the use of atomic data in collisional-radiative...

52
THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE MODELING JOE ABDALLAH LOS ALAMOS NATIONAL LABORATORY Workshop on Atomic and Molecular Data for Fusion Energy Research 28 August – 8 September, 2006 ICTP, Trieste, Italy

Upload: others

Post on 23-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE

MODELINGJOE ABDALLAH

LOS ALAMOS NATIONAL LABORATORY

Workshop on Atomic and Molecular Data for Fusion Energy Research

28 August – 8 September, 2006 ICTP, Trieste, Italy

Page 2: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE MODELING

• Introduction and motivation• Atomic Physics Data• Collisional-Radiative Modeling-Methods• Radiation Properties of Plasmas• Opacity

Page 3: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

What are plasmas?

Page 4: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated
Page 5: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated
Page 6: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated
Page 7: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

The Most Successful Magnetic Confinement Configuration is the Tokamak

CurrentCurrent driven through coils distributed

around torus creates primary magnetic fieldmagnetic field

Stabilizing and shaping

magnetic fields are generated by currents in

other coils

vacuumvessel

plasma

An external transformer induces a current in plasmacurrent in plasmaaround torus that creates a smaller magnetic fieldmagnetic field

Page 8: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

The Largest Tokamak Is the Joint European Torus in England

cutaway drawing

view of inside during maintenance

Page 9: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Working Tokamaks Are Usually Hidden by Support Systems & Diagnostics

Page 10: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

LAPD/UCLA

Page 11: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

He Gas jet experiments, TRIDENT LASER

Page 12: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Why Collisional-Radiative (CR) Modeling?

• Plasmas emit and absorb electromagnetic radiation.

• CR models provide atom/ ion state populations that are required to simulate radiation properties of plasmas.

• CR calculations provide diagnostic information about plasma conditions, e.g. , density and temperature by comparison with experiment.

• CR include electron collisions which are generally responsible for populating excited states.

Page 13: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

He-like and H-like Al lines from a laser produced plasma

#366638#366684

Page 14: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Notation for Electron Configurations

322 221:nitrogen ofion configurat ground Example,

24 of valuemaximum orbital)in electrons ofber number(num occupation

notation picspectroscoby designated,...,3,2,1,0

number quantum momentumangular ,...3,2,1

number quantum principle)( orbitals ofset

pss

lw

spdfnl

ln

n nl w

+=

====

Page 15: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Block Diagram NeI

Page 16: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Energy level structure of pd configuration

Page 17: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated
Page 18: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Rate Equations and Definitions

• Nil = Population per unit volume(cm-3) of level l of ion species i• Ailjm = Rate matrix(sec-1)• Rate coefficients for processes which alter level populations,

integrated atomic cross sections.• These include electron collisions, photon collisions and

spontaneous processes • Depends on Ne, the number of free electrons per unit volume

(cm-3), for processes involving electron collisions, cross sections for the various processes, electron energy distribution, and radiation field.

jmjm

iljmil NA

dtdN ∑=

Page 19: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

CATS:Cowan Code

RATS:relativistic

GIPPER:ionization

ACE:e- excitation

Atomic Models

CFG-based

fine structure

ATOMIC

LTE or NLTE

low or high-Z

spectral modeling

power loss

Opacity Tables

Another Theoretical Opacity Modeling Integrated Code

gf-valuese- excitatione- ionizationhυ-ionization

auto-ionization

energy levelsemissionabsorption

http://aphysics2.lanl.gov/tempweb/

Atomic Physics Codes

UTA’s

Page 20: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Electron Energy Distribution Function(EEDF)

• Describes the distribution of free electrons as a function of electron energy. The fraction of electrons per unit energy interval. Unit is (energy)-1, usually eV.

• Described by the Maxwellian function for a given electron temperature kTe( see below) for thermal plasmas.

• kTe expressed in energy units, usually eV.• kTe = 11605 °K

∫∞−

==02/3

/

1)( ,)(

2)( dEEFkTeEEF

e

kTE e

π

∫∞

=0

1)( dEEF

Page 21: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Radiation field• The number of photons per unit energy interval per unit volume

between hν and hν +d hν , units of (volume)-1(energy)-1, usually cm-3eV-1.

