thermal analysis and modeling - spacecraft.ssl.umd.edu · thermal analysis and modeling enae 697 -...

48
Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis and Modeling • Cooling humans • Fundamentals of heat transfer • Radiative equilibrium • Surface properties • Non-ideal effects • Conduction • Human thermal modeling • Thermal system components 1 © 2019 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: phamthu

Post on 14-Aug-2019

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Thermal Analysis and Modeling• Cooling humans• Fundamentals of heat transfer• Radiative equilibrium• Surface properties• Non-ideal effects• Conduction• Human thermal modeling• Thermal system components

1

© 2019 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Page 2: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Gaits and Locomotion ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Cooling and Energy Use in Lunar Run

2

Page 3: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Gaits and Locomotion ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

So What Is 2000 BTU?• 2000 BTU/hr = 504 kcal/hr (or “calories” of food)• Would heat 8 kg of water from body temperature

(37°C) to boiling• Water heat of vaporization = 2257 kJ/kg = 535

kcal/kg• Need to convert 0.94 kg of water to vapor • At 70°F, air can hold 1.15 lbs of water per KCFM• Suit flow rate of 6 CFM = 3 gms/minute = 0.19 kg/

hr = 100 kcal/hr = 397 BTU/hr

3

Page 4: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Gaits and Locomotion ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Sublimation to Dump Heat• Flow water over porous plate exposed on other

side to vacuum– Water passing through pores evaporates in vacuum -

cools at rate of 535 kcal/kg– Plate reaches 0°C and water in pores freezes– Water at vacuum surface sublimates (solid—>gas)

• Heat of melting 80 kcal/kg• Heat of vaporization 535 kcal/kg• Total heat of sublimation 615 kcal/kg

• Cooling 2000 BTU/hr (504 kcal/hr) requires 0.82 kg of water (ideal case)

4

Page 5: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Apollo PLSS Sublimator

5

Page 6: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Sublimator Schematic

6

Page 7: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Sublimator Vapor “Cloud” on Moon

7

Page 8: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Gaits and Locomotion ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Past PLSS Thermal Capacities• Apollo

– 8 hrs @ 930 BTU/hr– 6 hrs @ 1200 BTU/hr– 5 hrs @ 1600 BTU/hr

• Shuttle/ISS EMU– 7 hrs @ 1000 BTU/hr (PLSS contains 3.9 kg of water -

previous calculation predicts 2.87 kg)

• Advanced EMU (development)– 8 hrs @ 1200 BTU/hr

8

Page 9: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Gaits and Locomotion ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Issues with Sublimators• Have to be “charged” - i.e., run water through long

enough to freeze porous plate• Susceptible to contamination damage (e.g.,

plugging pores in plate)• Issues with liquid/gas separation (cooling both

LCVG water and suit atmosphere)• Only works in conditions below triple point of

water

9

Page 10: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Gaits and Locomotion ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Phase Curves for CO2 and H2O

10

Mars

Page 11: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Gaits and Locomotion ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Suit Membrane Water Evaporator

11

Ref: Bue et.al., “Long-Duration Testing of a Spacesuit Water Membrane Evaporator Prototype” 42nd ICES, AIAA 2012-3459

Page 12: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Gaits and Locomotion ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

SWME Fundamentals• 14,900 hollow fibers carrying water for cooling• Hydrophobic fiber material rejects water, but

allows water vapor to pass• Chamber pressure is controlled with a back-

pressure regulator• Rate of evaporation (and rate of cooling) controlled

by internal pressure in chamber• Evaporated vapor purged through regulator to

ambient• Evaporation provides 87% of sublimation cooling

12

Page 13: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Classical Methods of Heat Transfer• Convection

– Heat transferred to cooler surrounding gas, which creates currents to remove hot gas and supply new cool gas

– Don’t (in general) have surrounding gas or gravity for convective currents

• Conduction– Direct heat transfer between touching components– Primary heat flow mechanism internal to vehicle

• Radiation– Heat transferred by infrared radiation– Only mechanism for dumping heat external to vehicle

13

Page 14: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Ideal Radiative Heat TransferPlanck’s equation gives energy emitted in a specific

frequency by a black body as a function of temperature

eλb =2πhC02

λ5 exp −hC0λkT

%

& '

(

) * −1

+

, -

.

/ 0

(Don’t worry, we won’t actually use this equation for anything…)

14

Page 15: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

The Solar Spectrum

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

15

Page 16: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Ideal Radiative Heat TransferPlanck’s equation gives energy emitted in a specific

frequency by a black body as a function of temperature

• Stefan-Boltzmann equation integrates Planck’s equation over entire spectrum

Prad =σT 4

eλb =2πhC02

λ5 exp −hC0λkT

%

& '

(

) * −1

+

, -

.

