thermodynamical aspects in heavy ion reactions

19
Mauro Bruno Bologna University INFN-Bologna (Italy) G as Q uark-G luon P lasm a Nucleus D ensity T emperature 7 0 000 000 000° 3 000 000 000 000° 0 =25 0 000 000 T /cm 3 T critical Liquid C oexisten ce H.Jaqaman et al. PRC27(1983)2782 Thermodynamical aspects in heavy ion Thermodynamical aspects in heavy ion reactions reactions

Upload: crescent

Post on 04-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

H.Jaqaman et al. PRC27(1983)2782. Mauro Bruno. Bologna University. INFN-Bologna (Italy). Thermodynamical aspects in heavy ion reactions. Experimental Investigation of a van der Waals nuclear fluid-H.I. Collisions. Aims: study thermodynamics of nuclear systems - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Thermodynamical aspects in heavy ion reactions

Mauro Bruno Bologna University

INFN-Bologna (Italy)

Gas

Quark-Gluon Plasma

Nucleus Density

Tem

per

atu

re

70 0

00 0

00 0

00°

30

00 0

00 0

00 0

00°

0=250 000 000 T/cm3

T critical

Liquid

Coexistence

H.Jaqaman et al. PRC27(1983)2782

Thermodynamical aspects in heavy ion Thermodynamical aspects in heavy ion reactionsreactions

Page 2: Thermodynamical aspects in heavy ion reactions

Experimental Investigation of a van Experimental Investigation of a van der Waals nuclear fluid-H.I. Collisionsder Waals nuclear fluid-H.I. Collisions

Aims:Aims: study thermodynamics of nuclear systems study thermodynamics of nuclear systems (finite, charged, 2 components)(finite, charged, 2 components) observables to identify phase transitionobservables to identify phase transition

Study:Study: systems at different excitation energies systems at different excitation energies peripheral reactions – excitation functionperipheral reactions – excitation function central reactions – well defined excitation central reactions – well defined excitation energyenergy

Starting from measured reaction products get information Starting from measured reaction products get information on:on:

primary partitionsprimary partitions equilibriumequilibrium critical behaviourcritical behaviour thermodynamical signalsthermodynamical signals

Page 3: Thermodynamical aspects in heavy ion reactions

Heavy Ion collisions at intermediate Heavy Ion collisions at intermediate energiesenergies

Vacuum (10-6 mb)

~100 fm/c

DDEETTEECCTTOORR

~20 fm/c(10-22 sec)

~100÷1000 fm/c

~1014 fm/c

Expansion

nnni

M

ii kmMkmmE

)(*1

0

The decaying system can be identified and its calorimetric excitation energy results from the energy balance:

4device

Page 4: Thermodynamical aspects in heavy ion reactions

Central collisions: one source

),(i,j wppT kM

k

k

j

k

iij31

1

)()()(

Central collisionsAu+C Au+Cu Au+Cu Au+Au*=1.5 *=3 *=4.5 *=7 A.MeV

Nucl.Phys.A 724 (2003) 455

25 AMeV 35 AMeVCentral collisions

Au+C Au+Cu Au+Cu Au+Au*=1.5 *=3 *=4.5 *=7 A.MeV

Nucl.Phys.A 724 (2003) 455

Central collisionsAu+C Au+Cu Au+Cu Au+Au*=1.5 *=3 *=4.5 *=7 A.MeV

Nucl.Phys.A 724 (2003) 455

25 AMeV 35 AMeV

Multics-NPA724 (2003) 329

Multics-NPA650 (1999) 329Peripheral (binary)

collisions: two sources

Sorting the events: multidimensional Sorting the events: multidimensional analysisanalysisHow to assess the How to assess the

source source equilibration ? equilibration ? •isotropy•uniform population of the phase space•independence on the entrance channel•scaling

Page 5: Thermodynamical aspects in heavy ion reactions

Sources at same Sources at same **: liquid, vapor & droplets: liquid, vapor & droplets

Multics: Central from Z0=85 to Z0=100 (lines)Multics: Au peripheral Z0=79 (symbols)

Isis: π+Au 8 GeV/c NPA734(2004)487Fasa: p,α+Au 4-14 GeV NPA709(2002)392

A.Bonasera, Phys.World Feb.1999A.Bonasera, Phys.World Feb.1999

Au nuclei: Multics-NPA650(1999)329H clusters: B.Farizon, PRL81(1999)4108

Is the multifragmentation a thermal critical Is the multifragmentation a thermal critical phenomenon?phenomenon?

