the wave equation

34
THE WAVE EQUATION Alemayehu Adugna Arara Supervisor : Dr. J.H.M. ten Thije Boonkkamp November 04 , 2009

Upload: lefty

Post on 06-Jan-2016

51 views

Category:

Documents


3 download

DESCRIPTION

THE WAVE EQUATION. Alemayehu Adugna Arara Supervisor : Dr. J.H.M. ten Thije Boonkkamp November 04 , 2009. Outline. Occurence of the Wave Equation 1D Waves Spherical Waves Cylinderical Waves Supersonic Flow Past a body Revolution Initial value Problems in Two and Three Dimensions. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: THE WAVE EQUATION

THE WAVE EQUATION

Alemayehu Adugna Arara

Supervisor : Dr. J.H.M. ten Thije Boonkkamp

November 04 , 2009

Page 2: THE WAVE EQUATION

Outline• Occurence of the Wave Equation• 1D Waves• Spherical Waves• Cylinderical Waves• Supersonic Flow Past a body Revolution• Initial value Problems in Two and Three

Dimensions

Page 3: THE WAVE EQUATION

1. Occurrence of the Wave Equation

• Acoustics• Electromagnetism• Elasticity

22 2

2c

t

• Hyperpolic wave equation.

Page 4: THE WAVE EQUATION

Acoustics• Linearized • Small disturbance about an equilibrium

state.• Body forces are neglected

, , 0.0 0

p p u • The initial disturbance has a uniform

entropy .p p

2 20 0 0 0, 'p p a a p

Page 5: THE WAVE EQUATION

• From conservation of mass we have

Acoustics

0jj

ut x

• From balance momentum we also have

,i ji

ij i

u uu pF

t x x

• Then from these equation we have

0 00 , 0j i

j i

u u p

t x t x

Page 6: THE WAVE EQUATION

Acoustics

,u •Introducing

• Hence2 20 ,tt a

0 0

00 2

0

,

,

,

ii

ux

p pt

a t

we have,

Page 7: THE WAVE EQUATION

Linearized Supersonic Flow

• Disturbance is to remain small, – the motion should have to be very small or– the body must be very slender.

• Slender body moving with arbitrary constant velocity relates acoustics with aerodynamics.

1 2 3, ,x x Ut y x z x

• The velocity components in frame are

1 2 3( , , ), ii

U u u u ux

Page 8: THE WAVE EQUATION

Linearized Supersonic Flow 1 2 3 1 2 3, , , , , , ,x x x t x y z x Ut x x

• Hence the equation wave for acoustics become

2

0

( 1) ,xx zz zz

UM M

a

• The velocity

0 0 .xp p U

( , , )x y zU

Page 9: THE WAVE EQUATION

Electromagnetic Waves• Maxwell‘s equation

• And E satisfies the same equation.

10, ,

. 0, . 0,

B EE B

t t

B E

• Where B is the magnetic induction and E is the electric field. Therefore

22

2

1 1( ) ( ),

BB B

t

Page 10: THE WAVE EQUATION

2. 1D Wave Equation2

tt xxc 2

0, ,x ct x ct

( ) ( ) ( ) ( ),f g f x ct g x ct

• The functions f and g follows from initial and boundary conditions

• For the intial value problem,

0 1( ), ( ), 0,tx x t x

0 0 1

1 1( ) ( ) ( )

2 2

x ct

x ct

x ct x ct dc

Page 11: THE WAVE EQUATION

3. Spherical Waves• For waves symmetric about the origin

2 2

2 2 2

1 2, ( , )R t

c t R R R

• This can be written as2 2

2 2 2

1 ( ) ( ),

R R

c t R

( ) ( )f R ct g R ct

R R

• The general solution will be

Page 12: THE WAVE EQUATION

3. Spherical Waves• For outgoing waves, the solution is

( )f R ct

R

• Standard form is to prescribe source is

• In acoustics, ∂φ/∂R is radial velocity and Q(t) is the flux of volume.

2

0( ) lim 4

RQ t R

R

1 ( / )

( ) 4 ( )4

Q t R cQ t f ct and

R

Page 13: THE WAVE EQUATION

3. Spherical Waves• IVP, “balloon problem“ in acoustics:

00

, ,( ,0) 0, ( ,0) 0, 0.

0, ,t

PR R

R R t r

R R

0 0

00 0

0 0 0 02

( ) ( )( , )

( , ) [ '( ) '( )]

1 1( , ) [ ( ) ( )] [ '( ) '( )]

t

R

f R a t g R a tR t

R Ra

R t f R a t g R a tR

R t f R a t g R a t f R a t g R a tR R

• No source at the origin2

0lim 0R

RR

0 0, outp P p p p

Page 14: THE WAVE EQUATION

3. Spherical Waves

0 000 0 0

0 0

20 0 0 0

2

0

1( ,0) ( ( ) ( )) 0 ( ) ( ) 0, 0

, 0 , 0( ,0) [ '( ) '( )] '( ) '( )

0, 0, .

