thermal conductivity database of various structural carbon ... · thermal conductivity values are...

96
NASA Technical Memorandum 4787 Thermal Conductivity Database of Various Structural Carbon-Carbon Composite Materials Craig W. Ohlhorst, Wallace L. Vaughn, Philip O. Ransone, and Hwa-Tsu Tsou Langley Research Center Hampton, Virginia National Aeronautics and Space Administration Langley Research Center • Hampton, Virginia 23681-2199 November 1997 https://ntrs.nasa.gov/search.jsp?R=19970041399 2020-03-21T22:59:18+00:00Z

Upload: others

Post on 17-Mar-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

NASA Technical Memorandum 4787

Thermal Conductivity Database of VariousStructural Carbon-Carbon Composite Materials

Craig W. Ohlhorst, Wallace L. Vaughn, Philip O. Ransone, and Hwa-Tsu Tsou

Langley Research Center • Hampton, Virginia

National Aeronautics and Space AdministrationLangley Research Center • Hampton, Virginia 23681-2199

November 1997

https://ntrs.nasa.gov/search.jsp?R=19970041399 2020-03-21T22:59:18+00:00Z

Page 2: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

The use of trademarks or names of manufacturers in this report is for

accurate reporting and does not constitute an official endorsement,

either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

Available electronically at the following URL address: http://techreports.larc.nasa.gov/ltrs/ltrs.html

Printed copies available from the following:

NASA Center for AeroSpace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

Page 3: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

Contents

Abbreviations ..................................................................... v

Abstract .......................................................................... 1

Introduction ....................................................................... 1

Experimental Procedures ............................................................. l

Results ........................................................................... 3

Concluding Remarks ................................................................ 3

References ........................................................................ 3

Tables ........................................................................... 4

Figures .......................................................................... 33

.o.III

Page 4: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity
Page 5: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

Abbreviations

C-C

CCAT

CVD

CVI

Condit

FAW

fab

HSW

HT

ip

LaRC

LoPIC

Max

orth

PPC

t-t-t

temp

3-D

carbon-carbon composites

Carbon-Carbon Advanced Technologies

chemical vapor deposition

chemical vapor infiltration

conditioning

fabric areal weight

fabrication

harness satin weave

heat treatment

in-plane

Langley Research Center

Low-pressure Pitch Impregnation and Carbonization

maximum

orthogonal

preceramic polymer coating

through-the-thickness

temperature

three-dimensional

Page 6: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity
Page 7: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

Abstract

Advanced thermal protection materials envisioned for use on future hypersonic

vehicles will likely be subjected to temperatures in excess of 1811 K (2800°F) and,

therefore, will require the rapid conduction of heat away from the stagnation regions

of wing leading edges, the nose cap area, and from engine inlet and exhaust areas.

Carbon-carbon composite materials are candidates for use in advanced thermal

protection systems. For design purposes, high temperature thermophysical propertydata are required, but a search of the literature found little thermal conductivity data

for carbon-carbon materials above 1255 K (1800°F). Because a need was recognized

for in-plane and through-the-thickness thermal conductivity data for carbon-carbon

composite materials over a wide temperature range, Langley Research Center

(LaRC) embarked on an effort to compile a consistent set of thermal conductivity

values from room temperature to 1922 K (3000°F) for carbon-carbon composite

materials on hand at LaRC for which the precursor materials and thermal processing

history were known. This report documents the thermal conductivity data gener-

ated for these materials. In-plane thermal conductivity values range from 10

to 233 W/m-K, whereas through-the-thickness values range from 2 to 21 W/m-K.

Introduction

Advanced thermal protection systems envisioned for

use on future hypersonic vehicles will likely be subjected

to temperatures in excess of 1811 K and, therefore, willrequire the rapid conduction of heat away from the stag-

nation regions of wing leading edges, the nose cap area,

and from engine inlet and exhaust areas. Carbon-carbon

(C-C) composite materials are lightweight, retain their

strength at high temperatures, and have high and tailor-

able thermal conductivity. These characteristics make

them attractive candidates as advanced thermal systemmaterials.

Carbon-carbon composites comprise a family of

materials having a carbon matrix reinforced with carbon

fibers. A large variety of both fibers and matrix precursor

materials is used. The choice of precursor materials andthe thermal processing used to fabricate the composites

are major factors which determine the thermophysical

properties of the materials. Availability of this informa-

tion enables the user (designer or researcher) to better

utilize the thermophysical property data and allows for

more meaningful comparisons between data sets. A

search of the literature found little thermal conductivitydata for C-C materials above 1255 K. In some instances,

thermal conductivity data were reported, but an adequate

description of the precursor materials and the thermal

processing history was not reported.

Because a need was recognized for in-plane and

through-the-thickness thermal conductivity data for C-C

composite materials over a wide temperature range,

Langley Research Center (LaRC) embarked on an effort

to compile a consistent set of thermal conductivity values

from room temperature to 1922 K for C-C composite

materials on hand at LaRC for which the precursor mate-

rials and thermal processing history were known. This

report documents the thermal conductivity data gener-ated for these materials.

Experimental Procedures

Table 1 gives a description of the 28 materials for

which thermal diffusivity measurements were made and

reported in this report. All the materials were derived

from previous studies aimed at improving mechanical

properties and/or oxidation resistance. Material speci-

mens 1 through 10 and 16 through 18 were fabricated to

investigate the effects of different reinforcements and

different densification techniques on mechanical proper-

ties. Material specimens 11 through 15 were fabricated to

explore the benefits of candidate substrate oxidation

inhibitors and coating types. Material specimens 19

through 26 were fabricated to investigate the effects of

chemical vapor infiltration (CVI) processing parameterson the thermal conductivity and mechanical properties of

carbon-carbon composites. Material specimens 27and 28 were fabricated as candidate materials for a ther-

mal shield on a proposed NASA Solar Probe Spacecraft.

The source of each material is in the second column

of table 1. The fiber type and tow size are in the third col-umn. Most of the materials were made with Amoco

T-300 fiber. Two materials were made with Amoco T-50

fiber, four were made with Celanese Celion fiber, andtwo were made with Mitsubishi Kasel DIALEAD K321

fiber. All specimens except the four that were made withCelion fibers were constructed by using an 8 harness

satin weave (8HSW) fabric. The number of tows per inch

in both the warp and fill direction is given. Material spec-

imens 16, 17, and 18 are stitched panels. A detailed

description of their construction is given in reference I.The weave construction for the materials made with the

Celion fiber were 3-D orthogonal. A detailed description

of the construction of these four material panels (material

Page 8: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

specimens7 through10)is givenin reference2. ThelayupforallmaterialsexceptthosemadewiththeCelionfiberwas0/90°, andmostof themwere7- or 8-plylaminates.

