the most unsolved problem in plasma physics: …reaction fast neutron (14.1 mev) alpha particle (3.5...

21
R. Betti University of Rochester Laboratory for Laser Energetics Solved and Unsolved Problems in Plasma Physics Princeton, NJ 28–30 March 2016 The Most Unsolved Problem in Plasma Physics: Demonstrating a Burning Plasma in the Laboratory FSC 0 0 2 4 6 8 10 1 2 3 4 5 Y a Y no a Indirect drive N140520 " 25 kJ Burning-plasma regime Q a = a heating PdV Direct drive X " tR = 0.260 Y = 7 # 10 13 NIF (1.8 MJ) " 520 kJ Direct drive X " tR = 0.220 Y = 6 # 10 13 NIF (1.8 MJ) " 230 kJ hs Direct drive X shot 77068 NIF " 130 kJ Y = yield 1

Upload: others

Post on 22-Oct-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

  • R. BettiUniversity of RochesterLaboratory for Laser Energetics

    Solved and Unsolved Problems in Plasma Physics

    Princeton, NJ28–30 March 2016

    The Most Unsolved Problem in Plasma Physics: Demonstrating a Burning Plasma in the Laboratory

    FSC

    00

    2

    4

    6

    8

    10

    1 2 3 4 5

    Ya

    Y

    no

    a

    Indirect driveN140520 " 25 kJ

    Burning-plasma regime

    Qa = a heating

    PdV

    Direct driveX " tR = 0.260 Y = 7 # 1013

    NIF (1.8 MJ) " 520 kJ

    Direct driveX " tR = 0.220 Y = 6 # 1013

    NIF (1.8 MJ) " 230 kJ

    hs

    Direct driveX shot 77068NIF " 130 kJ

    Y = yield

    1

  • 0.5 - 0.6

  • Collaborators

    A. R. Christopherson,* A. Bose,* K. M. Woo,* and J. Howard*

    K. S. Anderson, E. M. Campbell, J. A. Delettrez, V. N. Goncharov, F. J. Marshall, R. L. McCrory, S. P. Regan, T. C. Sangster, C. Stoeckl, and W. Theobald

    University of RochesterLaboratory for Laser Energetics

    *also Fusion Science Center

    M. J. Edwards, R. Nora, and B. K. Spears

    Lawrence Livermore National Laboratory

    J. Sanz

    Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid

    Madrid, Spain

    3

    FSC

  • The simplest a-heating model assumes that fusion reactions start after the plasma stagnates

    TC12266a

    6

    The plasma is brought to a pressure Pno a using only a spherical piston (the imploding shell).

    DT fusion plasma (hot spot)P(0) = Pno a

    FSC

    Time-dependent energy balance

    –ddt P

    n P P P23

    4 23 0 no

    2vo f x= =a ab ^l h

    Fusion reactivity

    Confinement time

    3.5 MeVP á 2nT

    +

    ++

    +

    +

    Fusionreaction

    Fast neutron(14.1 MeV)

    Alpha particle(3.5 MeV)

    Triton Deuteron

    +

    +

  • The dimensionless form of the energy balancedepends only on the no-a Lawson* parameter

    TC12268a

    7

    FSC

    • Assume T2+vo Set P PPno

    /a

    t t t/ xt P 0 1/t ^ h

    *J. D. Lawson, Proc. Phys. Soc. Lond. B 70, 6 (1957).

    S T P24 no ignmin

    2/

    f vox=a

    aa^ h

    SP

    nono/|

    xaa

    a

    No-a Lawson parameter

    –ddtP P P 1no|= attt t_ i Without a heating$ –

    ddtP P=tt

    t

    Note: Sa has the dimensions of Px

  • The amplification of the yield caused by alpha heating is a unique function of the no-a Lawson parameter

    TC12271

    8

    FSC

    0.0

    6

    3

    5

    2

    0.2 0.80.4 0.6 1.0

    7

    4

    1

    |no a

    – –YY

    nlP

    P21

    1no no no

    no nono ign

    nomin2 /| |

    | |x

    x=

    a

    a

    a aa a

    a

    ac ^m h= GYY

    noa

    a

    Generalized in 3-D in P.-Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010).

