biophysical techniques (bphs 4090/phys 5800) · light scaering to measure molecular properes? hoppe...

26
Biophysical Techniques (BPHS 4090/PHYS 5800) York University Winte7 2017 Lec.17 Instructors: Prof. Christopher Bergevin ([email protected]) Schedule: MWF 1:30-2:30 (CB 122) Website: http://www.yorku.ca/cberge/4090W2017.html References/Acknowledgement: - Hobbie & Roth (Springer, 2007) - Franklin et al. – Intro. to Biological Physics... (Wiley, 2010) - Hoppe et al. – Biophysics (Springer, 1983) - Nolting – Methods in Modern Biophysics (Springer, 2010) - Podgorsak – Radiation Physics for Medical Physicists (Springer, 2010)

Upload: others

Post on 09-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Biophysical Techniques (BPHS 4090/PHYS 5800)

York University Winte7 2017 Lec.17

Instructors: Prof. Christopher Bergevin ([email protected])

Schedule: MWF 1:30-2:30 (CB 122)

Website: http://www.yorku.ca/cberge/4090W2017.html

References/Acknowledgement: -  Hobbie & Roth (Springer, 2007) -  Franklin et al. – Intro. to Biological Physics... (Wiley, 2010) -  Hoppe et al. – Biophysics (Springer, 1983) -  Nolting – Methods in Modern Biophysics (Springer, 2010) -  Podgorsak – Radiation Physics for Medical Physicists (Springer, 2010)

Page 2: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

RayleighSca,ering

“Whyistheskyblue?”

Hoppeetal.(1983)

Note:Thisanalysiswasonlyvalidformoleculeswhosedimensionsweresmallerthan~λ/20(~25nm),therebyallowingthemtoactlikeadipole

Page 3: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Buzug(2008)

Ø  Keepinmindthatthesetwoapproaches(i.e.,classicalversusquantal)areinterrelated,butverydisparate...

ClassiclvsQuantalViewpoints....

Page 4: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

LightSca,eringtoMeasureMolecularProperZes?

Hoppeetal(1983)

Ø  Nextstepconsiderssca,eringbyalarge#of“small”non-interacZngparZcles(e.g.,diluteidealgas)

Ø  Clausius-Moso^equaZonrelatestheindexofrefracZon(n)withpolarizability(α)[whereNisthetotal#ofparZclesperunitvolume]:

Ø  ntendstobeclosetounityforadilutegas.SoexpandingasaTaylorseriesin“powersoftheconcentraZonc”:

Allowingustorewriteαas:

Here:“MisthemolecularweightoftheparZcleandLisAvogadro'snumber(6x1023permol),sothatM/L=c/NisthemassperparZcle”

Page 5: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Hoppeetal(1983)

“Theintensityoflightsca0eredbyapar5cleisseentobepropor5onaltothesquareofitsmolecularweight.Lightsca,eringexperimentscanthereforebeusedtodeterminethemolecularweight.”

LightSca,eringtoMeasureMolecularProperZes?

Pu^ngthesepiecestogether:

Page 6: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Pu^ngthesepiecestogether:

wikipedia (Brownian motion)

Random motion of large object (yellow circle) due to interaction with many little objects (black circles)

àNowlet’strytomakeaseeminglydisparateconnecZonpointbacktosomepreviouslyexaminedtopics...

Page 7: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

% ### EXcoffee.m ### 11.16.14 {C. Bergevin}!% [modified version of EXrandomWalk2D.m motivated by the problem shown in!% Giordano (1997) Fig.7.18ff]!% **NOTE**: There is a minor bug in this version such that it is possible for!% some 'cream' to leave the 'cup' (despite the specifed boundary conditions)!clear;!% -------------!N= 10; % one plus sqrt of total # of (independent) walkers (each starts at unique x,y point about origin)!M= 300; % Total # of steps for each walker!method= 2; % see comments above!BND= 10; % bounding limits for initial grid of walkers at t=0!axisLim= 100; % size of coffee cup!diffC= 1; % diffusion const. (i.e., scaling factor for step size)!framerate= 1/30; % pause length [s] for animation!Sgrid= 8; % grid spacing for entropy calculation!% -------------!% +++!space= (2*BND)/N;![X,Y]= meshgrid(-BND:space:BND,-BND:space:BND);!E= size(X,1); % # of elements!SgridX= linspace(-axisLim,axisLim,Sgrid); % set grid bounds for entropy calc.!SgridY= linspace(-axisLim,axisLim,Sgrid);! !figure(1); clf; grid on; xlabel('x-postion'); ylabel('y-postion');!% visualize before onset?!if (1==1), plot(X,Y,'ko','MarkerSize',5); axis([-axisLim axisLim -axisLim axisLim]); end!% +++!% To do!% - apply boundary condition (i.e., ensure no steps past walls)!% - fix entropy calc. (i.e., if prob.=0??)!for r= 1:M! ! if method==1! % random L/R and U/D step with equal probability! tempX= rand(E,E); tempY= rand(E,E); % determine random vals.! temp2X= tempX<0.5; temp2Y= tempY<0.5; % determine L vs R and U vs D! X(temp2X)= X(temp2X)+1; X(~temp2X)= X(~temp2X)-1;! Y(temp2Y)= Y(temp2Y)+1; Y(~temp2Y)= Y(~temp2Y)-1;! else! % sample step from normal distribution! stepX= randn(E,E); stepY= randn(E,E);! X= X+ diffC*stepX; Y= Y+ diffC*stepY;! % verify step is not past walls; if so, bounce back in opposite direction! [aa,bb]= find(abs(X)>axisLim); [cc,dd]= find(abs(Y)>axisLim); ! ! % +++ --> correct for points that have moved past the walls! % not quite right, but kinda works! X(aa,bb)= X(aa,bb)-2*diffC*stepX(aa,bb); Y(cc,dd)= Y(cc,dd)-2*diffC*stepY(cc,dd);! ! % more right (I think), but doesn't work! %X(aa,bb)= sign(X(aa,bb))*2*axisLim-X(aa,bb); Y(cc,dd)= Y(cc,dd)-2*diffC*stepY(cc,dd);! ! % uncomment to allow for flagging when 'cream' leaves the cup! if(max(abs(X(:))>axisLim)), return; end! end! % visualize! figure(1)! plot(X,Y,'ko','MarkerSize',5); axis([-axisLim axisLim -axisLim axisLim]); pause(framerate);! % do binning to determine 'probability' distribution ! histS= hist2(X(:),Y(:),SgridX,SgridY)/E^2; % use external function hist2.m; and normalize to a probability! histS= histS(:); % convert to a single column vector! zeroI= ~histS==0; % need to filter out states with zero elements so to avoid computational error (since 0*log(0)= NaN)! S(r)= -sum(histS(zeroI).*log(histS(zeroI))); % calculate entropy (S) !end;! !figure(2)!plot(S,'LineWidth',2); hold on; grid on;!xlabel('time step'); ylabel('entropy');! !

