homogenization of reactive flows in porous media · 2012-10-15 · homogenization of reactive...

44
Homogenization of reactive flows in porous media G. Allaire * , H. Hutridurga * 13-October-2010 * Centre de Math ´ ematiques Appliqu ´ ees, CNRS UMR 7641, ´ Ecole Polytech- nique, 91128 Palaiseau, France

Upload: others

Post on 27-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Homogenization of reactive flows inporous media

G. Allaire ∗, H. Hutridurga ∗

13-October-2010

∗Centre de Mathematiques Appliquees, CNRS UMR 7641, Ecole Polytech-nique, 91128 Palaiseau, France

Page 2: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Outline

* Why study Reactive Flows in porous media?

* Periodic porous media and Model description

* Two-scale Expansion with Drift Method

* Numerical Study with FreeFem++

* Conclusions

Page 3: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Why study Reactive Flows in porous media?

* Oil reservoir simulation (Enhanced Recovery Mechanisms)

* CO2 storage (Natural Gas Extraction)

* Geothermal energy extraction

* Underground coal gasification

* Stockage of Nuclear Wastes

* Ground water contaminant transport (Drinking and Irrigation)

* Soil Chemistry (Movement of moisture, nutrients, pollutants in soil)

Page 4: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Unbounded periodic porous media

Let ε > 0 represents the microscale of the porous medium

Page 5: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Unbounded periodic porous media

Let ε > 0 represents the microscale of the porous medium

Y = [0, 1]n

Y = Y 0 ∪ Σ0 s.t Y 0 ∩ Σ0 = ∅Y 0 fluid partΣ0 solid part

Page 6: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Unbounded periodic porous media

Let ε > 0 represents the microscale of the porous medium

Y = [0, 1]n

Y = Y 0 ∪ Σ0 s.t Y 0 ∩ Σ0 = ∅Y 0 fluid partΣ0 solid part

Y εi = [0, ε]n

Y εi = (Y 0

i )ε ∪ (Σ0

i )ε

(Y 0

i )ε fluid part

(Σ0

i )ε solid part

Page 7: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Unbounded periodic porous media

Let ε > 0 represents the microscale of the porous medium

Y = [0, 1]n

Y = Y 0 ∪ Σ0 s.t Y 0 ∩ Σ0 = ∅Y 0 fluid partΣ0 solid part

Y εi = [0, ε]n

Y εi = (Y 0

i )ε ∪ (Σ0

i )ε

(Y 0

i )ε fluid part

(Σ0

i )ε solid part

Ωε = Rn \ ∪i∈Z(Σ

0

i )ε = R

n∩i∈Z(Y0

i )ε

Page 8: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Unbounded periodic porous media

Let ε > 0 represents the microscale of the porous medium

Y = [0, 1]n

Y = Y 0 ∪ Σ0 s.t Y 0 ∩ Σ0 = ∅Y 0 fluid partΣ0 solid part

Y εi = [0, ε]n

Y εi = (Y 0

i )ε ∪ (Σ0

i )ε

(Y 0

i )ε fluid part

(Σ0

i )ε solid part

Ωε = Rn \ ∪i∈Z(Σ

0

i )ε = R

n∩i∈Z(Y0

i )ε

Assumptions:Σ0 smooth, connected set strictly included in Y or forms a connected setin R

n by Y-periodicity.Ωε smooth, connected set in R

n

Page 9: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

2-D schematics

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

ε

2-D schematic of an unbounded porous media

Page 10: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Model Description

We intend to study the Diffusive Transort of the solute

particles transported by a stationary incompressible viscous

flow in presence of a reaction through a porous medium.

Page 11: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Model Description

We intend to study the Diffusive Transort of the solute

particles transported by a stationary incompressible viscous

flow in presence of a reaction through a porous medium.

Apart from the convection and diffusion in the bulk, we have considered

surface convection and surface diffusion on the pore surfaces.

Page 12: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Model Description

We intend to study the Diffusive Transort of the solute

particles transported by a stationary incompressible viscous

flow in presence of a reaction through a porous medium.

