO 53 3

j ugh.

f '63MCEA T I AVIAZTo OffA t3.)oo % veNNO

IIW oA. TOmav le0 AWA kiTAT AO its

P49410S

I . S.f.IM#I.IOf .9.14,411 040I T i

v -DfITf~ll*C--

00TIog t

of

11

Page 120: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

rURUISFAT AI

00T

at,~~ Pi AS i s$gE *

All.1. T:A. .f1T

*IPAT TO MI ogre~ T10 19 9

PS 8 RIAIIS APR XNIIRTPt.TF - t IsaUZlgi 8d

YNPSUU TO #A6~flN

Its $114

Page 121: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

?NAPSIVV.TO tNflROUIMSft REPEATT FeE It

A. F4,10, .,P, mAl aeMAI 6. PON lu 10,MAX0UM t,,4AMn l~IlI..WsoUjgFs..*ug

F 91-7 f1 48-0TMERPCIT t

It I

?I 1511 I

Omj tI T

Page 122: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SjIUOUTIM@ PAO?9 FAaU IgI

93 h 63,

'mn IMIT6g0TAP113*I)VELC La I-ft$ *RjU WNet IT4 API),l1)LftSI 22

nAISFIN NuNftPOSmargT " 60 lP9A it"FROT COTIMS PO PO

OA'Sp'g

A..SI6.m~4AxM~TAPs

111AI ,Jg.fT *OUJg 170Ja~.Si.~O*~ IJ &UA1f 94asaFR I too Nevi

Jet16

Page 123: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

IStflAO~utlkE PAiTI PAGE Is

INPK~AJ TO ZIS Nev4 TO toas

al

. IS A NL I t o"A

j 117

ii3

Page 124: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

St'Ioo~s,1~E PARTS PACE S

TRAF180,IPITt TO kiTOimW%4." VLU U~4St

*ARNR~t*J~aUAiANIIJ.AISJ 101. ftIZ g..431PgN &WCI MAO MA A. MAI

IS STXbUk

a a . f .

UPKA? 70ftc coS ToIA O24 f H ALE T4eSK

IaI*3.)*...,ftSJS-ala .I opA~Nh.J) NA W f IAhSu ThO.

TRARVII T NuNOSItI I IP ME AI~.I i~s~W IsPA T SI~m868

,ne40

J.I,~~~~~~~ POT, NINI~A.A4Wh,.

P We 1

Page 125: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I78AtsSPIR TO SROTMMftLTD

NARp.A.C~mHN?,[email protected],RN

TRANVE~R TO SiS1ROUTINKPEtSF OSulTN

*UhCI~RNIOO.4P~sTNPhTNARN~sRMA@ HN.OP%C 3A~p~TkIOOhO~TMM,MAXR,0MAYN

REPEAT TO 2&4 REUACA? TO totFO ON PlIJIXU(IJ) AtJeAIJ s*s.i.

fa.1- HKA.fisT P OII AT Jam 1-1IT

INA

Page 126: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

StUR11itTIftit PANTO PAGE Is

TOG TO,

SAh!ITf 4A .is IO PO*IPcIRA

i's 3e 33

334.

33?

1201

Page 127: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SUBROUTINE PARI PAGI Is

II

r ~~~RP4 TOP~A T3O RE.0A TOPA 3O36 .09

33.S

TNARNSFY1 TO M&,SNI~,II£ 6 v

r r F33

1. 121 9

FO O 61Ii

Page 128: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SVSROU2 tIM9 PAP- PAGIC of

1~~AhSVIt TO1' 1A r Tut RKFEA? TO 3 me*6 0 ~

* 34034. INPFt 0ICA S RPAT TO 350 3

I... ." e f .Io1I

S~~aI.p g o ToJ.I0 TO~

UOI

2122

Page 129: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

M Pitota W 40 *#.: TOA CARD AFTERN CACM Aft

s 0.COI%,,% 84ANY T 940% TV 4 06AR CO.U44M

.l 44 7A1K NY Aft $ %TAP # * Impl, AP S1

%APV) l%-TP6,T TAPP

f V40. STONAGO'S SYM110L STONAuICN Sy'400L STNAults sysMNa. STONAulKS iYNNOL STOAGES

A I T

1 123

Page 130: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

5?ART N~~~'EPEAT TO5* CN~~, O

START. MR IFR OT~it IO

I opl 111Go TOco T~43N

k~~G TOD4

" ' o K3 :

