time-periodic solutions of a cubic wave equation - dominic...

62
0 29.08.2019 - Waves 2019 Dominic Scheider - WAVES 2019, Vienna Time-Periodic Solutions of a Cubic Wave Equation Dominic Scheider KIT – The Research University in the Helmholtz Association www.kit.edu

Upload: others

Post on 28-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

0 29.08.2019 - Waves 2019 Dominic Scheider-

WAVES 2019, Vienna

Time-Periodic Solutions of a Cubic Wave Equation

Dominic Scheider

KIT – The Research University in the Helmholtz Association www.kit.edu

Page 2: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Outline

1 29.08.2019 - Waves 2019 Dominic Scheider-

1 The main result

2 The strategy

3 Conclusion

Page 3: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

2 29.08.2019 - Waves 2019 Dominic Scheider-

Aim:Find solutions U = U(t, x) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which are real-valued and .... periodic in t, . localized in x , . radially symmetric in x .

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈N0

cos(kt) uk (x). (P)

(ii) Bifurcation from a stationary solution U0(t, x) = w0(x).

Page 4: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

2 29.08.2019 - Waves 2019 Dominic Scheider-

Aim:Find solutions U = U(t, x) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which are real-valued and .... periodic in t, . localized in x , . radially symmetric in x .

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈N0

cos(kt) uk (x). (P)

(ii) Bifurcation from a stationary solution U0(t, x) = w0(x).

Page 5: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

3 29.08.2019 - Waves 2019 Dominic Scheider-

Aim:Find solutions U = U(t, x) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which are real-valued and .... periodic in t, . localized in x , . radially symmetric in x .

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈N0

cos(kt) uk (x), (P)

uk ∈ X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

(ii) Bifurcation from a stationary solution U0(t, x) = w0(x).

Page 6: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

4 29.08.2019 - Waves 2019 Dominic Scheider-

Aim:Find solutions U ∈ C2

per(R,X ) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3. (W)

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈N0

cos(kt) uk (x), uk ∈ X . (P)

(ii) Bifurcation from a stationary solution U0(t, x) = w0(x).

Page 7: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

5 29.08.2019 - Waves 2019 Dominic Scheider-

Let Γ ∈ L∞(R3,R) be radial and continuously differentiable.Let w0 ∈ X with −∆w0 − w0 = Γ(x)w3

0 on R3.

Theorem: (S, 2019)There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I of real-valued,classical solutions Uη = Uη(t, x) ∈ C2

per(R,X ) of the wave equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which is a continuous curve in C (R,X ) with. U0(t, x) = w0(x),. Uη non-stationary and 2π-periodic in time (η 6= 0).

Page 8: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

5 29.08.2019 - Waves 2019 Dominic Scheider-

Let Γ ∈ L∞(R3,R) be radial and continuously differentiable.Let w0 ∈ X with −∆w0 − w0 = Γ(x)w3

0 on R3.

Theorem: (S, 2019)There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I of real-valued,classical solutions Uη = Uη(t, x) ∈ C2

per(R,X ) of the wave equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη non-stationary and 2π-periodic in time (η 6= 0).

Page 9: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

5 29.08.2019 - Waves 2019 Dominic Scheider-

Let Γ ∈ L∞(R3,R) be radial and continuously differentiable.Let w0 ∈ X with −∆w0 − w0 = Γ(x)w3

0 on R3.

Theorem: (S, 2019)There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I of real-valued,classical solutions Uη = Uη(t, x) ∈ C2

per(R,X ) of the wave equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which is a continuous curve in C (R,X ) with. U0(t, x) = w0(x),. Uη non-stationary and 2π-periodic in time (η 6= 0).

Page 10: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

6 29.08.2019 - Waves 2019 Dominic Scheider-

Remarks:Family of polychromatic solutions (“breathers”)

Uη(t, x) = ∑k∈N0

cos(kt) uηk (x).

. (Excitation of s-th mode)

Given s ∈N, find Uη with ddη

∣∣η=0u

ηk 6= 0 iff k = s.

. Extension to the Klein-Gordon equation

∂2tU − ∆U +m2 U = Γ(x)U3 on R×R3.