• kTr in eV.• For thermal plasmas the radiation field is given by the Planck

function.

)1()(8)( /33

2

−=

rkThechhhG ν

νπν

Page 22: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Electron and photon distributions at various temperatures

Maxwellian Planckian

1eV

10

100

1000 1eV

10

100

1000

Page 23: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Processes• Electron impact excitation/de-excitation:

e + Ail ⇔ e +Aim

• Radiative excitation/spontaneous decay: hν + Ail ⇔ Aim

• Electron impact ionization / 3 body recombination: e + Ail ⇔ Ai+1m+e+e

• Photo-ionization / radiative recombination: hν + Ail ⇔ Ai+1m+e

• Auto-ionization / di-electronic capture: Ail

*⇔ Ai+1m+e

Page 24: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Example: integrated rate coefficient

tcoefficien rate0

)()()(

,

thenis secondper per volume excitation ofnumber totalthe

)()()(

between secondper per volume sexcitation ofnumber

0')('

)'()(-

=∫∞

=

=

→=

+

+=−+=

+−

↔+

EdEEEvEFs

where

seNilN

dEEmiEvEFeNilN

dEE and E

EEilEimEEE

EimAeilAEe

σ

σ

Page 25: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

LTE - Saha Equations

i

kTEil

i

il

ee

i

kTEili

iliie

i

kTie

i

ei

Zeg

NN

hkTmZ

egZ

NqNZeZZ

NNN

il

il

i

/

2/3

2

/

/11

22

−++

=

⎟⎠⎞

⎜⎝⎛=

=

=

=

π

φ ϕi = ionization energy of ion i

qi = charge of ion i

Eil = energy of level l

gil = statisical weight of level l

Ni=population of ion i

Ne=electron density

Nil=population of level l ion I

Zi,Ze=partition functions

Page 26: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Principle of Detailed Balance

• Under LTE conditions the forward rate of each process is balanced by the inverse rate

• Therefore, the cross section for the inverse process may be derived from the cross section for the forward process

• This is required for the solution to approach the LTE limit

Page 27: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

.section cross excitation theof terms

in 'section cross excitation-de for the expressionan Derive

/2),(,,for ipsrelationsh

properties LTE using from calculated becan ' Therefore

')'(')'()'()()()(

between secondper per volume sexcitation ofnumber

LTEat rate excitation-de rate excitation

)('

)'()(

σ

σ

σσ

σσ

emEvEFeNilN

dEEimEvEFeNimNdEEmiEvEFeNilN

dEE and E

ilEimEEE

EimAeilAEe

=

→=→

+

=

−+=

+−

↔+−

Detailed balance for excitation / de-excitation

Page 28: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Coronal Equilibrium

• Ii=net ionization rate coefficient from from ground state of ion i including inner shell excitation/autoinization

• Ri=net recombination rate from ground state of ion i including recombination into excited states of ion i-1

• Low density limit• Solar corona model• Only ground states significantly populated• Radiative decay rates >> e- impact excitation rates

0)( 1111 =++−= ++−− iiiiiiii NRNIRNI

dtdN

Page 29: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Solution of Rate Equations

Numerical Integration

Steady Stategeneral matrix solution

Local Thermodynamic Equilibrium

Coronal Equilibrium

∞→t

0=dt

dNil

High Ne, or Tr=Te

Low Ne, Tr=0

Page 30: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

e- Impact Excitation ↔ De-Excitation

sec/in and

,

)()(),(

')'()(

3

/

0

0

0

0

cmts

seggt

dEEEvkTEFs

NtNNsNdt

dNEEE

EEEAEeAEe

ekTE

im

il

E e

imeileil

ilim

imil

=

=

+−=

−=−=

+↔+

∫∞

−−

σ psesetsTNN

EE' E

e

e

il

211 :Ext coefficien rate excitation-de

tcoefficien rate excitation emperatureelectron t densityelectron

population state

energy threshold0

energy final energyimpact

2 +↔+

=====

===

−−

Page 31: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated
Page 32: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Photo-Excitation ↔ Decay

