time-dependent basis func1on (tbf) approach to scaering

39
Time-dependent Basis Func1on (tBF) approach to sca7ering James P. Vary with collaborators: Weijie Du (杜伟杰), Peng Yin (尹鹏), Yang Li (李阳), Guangyao Chen (陈光耀), Wei Zuo (左维), Xingbo Zhao (赵行波) and Pieter Maris arXiv:1804.01156; Phys. Rev. C (in press) Department of Physics & Astronomy Iowa State University Ins9tute of Modern Physics, Chinese Academy of Sciences MSU, June 15, 2018

Upload: others

Post on 16-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Time-dependent Basis Func1on (tBF) approach to scaering

Time-dependent Basis Func1on (tBF) approach to sca7ering

JamesP.Varywithcollaborators:

WeijieDu(杜伟杰),PengYin(尹鹏),YangLi(李阳),GuangyaoChen(陈光耀),WeiZuo(左维),XingboZhao(赵行波)andPieterMaris

arXiv:1804.01156;Phys.Rev.C(inpress)

DepartmentofPhysics&AstronomyIowaStateUniversity

Ins9tuteofModernPhysics,ChineseAcademyofSciences

MSU,June15,2018

Page 2: Time-dependent Basis Func1on (tBF) approach to scaering

Mo1va1ons

ChallengesinpredicSngnuclearstructureandreacSons,e.g.,

• ExoScnuclei,FRIB• Astrophysics,radiaSvecapture• Fusionenergy,ITERandNIF

ThesepropeldevelopmentoftheorieswithpredicSvepower:

•  Fundamental,unifiedabini&onucleartheoryfornuclearstructureandreacSons

Page 3: Time-dependent Basis Func1on (tBF) approach to scaering

Background

ExisSngmethods,e.g.,•  No-coreShellModelwithConSnuum•  No-coreShellModel/ResonaSngGroupMethod•  GamowShellModel•  HarmonicOscillatorRepresentaSonofScaberingEquaSons•  Green’sFuncSonApproaches•  NuclearLaeceEffecSveFieldTheory•  Manyothers

However,thesesuccessfulmethodsmaybechallengedtoretainfullquantalcoherenceofallrelevantnuclearprocesses

Page 4: Time-dependent Basis Func1on (tBF) approach to scaering

We introduce the 1me-dependent Basis Func1on (tBF) Method

! Abini&oapproach! Non-perturbaSve! Retainsfullquantalinterference! Enablessnapshotsofdynamics! SupercompuSngdirectlyapplicable

Page 5: Time-dependent Basis Func1on (tBF) approach to scaering

Idea of tBF Method 1.Abini&ostructurecalculaSon 2.Scaberingproblem

•  Scaberingstate=Sme-dependentsuperposiSonofeigen-bases•  Operatorsbecomematricesineigen-basisrepresentaSon

1.  Solveforthe“target”system’seigen-basisviaabini&ocalculaSon2.  Definethescaberingstatewithinthiseigen-basisandevaluateH(t)inthisbasis3.  SolvetheequaSonofmoSoninthiseigen-basis

+V(t)

H0 βi = Ei βi

Page 6: Time-dependent Basis Func1on (tBF) approach to scaering

• Hamiltonianofthedeuteron

with

•  IntrinsickineScenergy

•  RealisScinter-nucleoninteracSon

Ab ini&o Structure Calcula1on of Deuteron

Page 7: Time-dependent Basis Func1on (tBF) approach to scaering

3DHO Basis for NN Nuclear Structure Calcula1on •  NuclearinteracSonconservestotalangularmomentum

•  ExcitaSonquantaforbasisspacetruncaSon:

•  3DHObasiswavefuncSonincoordinatespace

• Why3DHObasis?•  Respectsthesymmetriesofthenuclearsystem

•  e.g.,rotaSonalandtranslaSonalsymmetries•  ThecenterofmassmoSoncanbeeasilyremoved

βi → {SJMJTz}i = anl

i

n,l∑ nlSJMJTz

Page 8: Time-dependent Basis Func1on (tBF) approach to scaering

JISP16 interac1on adopted for the ini1al applica1on

•  ConstructedbyJ-matrixinversescaberingtheory•  ReproducesNNscaberingdata

•  “16”meanstheinteracSonisfibedtoreproducesomeoftheproperSesfor16O

•  ReproducesselectedproperSesoflightnuclei•  e.g.,2H,3H,4He

•  Includestwo-nucleon(NN)interacSononly

• Non-localinteracSon

•  TheinteracSonin3DHOrepresentaSon(matrixelements)

Page 9: Time-dependent Basis Func1on (tBF) approach to scaering

Simplify the “con1nuum” => add a HO confining interac1on Hamiltonian for Quasi-deuteron in 3DHO Representa1on

+ +

=

Trel VNN Utrap

FullHamiltonian

DiagonalizaSon

Eigen-energiesonthediagonal

Page 10: Time-dependent Basis Func1on (tBF) approach to scaering

Results: Ground State Energies for Natural and Quasi-Deuteron

!  Nmax=60;!  Basisstrength=5MeV;

!  Asthebasisspaceincreasesindimension,theoreScalgsenergyofdeuteronconvergestotheexperimentalvalue.