T 1

124

fof

Page 131: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SuiAROuTIM9 NAO 4*,D4,M. 7OIRM.IND*, ITRA. If)NUJT~, TAPIZ,f#TAPE) FAUN 2

GOTO 10T

I O - Kv: ONTImur ITRA kistz Xse

CO-4PtTO GO TO

REICTTOZJTApgPi T S@QVIF9OF L TOTNod SVV A D OItJRIJIu ATAvto.I..T

TI4),KSI..M4TAPff*t.RTAPC3 11

It1

Page 132: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

$RITE ~ .7t~ s4V. o o R4A ~ f*i~l -_4, a 2 1AIII.-.D) GO =T 3

3106

Page 133: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

%Y4~. ITOMA,;I Sym %yfS. STOMAUIS sym~oe %TORAUIFS syNp-v. STORACKFS SY4rOL 5OftAGO's

T

ITAL.M.AINl.MTANVtl 1%0 1

1 127

Page 134: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SIJO~TI R OLMi EN?&I'C?, NTApeS, I P 406 I

4:014?1)tt!D fhO TO

IF THR vAtigu TRANSFER

START~~ Pr eDm1*2l fIv

IsIT SURlK(UNT NTApg,tI

L--I,

i 28

Page 135: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

0 1 9 ~~~~m 310Na0 VAi 8L 9

.IVPD1 ~ llll4 IMn 4 MU* RYRL S NIF 1101 " " o~ oAI

12

Page 136: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

II

ICSSSTR Axp4caI% IHMC NI ONTINUI! a Z To 7 laZ2*IS 10a2*ID

;o To

I ISO

rootS P" INACTICs?

14 Is

I It

Page 137: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

III SLANROII Pf M, OI ONID I Io,NI,N, ,Nls6.M) palt 3

IIIiIII

I1iII1 131

I

Page 138: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I!

0 I O N S 1 D A R I A 8L fIA

S bOI. .TORAGES SYMAO. STOR4GEl , YMM. STORAGEgS .YMHo. STORAUIES SYMOle. STOR4uS

Al1 beg A$ eg U o C bl

4

132 j

I

Page 139: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

ISUBROUTINEI Mt4VISX (AR**I.R.C~r-Z.IU0OP.,.MO?' P4CC I

00 TOlet

llot

I GOFOa0IVR 2C0 oToM o

NuEAG TOi

TOI 4%srem To &tR,oyi K *V.A70aO sox*ANi~I. INOEA A- p~ ost

1*,11 .M la3*. 1- OLSI

t NtPP.4FT TOe - RE....,NPEAT TO 4VOI"ll) ONChllt6~.)NhIOIIL

.. Ksta - o )' " Toat)-_________1 ' ___________

FYN!~A TO"IVtA MRro[ _ _ _l

T7RA? '*\ IhN.PV4 TO W41P TN v A? O0

1 133

Page 140: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SUKNOU11bg NNVNSX tAR.AI.I.C.KSZ.&GO0#OP pA4G9 t

anm6~~~ ~ .K~T10 110 Ra

100 MVA FOmmm"a.4....bsg

*KU10 ha TIANSF. 10 5tNUeI.

113

Page 141: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

113

Page 142: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

9 A 0 9 0 v A4 1 0 9I

STOA~g SMN. SOM S SMM. TORur SYN% STNA; I6.0 ofI

136

Page 143: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

'I SUROtTIMIC 1I 4A.M.1 COW W PAGE I

________ O ~ eT. 620o TO

IsRTO S TOU ROOM~6

c0'PUTKO Go TO SolC04PtjT9D GO TO

t', THE vAl.gY T"RA3isFE or Tote ~VAEtig TNA"VIP0 setOf hO@OPX TOf"AXOP1 Opp keller TO

1: 00 STA TM ENT 35 STA~~TgCTF

0a set asea

d'1 atLKAMPA OnIp~ OtI IIA O1.01m MIIA)-NIA .1i fkx' ._ _ _ _ _ _ _ _ _ ..... _ _ _ _ _ __ON

j 37

101PIFA Oi

Page 144: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Suffiok'TIMEK INVESS 44.0.1 0001p 0 PAU9 2

LII

1.01 ICIAI

roo AllTP. I- 041mr J ~ l 04I

i0~~PI TO'I Go~f fl TO i SOT

113

Page 145: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SUBRNOUTINE 1MV94S IAi*i U~OW 0) PAQ4