in eV,hνu,y,z in

ug

ilmgfz

hg

ilmgfy

hg

ilmgfmchey

kThGg

gfm

heu

zNyNuNdt

dNEEhAAh

`

im

im

ime

ril

ilm

e

imimilil

ilim

imil

01

20

7

2032

22

0

2

0

sec

)(

)()(10338.4

)()(8

),()(

=

×=

=

=

++−=

−=↔+

ν

νπ

νπ

νν

112 211 :Exfieldradiation no with 0

tcoefficien ratedecay stimulated t)coefficienA (Einstein

tcoefficien ratedecay sspontaneou tcoefficien rate excitation u

etemperaturradiation population state

energy transition0

energyphoton

psshzu

z

y

kTN

hvhv

r

il

↔+

===

====

==

ν

Page 33: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Fe+5: 3d3-3d24f

Page 34: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Photo-Ionization ↔ Radiative Recombination

.in 0,, ,sec/3

in ,,,1

sec is

2/3

/022

1066.1

)0(2/1

2)0(

)0 ,(22/32/1

2

1

)()0

,(

0

)(

eVhEkTcmqrp

pkT

kThe

jmg

ilgqr

dEEhiljmE

Eh

ekTEFcemjmg

ilgr

cdhhiljmh rkThGp

jmNeqNjmNerNilpNdt

ildN

EhEilEjmEh

jmAEeilAh

ν

ν

νσν

ννσν ν

νν

ν

−×=+

++

∫∞=

∫∞=

++−=

+=+−=

+−

↔+

−+↔+

==

=+==

==

esshq

kTkTqr

r

hvhv

re

12 11:Exfieldradiation no with 0

emission, stimulated with tcoefficien rateion recombinat radiative

tcoefficien rateion recombinat radiative tcoefficien rateation photoioniz u

energy ionization0

energyphoton

ν

Page 35: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated
Page 36: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

e- Impact Ionization ↔ Three-Body Recombination

eVEe

kT

c

c

ekT

ekTEe

jmg

ilg

b

dEEQEvE e

kTEFc

jmN

ebN

ilN

ecN

dt

ildN

EEEEEil

Ejm

EE

jmAEeEe

ilAEe

in 0

and

sec/6

cmin bsec,/3

cmin

2/3)(

/022

1066.1

)()()0

,(

2

'''0

'''

)''()'()(

−×=

∫∞=

+−=

++=++−=

+−

+−

↔+−

−−−

++↔+

=

=

=

==

eese

e

b

e

EeE

-

12 11s :Exsection. cross

ionizationimpact Qonly. Maxwellian

t,coefficien rate ion recombinatbody - three

t.coefficien rate ionizationimpact c

energy. ionization0

energy.impact

Page 37: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated
Page 38: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Auto-Ionization ↔ Di-Electronic Capture

eVekTE

da

a

ekT

ekTEe

jmg

ilgd

ailjmAa

jmNedNilaNdt

ildN

ilEjmEE

jmAEeilA

in and 0

sec/3

cmin and 1-

secin

2/3)(

/022

1066.1

0

)0(

−−

×=

=

+−=

−=

+−

−+↔

==

=

ess

d

E

12 22like-He :Exonly. Maxwellian

t,coefficien rate capture electronic-di

rate. ionization-auto a

energy. ionization0

Page 39: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Fe+5:3d14f2-3d2

Page 40: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Emission spectra

• Line or bound-bound contribution:• The number of emitting photons per second per volume per unit

energy interval per transition:

HWHMwew

whhw

dhh

hEEh

hhg

gfmcheN

whh

ilm

ilm

ilim

ilmim

ilm

eim

=

+−=Φ

−=

Φ

−−

220 /)(2ln2

220

0

0

2032

22

)/(2ln

or )(

/ e.g.

1)(

shape line)(

)()()(8

ννπ

ννπ

νν

νν

ννπ

Page 41: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Emission spectra, lines, cont.