All thematerialswereinitially preparedby pre-preggingthefabric/3-Dpreformswithaphenolicresinandmoldingintocarbon-phenoliccomposites.Thephe-nolicresinwasthenconvertedintothecarbonmatrixbyinert-environmentpyrolysis.A varietyof densificationmethodswasusedtoincreasethedensitiesof thesecom-positesto desiredlevels.Phenolicresinwasthematrixfor aboutone-thirdthematerials.CVI-depositedpyro-lyticcarbonwasthematrixforanotherthird.TwoRohr,Inc., densificationprocesses,designatedby themas"Low-pressurePitchImpregnationandCarbonization(LoPIC)"and"hybrid,"wereusedontheremainingthirdof thematerials.In theLoPICprocess,bothphenolicresinandpitchareusedasmatrixmaterial.Thehybridprocessis a combinationof usingCVI and LoPICprocesses.

Thefiberheattreatmenttemperatureandmaximumcompositefabricationtemperaturearealsogivenin thetable.For materialspecimens1 through18,thefabrichadheattreatmenttemperaturesof 2273K exceptthethreemadeby theBoeingCompanyandRohrwhichwereheattreatedat 2423K. Themaximumcompositefabricationtemperaturewaseither1173K or 1923Kexceptfor specimen15;thismaterialhadbeencoatedata temperatureof about2033K. In orderto geta moredirectcomparisonof resultsbetweentheuncoatedmate-rialsin theoriginalsetof 18,thedecisionwasmadethatthe finishedcompositematerials(1-10 and 16-18)shouldall beconditionedtothesamefinaltemperature.Thefinishedcompositeswereheatedto thefiberheattreatmenttemperatureof 2273K. None of the commer-

cial materials (11 through 15) were conditioned, since

the thermophysical property data would not be represen-tative of off-the-shelve commercial material. The fiber

heat treatment temperature for material specimens 19

through 26 was 2623 K and the CVI densification was

done at 1323 K. The fibers in both material specimens 27and 28 were heat treated to 2273 K. Material 27 had a

maximum composite fabrication temperature of 2373 K,

whereas material 28 had a maximum composite fabrica-tion temperature of 2973 K.

The tenth column in table 1 indicates whether the

material contained inhibitors and/or had been coated.

The three Boeing/Rohr materials are the only ones to

have inhibitors. The nomenclature of 0.2 FAW desig-

nates 20 percent by fabric areal weight. Two of the

Boeing/Rohr materials (12 and 13) and material 15 arethe only three coated materials. The next to last column

lists the direction in which the thermophysical properties

were measured. Coated materials were only measured in

the through-the-thickness direction for reasons discussed

in the next paragraph. The last column gives additionalinformation on the construction of the 3-D and stitchedmaterials.

Material specimens were provided to D.P.H.

Hasselman at the Virginia Polytechnic Institute and State

University for thermal diffusivity characterization. The

thermal diffusivity was measured by the flash diffusivity

method, which basically consists of subjecting one side

of a sample to a single laser flash and then monitoring

the transient temperature response on the other side

(refs. 3 and 4). A round specimen, 0.45 inch in diameter,

was used for through-the-thickness direction measure-

ments. For in-plane measurements, a square specimen

was used. This square specimen was fabricated by cut-

ting rectangular pieces 0.118 inch wide by 0.340 inch

high and then stacking sufficient pieces together in the

thickness direction to make the stack approximately

0.340 inch thick. In-plane diffusivity measurements werenot made on the three coated materials because the stack-

ing of the rectangular pieces required for the in-planespecimen would have left columns of coating within thestacked thickness and thus would have invalidated the

measurement. Data were taken in increments of approxi-

mately 373 K from room temperature to 1938 K for

material specimens 1 through 26 and to 2448 K for mate-

rial specimens 27 and 28. The data reported by

Hasselman to LaRC were temperature and thermaldiffusivity.

The thermal conductivity k of a material is related to

its thermal diffusivity data by the following equation(ref. 4):

k = pO_Cp

where p is the density; ¢t, the thermal diffusivity; and Cp,the heat capacity (specific heat). Bulk density measure-

ments at room temperature were obtained from mass and

volume measurements. Although the density of carbon-

carbon material does change slightly with temperature,

this change was neglected because only minimal error isintroduced. Carbon-carbon composites made with T-300

fibers have an in-plane coefficient of thermal expansion(CTE) of 0.56 x 10-6/K and through-the-thickness CTE

of 2.04 x 10-6/K values from 811 K to 1366 K (ref. 5).

With the use of these CTE values, the volume of the

material would increase a maximum of about 1.5 percent

from room temperature to 1922 K. This volume change

was considered to be sufficiently small so that density

could be taken as a constant for the thermal conductivity

calculations reported in this paper.

Experimental values of the specific heat of graphiticmaterials taken from figure 2B-1 of reference 6 are

Page 9: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

plottedin figure1.Thesedatawerecurvefittedwiththefollowingempiricalequation:

cp = -38.0528 + 0.041618T + 741.254/T

- 0.707584,4rT + 19.0915 logl0T J/g-K

where T is temperature in kelvins.

The values of specific heat reported in this report

and subsequently used to calculate thermal conductivity

were calculated by this equation. This equation cannot be

used to calculate the specific heat for coated materials

because it does not take into account the coating. Since

specific heat was not experimentally measured, there are

no heat capacity data for the three coated materials; thus,

thermal conductivity values are not reported for thosematerials.

Results

Figures 2 and 3 summarize the thermal conductivity

results. Figure 2 shows the range of in-plane thermal

conductivity data for materials evaluated in this report,

and figure 3 shows the range of through-the-thickness

thermal conductivity data. The temperatures and corre-

sponding thermophysical property data for the individual

materials are shown in tables 2 through 29. Thermal dif-

fusivity as a function of temperature is plotted for all

materials (figs. 4 through 31). Values are given in both

square centimeters per second (cm2/s) and square feet

per hour (ft2/hr). Temperatures are shown in both kelvin

(K) and degrees Fahrenheit (°F). For uncoated materials,

both in-plane and through-the-thickness values are plot-

ted. For coated materials, only through-the-thickness val-

ues are shown because that was the only direction in

which measurements were made. For both in-plane andthrough-the-thickness directions, thermal diffusivity val-

ues are maximum at room temperature and decrease with

increasing temperature. Values are fairly fiat from 1200to 1900 K.

Thermal conductivity values for each of the

uncoated materials are plotted in figures 32 through 56.

Thermal conductivity in units of both watts per meter-kelvin (W/m-K) and British thermal units per hour-feet-

degrees Fahrenheit (Btu/hr-ft-°F) are given as a function

of temperature in both kelvins and degrees Fahrenheit.

For the in-plane direction, maximum thermal conductiv-

ity values ranged from 20 to 68 W/m-K for all materials

except that of material 28, which had a maximum value

of 233 W/m-K. For the through-the-thickness direction,

maximum thermal conductivity values ranged from 3

to 12 W/m-K for all materials except that of material 28which had a maximum value of 21 W/m-K. In general

maximum thermal conductvity occurred around 500 K.

