tim mcginnis* bruce m. howe university of washington applied physics lab *...

36
Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab *[email protected] 206-543-1346 ALOHA Observatory Moored Sensor Network with Adaptive Sampling

Upload: sherman-tucker

Post on 29-Jan-2016

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Tim McGinnis*

Bruce M. Howe

University of WashingtonApplied Physics Lab

*[email protected]

ALOHA Observatory Moored Sensor Network

with Adaptive Sampling

Page 2: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Introduction

• Overview

• Science Objectives/Opportunities

• Project Team

• User and System Requirements

• Preliminary Design

• System Description

• Major Components

• Sensor Suite

• Schedule

• Outstanding Issues

Page 3: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Overview – HOT Site

• Hawaii Ocean Time-series “HOT” Site – 3 Stations: Kahe, Kaena & ALOHA– monthly cruises for 15 years– ALOHA Station 100km N of Oahu

Page 4: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

HOT Science

• Mexican sub-mesoscale eddy (“Meddy”)

• Discovered on ship- based CTDO2 cast at ALOHA

• 200m vertical extent in mid-water with no surface signature

• Extremely low O2 and high salinity are unprecedented

•Water sample analysis showed that the highly anomalous waters were unambiguously from offshore Baja California

• Rare event (1 in 15 years) or were others missed due to intermittent sampling?

From Lukas and Santiago-Mandujano, 2001

Page 5: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

HOT Science

• Intermittant, cold abyssal overflow from Maui Deep to Kauai Deep

• These overflows cause large enhancement of diapycnal (nearly vertical) mixing with global impacts

• What forces these overflows? How should they be modeled?

• Is this “sloshing over the rim” and associated mixing common to deep ocean basins?

Page 6: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

HOT Science

• Profiles from CTD cast at HOT site

• Large spikes in fluorescence (at 125, 134 & 141 dbars) are associated with steps and layers in density

• Did turbulent overturns homogenize the density in the layers with the suspended materials sinking to the bottom of the layer?

• To what degree do such optical signals correspond to turbulent overturning?

• How many similar cases are missed with monthly cruises & casts?

Page 7: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

ALOHA Observatory

• Utilize a retired telecommunications cable and install observatory node at HOT site

•Originally planned to use analog coax ANZCAN cable – now plan to use optical HAW-4 cable (shown at left)

• Replace monthly cruises with combination of:

- sustained in-situ observations (seafloor sensors, moorings, gliders, etc.)

- several ship cruises per year (process oriented measurements)

Page 8: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Overview - ALOHA Observatory Mooring (AOM)

• Major Components– Seafloor sensor suite & junction box– Subsurface float at ~200m depth with sensor

suite and junction box– Mooring profiler with sensor suite that can

“dock” with the float for battery charging, data download and command upload

– 4500m electro-optical mooring cable

• Features– Cable connection provides high power and

real-time communications– Enables adaptive sampling– ROV servicing and installation of sensors

• Deployments– 2004-5 on VENUS Observatory in Saanich

Inlet, B.C.– 2005-6 on ALOHA Observatory at HOT Site,

100 nm N of Oahu

Page 9: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Project Team

• University of Washington, Applied Physics Lab• Bruce Howe, PI, Principle Investigator• Tim McGinnis, Co-PI, Electrical & System Engineering• Jason Gobat, Co-PI, Mooring Design, Sensor Integration• Jim Mercer, Co-PI, ALOHA Observatory Interface• Vern Miller, Mechanical Engineering• Chris Siani, Electrical Engineering• Mike Kenney, Software Engineering• Tim Wen, Software Engineering• Janet Olsonbacker, website design

• University of Hawaii• Roger Lukas, Co-PI, Data Management, Outreach

• University of Maine• Emmanuel Boss, Co-PI, Optical Sensors & Data Analysis

Page 10: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

System Engineering

User Requirements

System Requirements

System Design

Page 11: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

User Requirements

• Provide water column current profiling for entire water column• Near continuous in-situ profiling from near surface to seafloor with CTDO, ACM, optics, • Profiler rate of advance to allow 1 sampling cycle per tidal half cycle (6 hours)• Profiler charging time (in dock) must be less than 6 hrs• Profiler duty cycle must be greater than 90%• Profiler sampling rate and profiling depth range must be controllable• Provide extra Science User Connectors with “standard” power and data interface on float and seafloor• Provide real-time, high bandwidth communication for Science User instruments