Apart from the convection and diffusion in the bulk, we have considered

surface convection and surface diffusion on the pore surfaces.

For simplicity, we study Reactive Transport of a single solute.

Page 13: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Model Description

We intend to study the Diffusive Transort of the solute

particles transported by a stationary incompressible viscous

flow in presence of a reaction through a porous medium.

Apart from the convection and diffusion in the bulk, we have considered

surface convection and surface diffusion on the pore surfaces.

For simplicity, we study Reactive Transport of a single solute.

Also, we assume that the reactive interactions are present only on

the pore surfaces (Linear Adsorption).

Page 14: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Model Description contd.

The model is described as follows:

∂tuε +1

εbε · ∇xuε − divx(Dε∇xuε) = 0 in (0, T )× Ωε

uε(0, x) = u0(x), x ∈ Ωε

∂tvε +1

εbSε · ∇S

xvε − divSx (DSε ∇

Sxvε) =

1

ε2κ

(

uε −1

Kvε

)

= −1

εDε∇xuε · γ on (0, T )× ∂Ωε

vε(0, x) = v0(x), x ∈ ∂Ωε

(1)

uε(t, x) respresents the concentration of the solute in the bulk.

vε(t, x) represents the concentration of the solute on the pore surfaces.

Page 15: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

model description

κ Rate constantK Linear adsorption eq. const.

x Macroscopic variable y = xε

Microscopic variable

Page 16: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

model description

κ Rate constantK Linear adsorption eq. const.

x Macroscopic variable y = xε

Microscopic variable

γ(y) outward normalG(y) = Id− γ(y)⊗ γ(y) projection matrix∇S

xv = G∇xv tangential gradientdivSxΨ = divx(GΨ) tangential divergence

Page 17: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

model description

κ Rate constantK Linear adsorption eq. const.

x Macroscopic variable y = xε

Microscopic variable

γ(y) outward normalG(y) = Id− γ(y)⊗ γ(y) projection matrix∇S

xv = G∇xv tangential gradientdivSxΨ = divx(GΨ) tangential divergence

Dε(x) = D(xε) Periodic DS

ε (x) = DS(xε) Periodic symmetric

symmetric coercive diffusion coercive surface diffusion

Page 18: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

model description

κ Rate constantK Linear adsorption eq. const.

x Macroscopic variable y = xε

Microscopic variable

γ(y) outward normalG(y) = Id− γ(y)⊗ γ(y) projection matrix∇S

xv = G∇xv tangential gradientdivSxΨ = divx(GΨ) tangential divergence

Dε(x) = D(xε) Periodic DS

ε (x) = DS(xε) Periodic symmetric

symmetric coercive diffusion coercive surface diffusion

bε(x) = b(

)

Stationary bSε (x) = bS(xε) Stationary

incompressible periodic flow incompressible periodic flowdivyb = 0 in Y 0 divSy b

S = 0 on ∂Σ0

b · γ = 0 on ∂Σ0

Page 19: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Main Result

Theorem 1 The solution (uε, vε) of (1) satisfies

uε(t, x) ≈ u0(t, x−b∗

εt) and vε(t, x) ≈ Ku0(t, x−

b∗

εt)

with the effective drift

b∗ =

Y 0

b(y) dy +K∫

∂Σ0

bS(y) dσ(y)

|Y 0|+K|∂Σ0|n−1

and u0 the solution of the homogenized problem

Kd ∂tu0 = divx (A∗∇xu0) in (0, T )× R

n

Kd u0(0, x) = |Y 0|u0(x) + |∂Σ0|n−1v0(x), x ∈ R

n

Where, Kd = |Y 0|+K|∂Σ0|n−1, the dispersion tensor A∗ will bedescribed later.

Page 20: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Two-scale Asymptotic Expansion

The usual Two-scale Expansion method suggests us to

• Take the ansatz for uε(t, x) and vε(t, x) in slow and fast variables as

uε =∞∑

i=0

εiui

(

t, x,x

ε

)

and vε =∞∑

i=0

εivi

(

t, x,x

ε

)

• Plug-in the two asymptotic expansions in (1).