=max(2n+l)

Page 11: Time-dependent Basis Func1on (tBF) approach to scaering

Time-Dependent Schrödinger Equa1on

• Time-dependentfullHamiltonian

• EquaSonofmoSon• Schrödinger picture

•  InteracSonpicture

Page 12: Time-dependent Basis Func1on (tBF) approach to scaering

Solve Time-dependent Schrödinger Equa1on

•  EquaSonofmoSonininteracSonpicture

•  FormalsoluSon

Page 13: Time-dependent Basis Func1on (tBF) approach to scaering

Transi1on Amplitudes of States WiththebasisrepresentaSon

thestatevectorforthesystemunderscaberingbecomes

wherethetransiSonamplitudeis

H0 βi = Ei βi

Page 14: Time-dependent Basis Func1on (tBF) approach to scaering

Numerical Method 1: Euler Method

• DirectevaluaSonoftheSme-evoluSonoperator

with

•  Fast in calculation •  Accurate up to (𝛿𝑡)↑2  •  Hence poor numerical stability

Page 15: Time-dependent Basis Func1on (tBF) approach to scaering

Numerical Method 2: Mul1-Step Differencing

• Multi-step differencing (MSD2) for the evolution:

T.Iitaka,Phys.Rev.E494684(1994)WeijieDuetal.,inpreparaSon

•  MSD is an explicit method – it does not evaluate matrix inversions •  MSD2 is accurate up to (δt)3 •  MSD4 is accurate up to (δt)4, however less efficient •  We employ MSD2 for better numerical stability and efficiency

Page 16: Time-dependent Basis Func1on (tBF) approach to scaering

For Comparison: First-Order Perturba1on Theory

Purposesforthiscomparison•  tBFmethodisnon-perturbaSve•  tBFmethodevaluatesallthehigher-ordereffects

Page 17: Time-dependent Basis Func1on (tBF) approach to scaering

First Model Problem: Coulomb Excita1on of Deuterium System by Peripheral Sca7ering

with Heavy Ion

Page 18: Time-dependent Basis Func1on (tBF) approach to scaering

Setup: Coulomb Excita1on of Deuterium System

H0:targetHamiltonianϕ:Coulombfieldfromheavyionρ:ChargedensitydistribuSonofdeuteron

Page 19: Time-dependent Basis Func1on (tBF) approach to scaering

Treatment of 1me-varying Coulomb field

!  InthebasisrepresentaSon,theoperatorfortheCoulombinteracSonbecomesamatrix

!  WetakeamulSpoledecomposiSonfortheCoulombfieldandkeeponlytheE1mulSpolecomponent

K.Alderetal.,Rev.Mod.Phys.28,432(1956)

E1transiSonbetweenbases

Page 20: Time-dependent Basis Func1on (tBF) approach to scaering

E1 Matrix Element in Basis Representa1on E1transiSonmatrixelementinthebasisrepresentaSonisevaluatedby

•  BasisfuncSonsfromtheabini&ostructurecalculaSon

•  AndtheanalyScformoftheE1operatorin3DHOrepresentaSon βi → {SJMJTz}i = anl

i

n,l∑ nlSJMJTz

Page 21: Time-dependent Basis Func1on (tBF) approach to scaering

Basis Set for Deuteron in Current Calcula1on !  7basisstatesaresolvedviaabini&omethod

NTSEproceeding,WeijieDuetal.2017

!  IniSalstate!  PolarizaSonanSparalleltoz-axis!  E1radiaSvetransiSons

Page 22: Time-dependent Basis Func1on (tBF) approach to scaering

Transi1on Probabili1es

Weakfieldlimit:b=5fmZ=10v/c=0.1

Validity:WhentheCoulombfieldisweak,tBFmethodmatcheswithfirstorderperturbaSontheory(1PT)