( , ) [ ( ) ( )] [ '( ) '( )]

lim [ (

t

R

R

R f R g R f R g R RR

P PR R R R Ra

aR f R g R f R g RR

R R R R

R R t f R a t g R a t R f R a t g R a t

R fR

0 0 0) ( )] 0 ( ) ( ) 0, 0 (*)a t g a t f g a t

Page 15: THE WAVE EQUATION

3. Spherical Waves2

00 0

0

2 20 0

0 0 0 0

0 0

20 0

0 0

0

, 02( ) ( ) (**)

, .

(*) (**)

, 0 , 04 2 4 2

( ) ( ) ( )

, , , .2 2

( ) ( ) 0

,

,4 2

( )

, | |2

PR D R R

af R g R

D R R

P D P DR R R R R R

a af R g R f R

D DR R R R

f g for

R

P DR R

af

DR

20

0 0

0

, 04 2

, ( )

, .2

P DR

ag

DR

Page 16: THE WAVE EQUATION

3. Spherical Waves

t

R0

R+ a0 t=R0

R0 /2a0

R0 /a0

R0 /20R

R- a0 t=R0

R- a0 t=0

A

C D

E

B

Page 17: THE WAVE EQUATION

3. Spherical Waves

0 0 0 0 00, (0 / 2 )R a t r a t R t R a

2 20 0 0 0

0 0 0 0

00 0 0

0 00

1 1( , ) ( ) ( ) ( ) ( )

4 2 4 2

( 4 )4

( , )t t

P D P DR t f R a t g R a t R a t R a t

R R a a

P PtRa t

R a

PR t p p P

Region A:

Region B:0 0R a t R

0

( , ) 0

( , ) 0, 0t

R t

R t p p

Page 18: THE WAVE EQUATION

3. Spherical WavesRegion C:

0 0 0 0 0, 0,R a t R R a t R a t R

00 0 0

0

0, (0 )R

R a t R a t R ta

0

00

( , )

( , ) ,t

PtR t

PR t p p P

Region D:

20

0 0

00 0

0

( , ) ( )4

( )( , ) ( ),

2 2t

PR t a t R

a R

P a t RPR t a t R p p

R R

Region E: 0 0 00,R a t R a t R

20

0 0

00 0

0

( , ) ( )4

( )( , ) ( ),

2 2t

PR t R a t

a R

P R a tPR t R a t p p

R R

Page 19: THE WAVE EQUATION

3. Spherical Waves• Time Evolution of pressure difference

0 0

0 0 00 0 0 0 0 0

0

0 0

, 0

0 0 , (1 ),2 2 2

0, .

P R R a t

R R a tPt a t p p R a t R R a t

a RR R a t

0 01

0 0

02

0 0

2,

2

2

R a tPp

R a t

RPp

R a t

00

0

, 00,

0,

P R Rt p p

R R

R

P

p-p0

p1

p2

0 R0-a0t R0+a0tR0

Page 20: THE WAVE EQUATION

3. Spherical Waves

0 0

0 0 0 00 0 0 0 0 0 0

0 0

0 0

, 0

, (1 ),2 2 2

0, .

P R R a t

R R R a tPt a t R p p R a t R R a t

a a RR R a t

0 01

0 0

02

0 0

20,

2

0.2

R a tPp

R a t

RPp

R a t

R

P

p-p0

p1

p2

0 R0-a0t R0+a0tR0

Page 21: THE WAVE EQUATION

3. Spherical Waves

00 00

00

0 0

(1 ), 0, 2

0, .

a tPR R a tR

t p p Ra

R R a t

R

p-p0

p2

0 R0+a0tR0

02

0 02

RPp

R a t

Page 22: THE WAVE EQUATION

4. Cylinderical Waves• The sources are uniformily distrubeted on the z axis

with a uniform strength q(t) per unit length. • Total disturbance is

2 2

0

1 ( / ) 1 ( / )( , ) , .

4 2

q t R c dz q t R c dzr t R r z

R R

r

R

q(t)dz-

z

Page 23: THE WAVE EQUATION

4.Cylinderical Waves• Various forms of this solution are valuable.

0

1sinh , cosh ( cosh )

2

rLet z r R r q t d

c

/22

2 2 2 2

1 ( ), ( ) , ( , )

2 ( ) /

t r cR r q dt z c t r t

c c t r c

2

0

1 1( ) sinh '( cosh )

2

lim sinh '( cosh ) .2

rr r tt

d c rc q t d

r d r c

c rq t

r c

• If q‘(t) →0 suficiently fast as t→-∞.

