time space domain decomposition for reactive transport in porous media

37
© 2011 - IFP Energies nouvelles Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Time Space Domain Decomposition for Reactive Transport in Porous Media Anthony MICHEL

Upload: liluye

Post on 10-Feb-2016

38 views

Category:

Documents


0 download

DESCRIPTION

Time Space Domain Decomposition for Reactive Transport in Porous Media. Anthony MICHEL. Contributors. Florian Haeberlein PhD Student, IFPEN He will defend his PhD next week ( 14/11/2001) Laurence Halpern, Paris 13, LAGA L.Trenty, J.M.Gratien, A.Anciaux, IFPEN M.Kern, INRIA - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources

Time Space Domain Decomposition for

Reactive Transport in Porous Media

Anthony MICHEL

Page 2: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

2

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Contributors

Florian Haeberlein PhD Student, IFPEN He will defend his PhD next week ( 14/11/2001)

Laurence Halpern, Paris 13, LAGA

L.Trenty, J.M.Gratien, A.Anciaux, IFPEN M.Kern, INRIA T.Parra, Geochemistry Dpt, IFPEN D.Garcia, J.Moutte, ENSMSE

Page 3: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

3

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Outlook Part1. Motivation

CO2 geological storage modeling CO2 reactivity distribution ANR-SHPCO2 Project

Part 2. Reactive Transport Modeling Reactive chemical system Local reactive flash model Global reactive transport model

Part 3.Time Space Domain Decomposition Subdomains Non linear DD Method Reactive subdomain definition

Part 4. Case Studies Case study 1. Laboratory experiment Case study 2. SHPCO2 Use Case

Page 4: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

4

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Motivation

Part 1

Page 5: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

5

© 2

011

- IFP

Ene

rgie

s no

uvel

les

CO2 Geological Storage

Storage

Page 6: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

6

© 2

011

- IFP

Ene

rgie

s no

uvel

les

CO2 Geological Storage Modelling

CO2H2O CH4

CO2H2O

Ca++H+

Gas

Salt Water

Rock

Texture

OH-

Na+

HCO3-

Cl-

Porous Media

Geological Storage = Aquifer + Seal

10 km

100 m

Connectivity

Fe++

Mg++

Chemical System

Page 7: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

7

© 2

011

- IFP

Ene

rgie

s no

uvel

les

CO2 Reactivity - Physical Distribution

( Garcia, 2008 ) CO2 Carbonatation Effects

Page 8: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

8

© 2

011

- IFP

Ene

rgie

s no

uvel

les

CO2 Reactivity – Numerical Distribution

Acid Front Reactivity Local time Stepping

High Very LowTime step reduction is due to :- Strong non linearities- High species concentration ratios- What else ??

Low

Page 9: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

9

© 2

011

- IFP

Ene

rgie

s no

uvel

les

SHPCO2 Project

Simulation Haute Performance du Stockage Géologique de CO2

ANR-CIS 2007 4 years project

From 2008 to 2011

Page 10: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

10

© 2

011

- IFP

Ene

rgie

s no

uvel

les

SHPCO2 Project Structure

SP3

SP5

CPU-Time

Newton Krylov+ Preconditioners

SP2

SP1

SP4

Time SpaceDomain Decomposition

Parallel Computing andLoad Balancing

Real StudyTest Case

Numerical Models Integration and Coupling

Page 11: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

11

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Real Study Test Case

( Gaumet, 1997) Carbonates Layering

Page 12: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

12

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Real Study Test Case

( Gabalda, 2010) Dogger, Paris Basin Geological Model

Page 13: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

13

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Reactive Transport Modeling

Part 2

Page 14: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

14

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Reactive Chemical System

T W

cq

II

Scxxz Scz

components

primary species

secondary species 00

00

c1 c2x1

x4x3

z1 z2q1 q2

x2

q -> Skc*c + Skx*xq <- Skc*c + Skx*x (Precip)

(Dissol)Rkin

Kinetic Reactions

Equilibrium ReactionsPhases and Species

solid

fluid

Page 15: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

15

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Local Reactive Flash Model

q

Mass Balance Equations [w c] + Scx [w x] + Scz [z z] = T [q q] = W

Equilibrium Equations ln(x) = ln(Kx) + Sxc [ ln(c)] ( w > 0 ) ln(z) = ln(Kz) + Szc [ ln(c)] or ( z = 0 ) Closure Equations c + x = 1 z = 1 q = 1

c

q

z

w

zx

Page 16: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

16

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Global Reactive Transport Model

