thin film interference in ultra-thin layers -...

41
Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters Mikhail A. Kats Harvard University March 4, 2014 NanoLight [Benasque] School of Engineering and Applied Sciences

Upload: duongkhue

Post on 02-Feb-2018

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters

Mikhail A. Kats

Harvard University

March 4, 2014NanoLight [Benasque]

School of Engineering and Applied Sciences

Page 2: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Overview

Thin film interference in lossy films

Ultra-thin color coatings

Ultra-thin tunable perfect absorber in the infrared

Anomalous thermal emitter

Page 3: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Overview

Thin film interference in lossy films

Ultra-thin color coatings

Ultra-thin tunable perfect absorber in the infrared

Anomalous thermal emitter

Page 4: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Anti-reflection (AR) coating

One simple application: anti-reflective coatings

Simplest/thinnest conventional AR coating: quarter-wave film

(optimized for a particular wavelength)

𝑟12 =𝑛1 − 𝑛2𝑛1 + 𝑛2

Page 5: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Anti-reflection (AR) coating

One simple application: anti-reflective coatings

Simplest/thinnest conventional AR coating: quarter-wave film

(optimized for a particular wavelength)

Phasor diagram

Page 6: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Anti-reflection (AR) coating

One simple application: anti-reflective coatings

Simplest/thinnest conventional AR coating: quarter-wave film

(optimized for a particular wavelength)

Phasor diagram

Quarter-wavelength ≈ 50 nm to 150 nm in the visible

We don’t expect to see strong interference effects for

films much thinner than this

Page 7: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Interference in lossy films

What if the film becomes very lossy?

Reflection coefficient from the 1-2 interface becomes complex-valued

Phasor r0 points away from the real axis

Im[r]

Re[r]r0

[1]

[2]

[3]

Page 8: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Interference in lossy films

What if the film becomes very lossy?

Reflection coefficient from the 1-2 interface becomes complex-valued

Phasor r0 points away from the real axis

The reflection coefficient is also complex-valued at the 2-3 interface, and

even more-so if the substrate index is complex (but not ∞)

Im[r]

Re[r]r0

[1]

[2]

[3]

Page 9: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Interference in lossy films

What if the film becomes very lossy?

Reflection coefficient from the 1-2 interface becomes complex-valued

Phasor r0 points away from the real axis

The reflection coefficient is also complex-valued at the 2-3 interface, and

even more-so if the substrate index is complex (but not ∞)

Must account for both interface reflection phase shifts and gradual phase

accumulation via propagation

New interference condition loss cannot be treated as a

perturbation

Im[r]

Re[r]r0

[1]

[2]

[3]

Page 10: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Lossy dielectrics + finite metals

Metals with finite conductivity and lossy dielectrics have weird interface

reflection phase shifts (i. e. not 0 or π)

Different interference condition compared to the lossless case:

“resonance” can exist for films significantly thinner than λ/4

Takeaway message: it is possible to suppress reflection by using

interference in a system involving an ultra-thin, highly-lossy layer

Im[r]

Re[r]h << λ/4nr0

r1 r2

r3

M. A. Kats et al, APL 101, 221101 (2012)

Page 11: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Overview

Thin film interference in lossy films

Ultra-thin color coatings

Ultra-thin tunable perfect absorber in the infrared

Anomalous thermal emitter

Page 12: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Our first experimental system

Lossy dielectric Amorphous germanium

Lossy metal Gold

Ellipsometry Experiment

Page 13: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Our first experimental system

Lossy dielectric Amorphous germanium

Lossy metal Gold

Ellipsometry Experiment

Calculation Calculation

Page 14: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Our first experimental system

Lossy dielectric Amorphous germanium

Lossy metal Gold

Ellipsometry Experiment

Calculation Calculation

60 - 90% absorption within a 10-

20 nm layer of semiconductor

Continuous film; no patterning

Immediate applications in mind

Photodetectors

Solar cells

Localized heating

Note: absorption enhancement

without field enhancement

Page 15: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Coloring gold

“Colored” gold films by coating with 5-20 nm germanium films

much thinner than λ/4

Polished substrate

Rough substrate

(still works!)

Bare Au

Au + 7nm Ge

Au + 15nm Ge

M. A. Kats et al, Nat. Materials 12, 20 (2013)

Page 16: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Angle-dependent reflectivity spectra

Experiment Experiment

CalculationCalculation

Au + 15 nm of germanium

s-polarization p-polarization

Page 17: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Nanometer thickness optical coatings

Patterning ultra-thin coatings to create images, labels, etc

The difference between blue and purple, and purple and pink is

only ~4 nm continuous film of germanium (~ 8 atomic layers)!