/ 0

σ = 5.67x10−8 Wm2 °K 4

(“Stefan-Boltzmann Constant”)

16

Page 17: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Thermodynamic Equilibrium• First Law of Thermodynamics

heat in -heat out = work done internally• Heat in = incident energy absorbed• Heat out = radiated energy• Work done internally = internal power used

(negative work in this sense - adds to total heat in the system)

Q −W =dUdt

17

Page 18: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiative Equilibrium Temperature• Assume a spherical black body of radius r• Heat in due to intercepted solar flux

• Heat out due to radiation (from total surface area)

• For equilibrium, set equal

• 1 AU: Is=1394 W/m2; Teq=280°K

Qin = Isπ r2

Qout = 4π r 2σT 4

Isπ r2 = 4π r2σT 4 ⇒ Is = 4σT 4

Teq =Is4σ#

$ %

&

' (

14

18

Page 19: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Effect of Distance on Equilibrium

Mercury

PlutoNeptuneUranus

SaturnJupiter

Mars

Earth

Venus

Asteroids

19

Page 20: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Shape and Radiative Equilibrium• A shape absorbs energy only via illuminated faces• A shape radiates energy via all surface area• Basic assumption made is that black bodies are

intrinsically isothermal (perfect and instantaneous conduction of heat internally to all faces)

20

Page 21: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Effect of Shape on Black Body Temps

21

Page 22: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Incident Radiation on Non-Ideal BodiesKirchkoff’s Law for total incident energy flux on solid bodies:

where– α =absorptance (or absorptivity)– ρ =reflectance (or reflectivity)– τ =transmittance (or transmissivity)

QIncident =Qabsorbed+Qreflected +Qtransmitted

Qabsorbed

QIncident

+Qreflected

QIncident

+Qtransmitted

QIncident

=1

α ≡Qabsorbed

QIncident

; ρ ≡Qreflected

QIncident

; τ ≡Qtransmitted

QIncident

22

Page 23: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Non-Ideal Radiative Equilibrium Temp• Assume a spherical black body of radius r• Heat in due to intercepted solar flux

• Heat out due to radiation (from total surface area)

• For equilibrium, set equal

Qin = Isαπ r2

Qout = 4π r 2εσT 4

Isαπ r2 = 4π r 2εσT4 ⇒ Is = 4 ε

ασT 4

Teq =αεIs4σ

%

& '

(

) *

14

(ε = “emissivity” - efficiency of surface at radiating heat)

23

Page 24: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Effect of Surface Coating on Temperature

ε = emissivity

α =

abs

orpt

ivit

y

24

Page 25: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Non-Ideal Radiative Heat Transfer• Full form of the Stefan-Boltzmann equation

where Tenv=environmental temperature (=4°K for space)

• Also take into account power used internally

Prad =εσA T 4 −Tenv4( )

Isα As + Pint =εσArad T4 − Tenv

4( )

25

Page 26: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Example: AERCam/SPRINT• 30 cm diameter sphere• α=0.2; ε=0.8• Pint=200W• Tenv=280°K (cargo bay below;

Earth above)• Analysis cases:

– Free space w/o sun– Free space w/sun– Earth orbit w/o sun– Earth orbit w/sun

26

Page 27: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

AERCam/SPRINT Analysis (Free Space)• As=0.0707 m2; Arad=0.2827 m2

• Free space, no sun

Pint = εσAradT4 ⇒ T =

200W

0.8 5.67 ×10−8 Wm2°K 4

'

( )

*

+ , 0.2827m2( )

'

(

) ) ) )

*

+

, , , ,

14

= 354°K

27

Page 28: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

AERCam/SPRINT Analysis (Free Space)• As=0.0707 m2; Arad=0.2827 m2

• Free space with sun

Isα As + Pint = εσAradT4 ⇒ T =

Isα As + PintεσArad

&

' (

)

* +

14

= 362°K

28

Page 29: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

AERCam/SPRINT (LEO Cargo Bay)• Tenv=280°K

• LEO cargo bay, no sun

• LEO cargo bay with sun

Pint =εσArad T4 − Tenv

4( )⇒ T =200W

0.8 5.67 ×10−8 Wm 2°K 4

'

( )

*

+ , 0.2827m2( )

+ (280°K)4

'

(

) ) ) ) )

*

+

, , , , ,

14

= 384°K

Isα As + Pint =εσArad T4 − Tenv

4( )⇒ T =Isα As + PintεσArad

+ Tenv4

'

( ) )

*

+ , ,

14

= 391°K

29

Page 30: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Radiative Insulation• Thin sheet (mylar/kapton

with surface coatings) used to isolate panel from solar flux

• Panel reaches equilibrium with radiation from sheet and from itself reflected from sheet

