the thermal conductivity

Upload: luc-le

Post on 04-Oct-2015

218 views

Category:

Documents


1 download

DESCRIPTION

l

TRANSCRIPT

  • 5/17/2018 The Thermal Conductivity

    1/6

    The thermal conductivity, as defined by Fouriers equation, is a materials ability to transmit heat

    by means of conduction, which allows the flow of heat from its warmer surface through the material to

    its colder surface shown in Figure ### below:

    Figure ###: The illustration for measurement the thermal conductivity of an object.

    Thermal conductivity is measured in watts per elvin!meter "$%&'$m&', i.e. ("%$m) or in *+

    units "tu$hr&'$ft&'$F&', i.e. tu("hr$ftF). From the Fourier equation, the thermal conductivity of

    material is defined as in -q ###

    k= Q/A

    T/ L "###)

    where is the amount of heat transferring through a cross section area of material "/) that

    causes a temperature difference " T over a distance " L ). The main difficulty of

    measuring thermal conductivity of a liquid is to measure the heat flu0 "(/) because liquid is

    subjected to the flow motion of its molecules and does not have a well!defined area.

    1onsequently, the heat transfer source is not pure conduction, but it is combination of

    conduction, convection or even radiation. The value of thermal conductivity is a material related

    property, which is dependent on pressure and temperature. 2owever, in most cases temperature

    has higher magnitude effect on thermal conductivity of material than pressure. For solid

    materials over certain temperature ranges, thermal conductivity is small enough to be neglected.

    2owever, in many cases, such as liquids and gases, the variation of the thermal conductivity with

    temperature is significant.

    3epending on the thermal properties of material and the medium temperature, there are two

    broad categories of measuring thermal conductivity of material: steady!state and transient state.

    The steady state technique is used to measure material that has high thermal conductivity such as

    solid, while the transient state technique is used to measure material that has low thermal

    conductivity such as liquid. *n this e0periment, we use the transient hot wire technique for

    measurement of the thermal conductivity of liquid. *t wos based on the detection of the

  • 5/17/2018 The Thermal Conductivity

    2/6

    temporal temperature rise in a thin wire immersed in the tested liquid, initially at thermal

    equilibrium, following the application of a stepwise electrical current. The wire acts as a heat

    source and produces a time!dependent temperature field within the liquid. The temperature rise

    at the radial distance r from the heat source is given by

    T(r , t)= Q

    4 k(ln( r2

    4 a )+ ln (t))where is the total heat, is thermal conductivity "$%&'$m&'), a is thermal diffusivity of

    tested fluid "m4s!') and 5 is a -ulers constant 6.7884'78. The plot of the temperature T"r,t) on alogarithmic scale of time, ln"t), is linear, with the slope m9(";), from that the thermal

    conductivity can be derived as -q. ### below:

    k= Q

    4 m

  • 5/17/2018 The Thermal Conductivity

    3/6

    MF Name -25 C 0 C 25 C 50 C 75 C 100 C

    Cl4 Si ! !

    H2O ater ! 6.7>'6 6.>68' 6.>?7 6.>>>@ 6.>8='

    Hg Aercury 8.47 8.88 @.47 @.>@ =.68 =.?

    CCl 4 Tetrachloromethane ! 6.'6 6.6== 6.6=? 6.6@@ !

    CS 2 1arbon disulfide ! 6.'7 6.'= ! ! !

    CHCl 3 Trichloromethane 6.'48 6.'44 6.''8 6.''4 6.'68 6.'64

    CH 2Br 2 3ibromomethane 6.'46 6.'' 6.'6@ 6.'6? 6.6=8 !

    CH 4O Aethanol 6.4' 6.468 6.466 6.'=? ! !

    C 2Cl 4 Tetrachloroethylene ! 6.''8 6.''6 6.'6 6.6=8 6.6='

    C 2HCl 3 Trichloroethylene 6.'?? 6.'4 6.''> 6.'6@ 6.'66 !

    C 2H 3Cl 3 ',','!Trichloroethane ! 6.'6> 6.'6' 6.6=> ! !

    C 2H 3N /cetonitrile 6.46@ 6.'=@ 6.'@@ 6.'8@ 6.'>@ !

  • 5/17/2018 The Thermal Conductivity

    4/6

    C 2H 4O 2 /cetic acid ! ! 6.'7@ 6.'7? 6.'= 6.'

    C 2H 5Cl 1hloroethane 6.'7 6.'?4 6.''= 6.'6> 6.6=?

    C 2H 5NO N !Aethylformamide ! ! 6.46? 6.46' 6.'== 6.'=>

    C 2H 6O -thanol ! 6.'8> 6.'>= 6.'>4 ! !

    C 2H 6O 2 -thylene glycol ! 6.47> 6.47> 6.47> 6.47> 6.47>

    C 2H 7NO -thanolamine ! ! 6.4== 6.4@> 6.48 6.4>'

    C 3H 5ClO -pichlorohydrin 6.'4 6.'?8 6.'?' 6.'47 6.''= 6.''