Z-2.1

Page 6: Thermodynamical aspects in heavy ion reactions

Au Liquid-Gas

c eV

IsIs PRL2002

J.Finn et al PRL1982

p+Xe 80-350 GeV

A-2.64nA=q0A-exp(- c0A) T

Fisher 1967Multics NPA724 (2003) 455

Power-laws are free of scalesAll the information falls on a single curve

Scaled yield: nA/(q0A-Scaled temperature: A/T

EoS PRC2003

Critical Critical exponents exponents

from from moment moment analysisanalysis m1 = ∑nss ~ |ε|-β

m2 = ∑nss2 ~ |ε|-γ

mk = ∑nssk ~ |ε| (τ-1-k)/σ

σ= (τ-2)/β

Self similarity and scalingSelf similarity and scaling

NO: The system is finite: power-laws are found at all densities inside the coexistence region

(Lattice-gas)

Can we conclude that the system reached the critical Can we conclude that the system reached the critical point?point?

Page 7: Thermodynamical aspects in heavy ion reactions

energy

1

10

100

0.1pro

bab

ility

energy

1

10

100

0.1pro

babili

ty

Canonical thermodynamicsCanonical thermodynamicsLattice-gas theoryLattice-gas theory

Liquid

Liquid

Gas

Gas

Infinite System

FiniteSystem

The transition is smoothed

two states populated at the same temperature

F.Gulminelli et al. PRL91(2003)202701Experimentally

Page 8: Thermodynamical aspects in heavy ion reactions

Microcanonical thermodynamics of finite Microcanonical thermodynamics of finite systemssystems

We can back-trace from data •the average volume (ρ) of the system

E*= Econfig + Ekin

E*= Ecoul(V)+Qv+ Eint(T)+Etr(T)

Events sorted as a function of E* (calorimetry)

•the temperature T

under the constraint of energy conservationMultics-Nucl.Phys.A699(2002)795

Page 9: Thermodynamical aspects in heavy ion reactions

Early information from measured Early information from measured observables: average volumeobservables: average volume

Circles=Multics dataSquares=Coulomb trajectories

Page 10: Thermodynamical aspects in heavy ion reactions

Early information from measured Early information from measured observables : Temperatureobservables : Temperature

Isotope thermometer P.M.Milazzo,PRC58(1998) 953

Indra correlation dataN.Marie,PRC58(1998)256

<Ekin>=(3/2) <m-1>T+<aAIMF>T2 Multics-

NPA699(2002)795

1)2/3(

m

ET tr

T, Eint from independent measurements/methods

Liquid-drop

Aladin PRL1995

Page 11: Thermodynamical aspects in heavy ion reactions

Microcanonical heat capacity from Microcanonical heat capacity from fluctuationsfluctuations

E*=Econfig+Ekin (2config= 2

kin)

Ph.Chomaz , F.Gulminelli, NPA 647(1999) 153

Ekin = Etrasl(T)+Einternal(T)

Econfig =Qv+Ecoul(V)

The system being thermodynamically characterized:

Multics-PLB473 (2000) 219;NPA699 (2002) 795;NPA734 (2004) 512

Microcanonical fluctuationslarger than the canonical expectation?