  • The scaling of the no-a Lawson parameter follows that of the ignition threshold factor* (ITFx)

    TC12272a

    9

    FSC

    –M R PR4DTsh 2r=p

    Newton’s law of the dense shellconfining the hot-spot pressure**

    M R PRMPRDT

    sh DTsh

    22(+ +

    xx

    M RDT shell 2+ t D^ h

    DT dense shell

    R

    Hot spotD

    Shell mass

    Approximate total areal density tR

    Y P V2+ x

    YM

    RDTsh

    3 2+| t^ h

    Same as LLNL ITFx, with tR replaced by the down-scatter

    ratio (DSR)*

    *B. K. Spears et al., Phys. Plasmas 19, 056316 (2012).**R. Betti et al., Phys. Plasmas 17, 058102 (2010).

  • The amplification of the yield caused by a heating is also a unique function of the Lawson parameter with a

    TC12282a

    10

    FSC

    – –YY

    nl2 11

    no no nono2| |

    |=a

    a

    a aac m= G

    . YM

    R0 24 /

    //

    DT mgsh g cm

    161 3

    2 32+| ta

    a

    _^

    ih

    > H

    YY

    Fno

    |=a

    aa^ h

    Y /no no1 3+| a a

    |a can be measured

    Y /1 3+|a a

    |no a cannot be measured

    YY /

    nono

    1 3| |=a a

    a

    ae o

    #|a valid in 3-D,* although the definition of tR is difficult; use DSR**

    *P.-Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010).**B. K. Spears et al., Phys. Plasmas 22, 056317 (2012).

  • In high-foot implosions, the fusion yield increasedby about 2.5× because of a heating

    TC12283a

    11

    FSC

    0.0 0.5 1.0|a

    1.5 2.0 2.50.0

    6

    10

    4

    2

    00.2 0.4

    |no a

    0.6 1.0 1.20.8

    8

    N140520

    1-D simulations2-D simulationsAnalytic

    Ignition

    YYn

    oa

    a

    .0 95.|a

    High-foot N140520:tR á 0.8 g/cm2,

    Y = 9 # 1015, MDT = 0.18 mg

    O. A. Hurricane et al., Phys. Rev. Lett. 115,

    055001 (2015).

    Used in J. Lindl et al., Phys. Plasmas 21, 020501 (2014); 21, 129902(E) (2014).

  • TC12284a

    13

    In a burning plasma, the a heating is the dominant power input to the fusion plasmaFSC

    Fusionplasma

    Wexternal

    Wa

    QWW

    ext/a

    ao

    o

    Burning plasmasQa > 1

    W C V VP P23

    ext2

    x+ =aoExternal

    inputEnergylosses

    foralpha heating vW T2+v=ao

    Steady-state energy balance with power input

  • TC12286a

    14

    The yield amplification caused by a heating depends exclusively on QaFSC

    QWW

    ext/a

    ao

    o

    Yield amplification is a unique function of Qa

    From the power balance: pressure with a

    PC

    .ICF 0 5.xa

    xV W Q CP 32 1

    /

    ext

    2 3= +a a xo ^ h: D

    YY

    QPP

    1 /no no

    2

    24 3= = +

    a

    a

    a

    aa^ h

    V W CP 32 /

    no ext

    2 3=a xo: D

    From the power balance: pressure without a

  • 0.6

  • TC12300

    19

    Hydrodynamic equivalence provides a tool to scale the performance of OMEGA direct-drive implosions to NIF energies for symmetric illuminationFSC

    Hydrodynamic scaling

    Direct driveNIF 1.8 MJ

    Direct driveNIF 1.8 MJ

    3.6 mm

    0.86 mm

    OMEGA 30 kJ

    OMEGA NIF

    Scale 1:60in energy

    Scale 1:4in size

    Hydrodynamic scaling does NOT account for differences in laser–plasma interactions between OMEGA and the NIF.

    3-D theory for R. Nora et al., Phys. Plasmas 21, 056316 (2014).