ItII

ait

toFRIcAla.llI p AfJ.8)3sH0i.D W O 0m IGOODal k CO "0 ol

13I

Page 146: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

1401

Page 147: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

StiKROUTIUE PAMT PACI I

5 -, AP.PV.A ago a

MR POOR4

El roft I

PCI HOOK:!400t ARAD

wIT3I

TNASVA T sLNPflte3 f

1 1414AP3,04

toT

Page 148: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

StSOIftUol PAI pAct a

~jm~ieNP~44vu~t.Iii MOIC).pI~u*MOP.ftPt:tMOPMOO ~ OW~.MOU .IEC.Sisk0S

tO4P,.TKSC" 9O1

10

I46S gpmu45..I V48K

RITE

- ~~~FT P3S* 1t UT

C041al-T9 7014NUOT~U' v

1/120

o =T~o 36 D1011) sxUf

Page 149: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

LIF pONOC1JSM.WS.C I ma.CAII0 S U- KC1014AND 1a NMUS S *4111

~ hCIDS:FSCANOS.3 TOTO )133 NCISAvMCANOIvcsoe sle ?Fs )ot nrI .00 tI) gaa u) .1 ,ADZPA .hAKI tfl S

I41TlSAI .a )RO.K IS C& CII l C800

1 1.43

Page 150: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

0 1 R 1 0 9 0 V A4 1 6 9Sy"OL STO402 vp~ft STRACS YMIL TOAGE S0401. STRAPS Y1RC. SORGE

A0ZI

144

Page 151: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

AtOiIi~ O04PG

SCO,4PtjflpO Go TO CO'4PuT0 (20 TOIIf THE vAguE) TRANSVIKR If THE VAIAM, TNAmSFIFR

I I NDEX or O F NP or OP c To l~fl*~

I ~~1 STT LEE..m F-1PA O.Ut~,IE

INII 117" TO :S INflt NSOaPNP Nt4?N

CP T RANAPMO TO SoR iII

0 600 0%0414 4ANAPI~smem U %START %STOP

I~ OPTOT

I ll STATIJ4 rT flhI3 A BIA II N ~3 A SAI I 010 - NS14taphcTo8iTAl?,NST Nth . .sO

I [ea TO

{1

h414; 1ir~ r 01ffl~-- Liii]-

44 To

I311 To'~

'14

Page 152: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

C'14PUt.!D GO TO C014p:,TF.o GO TOCIJIVAMt SIF THC VAJ.tog TMAs SPIR IFP TiK VuA ig TRAPSVEM

CJatlI4MIopr1Of ppTO 0. loc TO*jajt-0-1 CIPPPszAO) IS SA~t14fI Is STATEK4fT

Ili Iao I--

MIKTTO Sllg r b* IKFAT TO bll

fit ___I__I____________

111j at WI 1 .4 1 )ct t))IIIII t

Page 153: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

3 Se

:60

leTObi i

ofII .' ,1

I NI~~t~tjt~iE ~~ff47pa

Page 154: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

hypmole. SffimAUeF SYMAO STOACES symA4. STOACKS 31048. STOR 04 R sy~o.L SlCI

MS l 3A a

CO4ptyro GO TO

IF THE vAm.g TRAmSPKIm Palo"T S 13m

13 3 SsI.MSIO5 T *MIISI~K* ~tm~t.II

Is#

o ll r 1 I I. I

II

148

Page 155: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I AITh'%S

D

gUn~r Se4AO TRA wF amat SOAK XV460i O R AGS S0a SAGP

I mo I aP~

Ifc

14

Page 156: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

StIBOuTINO AITKMS (NHtH3Ht*,,ANNp~)P~

S T A R T IrzP O F O. I II) : @

0 ~ ~ ~ 0 TOTMUi GOAN TO 0

IF~~~G TT A. NASO

so.%fl GOP~A TO E se)Jo

IsJ141411- Tb4CP4I14k)

3.4 I4%t I .ug-jtHd

hbo

Page 157: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

II

320S

a

IT

ii-

15

Page 158: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Al Phpvt

R A L F

"MKO A

1 2

Page 159: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

kit .j

IG GOC

I Dob 1i)oilil , 5

111T3