Page 12: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

System Requirements

• Compatible with ALOHA power and data interfaces• Power load on ALOHA must be constant power within +/- 10%• Provide 12Vdc (?), 48Vdc and 400Vdc (?) power and 10/100BaseT communications at Science User Connectors• Provide connection method for standard RS-232 sensors• ROV serviceable j-boxes• Operational life of > 2 years• Located > 2 km from ALOHA node to allow ROV access to ALOHA node and instruments

Page 13: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Goals

• Provide video at Float and Seafloor J-boxes and on still camera Profiler• Profiler mountable/removable by ROV• Profiler rate of 40 cm/sec (standard is 25 cm/sec)

Page 14: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Block Diagram: ALOHA – Anchor J-box

anchorcomputer

ethernetswitch

powerconversion

&distribution

loadmonitoring& control

CTDO22

Seafloor J-Box

electro-optical

converter

data

4500melectro-opto-mechanical

mooring cable

electro-optical

converter

power

cabletermination

cabletermination

cabletermination

electro-optical

converter 2000mE-O

cable

ALOHA Interface pressure housing

ALOHAj-box

power

Optics

CTDO21

dataconversion

powerconversion

data

OpticsCable to Oahu

User ScienceConnectors (4)

Page 15: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Block Diagram: Float – Profiler

dc-hfacconverter

batterybank

hfac-dcconverter

batterycharger

battery bank

profilercontroller

floatcomputer

modem modem

batterycharger

ethernetswitch

powerconversion

&distribution

powerconversion

&distribution

framegrabber

CTDO21

CTDO22

MMPTT8

Controller

ADCP

CTD1

ACM

RS-232

RS-232

electro-optical

sliprings

RS-232

videocamera

Float J-Box MMP pressure housing

MMP motor

electro-optical

converter

4500melectro-opto-mechanicalriser cable

RS-232

Optics

Optics

datacoupler

powercoupler

CTDO22

transponder

Optics

Science UserConnectors (4)

control &monitoring

Page 16: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Junction Boxex – Float & Seafloor

• On Seafloor near Anchor & on Float • 4 User Connectors

• Data Communications• 10/100BaseT• RS-232/422 (?)

• Power - ~200W total• 400 Vdc (? no large or remote loads)• 48 Vdc• 12 Vdc (? probably more common)

• Installed Sensor Suite• 2 x CTDO

• Optics – transmissometer, fluorometer, CDOM, other (?)• ADCP (on Float)• Video on Float and Seafloor (goal)

Page 17: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Junction Box – Float & Seafloor

ROV mateableConnector

ROV mateableConnector

ROV mateableConnector

Ethernet SwitchControl &Monitoring

Relay Relay

CurrentSensor

CurrentSensor

ROV mateableConnector

ROV mateableConnector

Low Voltage DCDistribution

CurrentSensor

Relay

CurrentSensor

400V-5/12/48 VDCDC-DC Converter

400V

CurrentSensor

GFI GFI GFI

GFI

Relay

GFI

J-BoxController

Page 18: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Junction Boxes – Float & Seafloor

• Inherited from NEPTUNE/MARS development• Node Controller hardware and software• Shore power control and monitoring, archiving, GUI• Load control – switching, over current, ground fault• DC-DC converters• ROV mateable connectors

• New Development• Small Ethernet switch• Ethernet – RS-232 conversion• Ethernet electrical-optical conversion

Page 19: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Observatory – Instrument Interface

• Embedded Device Servers- 10/100BaseT Ethernet- Multiple RS-232 ports- Memory space for metadata/embedded website- TCP, UDP, SNMP, DHCP, etc.- Auxiliary I/O lines

…….or could have multi-port serial hub in the J-Box and use serial through the User Science Connectors

Page 20: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Observatory – Instrument Interface Examples

10/100BaseTEthernet

48/400 VDC

Instrumentwith EthernetInterface and

Metadatastorage

Ethernet

Instrumentwith SerialInterface

DeviceServer withMetadata

Ethernet

ObservatoryJunction Box

48V

48V RS-232

"ObservatoryReady"

Instrument

Instrument withSerial Interface

DeviceServer withMetadata

Ethernet

48V

SerialInstrument

with InternalDevice Server

RS-232

SerialInstrument

with ExternalDevice Server

Instrumentwith SerialInterface

SerialInstrument withDevice Server

in J-Box

Device Serverwith Metadata

Page 21: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Electrical-Optical Conversion

• ROV mateable electro-optical connectors very expensive (~$20k) and not likely to be used extensively on observatories for instrument connection

•ROV mateable electrical connectors are lower cost (~$2k) and will be used on MARS, VENUS and ALOHA

• Fiber optic cables are required for data transmission > 100m

• Transmission distances up to 100 km

• COTS ethernet electrical-optical converter available for operation in 10kpsi oil (~$2k)