As with the thermal diffusivity values, thermal conduc-

tivity values were fairly fiat from 1200 to 1900 K.

Concluding Remarks

Carbon-carbon composite materials are candidates

for use in advanced thermal protection systems. Because

a need was recognized for in-plane and through-the-

thickness thermal conductivity data for carbon-carbon

composite materials over a wide temperature range,Langley Research Center (LaRC) embarked on an effort

to compile a consistent set of thermal conductivity values

from room temperature to 1922 K (3000°F) for carbon-

carbon composite materials on hand at LaRC for which

the precursor materials and thermal processing history

were known. This report documents the thermal conduc-

tivity data generated for these materials. In-plane thermal

conductivity values range from 10 to 233 W/m-K,

whereas through-the-thickness values range from 2to 21 W/m-K.

NASA Langley Research Center

Hampton, VA 23681-2199

July 16, 1997

References

I.

2.

3.

4.

5.

Yamaki, Y. R.; Ransone, P. O.; and Maahs, Howard G.:

Investigation of Stitching as a Method of lnterlaminar

Reinforcement in Thin Carbon-Carbon Composites. The 16th

Conference on Metal Matrix, Carbon, and Ceramic Matrix

Composites, John D. Buckley, ed., NASA CP-3175, Part l,

1992, pp. 367-386.

6.

Ransone, Philip O.; Spivack, Bruce D.; and Maahs, HowardG.: Mechanical Properties of Thin 3-D Reinforced Carbon-Carbon Composites Densified With Different Matrices. The16th Conference on Metal Matrix, Carbon, and Ceramic

Matrix Composites, John D. Buckley, ed., NASA CP-3175,

Part 1, 1992, pp. 347-366.

Tawil, H.; Bentsen, L. D.; Baskaran, S.; and Hasselman,

D. P. H.: Thermal Diffusivity of Chemically Vapour Deposited

Silicon Carbide Reinforced With Silicon Carbide or Carbon

Fibres. J. Mater. Sci., vol. 20, Sept. 1985, pp. 3201-3212.

Parker, W. J.; Jenkins, R. J.; Butler, C. P.; and Abbott, G. L.:

Flash Method of Determining Thermal Diffusivity, Heat

Capacity, and Thermal Conductivity. J. Appl. Phys., vol. 32,

no. 9, Sept. 1961, pp. 1679-1684.

Ohihorst, Craig W.; and Ransone, Philip O.: Effects ofThermal Cycling on Thermal Expansion and lnterlaminar

Mechanical Properties of Advanced Carbon-Carbon

Composites. NASA TP-2734, 1987.

Touioukian, Y. S.; and Buyco, E. H.: Thermophysical

Properties of Manet Volume 5--Specific Heat, Nonmetallic

Solids. Y. S. Touloukian, ed., IFI/Plenum, 1970.

3

Page 10: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

EEO

(,J

o _ o o

¢.)°_

i

0

0

Z

0

Z

0

0Z

0 0 0 0 O 0

Z Z Z Z Z Z Z _ _c5 c5 c5

O

0Z

t'--¢'4(-q

t'-¢.,qt"q

r,-.¢,q¢.q

t'.-- t,-- t'.-- t',,- t..,- t'--t--q ¢-q _ ¢'q t."q t.-q¢,q ¢,q t',,,i t"q ('--,I

t.-.,¢qeq

,o

o

Z0

Z Z0

Z

t'_0",

t"q t'.- ¢"q r'-- _¢._t-Qo',

¢'-,I ¢,qo'x

¢.qo',

r--

c_C:

..,._

t"q

t"-- t'--¢-q¢,.q

r-,- t'-,- r-- r'-- r'.,- t-,.-¢'q t-'q ¢'q t,'xl (.q¢-,,I £'q ¢'q t'q t"q t-'q

¢._t'-,-t"q

t"q

(',,I ¢.q

r--

t-q

o

c::o

t_

C_

_J

0

"1::

p..,

¢..) e) ¢,j. e.d.._ ._

t_ t_ t_ t_ _ t_ _ _ _ oo

0

oo ¢,,I

X

_t'_

r,_ X

0o("4

r_ X

oot'q

1_ t:: t:: t_0 0 0 0

r,_ x rm x x _ X

0

m,[-

o o o_ _ w w w w

<

t",l

4

Page 11: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

©

-d0r.,j

[.-,

EE0

E

t'_.O _, _m.I _ t'-.I

, "T' "m'"T' "T' "T'

{_ _.- _ z z z

c-O

t.=

e-

.-1 e" O

O

=_e

¢0

O

Z

O

OZ

O

OZ

O

OZ

O

OZ

O

Z

¢J

gZ

e% e_t_t'..I("4

e_t'.-

("4

c-O

Z

c;

OZ

e-.o

Z

c-oZ

c;

OZ

e-,oZ

_Dc-OZ

e_

t'-4

e_r'-- t_ r-- t-4

e_

e,h

e%t.N

e_

e,heqe_ e_

e,hD.-t'Ne'4

¢%r _

e-4t'N

e_ e__4_Dt'N

t",l

e'.l

t'N

t'N e-I

e%

¢'-1

o%

c;

Oe-

e'.Ca

.a=

e_

e-, V.(o

>(o

V.(0 (o

>(0

D'-

gt_

g g

X _.,o X X _X X X _,_ X

m4

X X X X

0z

Z

0Z

t_

>.

_'_ X

0z

Z

0Z

c_ X

0

0Z

0Z

m.l

,<

X

,-1

r.,j

,-1 .1,-1 .1 .1

'_ ... ,,-,

,-1

m.i

,-.1

r-.

E

Page 12: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

"a-t::;

°_0

r.a

,..a

0

1=

0

"-ac.,)

0

r4

[...,

0t.,a

"-a.E

"-a

E

[._,

E

"-a

6

Page 13: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

r-

©

er_

r_

0

r_

r_0

0

o

.......... , .........

E

0

Page 14: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-r_,.o

0c_

E-

r_°_

0

c_

¢)

..C=

0

E

c_

0

"0

o_

c_

o_

0

Page 15: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

£c_

_D

_U

C_

[..)

e_

C_

,.C

.c:

_5t'--

_L

0

C_

_L

>.,.C

o

E

QJm

0

E

C_

U.,o

i

%

o_

0C

Page 16: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

._

c_

°_m

0f_

J_

0

c_

C_

0

-_

t_O

E-

Q

c_

?

° _

I0

Page 17: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

o_

c_

I!

Page 18: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

b_

r_

O

_w

.,..q

6

C_

0

0

Q6

[-

C_

i

C_

o_

o_

-,_ 0

12

Page 19: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

_2

_2

0

e_

_J(J

,.c:

6

_L0

q_0

C_

_L

_D

CL0

_J

cLE

L_o

i

?=

o_

o_

0

7_

o_

13

Page 20: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

C)

¢)

r-¢)

C)

¢,I

e-.

&

0

¢)

_ E

0

¢)

[-

I

c_

o_

?