Page 160: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

D 1 3 10 m 0 vA 4 A LIt.

SYM aRGS S1M* TRUS SM) CKS 1YON TRA

I.AMSA MAI

1I

Page 161: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

i iSU11OTIjNK IPUIS ILMOCA.POS, Ito 92.PC,N1 1 Me

11.T1.1 0T

IF ________ VAts RASERETl1

14T14) TO IS

if ~ ~ ~ ~ ~ ~ ~ ~ TAS01 T~aIPIf,)OIj*V~Ii.Ut.*'M.U OIPS ePUNEl).PTIi )' PoVIC OA uNWIIP

L tUSIRS men~ If POT fI&U'PU b)UUT

at-RAS'At"l

toTIoT15514

ItI 3

Page 162: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

$jjm~j~M2 AOS A.MC.M11C.ic)racNIPPET To ff to

STR t I A-81 '

156

Page 163: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SYMRO#. STORAUIFS SYF48. STORAGES sy,4NO6. STORAGES SYMI404. STORAGEIS SYMROa. STORAGES

Ic

S3u8ftl?UIx P~aL? PAgcggNgNgMNAMx,4~~C~ ACE I

COMPIITlO tZ0 TO ,.~ ~ Lr-,J- t*MA~~A IF T119 VALUE TASH TRA .SMS O tApM7au

CA f orS TOFl. Out ~ ~ Ii17 STATIth?

COI4PIITV0 GO TO 30

NV.FEAT TO 600 NaFEVAT TO 560 %*114,1I*R aRugg FTH vlE NASV' N "pA TO 310FROF hC To 0

a.2 s STATHAWSKT

aT 071se

aja.vsC eaae.voNsaIta....tia

157

Page 164: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

TOtL? "S IF OseT

P*AA.KA/f OF II

E-ST A 0J? MR Mll t~f#.l *Ok . . ss r~ro

CIICII.IJSIJI 70 310~s.C~ IIIFOINI*~L Cl~cl.~)dC1 :1

Jilat-lbI H5

Page 165: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

D 0NaD VAASTRG$IMO. SOA YNL SOAE Y40. SOAe

I P@Uam

I5

Page 166: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

q'11MOCIiNC POL0 POO. FM ,0.O .,. O. 02,I.D4C.IN, IGO0) MAe IIF THV~ 'AI.1,U NN5 . C04PvTKO (10 TO

TNAiSVN IF THR 4,AI.Lx TRAN."P'VN

OF IGO 70 r kE.T

SI o 115lr%6 oI too

1 Its

1600

Page 167: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

*11

ItIII 4p 1' -111 fh 3%PN l OI .I W* I NI V-1i 2)111A.lot -- ,Ab*.go UI S O%) p ataIO"IIa

404PTl itO a$$# T 10404It1 0 Jl

11

I _ _ _ _ _ _At$)

P4It8 1 1 001v$t

161

Page 168: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

~iA~T~tPI IPN.PM I.OQXQN I. KZI.MRII .1.18D BC.IN. 100) Pt4e )

Its

I.M.. XII

162

Page 169: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

104014". STOMA(ZES SYMN(M. STOMA4JPS sym"6 STONAurs SYMPIO. STOftA~eS sypMNOL 1NAe

IS. It ININIIH5IM6

p A 3 5

SuMNOuTIPS: P0 iPS. ow. meI. tog. Nws, r. o. he. mAW PAGOI

comptoTgD GO TOiF TIIP 11,1,11 TRANSFER F is*or &C To

a a..A

of ) .FL431"M 10AX. I IPIf )*m I OfI #t 110 4At 1 g.IpImaA N. -A )*VI%.84 110 14xtII

OII l 1H3MAI33A(1) # I).UIIOf 8 3-M 11.41% 204116AI4 31O4)*43 *3AI3eAl.III

L I ICI IV. I)A II Ft..I 106111 A .tI-L1 ' %ZH

163

Page 170: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

sNftOoT.?im C1.OSE. C04PvTVS IC1.058 ROOTS. I

u. a AIANtE, flIMENiStONlO EM4As.ZbP.CePAxmI

HaSTARTING Uk-F, l5l'134AS.NC4*3W

SZEVI OF M.ATIX

HAZA s OIlNS;OkXO .Lilljll~ OPP 00*5 OF u, A%O

MATftV a mAXIPli,,4 'tl,mfltN OF DOO. PUlClSl0M ITV44TlOPIS.

fPSI -- SINGLE ROOT CO%VVPGP%Cg CRIRAIA

VUSR x Oft-ftE ROOT COfvA~Vf~tU CRITERIAI

As ASThVFUS CO~vVO*AClt CRITERIA