• Identify the co-efficients of identical powers of ε and get a cascade ofequations.

• solve those system of equations to arrive at the homogenizedequation.

Page 21: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Two-scale Asymptotic Expansion

The usual Two-scale Expansion method suggests us to

• Take the ansatz for uε(t, x) and vε(t, x) in slow and fast variables as

uε =∞∑

i=0

εiui

(

t, x,x

ε

)

and vε =∞∑

i=0

εivi

(

t, x,x

ε

)

• Plug-in the two asymptotic expansions in (1).

• Identify the co-efficients of identical powers of ε and get a cascade ofequations.

• solve those system of equations to arrive at the homogenizedequation.

• Convection term in microscale results in strong convection termdominating the diffusion. So, we cannot expect to prove theconvergence of uε(t, x) in a fixed spatial frame x but in a movingframe x+ b∗t

Page 22: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Two-scale Asymptotic Expansion with DRIFT

uε =

∞∑

i=0

εiui

(

t, x−b∗t

ε,x

ε

)

(2)

vε =∞∑

i=0

εivi

(

t, x−b∗t

ε,x

ε

)

(3)

Where b∗ is the drift which shall be computed along the process.Consider y = x

ε. Then we have:

∂t

[

φ

(

t, x−b∗t

ε,x

ε

)]

=

∂φ

∂t−

n∑

j=1

b∗j

ε

∂φ

∂xj

(

t, x−b∗t

ε,x

ε

)

∂xj

[

φ

(

t, x−b∗t

ε,x

ε

)]

=

[

∂xjφ+

1

ε

∂yjφ

](

t, x−b∗t

ε,x

ε

)

(4)

∀j ∈ 1, · · · , n

Page 23: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Fredholm type result

Before listing the cascade of equations, we shall state a Fredholm typeresult that helps us solve them.

Lemma 2 For f ∈ L2(Y 0), g ∈ L2(∂Σ0) and h ∈ L2(∂Σ0), the followingsystem of p.d.e.’s admit a solution (u, v) ∈ H1

per(Y0)×H1(∂Σ0), unique up

to the addition of a constant multiple of (1,K),

b(y) · ∇yu− divy(D(y)∇yu) = f in Y 0,

−D(y)∇yu · γ + g = k(

u− 1

Kv)

on ∂Σ0,

bS(y) · ∇Sy v0 −DSdivSy (D

S(y)∇Sy v0)− h = k

(

u− 1

Kv)

on ∂Σ0,

y → (u(y), v(y)) Y − periodic,(5)

if and only if∫

Y0

f dy +

∂Σ0

(g + h) dσ(y) = 0 (6)

Page 24: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Cascade of Systems

Co-efficients of ε−2

b(y) · ∇yu0 − divy(D(y)∇yu0) = 0 in Y 0,

−D∇yu0 · γ = bS(y) · ∇Sy v0 −DSdivSy (D

S(y)∇Sy v0)

= k[

u0 −1

Kv0]

on ∂Σ0,

y → (u0(y), v0(y)) Y − periodic,(7)

The compatibilty condition is trivially satisfied.

Hence the existence and uniqueness of (u0, v0).

Substituting the test functions by (u0, v0) in the variational formulation of(7), we can deduce that

v0 = Ku0 and u0 = u0(t, x)

Page 25: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Cascade of Systems Contd.