. Open:Other space dimensions / powers (easy?); non-constant potentials (hard!).

Page 11: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

6 29.08.2019 - Waves 2019 Dominic Scheider-

Remarks:Family of polychromatic solutions (“breathers”)

Uη(t, x) = ∑k∈N0

cos(kt) uηk (x).

. (Excitation of s-th mode)

Given s ∈N, find Uη with ddη

∣∣η=0u

ηk 6= 0 iff k = s.

. Extension to the Klein-Gordon equation

∂2tU − ∆U +m2 U = Γ(x)U3 on R×R3.

. Open:Other space dimensions / powers (easy?); non-constant potentials (hard!).

Page 12: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

6 29.08.2019 - Waves 2019 Dominic Scheider-

Remarks:Family of polychromatic solutions (“breathers”)

Uη(t, x) = ∑k∈N0

cos(kt) uηk (x).

. (Excitation of s-th mode)

Given s ∈N, find Uη with ddη

∣∣η=0u

ηk 6= 0 iff k = s.

. Extension to the Klein-Gordon equation

∂2tU − ∆U +m2 U = Γ(x)U3 on R×R3.

. Open:Other space dimensions / powers (easy?); non-constant potentials (hard!).

Page 13: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The main result

6 29.08.2019 - Waves 2019 Dominic Scheider-

Remarks:Family of polychromatic solutions (“breathers”)

Uη(t, x) = ∑k∈N0

cos(kt) uηk (x).

. (Excitation of s-th mode)

Given s ∈N, find Uη with ddη

∣∣η=0u

ηk 6= 0 iff k = s.

. Extension to the Klein-Gordon equation

∂2tU − ∆U +m2 U = Γ(x)U3 on R×R3.

. Open:Other space dimensions / powers (easy?); non-constant potentials (hard!).

Page 14: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Outline

7 29.08.2019 - Waves 2019 Dominic Scheider-

1 The main result

2 The strategy

3 Conclusion

Page 15: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

8 29.08.2019 - Waves 2019 Dominic Scheider-

Aim: Find solutions U ∈ C2per(R,X ) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3. (W)

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈N0

cos(kt) uk (x), uk ∈ X . (P)

(ii) Bifurcation from a stationary solution U0(t, x) = w0(x).

Page 16: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

9 29.08.2019 - Waves 2019 Dominic Scheider-

Aim: Find solutions U ∈ C2per(R,X ) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3. (W)

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈Z

eikt uk (x), uk= u−k ∈ X . (P)

(ii) Bifurcation from a stationary solution U0(t, x) = w0(x).

Page 17: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

10 29.08.2019 - Waves 2019 Dominic Scheider-

Aim: Find solutions U ∈ C2per(R,X ) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3. (W)

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈Z

eikt uk (x), uk = u−k ∈ X . (P)

(ii) Bifurcation from a stationary solution U0(t, x) = w0(x).

Page 18: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

11 29.08.2019 - Waves 2019 Dominic Scheider-

Aim: Find solutions U ∈ C2per(R,X ) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3. (W)

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈Z

eikt uk (x), uk = u−k ∈ X . (P)

(infinite) Helmholtz system

−∆uk − (k2 + 1)uk = ∑l+m+n=k

Γ(x) ulumun. (W ∗)

(ii) Bifurcation from a stationary solution U0(t, x) = w0(x).

Page 19: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

12 29.08.2019 - Waves 2019 Dominic Scheider-

Aim: Find solutions U ∈ C2per(R,X ) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3. (W)

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈Z

eikt uk (x), uk = u−k ∈ X . (P)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

−∆uk − (k2 + 1)uk = Γ(x) (u ∗ u ∗ u)k . (W ∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).

Page 20: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

13 29.08.2019 - Waves 2019 Dominic Scheider-

Aim: Find solutions U ∈ C2per(R,X ) of the wave-type equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3. (W)

Method:(i) Polychromatic ansatz

U(t, x) = ∑k∈Z

eikt uk (x), uk = u−k ∈ X . (P)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

−∆uk − (k2 + 1)uk = Γ(x) (u ∗ u ∗ u)k . (W ∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).