• The total amount radiated energy per second per volume per unit energy interval, sum over all transitions:

)()()(8 3032

22

ννπ hhg

ilmgfmcheN ilm

imeim Φ∑

Page 42: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Emission spectra

• Recombination or free-bound continuous contribution• The total amount radiated energy per second per volume

per unit energy interval, sum over all transitions:

EhEEEhv

NN

iljm

ejm hiljmE

h

ekTEFcemjmg

ilg

+=+−=

0

)(2/1

3)(

),(22/32/1

2

1

ν

νσν

Page 43: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Emission spectra• free-free or Bremsstralung continuous contribution• free electron decelerates in plasma and emits a photon• simple hydrogenic formula• The total amount radiated energy per second per volume per unit

energy interval, sum over all transitions:

iion of chargeiion of population

)(10585552.9 2

2/1

/14

==

× ∑−

i

i

iie

kThe

qN

qNkTeN eν

Page 44: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Power Loss Is Obtained by Integrating Emission Over ALL Photon Energies

ii

ieeff

eiljmiljmiljmim

ejmbf

ilimilmilmim

imbb

ffbfbbtot

NqNkTP

kTEEqrNNP

EEzyNP

PPPP

−×=

+−+=

−+=

++=

22/114 )(1055.9

))2/3()((

))((

P in eV/(sec cm3), 1J=6.24x1018eV, 1W=1J/sec

Page 45: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

What is opacity?

∂Iω x( )∂x

=−κωρIω x( )

Iω x( )=Ioexp−κωρx( )

Page 46: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Applications of Opacities

Page 47: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

γ

eγ e

bound-bound bound-free free-free

γ

scattering e

Physical processes contributing to the opacity:

Page 48: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

These photon absorption and scattering processes Combine to give the frequency dependent opacity:

( ) ( )( )1 expbb bf ff skTωκ κ κ κ ω κ= + + − − +

)e(temperatur)(density mass

)/(1101.4

)(1

)()(1

0

3

2

32/70

23

2

KelvinTcmg

NqkThT

N

hN

hg

gfcm

heN

iiie

eff

iljmil

ilbf

ilmil

ilm

eililbb

=

=

×=

=

Φ=

− ∑

ρ

νρκ

νσρ

κ

νπρ

κ

Page 49: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Components of the frequency dependent opacity(bound-bound, bound-free, free-free and scattering)

10 -5

10 -4

10 -3

10 -2

10 -1

100

10 1

10 2

10 3

10 4

10 5

106

10 7K

(cm

2 /gm

)

2000150010005000hnu (eV)

kbbl97fee kbfl97fee kffl97fee kscl97fee

WorkOp-IV:97 KtotFeE: T=100 eV ρ=1e-4g/cc

Page 50: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

10-5

10-4

10-3

10 -2

10 -1

10 0

10 1

102

103

104

105

106

107

K (c

m2 /g

m)

2000150010005000hnu (eV)

ktotl97fee WorkOp-IV:97 KtotFeE: T=100 eV ρ=1e-4g/cc

The resultant total frequency dependent opacity

Page 51: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Exercises

(I) Consider the 2 state system. Let N1and N2 be the population density of the 2 states respectively. Let N = the constant total number density. Let c be the rate coefficient for excitation from state 1 to state 2, d be the de-excitation rate coefficient from state 2 to state 1, and r be the spontaneous decay rate from state 2 to state 1. Let Ne denote a given electron density.

(1)Write down the rate equations for N1 and N2 and derive an expression for the steady-populations of both in terms of N.

(2) Derive a formula for N1 and N2 as a function of time(t) by directly solving the differential rate equations.

(3) Check the formula to if the steady-result is obtained as t gets large, also check the formula for Ne small ( coronal limit), and for large Ne (LTE).

(4) Derive an expression to first order for the relaxation time, the time it takes for N1 to reach its steady-state value.

Page 52: THE USE OF ATOMIC DATA IN COLLISIONAL-RADIATIVE …indico.ictp.it/event/a05222/session/44/contribution/28/material/0/0.pdfEmission spectra, lines, cont. • The total amount radiated

Exercises

(II) Assume the 2-level system of the previous example to be the 1s and 2p configurations of H-like Lithium. This example is actually of interest in Lithography because of its wavelength. Calculate the power (Watts/cm3) emitted by the 2p-1s emission line at N=?, Ne=? and kTe=?. Use the LANL atomic physics website to evaluate the required atomic data.

(III) Use the LANL atomic physics website to identify the lines observed in the Al spectra shown above. Match the observed line position with calculated values.