• Sheet reaches equilibrium with radiation from sun and panel, and from itself reflected off panel

Is

Tinsulation Twall

30

Page 31: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Multi-Layer Insulation (MLI)• Multiple insulation

layers to cut down on radiative transfer

• Gets computationally intensive quickly

• Highly effective means of insulation

• Biggest problem is existence of conductive leak paths (physical connections to insulated components)

Is

31

Page 32: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Emissivity Variation with MLI Layers

Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

32

Page 33: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

MLI Thermal Conductivity

Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

33

Page 34: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Effect of Ambient Pressure on MLI

Ref: D. G. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002

34

Page 35: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

1D Conduction• Basic law of one-dimensional heat conduction

(Fourier 1822)

whereK=thermal conductivity (W/m°K)A=areadT/dx=thermal gradient

Q = −KAdTdx

35

Page 36: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

3D ConductionGeneral differential equation for heat flow in a solid

whereg(r,t)=internally generated heatρ=density (kg/m3)c=specific heat (J/kg°K)K/ρc=thermal diffusivity

∇ 2T r r ,t( ) +g(r r ,t)

K=ρcK∂T r r ,t( )∂t

36

Page 37: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Simple Analytical Conduction Model• Heat flowing from (i-1) into (i)

• Heat flowing from (i) into (i+1)

• Heat remaining in cell

TiTi-1 Ti+1

Qin = −KATi − Ti−1Δx

Qout = −KATi+1 −TiΔx

Qout −Qin =ρcK

Ti( j +1) − Ti( j)Δt

… …

37

Page 38: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Finite Difference Formulation• Time-marching solution

where

• For solution stability,

α =k

ρCv

= thermal diffusivityd =α∆t

∆x2

Tn+1i

= Tn

i + d(Tn

i+1 − 2Tn

i + Tn

i−1)

∆t <∆x2

38

Page 39: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Human Thermal Model (Wissler)

39

• 15 elements per body• 15 nodes per

element• Additional elements:

e.g., skin, sweat, air circulation

• ~300 nodes in full model

Page 40: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

• 10 element in body• 4 nodes per element

– Skin– Fat– Muscle– Core

• Blood is separate node• 41 nodes total

Human Thermal Model (METMAN)

40

Page 41: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Energy Balance in Each Node

• Qst - heat rate saved into tissue• Qm - heat rate due to internal metabolism• Qc - heat rate due to surface convection• Qr - heat rate due to radiative losses• Qe - heat rate due to evaporation• Qk - heat rate due to conduction to other nodes• Qresp - heat rate due to respiratory cooling• QLCG - heat rate due to liquid cooling garment

41

Qst = Qm �Qc �Qr �Qe �Qk �Qresp �QLCG = mcP@T

@t

Page 42: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

41-Node Heat Flow Equations (1)

42

from Campbell, French, Nair, and Miles, “Thermal Analysis and Design of an Advanced Space Suit” J. Thermophysics and Heat Transfer, v.14 n.2, April-June 2000

Page 43: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

41-Node Heat Flow Equations (2)

43

from Campbell, French, Nair, and Miles, “Thermal Analysis and Design of an Advanced Space Suit” J. Thermophysics and Heat Transfer, v.14 n.2, April-June 2000

Page 44: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

ISS Radiator Assembly

44

Page 45: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Case Study: ECLIPSE Thermal Analysis• Developed by UMd

SSL for NASA ESMD

• Minimum functional habitat element for lunar outpost

• Radiator area - upper dome and six upper cylindrical panels

45

Page 46: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

ECLIPSE Heat Sources• Solar heat load (modeling habitat as right circular

cylinder)

• Electrical power load = 4191 W• Metabolic work load (4 crew) = 464 W

46

Qsolar = Ailluminated�Is

Ailluminated = ⌅d sin� +14⇥d2 cos �

Page 47: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

Thermal Modeling for Lunar Surface• Assume upper dome radiates only to deep space• Assume side panels radiate half to deep space and

half to lunar surface• Assume (conservatively) that lunar surface

radiates as a black body

47

Qinternal + Qsolar = �⇥

⇤AdomeT

4rad + nradApanel

�T 4

rad �12T 4

moon

⇥⌅

Trad =⇤

1Adome + nradApanel

�Qinternal + Qsolar

�⇥+

12nradAwallT

4moon

⇥⌅ 14

Page 48: Thermal Analysis and Modeling - spacecraft.ssl.umd.edu · Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support U N I V E R S I T Y O F MARYLAND Thermal Analysis

Thermal Analysis and Modeling ENAE 697 - Space Human Factors and Life Support

U N I V E R S I T Y O FMARYLAND

ECLIPSE Thermal Results

48