144 a KARON ANfthN 1401CATRI. S. OyEUIPLO Iat. Olviot CHE!CK

83. ROT" rNP1.O0 O lvIi

CHECK.

ITKAS. *a..NKA (W lOlN4710'.N PKVON.10.VO *0 WlON .4 NX'g OOF

0941 II. 8, VooPl.E%

MiNO. TWMAIP f~NOS SON'i'M SYMN. STORAUIKS symmOS. iTORAUIVS SV-..'fL STON84(Ksj

1641

Page 171: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

M-11101MMP l.03II pce

Ta.fl O!,P.r.I ,CLii. -i ,C

I~~ ~~~ xa.ARO,,71 Cg. t 1~*4t'.16gMx,,s)ts*cIm*~~YIg Is*

I3Ik

Go.SV T0 Go TOtiIN

TRA%%F,') TO .4eRnmniTlht

. TiEI ----

1W Inop. TO

Is

Page 172: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

ilO TOIS

Rcfl#T O ad* TO 22

IP ~ ~ ~ ~ ~ G TO ug., NA4

OP a70 30 J~P..EUO*S30*

is JIRISI6UO3Is* I$*#Ox ~ l%I Its j1 8 iig.J OL4

InI

C04T FO GO TO "a V OT

TNANSFFI TO A.NNTMpsU Of Tog vTO- INfn F --sI.Z

ro~ OP2OT44~5qc ~ J-?

is3 400-r~ 4JIfi

-. - TO 3.g *ggJV),igITO

[j~J I * .evriv 34

g~veq.N~1N .0U

#91 zi-L1 Jaijoff

NGpA) To11.11114 1 4

'see0 1114 J16J -I 3IJ4I.118,11-

1. 706

400 Pol

Page 173: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

35 AU4A T ASV. 364 atRNF TOI35

Go T

114.11 .44I K421I 1

..:

Page 174: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

G O.t O TO

I~~~"MA TOE 462A IS

0#J -j I ,

G ;a

4 40

TRA$1141N TOSN .ItTN P IO TO .N41 J481

$I0,

I 684

Page 175: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

L ~ T k A h Niwr : TO Si t lM T,?i g

Od

tbSAP~~~~UUx 1 1l.*~CI

j 1139x oo

GoT

Page 176: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

A IS WAOND IN CON AT 4. IMANN % NC*NP'NSIIe I

STAPe,? IS A tTI.ITV TAPE, FOR C~fVt'k NIWT7OMS IF OF5IIIPO.I

V.PSP a XPSII,O NE a~ SINUIgE PRFC(ISIO4 CO0 ,;Kr.%I TKST NI1)"AKN

F.POP I E~PSILON TOO . M~,Ai.tE PRECISION . . .. . INC a 1. IF NEAL NP 2 1. IF SI%GI.v ParisIOpN

2. IF CO'*PLEx a 2, of M,6.1 .

%ClIESS & 0. IF FIRST atIESS IS TO He A COI.'N4 OF ONES.

MOCOT a NO. OF 1400113 TO NE! CnPtTOO.,

ftAS4 a 0. T10499 AITK14S ACMYR.VATIO 45 AS 3110tI SIOW.E PRE~CISION,

NAION .*. *. .. .* . ock,81.11.C

f4%% 1441ivotM ITERATIONS AI.g.OotW IN SINGLIE PRCISION.I

tNN a ENNON ReNiiq~N 1.I Pty ovocI.of

3, VON Horn ONFLNPIOf * DI*IOE CoECM

%0of. M 0@ NO. 0 CCO.s*%S Of A

NSF 0 , 41TftK*S 4ccro.rNATIO'. tO VNUV%LCt CO%TROI. MRN Siftoo.E 2MCIS.

PO)P a 41UN,, 4CCI.VR%TIOv ?,l*0IW0%V?*IF CO'TU. FOR 0IfooI E PNIC14.

04406 a OI,4vSIO*vo %""loft' OF aft$ OF A AO atIffNN

SVNO. %?)NEPN Syqfl. STORAGES symaRm. SWIRAUFA symomf~ STONAtUE3S 5VMNE. STORAIE

* II~ESS I INITV.R I AkSM I

4TIT0.5 9 OCT"N V ALVIE I

170j

Page 177: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SiUBROTtINE MIIV.NSC AGUI5, OGSS NSI ZeOOWT. PMAX, %C,xrsP, iPOP, PACER

TRANSFER *'. Uv jlIE ' -T Igp maHr . flNo ts xI iTI OH10I OI

I a

L A.%S. RVVR TO -gasuI1 MIEMSx

1 7

II

Page 178: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

lose LI

see.

AMPAT TO10 S NPAY To isO

I!* TOIts0I

IV Tell! TOe. TN0s4 POW 111 I 0ot

1114. jd I,,-3IV % *# -t kA~~~~~~~~~~~~~~~ I.NS 'I kI1 0 .ICI,# AX01 1t11P. 99PvC.