_h

14

Page 21: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

0

_J

C_

¢S

0

E

¢)

E-

OcJ_

c_

o_

I

15

Page 22: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

°cJ_

0

0

0

0

°_

0

o_

o_

L_-It'_'_''_" O0_l_1_"_O0_'_'_t'_

?

0

16

Page 23: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

._c_

P_

00

C_

0

_J

_P

0

E

E

%

. ._ . ._ . ._ . ._

._

L_o

?

_D

t_

w_

0

t-

C_

i_

E

o___ _o

o_'_'_ _ _ [_ _ _ _ _ _'_ l,_ _ _ _ t_ t_.

_D

o_

?

.,.._

17

Page 24: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

0

J_

<

0

_L0

E_

0

E

%e_

o_

?

°,,._

_t

18

Page 25: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

c_

o_

0t-_D

c_

E-<(J_J

0

_J

E-

0

.o

0

_J

_6

E-

E-

¢"4

%

o_

o_

0

tr_

E

19

Page 26: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

"r_

o.)

0

ce_

0r_

._

0

C_

e-

o

¢)

r.:

0

E

o

?

0

?.0

2O

Page 27: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

"r_

0

c_

c_

0

c_

0

E-

°_

0

r_

[-

o_i

_E

o_

o_

0

21

Page 28: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

0

..c:

u°_

0

0

.Z=

0

c_

0

o

_0 _, _'_"q_'_.C_

00

oO

22

Page 29: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

"0_J

_JC_

>_JZ_

_J

.J

,.J

0

C_

0

0

(J

E_

o

E

[-

O _

23

Page 30: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

0

0

,.0

0

E

_ ,_",

gE _

24

Page 31: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-r-£

¢)L_

e.,¢)

>._J

,.C_P

,.C

_J

q.0

0

C_

¢)m

_s

0

E

¢)

o_i

_Q

o_

o_

0

¢)

_Dr-

25

Page 32: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-r-

o=

C_

E-

cJ

0

C_

_J

..c:C_0

_J

E_

o_=,'

"0

(J

E#

o_

O

¢J

i

c,o Ox (-qer_

26

Page 33: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

_J

"0

C_

_J

C_

C_

_J

0

(J

C_C_

E

C_cj

o_

o_"0

R

C_

o_

?

©

_J

C_

_ _ _O_ _

2?

Page 34: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

i-

E-

_J

0

c_

0

O

EQ_

E-

O

"cs_

o_i

o_

o_

f_

_ t_t_c_ t_ _

r-c_

28

Page 35: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

f-

>(J

r-(J

©

p-,

£

(.)

r_

0

_6C_

0

"-4

E

o_

E

r_

o_i

i

r_ _

r_

o_

0

(.)

_ 0

_ ._ ._ ._ ._ ._ ..... _ • • ._ •

__-__

t_

29

Page 36: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

gE_

0

c_

0

0

O

o_

E

o_

o_

o_

t_

°_

3O

Page 37: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

'r_¢)

cJ_

r_

_J

0

o

C)

o6

Oc)

o_

E

i

I"--

31

Page 38: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-r-

_J

0

_J

Q

c.J

Q

E-

0

o I

¢)

r_

%

o_

?

0

32

Page 39: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

vi

t_

Q.

O

"1-

.3200 1000 3000

Temperature, K

Figure 1. Specific heat for carbon-graphite from TPRC (Thermophysical Properties Research Center) data (ref. 6).

33

Page 40: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

.--

.>o

t'-

oo

e-l'-"

-10250

490 990

Temperature, °F

1490 1990 2490 2990 3490

200

150

100

50

3990

140

120

1O0

80

60

40

2O

0 0250 500 750 1000 1250 1500 1750 2000 2250 2500

Temperature, K

Figure 2. Range of in-plane thermal conductivity values for materials reported in paper.

ii° m

d.t-"

t_

"6

t-O0

e.-F-

34

Page 41: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

._>

t-O0

o_

E¢--

t-

Temperature, °F-10 490 990 1490 1990 2490 2990 3490 3990

45 '' '' I _ _ '' I _ _ '' I '' '' I _ _ '' I '' '' I '' '' I '' ' ' I

- 25

40

35 20

30

25 15

20

15

lO

LL

o I

t-

._>

"O

c-O0

10 --

IDe-

l.--

5

0 0

250 500 750 1000 1250 1500 1750 2000 2250 2500

Temperature, K

Figure 3. Range of through-the-thickness thermal conductivity values for materials reported in paper.

35

Page 42: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.30

.25

.20

E0

ffl-, .15

e-_- .10

.05

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

Specimen 1

In-plane

- t-t-t

1.0

.8

.6 '_

.:E_"10

m

EO)

.4

.2

0 .... t .... I , , , , I , , , , I .... I .... I , , = t 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 4. Thermal diffusivity versus temperature for LaRC panel 7A, which is T-300 3k phenolic densified material.

36

Page 43: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

.

Specimen 2 1.0

.8

L'M

._z2

._>.6 m

"1o

=EQ)

.4 "¢:I--

.2

0 , , , , I .... I , , , J I i , J , I , , , , I , , , , I , , , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 5. Thermal diffusivity versus temperature for LaRC panel 7B, which is T-300 3k LoPIC densified material.

37

Page 44: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.30

.25

.20(3

"-_ .15

_-- .10

.05

Temperature, °F

490 990 1490 1990 2490 2990

_ _ _ I ' _ _ _ 1 _ _ ' ' I _ _ _ _ I .... I _ ' _ ' I '-

Specimen 3 1.0

.8

c_

.6 "_:3=1=no

LE

.4

.2

0 , , , , 1 , , , , I .... I , , , i I i i i = I i = i i I i i i i 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 6. Thermal diffusivity versus temperature for LaRC panel 6, which is T-300 3k hybrid densified material.

38

Page 45: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1(30

25

.20CM

E0

.__ffl

_ .15"0

f_

r"_- .10

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ' _ ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

Specimen 4

In-plane

0 , , , , I , , , , I , , _ , I .... I .... I .... I ....

250 500 750 1500 1750

10

1000 1250

Temperature, K

8

>.6 cn

:E_

EG)

4 5

.2

0

2000

Figure 7. Thermal diffusivity versus temperature for LaRC panel 7C, which is T-300 3k CVI densified material.

39

Page 46: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.30

.25

.20o,I

Et3

._>-, .15

"o

e.-_- .10

.05

Temperature, °F

490 990 1490

' ' ' .' I ' ' ' ' I ' ' ' '

1990 2490 2990

I ' ' ' ' I ' ' ' ' I '-

Specimen 5 1.0

.8

.E¢q¢:

.>.6 ¢n

"o

E

.4

.2

0 .... I , , , j I , , , , I , , , , I , , , , I , , , , I , , , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 8. Thermal diffusivity versus temperature for LaRC panel 1P, which is T-50 3k phenolic densified material.