Photo: L. Liu

M. A. Kats et al, Nat. Materials 12, 20 (2013)

Page 18: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Color gradients with ultra-thin coatings

Ge film of gradient thickness on gold (top section)

Overcoat with thin Al2O3 layers

Increased color contrast

Protection from the elements

Can be replaced by transparent electrode (e.g. ITO)

No Al2O3 layer

14 nm Al2O3 layer

28 nm Al2O3 layer

44 nm Al2O3 layer

Photograph Calculation

M. A. Kats et al, APL 103, 101104 (2013)

Page 19: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Additional layer of transparent dielectric

Au / 12 nm Ge / 44 nm Al2O3 overcoat R = 0 - 15% across the

entire visible spectrum with most of the light absorbed in the

germanium film

Experiment Calculation

M. A. Kats et al, APL 103, 101104 (2013)

Page 20: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Gold + 15 nm of Ge Equivalent material

Structural color masquerading as a pigment

θ

Page 21: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Gold + 15 nm of Ge

Structural color masquerading as a pigment

θ

Color by pigment

Page 22: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Gold + 15 nm of Ge

Structural color masquerading as a pigment

θ

Color by pigment

Page 23: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Gold + 15 nm of Ge

Structural color masquerading as a pigment

θ = 0˚

θ = 0˚

θ = 40˚

θ = 80˚

θ = 80˚

θ = 40˚

θ

Optically it is impossible to determine if you’re looking at a solid

material, a flat pigment, or a multi-layer system with ultra-thin films

Color by pigment

Thin film

Glossy pigment

Page 24: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Overview

Thin film interference in lossy films

Ultra-thin color coatings

Ultra-thin tunable perfect absorber in the infrared

Anomalous thermal emitter

Page 25: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Lossy dielectrics + finite metals

Metals with finite conductivity and lossy dielectrics have weird interface

reflection phase shifts (i. e. not 0 or π)

Resonance can exist for films significantly thinner than λ/4

To achieve full suppression of a wavelength, the film should be very

lossy

Takeaway message: it is possible to achieve large (even perfect)

absorption by using thin film interference in a system involving an

ultra-thin, highly-lossy layer

Im[r]

Re[r]h << λ/4nr0

r1 r2

r3

Page 26: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Making a tunable perfect absorber

Our experimental system comprises a thin (180 nm vs. λ ~ 5-15 μm) film

of vanadium dioxide (VO2) on sapphire

VO2 serves as highly-absorbing layer (tunable)

Sapphire is highly-reflecting due to phonon activity in the IR

Page 27: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Why sapphire?

In the IR, what reflectors give us non-trivial optical phase shifts upon

reflection?

At λ = 12 um, conventional metals do not work

nAu ~ 15 + 60i, nFe ~ 6 + 40i, etc all pretty much PEC-like..

Sapphire (crystalline Al2O3) fits the bill!

Multi-phonon activity in Sapphire

At 12 um, n ~ 0.1 + 0.8i

Gervais and Piriou, J. Phys. C (1974)

Page 28: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Vanadium dioxide (VO2)

VO2 is a correlated metal oxide which experiences phase change upon

heating to past ~70 °C (reversible, but with hysteresis)

Conductivity changes by >10,000 from the insulating to conducting state

Yang et al, Ann. Rev. Mat. Res. (2011)

VO2 samples from Ramanathan group @ Harvard

Page 29: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

VO2 in the transition region

What happens in the transition region of VO2?

Nanoscale islands of metal-phase VO2 begin to form within a background

of dielectric-phase VO2, which then grow and connect

The mixture can be viewed as a disordered, natural metamaterial

The ratio of co-existing phases can be controlled tunable medium

Qazilbash, Basov, et al, Science (2007)

Page 30: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Tunable perfect absorber

Temperature control of VO2 allows significant tuning of

its refractive index, and hence the sample reflectivity

Reflectivity tuning from ~80% to 0.25% at 11.6um

on/off ratio of more than 300

entire structure is simply 180nm of VO2 on sapphire

5 10 150

0.2

0.4

0.6

0.8

1

Wavelength (m)

Re

fle

ctivity

297K

343K

346K

347K

348K

351K

360K

M. A. Kats et al, APL 101, 221101 (2012)

Page 31: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Changing the transition temperature

Doping VO2 with tungsten (W) lower transition temperature

1% W incorporated into VO2 during growth perfect absorption

condition at ~50 °C rather than ~70 °C

2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

Increasing Temperature (Sample1261, 1%W @ 580C)

Wavelength, (m)

Re

fle

cta

nce

30C +

35C +

40C +

40.5C +

41C +

41.5C +

42C +

42.5C +

43C +

43.5C +

44C +

44.5C +

45C +

45.5C +

46C +

46.5C +

47C +

47.5C +

48C +

48.5C +

49C +

49.5C +

50C +

50.5C +

51C +

51.5C +

52C +

52.5C +

53C +

53.5C +

54C +

54.5C +

55C +

55.5C +

56C +

56.5C +

57C +

57.5C +

58C +

58.5C +

59C +

59.5C +

60C +

60.5C +

61C +

61.5C +

62C +

62.5C +

63C +

63.5C +

64C +

64.5C +

65C +

65.5C +

66C +

66.5C +

67C +

67.5C +

68C +

68.5C +

69C +

69.5C +

70C +

75C +

80C +

85C +

90C +

95C +

100C +

In collaboration with:

C. Ronning, J. Rensberg

H. Schmidt, I. Skorupa

Wavelength (µm)

Reflecta

nce

2 4 6 8 10 12 14 16

0

1

increasing T

Page 32: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Overview

Thin film interference in lossy films

Ultra-thin color coatings

Ultra-thin tunable perfect absorber in the infrared

Anomalous thermal emitter

Page 33: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

IR absorber in reverse: thermal emitter

Spectrum/intensity of thermal radiation emitted by an object is given by

Planck’s law:

Thermodynamic statement: Kirchhoff’s law of thermal radiation

Blackbody

contribution

emissivity

spectroscopic

wavenumber ( = f/c)

absorptivity

Page 34: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

IR absorber in reverse: thermal emitter

Spectrum/intensity of thermal radiation emitted by an object is given by

Planck’s law:

Thermodynamic statement: Kirchhoff’s law of thermal radiation

Our VO2/sapphire structure has temperature-dependent infrared absorptivity,

and hence its emissivity is expected to also vary with temperature

Anomalous behavior such as non-monotonic thermal emission with

temperature

Blackbody

contribution

emissivity

spectroscopic

wavenumber ( = f/c)

absorptivity

Page 35: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Thermal emitter: experimental setup

Data analysis must account for thermal emission from the detector and

optics, and the frequency-dependent response of the instrument

Can use a wafer blackened by candle soot as blackbody-like reference

(ε ≈ 0.96 in the IR)

Fourier transform infrared spectrometer (FTIR)

DTGS detectorsample

temp. controller

Page 36: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Thermal emitter: experimental results

Extracted spectral radiance (distribution of thermal emission)

Thermal emission peak @ “perfect absorption” condition

At some point emissivity surpasses our black soot reference

Total emitted IR light goes up, then down with increasing temperature

600 800 1000 1200 14000

1

2

3x 10

-3

wavenumber (cm-1

)

sp

ectr

al ra

dia

nce (

a.

u.)

50C black soot

50C VO2/sapphire

74.5C black soot

74.5C VO2/sapphire

100C black soot

100C VO2/sapphire

M. A. Kats et al, Physical Review X 3, 041004 (2013)

Page 37: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Thermal emitter: experimental results

Integrated emitted power over the 8-14 μm atmospheric transparency region

Multiple unusual features:

Local maximum in the emitted power

Negative differential thermal emittance over ~10°

Hysteresis (intrinsic to VO2)

40 60 80 100

0.4

0.6

0.8

1

1.2

Temperature (C)

Em

itte

d p

ow

er

(a.

u.)

heating

cooling

black soot

M. A. Kats et al, PRX 3, 041004 (2013)

Page 38: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Thermal emitter: experimental results

Integrated emitted power over the 8-14 μm atmospheric transparency region

Multiple unusual features:

Local maximum in the emitted power

Negative differential thermal emittance over ~10°

Hysteresis (intrinsic to VO2)

40 60 80 100

0.4

0.6

0.8

1

1.2

Temperature (C)

Em

itte

d p

ow

er

(a.

u.)

heating

cooling

black soot

M. A. Kats et al, PRX 3, 041004 (2013)

Design of IR emittance vs Temperature

Efficient temperature regulation

(passive or active)

Infrared camouflage

Page 39: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Summary

Described existence of strong optical interference in ultra-thin, highly-

absorbing films

Demonstrated ultra-thin optical interference coatings comprising lossy

semiconductor films on gold substrates

Large optical absorption within nanometer-thick layers

Thin film interference without iridescence

Demonstrated a tunable absorber in the infrared based on VO2 and

sapphire

Used the phase transition of VO2 as a tunable, disordered, “natural

metamaterial”

Demonstrated an anomalous thermal emitter

“Perfect” blackbody-like emission,

Negative differential thermal emittance

Page 40: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Acknowledgements and thanks!

Federico Capasso

Romain Blanchard

Shuyan Zhang

Patrice Genevet

Steve Byrnes

Deepika Sharma

Jiao Lin

Zheng Yang

Changhyun Ko

Shriram Ramanathan

Matthias Kolle

Joanna Aizenberg

Mumtaz Qazilbash (UCSD, WM)

Dmitri Basov (UCSD)

Page 41: Thin film interference in ultra-thin layers - benasque.orgbenasque.org/2014nanolight/talks_contr/043_benasque_coatings... · Thin film interference in ultra-thin layers: color coatings,

Thank you!