4;0 TO)

lie

"o To('04P-Tv. 4.411724

Page 179: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

VO.4Pt'T9D GO0 TO uIF THP VAI t,f TRANAFK FW -1RiOr MAK To NiPIAT TO lot

Is STATEMKIWT PON Jco*I _ N4NJ",Ig).PP £~IT1,II

C044ITCO (10 To

IF THC ~VALVIC I .IPI

OF YEAK To TNANSVKAN TO ANR(l~fTIPE3

(1 T 40IS STIISOm AMI.WI4(3,Hh) NO.4tttoAA,

a3 30~A CT1O .011 it heI I a GO 7

ISYEI CO ~~TO 83 YENI.DC4I

h2ISO

YNkillSNGOETO IaOVRF. IOYelik

I'4Pt.TrV I'D TO TeIO44TD10T bITti I t I Ip TNA%4VV1 IF TOW 14414 i TNAeIVv I

Or IOVg.* To aIn.IO OC%~4v fl

In NTITV1.%~T T VV

173

Page 180: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SURROulT4IM tNt,2 4~

II

all

1O7T

Page 181: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

V STN(IA.,AL V I.RE. uLiI 4 INS, (. V. NCI S, S Z. ,NT MOOOU?,MAMI,CK5*PP 4Z

TRAPPE TO1-11t II If T"It VALM.t VN.NSVFFU or Tit VA1.1. TUtA~vXV

a00

SOS~~- 1 111'e TO i 0

w2 TO

COTlt~g 11%C-14%. m

I"1 m "3 z - 1 O0 TVOl

Ito

Page 182: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

AtAROIDjTINU " MtTNig.ue3 til IS I titMOO kTI4Ai IhC,.qpS. ""P. .E *I

44 To 3G TOI 33

J30t~3)~g3 330:~n~ 0 O16 4I

0 *T

176 13

Page 183: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

(A. ECTlnflt N8 I MR.SS S I MR.4009. f.A X11,SMA 911. 6TARf N. IC .IPPKDl-*~

J,,Agovuhu TO STORuT N $tf? its f~

RKPICPIIK TO Sit61

1$ SO%8 6v &IS ~A.

T4~ f

II S1TK#T

1 -1 IF TOO VAA N ,S

,.SS ~ Op A- To i415 ~~S4S

j 177

fii

Page 184: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Si'HAO~,TFftg NSIZ.OO1,AX.CZS.P PAUt *

JstCOMOOK *mT9 altNi4Th4PO?*Z@MRIT 4A~)

~3.4PuTO C, .

I-, mu .tllgVV

I* To

/ *gT~s~i,1.elsTl~.EeI~lJ.JI O TO UeiT

or______________ Is T

J*4i Jag K-M% gii.. T =..

T ble

11001TV ~ ~ ~ ~ ~ ~ CIAVA41.6ITT.il~e.l T 0 Jt

11.1 T7C

Page 185: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

~~iI SUKROUTI b ig PITIIAcs1iiSSP5 K4Ou*~S.%,P ,Pp '~Ja NI

totT

%bt I r 6-B Vw

Jt21 t~O TO Bit :=HNTpf1,g~4 1 uO~IOV4B 081*. SZ

F i~II1. \Jl 8 J ~-A

JlzJIbCI~e4xN. brT~aei),. U TO ig rn%W T 39 OWUII MIVtig6.,6I

Page 186: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

CO"P-TV3T~t. mWXAftO sorrel IT VNO'4 "t PATNIX. favAt.af oIr$

HNtue a ?t-iN MOCAI. CI N.t.m%S. AS C)4P%.?VO. U a fly4A14IC Mh'TMIX.I

N4 z SVNIKS OP MNOIVIKD pOOAgL C*t*%S.IVaa C(%,A.MX OP 9IGUEVAI.toKS.

i's * SKNIKSOPS PcW 4I1PIKOn -401I. Was OP U.

NWI!c & "Witc %06 NI..U C&tv~vO. A a *

F40 a DI4r%SIOVD %t*'i0VA CW MOOS OFP 1,.4 S*N*NTkt

If 0£ i I? 4 1s IWM.

9310a 0 v AIN IS 10'A 8 1. PI

sTPmum. STONA4ZKS SYpmNOS STOPA4Is SYMUOs STONAUES SY14NOS. STORAGVS SY'4504. -ITC;A(;VS

a I UIS IUIN~i

S 4 I'OIS 1

Page 187: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

I Sa110"ITlftU I.KKrh 4NNIflt U. M, US, IPt. MON, Mo, o.c, INDIN, PAOS

I ltllNOV R-11F419 if~l TR9 vAi.te T014MARM r is

lI M01 t MOI)lOV foov ~ O OF kc 10 CN OM.OIPlSMl Z Mis ATAKMVMN

is

14191AA 10 gO

twOT

181 ir.1 Vl itT