    C 3H 6O /cetone ! 6.'>= 6.'>' ! ! !

    C 3H 6O 2 Aethyl acetate 6.'8 6.'> 6.'7? 6.'? 6.'?? 6.'44

    C 3H 7NO N,N !3imethylformamide ! ! 6.'@ 6.'8@ 6.'8' 6.'>7

    C 3H 8O '!+ropanol 6.'>4 6.'7@ 6.'7 6.'= 6.'7 6.''

    C 3H 8O 4!+ropanol 6.'> 6.'' 6.'?7 6.'4= 6.'4 6.''@

    C 3H 8O 2 ',4!+ropanediol ! 6.464 6.466 6.'== 6.'=@ 6.'=8

    C 3H 8O 3 Blycerol ! ! 6.4=4 6.4=7 6.4=8 6.?66

  • 5/17/2018 The Thermal Conductivity

    5/6

    C 3H 9N Trimethylamine 6.'? 6.'?? ! ! ! !

    C 4H 4O Furan 6.'4 6.'? 6.'4> ! ! !

    C 4H 4S Thiophene ! ! 6.'== 6.'=7 6.'=' 6.'@>

    C 4H 6 4!utyne 6.'?8 6.'4= 6.'4' ! ! !

    C 4H 8O 4!utanone 6.'7@ 6.'7' 6.'7 6.'?= 6.'?? !

    C 4 H 8O Tetrahydrofuran 6.'?4 6.'4> 6.'46 6.'' ! !

    C 4H 8O 2 ',!3io0ane ! ! 6.'7= 6.'8 6.'?7 6.'4?

    C 4H 8O 2 -thyl acetate 6.'>4 6.'7? 6.' 6.'?7 6.'4> !

    C 4H 10O '!utanol ! 6.'7@ 6.'7 6.'= ! !

    C 4H 10O 3iethyl ether 6.'76 6.'6 6.'?6 6.'46 6.''6 6.'66

    C 5H 5N +yridine ! 6.'>= 6.'>7 6.'>' 6.'7@ !

    C 5H 8 1yclopentene 6.'? 6.'?> 6.'4= ! ! !

    C 5H 10 '!+entene 6.'?' 6.'4 6.''> ! ! !

    C 5H 10 1yclopentane 6.'6 6.'?? 6.'4> ! ! !

  • 5/17/2018 The Thermal Conductivity

    6/6

    C 5H 12 +entane 6.'?4 6.'44 6.''? 6.'6? 6.6=7 6.6@8

    C 5H 12O '!+entanol ! 6.'78 6.'7? 6.'= 6.'7 !

    C 6H 5Cl 1hlorobenCene 6.'?> 6.'?' 6.'48 6.'44 6.''8 6.''4

    For referencehttp://www.engineersedge.com/heat_transfer/thermal_conductivity_of_liquids_9921.htm

    http://www.imt.ro/romjist/olum1!/"um#er1!_$/pdf/!1%&odreanu.pdf

    http://www.eurotherm2!!'.tue.nl/(roceedings_)urotherm2!!'/papers/&onduction/&*"_1!.pdf

    http://www.ime+o.org/pu#lications/wc%2!!$/(,&%2!!$%-&12%!2.pdf

    The theoretical model describing the T2 technique is derived from the analytical solution of

    the heat conduction equation for a line heat source of radius rD6 and lengthlD' of negligiblethermal mass, which is perfectly embedded, with no thermal contact resistance, in an unbounded

    heat sin, initially at uniform temperature T6. The sin is considered of homogeneous and

    isotropic material with constant thermal transport properties. hen a constant electric power isstepwise applied, the wire instantly and totally liberates the heat source output per unit length, to

    the test sample, where it is conducted outwards and stored entirely.

    http://www.engineersedge.com/heat_transfer/thermal_conductivity_of_liquids_9921.htmhttp://www.engineersedge.com/heat_transfer/thermal_conductivity_of_liquids_9921.htmhttp://www.imt.ro/romjist/Volum10/Number10_3/pdf/01-Codreanu.pdfhttp://www.eurotherm2008.tue.nl/Proceedings_Eurotherm2008/papers/Conduction/CON_10.pdfhttp://www.eurotherm2008.tue.nl/Proceedings_Eurotherm2008/papers/Conduction/CON_10.pdfhttp://www.imeko.org/publications/wc-2003/PWC-2003-TC12-027.pdfhttp://www.imt.ro/romjist/Volum10/Number10_3/pdf/01-Codreanu.pdfhttp://www.eurotherm2008.tue.nl/Proceedings_Eurotherm2008/papers/Conduction/CON_10.pdfhttp://www.eurotherm2008.tue.nl/Proceedings_Eurotherm2008/papers/Conduction/CON_10.pdfhttp://www.imeko.org/publications/wc-2003/PWC-2003-TC12-027.pdfhttp://www.engineersedge.com/heat_transfer/thermal_conductivity_of_liquids_9921.htmhttp://www.engineersedge.com/heat_transfer/thermal_conductivity_of_liquids_9921.htm