Co-efficients of ε−1

−b∗ · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy(D(y)(∇xu0 +∇yu1)) = 0 inY 0,

−b∗ · ∇xv0 + bS(y) · (∇Sxv0 +∇S

y v1)− divSy (DS(y)(∇S

xv0 +∇Sy v1))

= −D(y)(∇xu0 +∇yu1) · γ = k[

u1 −v1K

]

on∂Σ0,

y → (u1(y), v1(y)) Y − periodic,(8)

The linearity helps us deduce that

u1(t, x, y) = χ(y) · ∇xu0

andv1(t, x, y) = ω(y) · ∇xu0

The above representation of (u1, v1) results in the following coupled cellproblem, for i ∈ 1, · · · , n

Page 26: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Cell Problem

b(y) · ∇yχi − divy(D(y)(∇yχi + ei)) = (b∗ − b(y)) · ei in Y 0,

bS(y) · ∇Syωi − divSy (D

S(y)(∇Syωi +Kei))

= K(b∗ − bS(y)) · ei + κ(

χi −1

Kωi

)

on ∂Σ0,

−D(y)(∇yχi + ei) · γ = κ(

χi −1

Kωi

)

on ∂Σ0,

y → (χi(y), ωi(y)) Y − periodic,(9)

Using the Fredholm result, we get the existence of (χi, ωi) provided

b∗ =

Y 0

b(y) dy +K∫

∂Σ0

bS(y) dσ(y)

|Y 0|+K|∂Σ0|n−1

(10)

Page 27: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Cascade of Systems contd.

Co-efficients of ε0

∂tu0 − b∗ · ∇xu1 + b(y) · (∇xu1 +∇yu2)

−divx(D(y)(∇xu0 +∇yu1))− divy(D(y)(∇xu1 +∇yu2)) = 0 in Y 0,

∂tv0 − b∗ · ∇xv1 + bS(y) · (∇Sxu1 +∇S

y u2)

−divx(GDS(y)(G∇xv0 +∇Sy v1))− divSy (D

S(y)(G∇xv1 +∇Sy v2))

= −D(y)(∇yu2 +∇xu1) · γ = κ[

u2 −1

Kv2]

on ∂Σ0,

y → (u2(y), v2(y)) Y − periodic,(11)

Page 28: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Homogenized equation

The compatibility condition for (u2, v2) yields the homogenized equation.

Kd ∂tu0 = divx (A∗∇xu0) in (0, T )× R

n

Kd u0(0, x) = |Y 0|u0(x) + |∂Σ0|n−1v0(x), x ∈ R

n

(12)

Where, Kd = |Y 0|+K|∂Σ0|n−1, the dispersion tensor A∗ is given by

A∗

ij =

Y 0

D (∇yχi + ei) · (∇yχj + ej) dy

∂Σ0

(

χi −K−1ωi

) (

χj −K−1ωj

)

dσ(y)

+K

∂Σ0

DS(

Gei +K−1∇Syωi

)

·(

Gej +K−1∇Syωj

)

dσ(y)

(13)

Page 29: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Homogenized equation

The compatibility condition for (u2, v2) yields the homogenized equation.

Kd ∂tu0 = divx (A∗∇xu0) in (0, T )× R

n

Kd u0(0, x) = |Y 0|u0(x) + |∂Σ0|n−1v0(x), x ∈ R

n

(12)

Where, Kd = |Y 0|+K|∂Σ0|n−1, the dispersion tensor A∗ is given by

A∗

ij =

Y 0

D (∇yχi + ei) · (∇yχj + ej) dy

∂Σ0

(

χi −K−1ωi

) (

χj −K−1ωj

)

dσ(y)

+K

∂Σ0

DS(

Gei +K−1∇Syωi

)

·(

Gej +K−1∇Syωj

)

dσ(y)

(13)

It should be noted that we have used the information we know of (u1, v1)in terms of (χ, ω). A∗ is symmetrized as anti-symmetric part doesn’tcontribute.

Page 30: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Equivalent homogenized equation

Define uε(t, x) = u0(t, x− b∗

εt). Then, it is solution of

∂tuε +1

εb∗ · ∇uε = Kd

−1divx (A∗∇xuε) in (0, T )× R

n

Kd uε(0, x) = |Y 0|u0(x) + |∂Σ0|n−1v0(x), x ∈ R

n

(14)

Page 31: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Numerical Study using FreeFem++

Numerical tests were done using FreeFem++.

