the interaction between evolution and ecology · life history theory community ecology invasion....

73
Minus van Baalen (CNRS, UMR 7625 EcoEvo, Paris) The Interaction Between Evolution and Ecology

Upload: others

Post on 02-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Minus van Baalen (CNRS, UMR 7625 EcoEvo, Paris)

The Interaction Between

Evolution and Ecology

Page 2: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Original Proposition

Introduction into Adaptive Dynamics

Application: Virulence Evolution

Application: Kin Selection, Cooperation, and Units of Adaptation

Page 3: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Potential Topics

Synthetic Biology, Experimental Evolution

Mechanisms and Evolutionary Outcomes

Invasion Biology & Evolution

Genomics & Information Theory

Page 4: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Evolution and Ecology

Population Genetics

Game Theory

Life History Theory

Community Ecology

Invasion

Page 5: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Population Genetics

Page 6: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Well-known standard case:

Sexual reproduction

Diploid genetics

Two alleles (dominant/recessive)

Variables: gene frequencies

Population Genetics

Page 7: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Gene frequencies

time

gene

freq

uenc

ies

Page 8: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Typical assumptions:

single population

simplified ecology

– most ecological aspects are subsumed in ‘frequency dependence’

more realistic cases difficult to analyse

– density dependence

– population interactions

Population Genetics

Page 9: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Simple model

Page 10: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

example 2

Page 11: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

example 3

Page 12: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Measures of increaseSubtle differences

λ rate of population increase– invasion continuous time : λ > 0– invasion discrete time : λ > 1

R0 basic reproduction ratio of individuals– invasion : R0 > 1

r net rate of reproduction of population– invasion : r > 0

s selection coefficient– increase in frequency : s > 0

Page 13: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Much attention to

interaction among alleles and loci

– dominance

– modifiers

– conditions that favour polymorphism

– epistasis, linkage

– links with developmental biology

Population Genetics

Page 14: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Little attention to

Interactions among individuals

– Population dynamics and ecology

– Behaviour

Population Genetics

Page 15: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Phenotypic plasticity

Page 16: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Phenotypic plasticity

A dominates

it depends…

Page 17: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Gene frequencies

time

gene

freq

uenc

ies

We can select for redness but what about greenness???

Page 18: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

‘Evolution is change in gene frequencies’

‘That problem has been solved long ago’

‘The big problem is to explain speciation’

Population Genetics

Page 19: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Game Theory

Page 20: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

First developments during 2nd World War

Then applied to Sociology

Why do individuals cooperate?

Applied to Behavioural Ecology

Interactions among individuals

Bill Hamilton John Maynard Smith

Game Theory

Page 21: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

John Maynard Smith

Page 22: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Bill Hamilton

Page 23: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Observation: fighting animals rarely kill

Why such restraint?

Hawk-Dove Game

Maynard Smith & Price 1971

Evolutionary Game Theory

Page 24: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Individuals may choose among a range of strategies

Sometimes finding the optimum strategy is easy

Often, however, payoffs depend on what others do

Game Theory

Page 25: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Hawk-Dove Game

Page 26: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Calculation

Page 27: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Graph

Page 28: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

If pH < p* (few Hawks) then play ‘Hawk’

If pH > p* (many Hawks) then play ‘Dove’

If pH = p* both ‘Hawk’ and ‘Dove’ do equally well

A resident strategy that plays ‘Hawk’ with probability p* cannot be beaten

Formalised in concept of ESS

Evolutionarily Stable Strategies

John Maynard Smith,Richard Dawkins

Page 29: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Evolutionary Stability

If for all strategies J ≠ I

W(I|I) > W(J|I)

then strategy I is an ESS

If W(I|I) = W(J|I) then I is ESS if W(I|J) > W(J|J)

Maynard Smith & Price’s second condition.

Page 30: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Caricature:

‘The fitness of an individual depends

on the strategies it adopts

(which can be either pure or mixed)

but also depends on the resident strategies

according to the payoff function’

Evolutionary Game Theory

Page 31: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Problems

where do the strategies come from?

– Physiology?

– Developmental genetics?

– Behaviour?

– Life History Theory?

where does the payoff function come from?

Evolutionary Game Theory

Page 32: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

In many species, mothers can decide the sex of their offspring

Strategy = {% sons, % daughters}

Fischer in the 30s:

produce 50% daughters

Hamilton in the 60s:

depends on mating structure

biased sex ratios

Example: Sex Allocation

Page 33: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

In many spatially heterogeneous environments, individuals can decide where to go

Often, payoffs depend on where others go

Q1: where should you go ?

Q2 (knowing A1) where does everybody go?

Prediction: Ideal Free Distribution

nobody gains by moving to another place

Ex: Habitat Selection

Page 34: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Where does the payoff function come from?