Page 22: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Electrical-Optical Conversion

• Allows use of standard ROV connector with copper conductors for Ethernet communications over long distances

• Cost significantly less than E-O hybrid connector

ROVmateable

receptaclej-box

ROVmateable

plug

PBOFhose

oil filledhousing with

E-Oconverter

E-Openetrator

E-O cable

400V (copper)

100Base-TX (copper)

100Base-FX (fiber)

PBOFhose

electricalpenetrator

5V (copper)

Page 23: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

McLane Mooring Profiler

• 6000m depth rating• Trajectory and sampling schedule programmable pre-deployment• Resistant to cable fouling• 1 M meters of travel per battery charge•Standard sensors

• CTD• 4 axis Acoustic Current Meter (ACM)

• ~40 units sold

Page 24: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

McLane Mooring Profiler Modifications

• New motor, gearbox, wheel re-design to fit larger EOM cable (~18mm)• Mount 2nd CTD, optical sensors• Interface AOM controller to their modem port to offload data after every profile• Replace primary Li batteries with rechargeable Li-Ion• Plan to use existing McLane housing• Modify cable mounts & retainer for ROV servicing (goal)• Profiling rate will be set by gearbox – not controllable – 25 cm/s (std), 40cm/s (goal)• Need to decide on profiling and charging times (4 days/4 hours looks achievable with reasonable size battery packs.)

CTD

Mooring Cable

Glass Spheres Transponder

Controller Housing

Guide Wheel and Cable Retainer

Drive Motor

Guide Wheel and Cable Retainer

ACM Sting CTD

ACM Electronics

ACM Sting

Page 25: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Float/Dock Configuration

MooringProfiler

CableTermination

SlipRing

Power & DataInductiveCoupler

ObservatoryPower & DataConnection

Profiler Power& Data

Transfer

MooringEOMCable

FLOAT

ProfilerCTD

ProfilerCurrentMeter

Page 26: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Coupler Primary & Secondary

Page 27: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Seafloor Node

Page 28: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Float SIIM

• ROV serviceable using “fork lift”

Page 29: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Deployment Frame

Page 30: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network
Page 31: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Inductive Coupler

Guide (attached to Float)

Primary Core

Compliant Mount

Secondary Core

Secondary Guide

Charger Cable

From S&K Engineering, Inc.

Concerns:- biofouling- robustness- holding profiler in place during charging

Page 32: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Inductive Coupler

Guide (attached to Float)

Primary Core

Secondary CoreGuide

Mooring cable

Secondary CoreAngled core interface

From S&K Engineering, Inc.

Page 33: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Power Budget Estimate

• Seafloor J- Infrastructure 10 W• Anchor Sensors 35 W• Sediment Trap Mooring (K. Smith) 50 W• Float Infrastructure 10 W• Float Sensors 40 W• Float Battery Trickle Charging 5 W• Conversion and Transmission Loss 50 W• ALOHA Supply 200 W

Page 34: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Sensors

• Float- ADCP (w/tilt, heading ?)

- CTDO – Dual

- Transmissometer

- CDOM

- Other optics ?

- Video/lights

- Argos transmitter ?

- Light ?

- Acoustic Transponder ?

- Engineering Sensors

mooring cable load cell ?

• Anchor

- CTDO – Dual

w/precision depth

- Transmissometer

- CDOM

- Other optics ?

- Video/lights ?

• Profiler- Stock sensors

CTDO – Dual

ACM

- Transmissometer

- CDOM

- Other optics ?

- Video/still camera/lights ?

Page 35: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Schedule

  03 CY2004 CY2005 CY2006

  Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Preliminary Design                          

Design Review                          

Detail Design                          

Procure & Fabricate                          

Assembly                          

Shop Test                          

Puget Sound Test                          

VENUS Deployment                          

VENUS Recovery                          

Critical Design Review                          

Final Procurement - Redesign                          

ALOHA Deployment                          

ALOHA Maintenance                          

ALOHA Recovery (?)                          

Page 36: Tim McGinnis* Bruce M. Howe University of Washington Applied Physics Lab * tmcginnis@apl.washington.edu 206-543-1346 ALOHA Observatory Moored Sensor Network

Outstanding Issues

• Need ALOHA Interface specs • Float depth of 200m – want to get below light (biology) & surface waves• Fishbite protection on the mooring wire would add a layer to the cable and complicate profiler movement. Do we need it?• Use “standard” Observatory ROV mateable connectors and instrument interface• Need good precision survey of site – water depth of mooring site•