4O

Page 47: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-0.30

.25

.20

"_ .15

Et-}- .10

.05

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

Specimen 6 1.0

.8

.E

°m>

.6 "_

a_

.E

.4

.2

0 .... I .... I , , , i I _ , J , I i , , , I , , , , I , L , = 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 9. Thermal diffusivity versus temperature for LaRC panel 9H, which is T-50 3k hybrid densified material.

41

Page 48: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.30

.25

"_= .15

#-- .io

.05

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ; ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

Specimen 7

f

1.0

.8

>.6 _

.-I=t=-o

_)

.4

.2

0 .... I , , , , I _ = , , I , , , , I J , , , I .... I , , , , 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

Figure 10. Thermal diffusivity versus temperature for LaRC panel 10-1, which is Celion 3k phenolic densified material.

42

Page 49: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.30

.25

.20

Eo

'3 .15

.10

.05

0

250

Temperature, °F

490 990 1490 1990 2490 2990

i ' ' ' ' f _ ' ' _ I ' _ _ ' I ' ' ' ' I ' ' ' ' I _-

Specimen 8 1.0

.8

c_

>.6 "_

It:"o

t_

EQ)

.4

.2

.... I .... I i i i i I i i i i I i i i i I i i i i I i J J t 0

500 750 1500 1750 20001000 1250

Temperature, K

Figure 11. Thermal diffusivity versus temperature for LaRC panel 10-3, which is Celion 3k LoPIC densified material.

43

Page 50: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

.30

.25

S

"_ .15

.10

.05

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' f _ _ I _ f ' _ 1 ' _ _ _ 1 ' ' ' ' I _ ' ' ' I '-

Specimen 9 1.0

.8

.6 "_

"1o

(D

.4

.2

0 _ _ _ _ I _ , i i I i J i = I , J i i I J i i i t = , , , I .... 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 12. Thermal diffusivity versus temperature for LaRC panel 9-1, which is Celion 3k/2k phenolic densifiedmaterial.

44

Page 51: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

.30

.25

.20O_

EcJ

: .15

"0

¢-_- .10

0I I I I

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

Specimen 10

In-plane

0 J i t i I i , , , I .... I i i i i I A J i J I i L i i I , _ _ J

250 500 750 1500 1750

1.0

1000 1250

Temperature, K

.8

%

>.6 "_

m

E

.4 #__.

.2

0

2000

Figure 13. Thermal diffusivity versus temperature for LaRC panel 9-3, which is Celion 3k/2k LoPIC densified material.

45

Page 52: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.30

.25

.20

E(.)

-, .15

e--_- .10

.05

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' I ' ' ' ' I ' ' ' ' I ' ' _ ' I ' w , , I ' ' ' ' I '-

Specimen 11

In-plane

1.0

.8

z_.D>

.6 "_-I

"10

E_)

.4

.2

0 I J I J I J I I I I I I I I I = I , , I .... I .... I , , i , 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

Figure 14. Thermal diffusivity versus temperature for Boeing/Rohr T-300 lk hybrid densified material.

46

Page 53: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-ll.30

.25

.20

Eo

2-_ .15

"o

m

Ee.-_- .10

.05

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '

Specimen 12

_ t-t-t

1.0

.8

2.6 ca

"1o

EG)

.4

.2

0 , , J = I , J , , I , J _ , I , , , , I , , i , I t , L , I J J , J 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

Figure 15. Thermal diffusivity versus temperature for CVD-coated Boeing/Rohr T-300 1k hybrid densified material.

47

Page 54: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

.30

.25

.20O4

E

°_

-, .15

¢.._- .10

.O5

0

250

Temperature, °F

490 990 1490 1990 2490 2990

.... l ' ' ' ' I ' ' ' ' I .... I ' ' ' ' I ' ' _ ' I '-

Specimen 13

______-t-t

1.0

.8

p-oJ

>.6 "_

=::o_

"1o

(_

.4 .EI-

.2

.... I .... I , , , , I , , , , I , , , , I .... I , = i i 0

500 750 1500 1750 20001000 1250

Temperature, K

Figure 16. Thermal diffusivity versus temperature for PPC-coated Boeing/Rohr T-300 l k hybrid densified material.

48

Page 55: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.30

.25

.20OJ

E0

", .15

"0

E0e--

I- .10

.O5

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '

Specimen 14

In-plane

t-t-t

1.0

.8

OJ

.6 "_-s

"0

E.4 "¢:I-

.2

0 , , , , I , J , J I , , , , I , , , , I , , , , I , , , , I , , , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure l 7. Thermal diffusivity versus temperature for CCAT T-300 3k phenolic densified material.

49

Page 56: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.30

.25

.20E

._>03= .15

:==

Ee-_- .10

.05

Temperature, °F

490 990 1490 1990 2490 2990

.... I ' ' ' ' i ' ' ' ' I ' ' _ ' I ' ' ' ' I ' ' ' _ I '-

_ t-t-t

Specimen 15 1.0

.8

.>_.6 (n

'10

E

.4

.2

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 18. Thermal diffusivity versus temperature for Type III coated CCAT T-300 3k phenolic densified material.

5O

Page 57: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1(.30

.25

.20CM

Eo

"- .15

"o

e.-_- .10

.05

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

Specimen 16

In-plane

1.0

.8

(M

.I

.6 _:I="oI

E

.4 #__.

.2

0 .... I , a , , I , i , , I , , i , I , , L , I , , , , I _ , , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 19. Thermal diffusivity versus temperature for LaRC stitched panel 2, which is T-300 3k phenolic densifiedmaterial.

51

Page 58: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

.30

.25

"_ .15

.10

.05

0

250

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

Specimen 17 1.0

.8

oJ_c

.6 "_

"1o

E.4 t-F-

.2

, , , , I , i J , I .... I .... I .... I .... I .... 0

500 750 1000 1250 1500 1750 2000

Temperature, K

Figure 20. Thermal diffusivity versus temperature for LaRC stitched panel 5, which is T-300 3k phenolic densifiedmaterial.

52

Page 59: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.30

.25

.20L'%I

"_ .15

.10

.05

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

Specimen 18

o

1.0

.8

>.6 "_

-i

E

.4

.2

0 _ J , _ I , , , , I , , , , I , , , _ I , , , , I , , , , I , , i J 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 21. Thermal diffusivity versus temperature for LaRC stitched panel 8, which is T-300 3k phenolic densifiedmaterial.

53

Page 60: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.60

.50

.40

E

._-2ffl-, .30

°_

e-I-- .20

.10

Temperature, °F

490 990 1490 1990 2490 2990

Specimen 19

"___/mplane

2.0

1.6

°m

1.2 _=1="o

t_

al

.8

.4

t-t-t

0 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

Figure 22. Thermal diffusivity versus temperature for LaRC J1, which is T-300 3k CVI densified material.