Page 21: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

14 29.08.2019 - Waves 2019 Dominic Scheider-

Questions:

(1) What does “Helmholtz” mean?

(2) What is bifurcation?

(3) Why are we talking about this?

Page 22: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

15 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = f on R3, λ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− λ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− λ− iε)−1f

]=

cos(| · |√

λ)

4π| · | ∗ f .

. General solution of (H):

u = u1 + u2 with any Herglotz wave − ∆u2 − λu2 = 0.

Summary: Multitude of (weakly) localized solutions.

Page 23: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

15 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = f on R3, λ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− λ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− λ− iε)−1f

]=

cos(| · |√

λ)

4π| · | ∗ f .

. General solution of (H):

u = u1 + u2 with any Herglotz wave − ∆u2 − λu2 = 0.

Summary: Multitude of (weakly) localized solutions.

Page 24: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

15 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = f on R3, λ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− λ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− λ− iε)−1f

]=

cos(| · |√

λ)

4π| · | ∗ f .

. General solution of (H):

u = u1 + u2 with any Herglotz wave − ∆u2 − λu2 = 0.

Summary: Multitude of (weakly) localized solutions.

Page 25: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

15 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = f on R3, λ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− λ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− λ− iε)−1f

]=

cos(| · |√

λ)

4π| · | ∗ f .

. General solution of (H):

u = u1 + u2 with any Herglotz wave − ∆u2 − λu2 = 0.

Summary: Multitude of (weakly) localized solutions.

Page 26: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

15 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = f on R3, λ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− λ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− λ− iε)−1f

]=

cos(| · |√

λ)

4π| · | ∗ f .

. General solution of (H):

u = u1 + u2 with any Herglotz wave − ∆u2 − λu2 = 0.

Summary: Multitude of (weakly) localized solutions.

Page 27: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

16 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = f (r) on R3, λ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− λ)

. Particular solution of (H):

−(ru1)′′ − λ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c · sin(| · |√

λ)

4π| · | , c ∈ R.

Radial symmetry 1-dim. solution spaces.

Page 28: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

16 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = f (r) on R3, λ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− λ)

. Particular solution of (H):

−(ru1)′′ − λ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c · sin(| · |√

λ)

4π| · | , c ∈ R.

Radial symmetry 1-dim. solution spaces.

Page 29: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

17 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = g(r) · u on R3, λ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − λ(ru) ≈ 0 u(r) ≈ $∞sin(r√

λ + τ∞)

r

Lemma:(H∗) has a unique normalized solution in X . It satisfies

u(r) =sin(r√

λ + τ∞)

r+O

(1r2

)for some unique τ∞ ∈ [0,π).

Page 30: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

17 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = g(r) · u on R3, λ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − λ(ru) ≈ 0 u(r) ≈ $∞sin(r√

λ + τ∞)

r

Lemma:(H∗) has a unique normalized solution in X . It satisfies

u(r) =sin(r√

λ + τ∞)

r+O

(1r2

)for some unique τ∞ ∈ [0,π).

Page 31: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

17 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = g(r) · u on R3, λ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − λ(ru) ≈ 0 u(r) ≈ $∞sin(r√

λ + τ∞)

r

Lemma:(H∗) has a unique normalized solution in X . It satisfies

u(r) =sin(r√

λ + τ∞)

r+O

(1r2

)for some unique τ∞ ∈ [0,π).

Page 32: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

18 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

−∆u − λu = g(r) · u on R3, λ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − λ(ru) ≈ 0 u(r) ≈ $∞sin(r√

λ + τ∞)

r

Lemma:(H∗) together with an asymptotic phase condition (far field condition)

u(r) ∼ sin(r√

λ + τ)

r+O

(1r2

)(Aτ)

has a nontrivial solution in X iff τ = τ∞. (Unique up to constant multiple.)

Page 33: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

19 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

Remark: For τ 6= 0,

(H∗), (Aτ) ⇔ u = Rτλ[g u] =

sin(| · |√

λ + τ)

4π| · | sin(τ) ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Page 34: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

19 29.08.2019 - Waves 2019 Dominic Scheider-

Question 1: What does “Helmholtz” mean?

Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

Remark: For τ 6= 0,

(H∗), (Aτ) ⇔ u = Rτλ[g u] =

sin(| · |√

λ + τ)

4π| · | sin(τ) ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Page 35: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

20 29.08.2019 - Waves 2019 Dominic Scheider-

Question 2: What is bifurcation?

Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Page 36: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

20 29.08.2019 - Waves 2019 Dominic Scheider-

Question 2: What is bifurcation?Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Page 37: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

20 29.08.2019 - Waves 2019 Dominic Scheider-

Question 2: What is bifurcation?Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Page 38: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

20 29.08.2019 - Waves 2019 Dominic Scheider-

Question 2: What is bifurcation?Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Page 39: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

21 29.08.2019 - Waves 2019 Dominic Scheider-

Question 2: What is bifurcation?Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 1(and more)

Crandall-Rabinowitz Theorem:Bifurcationfrom a simple eigenvalue

Page 40: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

21 29.08.2019 - Waves 2019 Dominic Scheider-

Question 2: What is bifurcation?Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 1(and more)

Crandall-Rabinowitz Theorem:Bifurcationfrom a simple eigenvalue

Page 41: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

22 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.

Aim: Solve ∂2tU − ∆U − U = Γ(x)U3, U ∈ C2

per(R3,X ).

Method:(i) Polychromatic ansatz U(t, x) = ∑k∈Z eikt uk (x)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

−∆uk − (k2 + 1)uk = Γ(x) (u ∗ u ∗ u)k . (W ∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).

Page 42: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

22 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.Aim: Solve ∂2

tU − ∆U − U = Γ(x)U3, U ∈ C2per(R

3,X ).Method:

(i) Polychromatic ansatz U(t, x) = ∑k∈Z eikt uk (x)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

−∆uk − (k2 + 1)uk = Γ(x) (u ∗ u ∗ u)k . (W ∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).

Page 43: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

23 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.Aim: Solve ∂2

tU − ∆U − U = Γ(x)U3, U ∈ C2per(R

3,X ).Method:

(i) Polychromatic ansatz U(t, x) = ∑k∈Z eikt uk (x)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

with asymptotic conditions

uk = Rτkk2+1[Γ(x) (u ∗ u ∗ u)k ]. (W ∗∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).

Page 44: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

24 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.Aim: Solve ∂2

tU − ∆U − U = Γ(x)U3, U ∈ C2per(R

3,X ).Method:

(i) Polychromatic ansatz U(t, x) = ∑k∈Z eikt uk (x)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

with asymptotic conditions

uk = Rτkk2+1[Γ(x) (u ∗ u ∗ u)k ]. (W ∗∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).

. “Invisible” bifurcation parameter: τs τs + λ.

. Study linearization of (W ∗∗) at u = w, λ = 0:

ψk = 3Rτkk2+1[Γ(x)w

20 (x)ψk ]. (W ∗∗∗)

Lemma!

Page 45: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

24 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.Aim: Solve ∂2

tU − ∆U − U = Γ(x)U3, U ∈ C2per(R

3,X ).Method:

(i) Polychromatic ansatz U(t, x) = ∑k∈Z eikt uk (x)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

with asymptotic conditions

uk = Rτkk2+1[Γ(x) (u ∗ u ∗ u)k ]. (W ∗∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).. “Invisible” bifurcation parameter: τs τs + λ.

. Study linearization of (W ∗∗) at u = w, λ = 0:

ψk = 3Rτkk2+1[Γ(x)w

20 (x)ψk ]. (W ∗∗∗)

Lemma!

Page 46: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

24 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.Aim: Solve ∂2

tU − ∆U − U = Γ(x)U3, U ∈ C2per(R

3,X ).Method:

(i) Polychromatic ansatz U(t, x) = ∑k∈Z eikt uk (x)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

with asymptotic conditions

uk = Rτkk2+1[Γ(x) (u ∗ u ∗ u)k ]. (W ∗∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).. “Invisible” bifurcation parameter: τs τs + λ.. Study linearization of (W ∗∗) at u = w, λ = 0:

ψk = 3Rτkk2+1[Γ(x)w

20 (x)ψk ]. (W ∗∗∗)

Lemma!