  • The hydrodynamic scaling holds in three dimensions

    TC10975b

    • In-flight scaling: R E /L1 3+ P E /LL

    2 3+ E /Lpulse1 3+x

    constVimp + onstc+a RT growth factors const+

    • Stagnation scaling: constP + T R .0 2+ V Rhs 3+

    Rburn +x R Rtot +t

    20

    r (nm)r (nm)

    z (n

    m)

    150

    50

    100

    00 50 100 150

    40

    10

    00 10 20 30 40

    30

    20

    YOCNIF = 60% YOCX = 61%t (g/cm2)

    425

    0

    142

    283NIFNIF OMEGAOMEGA

    A. Bose et al., Phys. Plasmas 22, 072702 (2015); R. Nora et al., Phys. Plasmas 21, 056316 (2014).

    FSC

  • 5

  • TC12302c

    Access to the burning-plasma regime requires about 50 kJ of HF targets in indirect drive and about 200 kJ of fusion energy for direct drive

    27

    Both direct and indirect drive must double the yield amplificationto access the burning-plasma regime.

    00

    2

    4

    6

    8

    10

    1 2 3 4 5

    Ya

    Y

    no

    a

    Qa hs

    Qa tot

    0 1

    Burning-plasma regime

    Direct driveX shot 77068

    F " 130 kJ

    Direct drive (1.9 MJ) " 210 kJIndirect drive (HF) " 50 kJ

    Direct drive (1.9 MJ) " 210 kJIndirect drive (HF) " 50 kJ

    Direct driveX shot 770681.9 MJ 125 kJ

    Direct drive (1.9 MJ) " 500 kJIndirect drive (HF) " 120 kJ

    Direct drive (1.9 MJ) " 500 kJIndirect drive (HF) " 120 kJ

    Indirect driveN140120 " 26 kJ

    Indirect driveN140120 " 26 kJ

  • 0.5 - 0.6

  • TC12303

    25

    Despite the exciting results, the path to ignition is uncertain with current direct- and indirect-drive targetsFSC

    No-a ignition parameter in terms of in-flight properties

    YOC YOC IFAREV

    E P. . /. . /

    no kF

    impk abl

    0 37 0 43 5

    20 37 0 4 2 5+ +|

    aa

    Best shot to date " |no a á 0.65Ek = kinetic energy

    YOC = yield-over-clean = D DY Y3 1- -^ ^h hYOC is $50% in NIF high foot

    Vimp = implosion velocity

    aF = adiabat (entropy)

    Needed for ignition " |no a á 1

    7.5t (g/cm3)

    3.5

    0.5

    –5000

    200

    400

    600

    800

    1000

    –250 0z (nm)

    r (n

    m)

    250 500

    Increasing the IFAR* while preserving the YOC is a challenge.

    *In-flight aspect ratio

  • Only half of the a energy can be counted whendetermining Qa for ICF

    TC12288

    15

    FSC

    90

    4

    6

    2

    3

    0

    1

    95 100 115 120110105

    Hot spot Qa

    5

    Rhs

    –PdV < 0–PdV > 0

    Only positivePdV work beforestagnation Neutron rate a heating

    Ho

    t-sp

    ot

    rad

    ius,

    neu

    tro

    n r

    ate

    (arb

    itra

    ry u

    nit

    s)

    Time (arbitrary units)

    –/

    Q dVE

    P1 2hs

    hs=a

    a

  • Two burning-plasma regimes are identified: a heating exceeds PdV work to the hot spot a heating exceeds PdV to hot spot + shell

    TC12289a

    16

    FSC

    QdV

    E

    P21

    hs

    hs=a

    a

    Hot spot Qa

    QPdV PdV

    E21

    tot

    hs sh=

    +aa

    Total Qa

    • First burning-plasma regime

    Q 1hs $a Q 1tot $a

    • Second burning-plasma regime

    Presentation1.pdfSlide Number 1

    Presentation2.pdfSlide Number 1

    Presentation3.pdfSlide Number 1

    Presentation3.pdfSlide Number 1

    Presentation3.pdfSlide Number 1

    Presentation1.pdfSlide Number 1

    Presentation2.pdfSlide Number 1

    Presentation3.pdfSlide Number 1

    Presentation4.pdfSlide Number 1

    Presentation5.pdfSlide Number 1