54

Page 61: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.60

.50

u_ .40

E

ol-_ .30

"0

¢-!- .20

.10

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '

Specimen 20

J

_ ,_ t-t-t

2.0

- .4

1.6

Od

z_>

1.2 "_'-'i

:t=

0 , , ; , I , = , , I L , J , I J = , , I J , , , I i , , , I , I , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 23. Thermal diffusivity versus temperature for LaRC J2, which is T-300 3k CVI densified material.

55

Page 62: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.60

.50

o_ .40c_J

Eo

zo_

= .30.e2_"o

e-.20

.10

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I

Specimen 21

_ _ t-t-t

0 , , , , I , , , , I , , , , I , , , , I , , , , I , , , , I , , , ,

250 500

1.6

o_

.>1.2 (n

.=_"1o

(1>

.8 e--t---

.4

0

750 1000 1250 1500 1750 2000

Temperature, K

Figure 24. Thermal diffusivity versus temperature for LaRC J3, which is T-300 3k CVI densified material.

56

Page 63: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

Temperature, °F

-11 490 990 1490 1990 2490 2990.60 .... I .... I .... I .... I .... I .... I ' -

Specimen 22.50

.10 - .4

_ t-t-t

0 .... I , , , i l , i , , I l , , i I , , , , I , , , , I , , , , 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

Figure 25. Thermal diffusivity versus temperature for LaRC J4, which is T-300 3k CVI densified material.

,_ .40t9

"_ .30

_- .20

2.0

1.6

O4

>1.2 "_

-1

=:_"0

.8 _t--

57

Page 64: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.60

.5O

.40

_ .30

P- .20

.10

0

250

Temperature, °F

490 990 1490 1990 2490 2990

Specimen 23

In-plane

_ t-t-t

2.0

1.6

¢:

1.2 "_

.4

.... t .... I , , , , I , , , , i , _ , , I , , , , I .... 0

500 750 1500 1750 20001000 1250

Temperature, K

Figure 26. Thermal diffusivity versus temperature for LaRC J5, which is T-300 3k CVI densified material.

58

Page 65: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

.60

.50

.40oa

E(..)

ffl-, .30°--

"0

e-

_- .20

.10

0I I I I

_ t-t-t

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '-

In-plane

Specimen 24 2.0

1.6

oa

._>1.2 (n

=E_"10I

.8 5

.4

0 , , , , I .... I , L J , I , , L , I , , , , I , , , , I , , , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 27. Thermal diffusivity versus temperature for LaRC J6, which is T-300 3k CVI densified material.

59

Page 66: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.60

.50

.40

_ .30

.20

.10

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' I I I ' ' I l I I I I I I ' I I I I I I ' ' I '-

Specimen 25 2.0

m

___ _ t't-t

500 750 1500 1750

1.6

o_1

,m>

1.2 "_-,I

.8 __

.4

0 0

250 1000 1250 2000

Temperature, K

Figure 28. Thermal diffusivity versus temperature for LaRC JT, which is T-300 3k CVI densified material.

6O

Page 67: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10.60

.5O

.40

E(J

>

-, .30

c-_- .20

.10

In-plane

__ t-t-t

1990 2490 2990

' I ' ' ' ' I ' ' ' ' I '-

Specimen 26 2.0

1.6

=>,>

1.2 "_"-,l

.8

.4

0 .... I , , , , I J , J i I , J , , I , , , , I .... I f I J = 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 29. Thermal diffusivity versus temperature for [.,aRC J8, which is T-300 3k CVI densified material.

61

Page 68: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

.60

.5O

.40

E

Or)-, .30

e-I- .20

.10

0

250

Temperature, °F

990 1490 1990 2490 2990 3490 3990

I-

Specimen 27 2.0

1.6

.4

0

1000 1250 1500 1750 2000 2250 2500

Temperature, K

m

__ _ t-t-t

.... I .... I,,,, I,, , , I , , , , I , _ J i I , , , , I , , , , I ....

500 750

Figure 30. Thermal diffusivity versus temperature for LaRC F1, which is K321 2k phenolic densified material.

¢q

z;

1.2 "_3

"0

.8

62

Page 69: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-I0

2.00 I ....

1.50

E0

._>__ 1.00

.=_

l--F-

.50

Temperature, °F

1490 1990 2490

In-plane

5

4

3

2

0 0

250 500 750 1000 1250 1500 1750 2000 2250 2500

Temperature, K

Figure 31. Thermal diffusivity versus temperature for LaRC P1, which is K321 2k AR pitch densified material.

t-

(/)

.B"O

t_

i-t"-

63

Page 70: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1045

4O

35

30

25

t-O 200

,-- 15

10

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' 1 ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I- 25

Specimen 1

lane

_j'_ t-t-t

20

15 m

10 °

e-I--

5

0 , J , , I , , , , I .... I .... I .... 1 , , , I I , , , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 32. Thermal conductivity versus temperature for LaRC panel 7A, which is T-300 3k phenolic densified material.

64

Page 71: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

45

40

35

i25

-I

t-O 200

IDf- 15

I'--

10

0i 1 i i

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '

- 25

Specimen 2

_ _ t-t-t

5 _

0 , , , , I .... I .... j _ , , , I , , , , I .... I ....

250 500 750 1500 1750

20

LLo

¢.-

-1

15 m

.__0-1

t-O

10 °

IDl'-

I'--

1000 1250

Temperature, K

0

2000

Figure 33. Thermal conductivity versus temperature for LaRC panel 7B, which is T-300 3k LoPIC densified material.

65

Page 72: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

45

4O

35

3O

._ 25

o=lot-O 20o

._ 15

10

Temperature, °F

490 990 1490 1990 2490 2990

.... I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' 1 ' ' ' ' I '- 25

Specimen 3

ft-t-t

=..=...._.,

2O

LL0

15 m

--,i

t-o

10 o

e-I---

5

0 .... I .... I , , , , I , , , , I , , , , I , , , , I , , , , 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

Figure 34. Thermal conductivity versus temperature for LaRC panel 6, which is T-300 3k hybrid densified material.

66

Page 73: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1045

4O

35

"_' 3O

25"6"I

"13t-O 20

_- 15I---

10

Temperature, °F

490 990 1490 1990 2490 299(

I .... I .... I ' ' ' ' I ' ' ' ' I ' ' ' ' I

Specimen 4

0 , , , , I , , _ , I , , , , I , , j , I j , , , I , , , , I ....

250

i

- 25

2O

5

0

500 750 1000 1250 1500 1750 2000

Temperature, K

LLo

=,L¢..

15 m

.,..,

--I

e"0

10 °

1-

Figure 35. Thermal conductivity versus temperature for LaRC panel 7C, which is T-300 3k CVI densified material.

67

Page 74: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1(45

40

35

I_F 25

'10Eo 20¢J

x: 15i--

10

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' _ ' ' I ' ' ' ' I '- 25

_ 20

Specimen 5

t-t-t

LLoI

t-

15 m

"0E0

10 o

IDt"-k-

5

0 I = I i I , = I I I = = t = t .... I .... I .... 1 .... 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

Figure 36. Thermal conductivity versus temperature for LaRC panel 1P, which is T-50 3k phenolic densified material.