Page 47: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

24 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.Aim: Solve ∂2

tU − ∆U − U = Γ(x)U3, U ∈ C2per(R

3,X ).Method:

(i) Polychromatic ansatz U(t, x) = ∑k∈Z eikt uk (x)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

with asymptotic conditions

uk = Rτkk2+1[Γ(x) (u ∗ u ∗ u)k ]. (W ∗∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).. “Invisible” bifurcation parameter: τs τs + λ.. Study linearization of (W ∗∗) at u = w, λ = 0:

ψk = 3Rτkk2+1[Γ(x)w

20 (x)ψk ]. (W ∗∗∗)

Lemma!

Page 48: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

25 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.

ψk = 3Rτkk2+1[Γ(x)w

20 (x)ψk ] (W ∗∗∗)

is equivalent to

− ∆ψk − (k2 + 1)ψk = 3 Γ(x)w20 (x)ψk on R3, (H∗)

ψk (r) ∼sin(r√

λ + τk )

r+O

(1r2

). (Aτk )

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Page 49: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

25 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.

ψk = 3Rτkk2+1[Γ(x)w

20 (x)ψk ] (W ∗∗∗)

is equivalent to

− ∆ψk − (k2 + 1)ψk = 3 Γ(x)w20 (x)ψk on R3, (H∗)

ψk (r) ∼sin(r√

λ + τk )

r+O

(1r2

). (Aτk )

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Page 50: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

25 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.

ψk = 3Rτkk2+1[Γ(x)w

20 (x)ψk ] (W ∗∗∗)

is equivalent to

− ∆ψk − (k2 + 1)ψk = 3 Γ(x)w20 (x)ψk on R3, (H∗)

ψk (r) ∼sin(r√

λ + τk )

r+O

(1r2

). (Aτk )

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Page 51: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

The strategy

26 29.08.2019 - Waves 2019 Dominic Scheider-

Question 3: Why are we talking about this? - The strategy, finally.Aim: Solve ∂2

tU − ∆U − U = Γ(x)U3, U ∈ C2per(R

3,X ).Method:

(i) Polychromatic ansatz U(t, x) = ∑k∈Z eikt uk (x)

(infinite) Helmholtz system for u = (uk )k ∈ `1(N0,X )

with asymptotic conditions

uk = Rτkk2+1[Γ(x) (u ∗ u ∗ u)k ]. (W ∗∗)

(ii) Bifurcation from w = (w0, 0, 0, ...).. “Invisible” bifurcation parameter: τs τs + λ.. Study linearization of (W ∗∗) at u = w, λ = 0:

ψk = 3Rτkk2+1[Γ(x)w

20 (x)ψk ]. (W ∗∗∗)

Choice of τk such that ψk ≡ 0 (k 6= s), ψs 6≡ 0.

Page 52: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Outline

27 29.08.2019 - Waves 2019 Dominic Scheider-

1 The main result

2 The strategy

3 Conclusion

Page 53: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Conclusion

28 29.08.2019 - Waves 2019 Dominic Scheider-

Theorem: (S, 2019)There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I of real-valued,classical solutions Uη = Uη(t, x) ∈ C2

per(R,X ) of the wave equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which is a continuous curve in C (R,X ) with U0(t, x) = w0(x) and (forη 6= 0) Uη nonstationary and 2π-periodic.

Key ideas:

Page 54: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Conclusion

28 29.08.2019 - Waves 2019 Dominic Scheider-

Theorem: (S, 2019)There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I of real-valued,classical solutions Uη = Uη(t, x) ∈ C2

per(R,X ) of the wave equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which is a continuous curve in C (R,X ) with U0(t, x) = w0(x) and (forη 6= 0) Uη nonstationary and 2π-periodic.

Key ideas:

Page 55: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Conclusion

29 29.08.2019 - Waves 2019 Dominic Scheider-

Theorem: (S, 2019)There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I of real-valued,classical solutions Uη = Uη(t, x) ∈ C2

per(R,X ) of the wave equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which is a continuous curve in C (R,X ) with U0(t, x) = w0(x) and (forη 6= 0) Uη nonstationary and 2π-periodic.