Ckin/C = 1-2kin/2

can

where:

2can=T2Ckin=T2dEkin/dT

Page 12: Thermodynamical aspects in heavy ion reactions

Heat capacity from fluctuations Heat capacity from fluctuations

Grey area: peripheral collisions

Points: central collisions:

Indra: NPA699(2002)795

Au+C Au+Cu Au+Au

Multics:PLB473 (2000) 219NPA699 (2002) 795NPA734 (2004) 512

1-st order phase transition1-st order phase transition

Page 13: Thermodynamical aspects in heavy ion reactions

Au Liquid-Gas

c eV

Liquid-gas phase transition: is the game Liquid-gas phase transition: is the game over? over?

Critical behavior inside the coexistence region

Liquid-dropZ

B

I

GAsym 12

Page 14: Thermodynamical aspects in heavy ion reactions

What is left for future measurements? What is left for future measurements? COINCIDENT EXPERIMENTAL INFORMATIONCOINCIDENT EXPERIMENTAL INFORMATION

Multics E1=20.3 E2=6.50.7Isis E1=2.5 E2 =7.Indra E2=6.0.5

Coincident experimental information are needed on:•critical partitioning of the system, fluctuations•calorimetric excitation energy•isotopic temperature•proximity of the decay products

4π mass and charge detection !!

Multics NPA 2004

E*/A (A.MeV)

A better quantitative nuclear metrology of hot nuclei

Page 15: Thermodynamical aspects in heavy ion reactions

What is left for future What is left for future measurements?measurements?an extra dimension an extra dimension of the EoSof the EoS 2-nd generation devices and

exotic beams are needed, to fully investigate the phase transition

by changing:•the Coulomb properties •the isospin content (N/Z) of the fragmenting source

N=Z

J.Besprosvany and S.Levit - PLB 217 (1989) 1

T reaches a saturation at multifragmentation The saturation value decreases for increasing size

Proton rich nuclei (A≈100): vanishing limiting temperature

Page 16: Thermodynamical aspects in heavy ion reactions

Starting from the liquid side EStarting from the liquid side EPP/A/APP < 25 A MeV < 25 A MeV AAP+TP+T~100 ~100

(Laboratori Nazionali di Legnaro-INFN-Italy)(Laboratori Nazionali di Legnaro-INFN-Italy)

•Low energy thresholds (ionization chambers as ΔE)•High granularity: 400 ΔE-E telescopes 4o-150o

•A identification (1<=Z<=8) up to 90o

•Digital electronics for CsI pulse-shape discrimination (A identification Z<=4)

Side Isotope Arraynucl-ex collaboration: garfield apparatusnucl-ex collaboration: garfield apparatus

Page 17: Thermodynamical aspects in heavy ion reactions

Experiments with n-rich/poor systemsExperiments with n-rich/poor systems 3232S+S+5858Ni and Ni and 3232S+S+6464Ni 14.5 AMeVNi 14.5 AMeV

nucl-ex collaboration&garfieldnucl-ex collaboration&garfield

Page 18: Thermodynamical aspects in heavy ion reactions

Experiments with n-rich/poor systemsExperiments with n-rich/poor systems 3232S+S+5858Ni and Ni and 3232S+S+6464Ni 14.5 AMeVNi 14.5 AMeV

3-IMF events3-IMF events

Tiso ≈ 3.5 MeV

Before concluding about the temperature:thermodynamical characterization of the source is neededisotope emission time scales have to be checked through correlation functions (intensity interferometry)

α-α

p-Li7 d-α

nucl-ex collaboration&garfieldnucl-ex collaboration&garfield

Page 19: Thermodynamical aspects in heavy ion reactions

1+

R(

q)

ConclusionsConclusions The physics of hot nuclei: a unique laboratory

• for the thermodynamics of finite, charged, 2-component systems• for a quantitative nuclear metrology• for interdisciplinary connections

Multics E1=20.3 E2=6.50.7Isis E1=2.5 E2 =7.Indra E2=6.0.5

We need: • 4 mass and charge detection• 20-50 A.MeV radioactive beams

Multics NPA 2004

E*/A (A.MeV)

1+

R(

q)

nucl-ex collaboration&garfieldnucl-ex collaboration&garfield