68

Page 75: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1145

40

35

,v,_: 30

._> 25

"10Co 20

_- 15t-

10

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' , I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '- 25

In-plane

Specimen 6

5 _ t-t-t

0 i , i i I i i i L I i i , , l _ x , , I , , , , I .... I i i i J

250 500 750 1500 17501000 1250

Temperature, K

2O

0

2000

LLoI

t'-

15

>

-QE0

10 o

e.-I--

Figure 37. Thermal conductivity versus temperature for LaRC panel 9H, which is T-50 3k hybrid densified material.

69

Page 76: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1045

40

35

i 30

20(3

15I--

10

5

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ' ' ' ' 1 ' ' ' ' I ' ' ' ' I ' ' ' ' I '- 25

Specimen 7

In-plane

_ t-t-t

20

0 , , , , 1 , , , , I , , J t I , , , = I _ , , , I .... I , , , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

iio

=,L

t-

¢-I-

Figure 38. Thermal conductivity versus temperature for LaRC panel 10-l, which is Celion 3k phenolic densifiedmaterial.

7O

Page 77: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

40

35

20(.)

.c 15

10

I-

-045 ....

_ t-t-t

5

Temperature, °F

490 990 1490 1990 2490 2990

I .... I ' ' ' ' I .... I .... i .... I '- 25

Specimen 8

20

0 , , i , I , , , , I .... I .... I , , , i I i , , , I .... 0

250 500 750 1500 1750 20001000 1250

Temperature, K

LLo

t-

15 m

._>

-I"0t-O

10 °

¢.-

Figure 39. Thermal conductivity versus temperature for LaRC panel 10-3, which is Celion 3k LoPIC densified material.

71

Page 78: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

45

4O

35

30

20(.,1

.= 15t-

10

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '- 25

Specimen 9

_ In-plane

t-t-t

2O

0 , J i , I , , , , I , , i i I , , i , I .... I .... I , i , , 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

LLo

15 rn

o_

._>

"o

o

t..-I---

Figure 40. Thermal conductivity versus temperature for LaRC panel 9-1, which is Celion 3k/2k phenolic densifiedmaterial.

72

Page 79: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1145

40

35

"_' 30

._ 25

o 200

E_-- 15t-

10

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I _ ' ' ' I ' w , , I ' ' ' ' I ' ' ' ' I '- 25

Specimen 10

_ In-plane

,,

t-t-t _

5

0 L , , , I , , , , I .... I , , , , l _ , , , I , , , , I ....

250 500 750 1500 1750

20

1000 1250

Temperature, K

LI-oI

15 m

-g

10 o

5

t-

0

2000

Figure 41. Thermal conductivity versus temperature for LaRC panel 9-3, which is Celion 3k/2k LoPIC densifiedmaterial.

73

Page 80: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

45

40

35

30

t-o 20

ID_- 15I-

10

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' 1 ' ' ' ' I ' ' ' ' I '

- 25

,_ In-plane

s_.t-t-t

Specimen 11

20

0 I , , i I , , , , I I , i i I i ' ' ' I .... I , , , , I , , , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

LLo

..C--_

15

.__

t-O

10 °

Ee-

l-

Figure 42. Thermal conductivity versus temperature for Boeing/Rohr T-300 lk hybrid densified material.

74

Page 81: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1045

4O

35

i 30

o 20¢3

_ 15

10

/--t-t-t5 _-

0 i i i , I I = + , I i i , i I J , i i I i l j i J , , , , I ....

250

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' , I ' ' ' ' I .... I ' ' ' ' I ' ' ' , I- 25

Specimen 14

In-plane 20

5

0

500 750 1000 1250 1500 1750 2000

Temperature, K

LL

° I

=,t-

:3

15

>

EO

10 _

e--F--

Figure 43. Thermal conductivity versus temperature for CCAT T-300 3k phenolic densified material.

75

Page 82: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

45

40

35

30

20m

E_-- 15

I--

10

5

Temperature, °F

490 990 1490 1990 2490 2990

' ' _ ' I ' ' ' ' I ' ' ' ' I ' ' ' _ I _ ' ' ' I ' ' _ _ I '- 25

Specimen 16

20

0 , i i , I , i , i l , , , , I .... I .... I , , , , I ' ' ' ' 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

LI.0

t-

.,.=,

15 m

z

e--0

10 _

e'-k-

Figure 44. Thermal conductivity versus temperature for LaRC stitched panel 2, which is T-300 3k phenolic densifiedmaterial.

76

Page 83: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1(45

40

35

i 30

20u

E(- 15

I--

10

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' l ' ' ' ' I '-- 25

Specimen 17

_ t-t-t

0 , , , , I .... I , , , , I , , , _ I , , , , I , , , , I , , , , 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

20

iio

t-

15 m

._>

"ot,-o

10 o

-r-I-

5

Figure 45. Thermal conductivity versus temperature for LaRC stitched panel 5, which is T-300 3k phenolic densifiedmaterial.

77

Page 84: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

45

40

35

"5 25ow

tO-1

"0Co 20tO

x: 15I---

10

5

0

250

Temperature, °F

490 990 1490 1990 2490 2990

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I '- 25

Specimen 18

ln-plane

t-t-t

20

, , , i I .... I , , l , I , , i , I , , , , I , , , , I , , , , 0

500 750 1500 1750 20001000 1250

Temperature, K

LLo

15 m

>o_

tO

"0¢-0

10 tO

¢-

Figure 46. Thermal conductivity versus temperature for LaRC stitched panel 8, which is T-300 3k phenolic densifiedmaterial.

78

Page 85: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-107O

60

50

._ 40

._.2

"ElE0o 30

e-1-

20

10

Temperature, °F

490 990 1490 1990 2490 2990

I .... I .... I .... I .... I .... I '- 40

Specimen 19

In-plane

35

S t-t-t

0 , J J , I , , , , I .... 1 i , , , I , , J , I , , , J I , i , , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

J

10

5

30LLo

25 _E

nn

>

20 "_

EO¢J

15 N

t-I---

Figure 47. Thermal conductivity versus temperature for LaRC J1, which is T-300 3k CVI densified material.

79

Page 86: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1170

60

50

.__ 40

"10c-Oo 30

e-t-

20

10

Temperature, °F

1490490 990 1990 2490 2990

.... I .... 1 .... I .... I .... I ' ' ' ' I "- 40

Specimen 20

___ In-plane _ _

35

30LLO|

=,

>20 .=

0

"0t-O0

15

e--I---

10

5

0 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

Figure 48. Thermal conductivity versus temperature for LaRC J2, which is T-300 3k CVI densified material.