Key ideas:

Page 56: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Conclusion

30 29.08.2019 - Waves 2019 Dominic Scheider-

Theorem: (S, 2019)There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I of real-valued,classical solutions Uη = Uη(t, x) ∈ C2

per(R,X ) of the wave equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which is a continuous curve in C (R,X ) with U0(t, x) = w0(x) and (forη 6= 0) Uη nonstationary and 2π-periodic.

Key ideas:

Page 57: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Conclusion

31 29.08.2019 - Waves 2019 Dominic Scheider-

Related results:Breather solutions for the wave equation

V (x)∂2tU − ∂2

xU + c V (x)U = Γ(x)U3 on R×R.

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011,

. Hirsch, Reichel 2019.

Common feature: polychromatic ansatzDifferences:. specific, rough periodic potentials (↔ constant potentials). analysis in spectral gaps (↔ exploitation of kernel elements). strongly localized solutions (↔ power decay). large solutions (↔ close-to-stationary solutions)

Page 58: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Conclusion

31 29.08.2019 - Waves 2019 Dominic Scheider-

Related results:Breather solutions for the wave equation

V (x)∂2tU − ∂2

xU + c V (x)U = Γ(x)U3 on R×R.

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011,

. Hirsch, Reichel 2019.

Common feature: polychromatic ansatz

Differences:. specific, rough periodic potentials (↔ constant potentials). analysis in spectral gaps (↔ exploitation of kernel elements). strongly localized solutions (↔ power decay). large solutions (↔ close-to-stationary solutions)

Page 59: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Conclusion

31 29.08.2019 - Waves 2019 Dominic Scheider-

Related results:Breather solutions for the wave equation

V (x)∂2tU − ∂2

xU + c V (x)U = Γ(x)U3 on R×R.

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011,

. Hirsch, Reichel 2019.

Common feature: polychromatic ansatzDifferences:. specific, rough periodic potentials (↔ constant potentials). analysis in spectral gaps (↔ exploitation of kernel elements). strongly localized solutions (↔ power decay). large solutions (↔ close-to-stationary solutions)

Page 60: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Conclusion

32 29.08.2019 - Waves 2019 Dominic Scheider-

Thank you for your attention!... Questions?

Theorem: (S, 2019)There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I of real-valued,classical solutions Uη = Uη(t, x) ∈ C2

per(R,X ) of the wave equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which is a continuous curve in C (R,X ) with U0(t, x) = w0(x) and (forη 6= 0) Uη nonstationary and 2π-periodic.

Page 61: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

Conclusion

32 29.08.2019 - Waves 2019 Dominic Scheider-

Thank you for your attention!... Questions?

Theorem: (S, 2019)There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I of real-valued,classical solutions Uη = Uη(t, x) ∈ C2

per(R,X ) of the wave equation

∂2tU − ∆U − U = Γ(x)U3 on R×R3 (W)

which is a continuous curve in C (R,X ) with U0(t, x) = w0(x) and (forη 6= 0) Uη nonstationary and 2π-periodic.

Page 62: Time-Periodic Solutions of a Cubic Wave Equation - Dominic ...scheider/media/scheiderdominic_wien.pdf · 0 29.08.2019-Waves2019 DominicScheider-WAVES2019,Vienna Time-Periodic Solutions

References

33 29.08.2019 - Waves 2019 Dominic Scheider-

C. Blank, M. Chirilus-Bruckner, V. Lescarret and G. Schneider, BreatherSolutions in Periodic Media, Comm. Math. Phys. 3 (2011), pp. 815–841A. Hirsch and W. Reichel, Real-valued, time-periodic localized weaksolutions for a semilinear wave equation with periodic potentials,Nonlinearity (2019), to appearR. Mandel, E. Montefusco and B. Pellacci, Oscillating solutions fornonlinear Helmholtz equations, ZAMP 6 (2017), article 121R. Mandel and D. Scheider, Bifurcations of nontrivial solutions of a cubicHelmholtz system, to appear in ANONA. URL: http://www.waves.kit.edu/downloads/CRC1173_Preprint_2018-32.pdf

The main result will be part of my PhD thesis (KIT, Oct 2019).