Mass Balance Equations

Closure Equations

(X)(X)

Constitutive Laws

(X)

C

W

TF

RT,kin

RW,kin

Page 17: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

17

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Fast Upwind Local Reactive Transport Model

Mass Balance Equations

Closure Equations

(X)(X)

Constitutive Laws

(X)

+ qout * qin*Cinlocal

local

local

Page 18: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

18

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Time Space Domain Decomposition

Part 3

Page 19: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

19

© 2

011

- IFP

Ene

rgie

s no

uvel

les

T

T+t

t

x

Time Space DD – Continuous Subdomains

Page 20: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

20

© 2

011

- IFP

Ene

rgie

s no

uvel

les

T

T+t

t

x

Time Space DD – Discrete Subdomains

Page 21: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

21

© 2

011

- IFP

Ene

rgie

s no

uvel

les

T

T+t

t

x

B1B2 21

A1 u1 + R1(u1) = F1B1 u1 =

= B2 21 u1

Time Space DD – Local Subdomain Problem

Page 22: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

22

© 2

011

- IFP

Ene

rgie

s no

uvel

les

A1 u1 + R1(u1) = F1B1 u1 =

= B2 21 u1

A2 u2 + R2(u2) = F2B2 u2 =

= B1 12 u2

A u + R(u) = F

Time Space DD – Global Coupled Problem

Page 23: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

23

© 2

011

- IFP

Ene

rgie

s no

uvel

les

U= 21 u1* U2*= 12 u2*

A1 u1 + R1(u1) = F1B1 u1 =

= B1 u

A2 u2 + R2(u2) = F2B2 u2 =

= B2 u1*

Time Space DD – Classical Nonlinear Solver

Page 24: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

24

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Downwind Sweeping

1 k-1 k k+1 ncell

Bk(Ck) = Flux(Ck)in = Ck-1

0

t

Is Fast Upwind RT a Time Space DD Method ?

Page 25: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

25

© 2

011

- IFP

Ene

rgie

s no

uvel

les

- React(cell) = |Rkin|(cell) / Max (|Rkin|(cell))

- D1 = {React (cell) > TolReact } TolReact = 0.4, 0.2

- react = D2 + NCellOverLap NCellOverLap = 4

- D2 = D1 + NCellSecurity NCellSecurity = 2

High Reactive ZoneSecurity Layer

OverLap

Reactive Subdomain Definition

Page 26: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

26

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Numerical Efficiency Results

Two Species Reactive Transport

Classical / Nested / Common … Newton Iterations

Page 27: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

27

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Link with other NL Preconditionners …

Cf Jan NordbottenTalk, Yesterday

Page 28: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

28

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Case Studies

Part 4

Page 29: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

29

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Case study 1 – Laboratory Experiment

Plug Boundary

External Boundary

Study Domain

Aqueous Solution Fixed pCO2

Core Cement

Reacted Cement

Reactive Front

R2R1

Page 30: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

30

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Case study 1 – Laboratory Experiment

Portlandite + CO2(aq) -> Calcite

Wollastonite -> CaO(aq) + Silice [CO2aq]

CaOaq + CO2aq ->Calcite

Silice -> SiO2aq [CaOaq]

Simplified Overall Reaction Scheme

Page 31: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

31

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Case study 1 – Laboratory Experiment

Aqueous Species

Minerals

Reactive Subdomain

Movies …

Page 32: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

32

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Case study 2 - SHPCO2 Use Case

Trapped Supercritical CO2

Barreers

Regional Hydrodynamics

Page 33: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

33

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Case study 2 - SHPCO2 Use Case

Page 34: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

34

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Case study 2 - Reactive Chemical System

Page 35: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

35

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Case study 2 - SHPCO2 Use Case

Movies …

Page 36: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

36

© 2

011

- IFP

Ene

rgie

s no

uvel

les

Perspectives

Global Solver Efficiency and Robustness Find a robust linear solver and preconditionner Optimize local computations in the reactive flash Improve newton convergence criterias

Re-Visit the Fast Upwind Method Compare efficiency of the two methods

Improve Efficiency of our Time-Space DD Solver Define good criterias for reactive subdomains Add appropriate metrics for the nested loops

Page 37: Time Space Domain Decomposition  for  Reactive Transport in Porous Media

© 2

011

- IFP

Ene

rgie

s no

uvel

les www.ifpenergiesnouvelles.com