Page 24: THE WAVE EQUATION

4. Cylinderical Waves

( / )cosh

0

1.

2i r c i te d e

cosh ( ) / ,Substituting c t r

/

2 2 20

/

2 2 20

1 1 '( )'( cosh ) ,

2 2 ( ) /

1 1 '( )cosh '( cosh ) .

2 2 ( ) /

t r c

t

t r c

r

r q dq t d

c t r c

r t q dq t d

c c r t r c

( ) ,i tq t e choosevery small

Page 25: THE WAVE EQUATION

5. Supersonic Flow Past a body of Revolution

22

1, 1 .x t M

c

2 21, 1,xx rr rB B M

r

2 2 20

1 ( ), .

2 ( )

x Br qd x Br

x B r

r-distance from the flight path

x-distance from nose of the body

Page 26: THE WAVE EQUATION

5. Supersonic Flow Past a body of Revolution

'( )( ) ( ).r xR x U on r R x

• Linearization • Body must be slender

• R‘(x) is small and Φx, are both small. '( ) ( ).r UR x on r R x

2

~ ( ) / 2 0,

( ) 2 ( ) '( ) '( ), ( ) ( ).

rwehave q x r as r

q x UR x R x US x S x R x

• If the body shape is given by r R x ,

Page 27: THE WAVE EQUATION

5. Supersonic Flow Past a body of Revolution

2 2 20

'( ), 0.

2 ( )

x BrU S dx Br

x B r

• The components of the velocity perturbation are obtained by suitable modification

2 2 20

2 2 20

''( ),

2 ( )

( ) ''( ).

2 ( )

x Br

x

x Br

r

U S d

x B r

U x S d

r x B r

Page 28: THE WAVE EQUATION

6. Initial Value Problem in Two and Three Dimensions

0 1( ), ( ), 0.tx x t

• We know from the spherical wave solution is(| | )

( , )| |

f x ctx t

x

• We consider(| | )

( , ) ( ) .| |

f x ctx t d

x

2

0 0 0

( , ) ( ) ( ) sin ,x t RI f R ct R dRd d

(sin cos ,sin sin ,cos ).I

Page 29: THE WAVE EQUATION

6. Initial Value Problem in Two and Three Dimensions

• The initial source strength determining f acts only for an instant,

( ) ( ).f R ct R ct 2

0 0

( , ) ( )sin .x t ct x ctI d d

( )

1( , ) ,

S tx t dS

ct

0, 4 ( ) 0.t x as t

Page 30: THE WAVE EQUATION

6. Initial Value Problem in Two and Three Dimensions

1• If we choose  ( ) ( ) / 4 , we shall have solved

the special initial value problem

x x

10, ( ) 0.t x as t

1( )

1( , ) .

4 S tx t dS

ct

1 1 12 2 ( )

1( , ) [ ], [ ]

4 S tx t ctM M dS

c t

Page 31: THE WAVE EQUATION

6. Initial Value Problem in Two and Three Dimensions

( , )• ( , ) is a solution of wave equation.

x tx t

t

2 2

4 ( ),

0 0.

t

t tt

x

c as t

0 0( ), 0 0, ( ) ( ) / 4 ,tTo give x as t we must choose x x and take

0( )

1( , ) .

4 S tx t dS

t

• The general initial value therefore is

0 1 0 1( ) ( )

1 1( , ) [ ] [ ].

4 4S t S tx t dS dS ctM ctM

t ct ct t

2• One can show .i itt x xc

Page 32: THE WAVE EQUATION

6. Initial Value Problem in Two and Three Dimensions

Two Dimesional Problem

0 02 2 ( )

1[ ]

4 S tM dS

c t

2 2 2 20 1 2 1 20 1 1 2 22 2 2 2( )

1 1 2 2

( , )1[ ] , ( ) : ( ) ( )

2 ( ) ( )t

dM t x x c t

ct c t x x

0 1 2 1 2 1 1 2 1 21 2 2 2 2 2 2 2 2 2

( ) ( )1 1 2 2 1 1 2 2

( , ) ( , )1 1( , , )

2 2( ) ( ) ( ) ( )t t

d dx x t

t c t x x c t x x

Page 33: THE WAVE EQUATION

Conclusion

• The wave equations occurs in many problems.

• The solution strongly depends on the initial value and boundary conditions.

• The wave equations are easier to solve in odd dimensions.

• One can easily solve the IVP in two and three dimensions.

Page 34: THE WAVE EQUATION

THANK YOU SO MUCH!! በጣ ም አመሰግናለሁ!!!