(3S1,3D1),M=-1

tBF

Page 23: Time-dependent Basis Func1on (tBF) approach to scaering

Higher-Order Effects

Strongfieldlimitb=5fmZ=92v/c=0.1

ForbiddentransiSons

!  Revealedbynon-perturbaSvetBF

tBFPert

(3S1,3D1),M=-1

(3S1,3D1),M=+1

Page 24: Time-dependent Basis Func1on (tBF) approach to scaering

Excita1on of Intrinsic Energy

!  ObservablesasfuncSonsofSme

!  QuantumfluctuaSonaretakencareattheamplitudelevel

b=5fmZ=92

Page 25: Time-dependent Basis Func1on (tBF) approach to scaering

Excita1on of Orbital Angular Momentum

Observable’sdependenceon

!  Sme!  incidentspeed

b=5fmZ=92

v/cMethod

Page 26: Time-dependent Basis Func1on (tBF) approach to scaering

Expansion of r.m.s. Point Charge Radius

r.m.s.radiusofthedeuteriumsystemduringthescaberingasafuncSonof

!  Sme!  incidentspeed

b=5fmZ=92

Page 27: Time-dependent Basis Func1on (tBF) approach to scaering

Dynamics: Charge Density Distribu1on of Ini1al np system

!  TheIniSalpolarizaSonisanS-paralleltothez-axisx[fm]

y[fm

]

z[fm

]

x[fm]

Page 28: Time-dependent Basis Func1on (tBF) approach to scaering

Change in Charge Density Distribu1on of Sca7ered np System (x-z plane) at T= 0.23 MeV-1

!  ThedifferenceinchargedensitydistribuSonsbetweentheevolvedandtheiniSalnpsystem

!  NotethepolarizaSonofthechargedensitydistribuSon

x[fm]

z[fm

]

Page 29: Time-dependent Basis Func1on (tBF) approach to scaering

!  DensityfluctuaSon

!  ExcitaSonoforbitalangularmomentum

x[fm]

y[fm

]

Change in Charge Density Distribu1on of Sca7ered np System (x-y plane) at T= 1.975 MeV-1

Page 30: Time-dependent Basis Func1on (tBF) approach to scaering

Dynamics Revealed by Anima1on (x-y Plane) Howtointerpret?!  ThepolarizaSonofcharge

distribuSonwhenHIapproaches

!  TheexcitaSonofrotaSonal

degreeoffreedom!  TheexcitaSonof

oscillaSonaldegreeoffreedom

Page 31: Time-dependent Basis Func1on (tBF) approach to scaering

Recent Progress Peng Yin, et al., in prepara1on

Page 32: Time-dependent Basis Func1on (tBF) approach to scaering

Implement Rutherford Trajectories

EquaSonofMoSon IniSalCondiSon

Page 33: Time-dependent Basis Func1on (tBF) approach to scaering

51 States Implemen1ng Daejeon16 NN-interac1on

Page 34: Time-dependent Basis Func1on (tBF) approach to scaering

Popula1on in 51 States Aier Sca7ering !  RutherfordScabering!  FirstOrder

PerturbaSontheoryvs.MSD2

Page 35: Time-dependent Basis Func1on (tBF) approach to scaering

Inelas1c Cross Sec1on and Average Excita1on Energy

!  CrosssecSonandaverageexcitaSonenergyincreaseswithincidentvelocity!  BothcrosssecSonandaverageexcitaSonenergyreachsaturaSonat

sufficientlyhighincidentvelocity

Page 36: Time-dependent Basis Func1on (tBF) approach to scaering

• Time-dependent Basis Function (tBF) is motivated by progress both in experimental nuclear physics and in supercomputing techniques

•  tBF is a non-perturbative ab initio method for time-dependent problems •  tBF is particularly suitable for strong, time-dependent, field problems •  tBF evaluates at the amplitude level - full quantal coherence is retained •  tBF is aimed to provide insights into fundamental structure/reaction

issues in a detailed and differentiated manner for nuclear reactions

Summary

Page 37: Time-dependent Basis Func1on (tBF) approach to scaering

• Observables: differential cross sections with polarization, inclusive non-linear inelastic response, contributions of 2-body currents, higher-order electromagnetic couplings, . . .

•  Perform calculation in larger basis space and study convergence with respect to density of states in the continuum

•  Study the sensitivity with respect to the nuclear Hamiltonian •  Include strong force in the background field • More realistic center of mass motion

•  Trajectory from QMD •  Direct computation of relative motion of the two nuclei (e.g. RGM)

•  Extend investigations on constraints for the symmetry energy from scattering

Announcement

Outlook

New faculty position in Nuclear Theory at Iowa State University with support from the DOE Fundamental Interactions Topical Collaboration

Page 38: Time-dependent Basis Func1on (tBF) approach to scaering

https://indico.ibs.re.kr/event/216/

Page 39: Time-dependent Basis Func1on (tBF) approach to scaering

Thank you!