00 T

to lot1 " RI o

Jlak-kjoC-l .1131-14IXIONC181i

11 T

Page 188: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

00 TOGO TlidNtIN olVM E?~,tH R P. 01 4 O ',P dlE g1 15

Is I1:1PICA TO Itz111 14 li

_______________PON_ ______________J________________________oval

jaij. 0 -FIl"

C V01TI 14110 11.11

.3

Ito T w Iits IsE~l

_ _ _ _ _ _ _ _ r I LI_____________IIIJ.:):lIWl

fiti

Is&

182

Page 189: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SuR~,?ht 5S~P (NIfu, U. It. us. Pt., f4001, .4, MO. SC. tNODIX, p~.G1 j

E -13 APEAV TO 136 RVPV.AT TO 1134

7 MRroo JISMODI.J IdAIbMSJI) -

"" Wl.Ia'f6 .'e'.*1404-01.

S..111

CO .~i 13] *l~CO3IM6 118:1.1 TO TO 133

"Dovv 1o ...ems, -S IP In I~t IC TNN

Is.".,'.*TN~'M,4~lM.4IC.Law.Is4OS.bC. 1.34T.KW%

183

0. SI I

14I-

Page 190: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SWIROtTIFO SO.VPo 1HTAtil'. V. 14. US.O Ft., MqOOR.* M. Mo, FhC, ImDIX, PG 4

ItIIt Is or TH4P v uII' TR F1A~ro

CkmtgI STAThMVPIT ASF.I)F.'ON- )V

IsI

It is

18

Page 191: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

q'HROtoTIMI! SoEIPrX tH7ot It. u*, IA, ft. WOIM M. r4D, K. INDIX. 43S

P. ItTTOIUt31-- tIIsII22t-II PLJ - U I I ) Jts).t.I *ASISI*U11 It 11

TRNWES T .14HROfjTIFt J1 ItAT4 74) 43

NT t,HT~ P45 Z.1.1I f4D.%C, I3slt. PSz

J.I~flg!Ig.4'41 TO' J.~g

39i

MPVA TO3 138cFrTT 3 O

caftyl ____

Page 192: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

S1,1IAN TIN gIPx al TftgP, u#. N, 4) , P., O , M , 4 O, MO C, loc. 5, PA t Me

[~C TO-

TO

4a O I

v" ..... ,, ,6.. % F M

186

Page 193: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

Iophr

'I I IoAC0vA *

5Yfi~ T~iF YM4. STORN4gsS YMML ATOPIAGENS YMO. S7ORAEJrs SYPOI9OL STORAUVS

coqp t omhg it CoOo TOl,:AnIcvlIA

IF T14P VAI.tV3 TUA'iSPEI 49PEAT TO I MATTo IS

START ~ 4S:241~ PonPt~ftIIS.,.. JIII .

ato

W AY TO 34 NEOCA? TO 24

Illrto.11cJ uI TO It* Six Iso anI

II

Page 194: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

UI

SECTION 10

IIIIII

IIII4

.1

''8

Page 195: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

IINOMENCLATUREI

a Element of flexibility matrix, in./lb

aR Generalized amplitude coefficient of rigid-body modal series, in. or rad

b Reference semichord, ft

Ch Element of oscillatory aerodynamic influence coefficient matrix, dimensionless

F Control point force, lb

9 g Structural damping coefficient, dimensionless

h Control point deflection due to rigid-body motion, in.

hR Element in rigid-body modal matrix, in. or dimensionless (see Section II)

hI Control point deflection, in.

K Flexibility matrix normalizing constant, dimensionless

kr Reference reduced frequency, dimensionless

M Element of mass matrix, lb.

Element of complex mass matrix (includes aerodynamic effects), lb

2in Element of generalized mass matrix, lb., in.-lb, or lb-in

m Element of sum of generalized mass and aerodynamic matrices, lb, in.-lb,or lb-in2.

2Q Element of generalized aercdynamic force matrix, lb, in.-lb, or lb-in