Using Lagrange P1 finite elements.

Number of vertices = 23894.

The solid obstacles are isolated circular disks of radius 0.2

The velocity field b(y) is generated by solving the following filtrationproblem in the fluid part Y 0 of the unit cell Y . For simplicity, we have takenthe surface convection bS to be zero.

∇yp−∆yb = ei in Y 0,

divyb = 0 in Y 0,

b = 0 on ∂Σ0,

p, b Y 0 − periodic

(15)

Calculations were done to see the effect of the variation in κ and DS onthe effective co-efficients. They are seen to show a stable asymptoticbehaviour.

Page 32: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Behavior of the cell solution

IsoValue-0.118263-0.101224-0.0898652-0.0785062-0.0671471-0.0557881-0.0444291-0.03307-0.021711-0.0103520.001007060.01236610.02372510.03508420.04644320.05780220.06916120.08052030.09187930.120277

IsoValue-0.0166337-0.0141745-0.0125351-0.0108956-0.00925613-0.00761666-0.0059772-0.00433773-0.00269826-0.001058790.0005806720.002220140.003859610.005499070.007138540.008778010.01041750.01205690.01369640.0177951

Figure 1: The cell solution χ1: Left, reference value κ = κ0; Right, κ = 5κ0

Page 33: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Behavior of the cell solution contd.

IsoValue-0.00424724-0.00367644-0.0032959-0.00291537-0.00253483-0.0021543-0.00177377-0.00139323-0.0010127-0.000632165-0.0002516320.0001289020.0005094360.000889970.00127050.001651040.002031570.00241210.002792640.00374397

IsoValue-0.0181629-0.0155051-0.0137331-0.0119612-0.0101893-0.0084174-0.00664549-0.00487357-0.00310166-0.001329750.0004421670.002214080.003985990.005757910.007529820.009301730.01107360.01284560.01461750.0190473

Figure 2: The cell solution χ1: Left, κ = 6κ0; Right, κ = 8κ0

Page 34: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Behavior of logitudinal dispersion with variation in react ion rate

0

50

100

150

200

250

0 1e-05 2e-05 3e-05 4e-05 5e-05 6e-05 7e-05 8e-05 9e-05 0.0001

"plotASTAR11ktille-4.dat" using 1:2

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

0 5 10 15 20 25 30 35 40 45 50

"plotASTAR11kbw1and50.dat" using 1:2

Figure 3: The variation of effective longitudinal diffusion: Left, κ tending to0; Right, κ increasing in magnitude

Page 35: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Behavior of transverse dispersion with variation in reacti on rate

0.198

0.199

0.2

0.201

0.202

0.203

0.204

0.205

0.206

0 1e-05 2e-05 3e-05 4e-05 5e-05 6e-05 7e-05 8e-05 9e-05 0.0001

"plotASTAR22ktille-4.dat" using 1:2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 5 10 15 20 25 30 35 40 45 50

"plotASTAR22kbw1and50.dat" using 1:2

Figure 4: The variation of effective transverse diffusion: Left, κ tending to0; Right, κ increasing in magnitude

Page 36: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Behavior of effective dispersion with variation in surface diffusion

0.828

0.83

0.832

0.834

0.836

0.838

0.84

0.842

0.844

0.846

0 1 2 3 4 5 6 7 8 9 10

"plotASTAR11.dat" using 1:2

0.826

0.828

0.83

0.832

0.834

0.836

0.838

0.84

0.842

0.844

0.846

0 1 2 3 4 5 6 7 8 9 10

"plotASTAR22.dat" using 1:2

Figure 5: The variation of effective diffusion with DS increasing in magni-tude: Left, longitudinal diffusion; Right, transverse diffusion

Page 37: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Conclusions

• Study of the effective behaviour of the model with the variation in thereaction rate κ.

Page 38: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Conclusions

• Study of the effective behaviour of the model with the variation in thereaction rate κ. The ill-posedness of the cell problems result in theblow-up of the effective tensor when κ → 0.