EXcoffee.m

1002-Dnon-interacZngrandomwalkers

Page 8: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

EXcoffee.m

Zmestep0

Page 9: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

EXcoffee.m

Zmestep1

Page 10: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

EXcoffee.m

Zmestep30

Page 11: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

EXcoffee.m

Zmestep300

Page 12: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

EXcoffee.m

àCandeterminetheassociatedentropyasafuncZonofZme

Giordano(1997)

Page 13: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

EXcoffee.m

Giordano(1997)

Page 14: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

EXcoffee.m

1002-Dnon-interacZngrandomwalkers

àHowmightthispicturechangeifthewalkers“interacted”?

Page 15: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Relatednote:IdealGasLaw

Hoppeetal.(1983)

Ø  WhatimplicitassumpZonsaremadehere?

Ø  Doesa“real”gasbehavelikethis?(e.g.,lowdensiZes,lowertemps.nearcondensaZon)

“virialcoefficients”

wikipedia(virialexpansion)

e.g.,§  elasZccollision§  ignore(weak)a,racZveinteracZons

NotethatnotaZonusedlacksn(#ofmoles)

Page 16: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Virialcoefficients

VirialcoefficientsClassicallightsca,ering

QuesZon:CanwecombinethesetwosotoempiricallyesZmateB?

Page 17: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Hoppeetal.(1983)

EsZmaZngthe2ndVirialcoefficient:Step1

Normalizetothe“sca,eredlightperunitvolume”

#ofparZclesperunitvolume

àis

isisintensityofsca,eredlightperunitvolume

is = Is N Remember:Is is(normalized)sca,eredlightperparZcle

Page 18: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Hoppeetal.(1983)

EsZmaZngthe2ndVirialcoefficient:Step1

is

Page 19: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Hoppeetal.(1983)

EsZmaZngthe2ndVirialcoefficient:Step2

NowconsiderthattheparZclesareinsoluZon,andthatthesoluZoncansca,erlighttoo

AssumethatsoluZonhasrefracZveindexno

à

àis

NoteslightchangeinnotaZon

Page 20: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Hoppeetal.(1983)

EsZmaZngthe2ndVirialcoefficient:Step3

Makeachangeofvariables

“RayleighraZo”

Notethatthisisindependentofthesca,eringangleθ :

where: Notethatmostofthepieceshere,wecandirectlymeasure

Page 21: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Hoppeetal.(1983)

EsZmaZngthe2ndVirialcoefficient:Step3

istheonlyobviousquesZonmark(“isdeterminedindependentlyinadifferenZalrefractometer”)

KeepinmindthatMisthequanZtyweareanerhere...

Page 22: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Hoppeetal.(1983)

EsZmaZngthe2ndVirialcoefficient:Step4

AnidealsoluZonbehavesas:

However,a“real”soluZonbehavesas:

Recall:

àPu^ngthesepiecestogether,weshouldbeablethentomeasureM andB

Page 23: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Hoppeetal.(1983)

EsZmaZngthe2ndVirialcoefficient:Step5

Pu^ngittogether...

Note:“Thesca,eredintensityduetothesolventalonemustbemeasuredseparatelyandsubtractedfromthetotalsca,eredintensityofthesoluZon,sincealltheequaZonsderivedabovearevalidonlyforthedifferencebetweenthesca,eringfromthesoluZonandfromthesolvent.”

SinceRθisindependentofθ,itissufficienttofixtheangleandjustcarryoutthesca,eringmeasurementsforvariousconcentraZonsc

Page 24: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Buzug(2008)

Ø  Keepinmindthatthesetwoapproaches(i.e.,classicalversusquantal)areinterrelated,butverydisparate...

ClassiclvsQuantalViewpoints....

Page 25: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

Note:Thisanalysiswasonlyvalidformoleculeswhosedimensionsweresmallerthan~λ/20(~25nm),therebyallowingthemtoactlikeadipole

àWhatifthisassumpZonwasnotvalid?

Hoppeetal.(1983)

Page 26: Biophysical Techniques (BPHS 4090/PHYS 5800) · Light Scaering to Measure Molecular Properes? Hoppe et al (1983) Ø Next step considers scaering by a large # of “small” non-interacng

ComptonSca,ering

Buzug(2008)