R Number of rigid-body modes

s Reference semispan, ft (i.e., span measured from root to tip)

U Element of dynamic matrix, in.

V Velocity, knots

W Element of aerodynamic weighting matrix, dimensionless

I

189II

Page 196: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

SYMBOLS (continued)

IX Eigenvalte, X - R + ixl,, in.

p Atmospheric density, slugs/ft3

f Frequency, cps

Matrix Notation

r ]SquareI

" I

Column

r.TransposednIJ Unit

19

190 1

Page 197: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

S . . ... O -F.., -Do-

I DOCUMENT CONTROL DATA. R IlD(Security eta %Il.kotion Of title. bod) of &betract and Jhdexinj nnots la m mist be entered when I all report Is els Elfied)

1. ORI INA TING ACT IVITY (Co porate author) as. RILPORT S I TV CLAIFICATION

HUGHES AIRCRJ*'T CO.PANY, MISSILE SYSTE DIVISION UNCLASSIFIEDF FAILBROOK AIJD ROSCOE BLVDS, ac GROUPCAITGA PARK, CALIFORNIA 91304

3. REPORIT TITLE

COLLOCATION F ,JTTER ANALYSIS STUDY

3 4 OFSCCiP'rv NOTUS (Type of report and Inclusive 4ete.)

Lp,,PORT ('SAC4H 1Q68 ,'MoMt, MAA.Cl 1969)S. AuJT.O*.4 SI (Firt rame. middle Initial. lIst name)

=DT±(ACS AND E IRO1.T SECTION, DONALD Re ULBRICH

. Aff-CMI QATI 70. TOTAL NO. Or

PAGIS ;6. NO. or

RIS

SAPRIL 4, 1969 II C ONTRACT OR GRANT NO. to. @NIINATO US NEPOT NUMSER|S)

NOOoI9-68-C-0247i. PnOJtCT NO.

c. Ob. OT04FR 111IPORT NO(S) (Any otlinenmbers that may be assanedthis report)

o10 DISTRIBUTION STATZrNT

IN ADDITION TO - YR.Q WHICH APHIS D0CUMEiZT AND ME'. B3 I=EACH TRAESbT S IDE OF THU UeS.MUST HAVE PH TH

It. SUP LCM(pLT#.AIY It. ,POtJSORING MILITARY ACTIVITY

* NAVAL AIR SYSTE1 COM14ANDSS..DEPARTMENT OF THE NAVY

. TAWASH1IGTON, D.C.13. A05TRACT

[ fTHIS SIU OVERS THR DEV7.OPFXIr OF A SET OF COM'SIkR PROGRAM TO PERFORMFLU~ITF.1i A1IP1YSI1G BY 2HE COLLOCATION I4ETUD. WHILE THIS METWPD HAS BEEN KNOWNJ FOR S> TIMRe, ONLY RECENTLY HA~VE ADVANCES IN COMPUTER TE~iUILOGY MADE THE MLTJD

TECH IICPALY A"11) FINANCIALLY FEASIBLE. THE INGREDIENT'S OF A COLLOCATIQN FLUTTER

ANALYSIS ARE 1) A FLEXIBILITY MATRIX, 2) AERODYINC INFLUENCE COEFFICIEUT

MATRIX, AIM .3) AN FIGEUVALUE SOLUTION. THIS STUDY IS PRESE11TED II' FOUR VOLUMES.

VOLUME I CO11TAINS A G?N.RAL PROGRAM DISCUSSION. VOLUME II CONTAINS THE PROGRAM

1.MU NC WHICH CALCULATES THE FLEXIBILITY MATRIX. VOLUNE III CONTAINS A SET OFTIME.; L'I001,w\,12 TO CALCULATE AERODYA4IC INFLUENCE COEFFICIETS FOR SUBSONIC,J TRA110-ITiC, AhIN f-UPIm,5RO1TIC FLIGHT REI1S. VOLUME IV CONTAIIS THE PROGRAM COFA

W11JC11 (E[ UU API) SOIVES T}h' k'LUTTER EIGE/ALUE MATRIX.*1

DD NOV 1473 UNCLASSIFIEDI Security Classification

Page 198: TOJi ABSTRACT--i A collocation solution of the flutter and vibration problems for a multiple component system is presented. The formulation utilizes structural, aerodynamic, and inertial

MJCL ARq T F TLrSecurity Cosfcto

4 KYWMSLINK A LINK 0 LINdK C

RtOLE VVT MOLE VVT PO L W w

FLUflTTER

41B3RATION

AERO:)YNAIC IMFUENCE COMFICIENTS

Security Classification