80

Page 87: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

70

60

50

•_" 40>

"OEO_ 30

20

10

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I _- 40

Specimen 21

_--

0 t i i i I i i L i I i , , , I , , , , I , i L i I i , J , I , , , ,

250 500 750 1000 1250 1500 1750

Temperature, K

35

30IJ-0

25<.,,

>20 _

-'1"OEO

15 N

(IDr.-

10

5

0

2000

Figure 49. Thermal conductivity versus temperature for LaRC J3, which is T-300 3k CVI densified material.

81

Page 88: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-107O

60

50

_' 40.D

>

_6"0C0o 30

e-)-

20

10

Temperature, °F

1490490 990 1990 2490 2990

' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' 40

Specimen 22f I

35

t-t-t

500 750 1500 1750

3OLLO|

25 _

nn

20 _

not-oo

15 _

e-t-

10

5

0 0

250 1000 1250 2000

Temperature, K

Figure 50. Thermal conductivity versus temperature for LaRC J4, which is T-300 3k CVI densified material.

82

Page 89: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-107O

60

50

_" 40._>"6

"ot-oo 30

¢-t-

20

i i , i

Temperature, °F

490 990 1490 1990 2490 2990

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I _- 40

Specimen 23

10 _ t-t-t

0 .... l , , i , I , ( i , I , , , , I .... I , , , , I , i i i

250 500 750 1500 17501000 1250

Temperature, K

35

5

0

2000

30LLo

25

20 ,5

"ot-o

15 "_

e.-I---

10

Figure 51. Thermal conductivity versus temperature for LaRC J5, which is T-300 3k CVI densified material.

83

Page 90: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10 490 9907O

6O

5OV"

.__ 40

.>

"0t-O

30

e--

20

10

Temperature, °F

1490 1990 2490

__,_,_ t-t-t

2990

40

35

30U.o

,.L

25g3

20 _

f.-0

15 "_

e-k-

10

5

0 I I I I I J I I I I I I I I I I I I J I a = I I I I J I I I .... 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 52. Thermal conductivity versus temperature for LaRC J6, which is T-300 3k CVI densified material.

84

Page 91: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-I07O

6O

50

4o

o 30

e--

I---

20

10

Temperature, °F

490 990 1490 1990 2490 2990

I .... I .... I .... I .... I .... I " 40

Specimen 25 35

/_ t-t-t

0 .... I I J , , I I , , A I = , , , I , , , , I , , , , I .... 0

250 500 750 1000 1250 1500 1750 2000

Temperature, K

30LLo!

2s

20"ot-oo

15 "_

IDe--

10

Figure 53. Thermal conductivity versus temperature for LaRC JT, which is T-300 3k CVI densified material.

85

Page 92: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1170

6O

5O

.__ 40

._>

"I"10t-Oo 30

e-l"

20

10

Temperature, °F

490 990 1490 1990 2490 2990

.... I .... I ' ' ' ' I .... I .... I .... I = 40

Specimen 26

t-t-t

35

3O

2O '_

"10E00

15 "_Ee.-

10

5

0 J , _ , I , J , , I , , I I I i , , , I , , , , I , , , , I _ , l , 0

250 500 750 1500 1750 20001000 1250

Temperature, K

Figure 54. Thermal conductivity versus temperature for LaRC J8, which is T-300 3k CVI densified material.

86

Page 93: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-1070

60

50v

40.>"5

"t3t-Oo 30

l.-I.--

20

10

Temperature, °F

490 990 1490 1990 2490 2990 3490 3990

'''' I''' ' I'''' I'''' I'''' I'''' I'' _' I''' ' "1- 40

Specimen 27

_-' _ t-t-t

0 ,, ,, I t _,, I _,,, I,,,, I,, ,, I, _ j _ I _,,, I ,,, _ I,, , t

250 500

35

5

0

750 1000 1250 1500 1750 2000 2250 2500

Temperature, K

3Oi1o

..E25 "_

m

._

20 _

t-O0

15 "_

e--I---

10

Figure 55. Thermal conductivity versus temperature for LaRC FI, which is K321 2k phenolic densified material.

87

Page 94: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

-10250

200

150

._>o

"13Eo(J

100

e-I---

50

Specimen 28

In-plane

l_,t-t,-t, t , ,

0

250 500 750 1000

3990I

- 140

120

2O

= I _ , , , I .... I .... I .... I , , , , 0

1250 1500 1750 2000 2250 2500

Temperature, K

ii100 o

¢n

8o.>_

3"D

60 go

Et-

40 _-

Figure 56. Thermal conductivity versus temperature for LaRC PI, which is K321 2k AR pitch densified material.

88

Page 95: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity
Page 96: Thermal Conductivity Database of Various Structural Carbon ... · thermal conductivity values are not reported for those materials. Results Figures 2 and 3 summarize the thermal conductivity

Form ApprovedREPORT DOCUMENTATION PAGE OMBNo.0704-0188

Pubtic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,gathering and maintaining the date needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect Of thiscollection of lnfo_'mation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reporls, 1215 JeffersonDavis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND BATES COVERED

November 1997 Technical Memorandum

4. TITLE AND SUBTITLE 15. FUNDING NUMBERS

Thermal Conductivity Database of Various Structural Carbon-CarbonComposite Materials WU 632-20-2 i -13

6. AUTHOR(S)

Craig W. Ohlhorst, Wallace L. Vaughn, Philip O. Ransone, andHwa-Tsu Tsou

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research CenterHampton, VA 23681-2199

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space AdministrationWashington, DC 20546-0001

!8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17620

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-4787

11. SUPPLEMENTARY NO'rES

Ohlhorst, Vaughn, and Ransone: Langley Research Center, Hampton, VA; Tsou: NRC/NASA Resident ResearchAssociate at Langley Research Center, Hampton, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 24Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Advanced thermal protection materials envisioned for use on future hypersonic vehicles will likely be subjected totemperatures in excess of ! 811 K (2800°F) and, therefore, will require the rapid conduction of heat away from thestagnation regions of wing leading edges, the nose cap area, and from engine inlet and exhaust areas. Carbon-carbon composite materials are candidates for use in advanced thermal protection systems. For design purposes,high temperature thermophysical property data are required, but a search of the literature found little thermal con-ductivity data for carbon-carbon materials above 1255 K (1800°F). Because a need was recognized for in-plane andthrough-the-thickness thermal conductivity data for carbon-carbon composite materials over a wide temperaturerange, Langley Research Center (LaRC) embarked on an effort to compile a consistent set of thermal conductivityvalues from room temperature to 1922 K (3000°F) for carbon-carbon composite materials on hand at LaRC forwhich the precursor materials and thermal processing history were known. This report documents the thermal con-ductivity data generated for these materials. In-plane thermal conductivity values range from 10 to 233 W/m-K,whereas through-the-thickness values range from 2 to 21 W/m-K.

14. SUBJECTTERMSCarbon-carbon composites; Thermal conductivity

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5600

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

16. NUMBER OF PAGES

9416. PRICE CODE

A05

20. LIMITATION

OF ABSTRACT

Standard Form 298 (Rev. 2-89)Prescribed by ANSI Std. Z39-18298-102