Page 39: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Conclusions

• Study of the effective behaviour of the model with the variation in thereaction rate κ. The ill-posedness of the cell problems result in theblow-up of the effective tensor when κ → 0. When κ → ∞, thetransverse and longitudinal dispersion exhibit a stable asymptoticbehaviour with transverse dispersion remaining relatively less oncomparison with longitudinal dispersion.

Page 40: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Conclusions

• Study of the effective behaviour of the model with the variation in thereaction rate κ. The ill-posedness of the cell problems result in theblow-up of the effective tensor when κ → 0. When κ → ∞, thetransverse and longitudinal dispersion exhibit a stable asymptoticbehaviour with transverse dispersion remaining relatively less oncomparison with longitudinal dispersion.

• Study of the effective behaviour of the model with the variation in thesurface diffusion DS .

Page 41: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Conclusions

• Study of the effective behaviour of the model with the variation in thereaction rate κ. The ill-posedness of the cell problems result in theblow-up of the effective tensor when κ → 0. When κ → ∞, thetransverse and longitudinal dispersion exhibit a stable asymptoticbehaviour with transverse dispersion remaining relatively less oncomparison with longitudinal dispersion.

• Study of the effective behaviour of the model with the variation in thesurface diffusion DS . The case DS = 0 exactly matches with theprevious results on effective dispersion with no surface diffusion.

Page 42: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Conclusions

• Study of the effective behaviour of the model with the variation in thereaction rate κ. The ill-posedness of the cell problems result in theblow-up of the effective tensor when κ → 0. When κ → ∞, thetransverse and longitudinal dispersion exhibit a stable asymptoticbehaviour with transverse dispersion remaining relatively less oncomparison with longitudinal dispersion.

• Study of the effective behaviour of the model with the variation in thesurface diffusion DS . The case DS = 0 exactly matches with theprevious results on effective dispersion with no surface diffusion.When DS → ∞, the transverse and longitudinal dispersion exhibit astable asymptotic behaviour with transverse dispersion remainingalmost equal to longitudinal dispersion.

Page 43: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

Conclusions

• Study of the effective behaviour of the model with the variation in thereaction rate κ. The ill-posedness of the cell problems result in theblow-up of the effective tensor when κ → 0. When κ → ∞, thetransverse and longitudinal dispersion exhibit a stable asymptoticbehaviour with transverse dispersion remaining relatively less oncomparison with longitudinal dispersion.

• Study of the effective behaviour of the model with the variation in thesurface diffusion DS . The case DS = 0 exactly matches with theprevious results on effective dispersion with no surface diffusion.When DS → ∞, the transverse and longitudinal dispersion exhibit astable asymptotic behaviour with transverse dispersion remainingalmost equal to longitudinal dispersion.

• The Mathematical justification of the upscaling using two-scaleconvergence with drift upon introducing 2-scale convergence withdrift on surfaces.

Page 44: Homogenization of reactive flows in porous media · 2012-10-15 · Homogenization of reactive flows in porous media G. Allaire ∗, H. Hutridurga ∗ 13-October-2010 ∗Centre de

References

[1] G. Allaire, R. Brizzi, A. Mikelic, A. Piatnitski, Two-scale expansion withdrift approach to the Taylor dispersion for reactive transport throughporous media, Chemical Engineering Science, 65, pp.2292-2300(2010)

[2] G. Allaire, A. Mikelic, A. Piatnitski, Homogenization approach to thedispersion theory for reactive transport through porous media, SIAM J.Math. Anal., 42, pp.125-144 (2010)

[3] H. Hutridurga, Master Thesis, Ecole Polytechnique (2010)

[4] E. Marusic-Paloka, A. Piatnitski, Homogenization of a nonlinearconvection-diffusion equation with rapidly oscillating coefficients andstrong convection, J. London Math. Soc., 72, pp.391-409 (2005)

[5] O. Pironneau, F. Hecht, A. Le Hyaric, FreeFem++ version 2.15-1,http://www.freefem.org/ff++/