Fitness = Lifetime reproductive succces

If Fitness > 1 ⇒ Invasion

Life History Theory

Evolutionary Game Theory

Page 35: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Population Genetics

mutant genotypes may generate new phenotypes

Game Theory

outcome of interaction depends on conditions

Life History Theory

rare mutants will try to optimize their strategies

Ecosystem Dynamics

invasion of rare species, density dependence

Important Insights

Page 36: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Adaptive Dynamics

Page 37: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Caricature

‘New mutants may appear

initially rare

whose invasion fitness

depends on the resident attractor’

Peter Hammerstein, Ilan Eshel, Hans Metz, David Rand, Geza Meszena,

Ulf Dieckmann,Stefan Geritz, Eva Kisdi.

Adaptive Dynamics

Page 38: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

summary

Page 39: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Practical Method

monomorphic population trait a

resident dynamics

attractor

mutant invasion

pairwise invasibility plot (PIP)

Adaptive Dynamics

Page 40: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Pairwise Invasibility Plot

resident trait

mut

ant

trai

t

+ +

positivemutantfitness

negativemutantfitness

Page 41: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Pairwise Invasibility Plot

resident trait

mut

ant

trai

t+

+

Evolutionary Repeller

Page 42: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Pairwise Invasibility Plot

resident trait

mut

ant

trai

t+

+

Garden of Eden

Page 43: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Pairwise Invasibility Plot

resident trait

mut

ant

trai

t

+

+

––

–‘Branching point’

Page 44: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Kisdi & Geritz

Page 45: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Epidémiologie

β paramètre de transmissionµ mortalité de baseα mortalité induite, virulence

Individu↓

Population

dSdt

=[host reproduction]−µS−βSI

dIdt

=βSI− (µ+α)I

Page 46: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Epidémiologie + Evolution

I souche residente, J souche mutante

dSdt

=[host reproduction]−µS−βSIdIdt

=βSI− (µ+α)I

= −β∗SJ

=dJdt

=β∗SJ− (µ+α∗)J

Page 47: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

« Dynamique adaptative »

• théorie des jeux dans un cadre écologique

• pour deriver la valeur sélective (fitness)+ en lieu de simplement supposer lʼexpression

• pour predire la réponse evolutive+ stratégies evolutivement stable+ branchement évolutif

Articles par Metz, Kisdi, Geritz, Law, Rand, Dieckmann…

Page 48: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Lʼinvasion des mutants• Resident I en équilibre endemique

dI/dt = 0

• Le mutant J envahit sidJ/dt > 0

" " " " (quand il est rare, J << I)

• Invasion si R0

β∗Sµ+α∗ > 1

Page 49: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

R0 easy to calculate?

Page 50: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Invasion

• Mutant J envahit siβ∗Sµ+α∗ > 1 =

βSµ+α

β∗

µ+α∗ >β

µ+α

La virulence optimale maximise β∗

µ+α∗

Page 51: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

ESS

• La séléction naturelle favorise les parasites – qui maximisent

– exploitent leurs hôtes dʼune façon optimale– les individus infectés, pas la population !

β∗

µ+α∗

Page 52: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Une contrainte…tra

nsm

issio

n (β

*)

mortalité de l’hôte (µ + α∗)

Page 53: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

…implique un Trade-offtra

nsm

issio

n (β

*)

host mortality (µ + α∗)

Page 54: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Epidémiologie + Evolution+ Intervention

I souche residente, J souche mutanteD modification de transmission

dSdt

=[host repr.]−µS−DβSI−Dβ∗SJ

dIdt

=DβSI− (µ+α)I

dJdt

=Dβ∗SJ− (µ+α∗)J

Page 55: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Invasion

• Mutant J envahit si

β∗

µ+α∗ >β

µ+α

La virulence optimale maximise β∗

µ+α∗

Dβ∗Sµ+α∗ > 1 =

DβSµ+α

Page 56: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

• Les parasites maximisent

une quantité qui ne dépend pas de D!

Evolution

β∗

µ+α∗

Page 57: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Conséquences

• La virulence dépend de la forme du trade-off– la rélation entre transmission et mortalité– déterminée par la physiologie de lʼhôte/

parasite• La virulence ne dépend pas de facteurs

externes+ à lʼexception du taux de mortalité de base– pas de rôle pour lʼépidémiologie

Page 58: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Virulence Déterminée au…

niveau de la populationinteractions sociales, interactions ecologiques, compétition, ressources, santé publique

niveau de l’individuvirulence

niveau intra-hôtephysiologie, dynamique intra-hôte, choses moleculaires, médicaments, antibiotiques

Page 59: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Conséquences

• Virulence depend de la forme du trade-off+ dépend de la physiologie de lʼhôte+ dynamique intra-hôte du parasite+ système immunitaire

– La virulence ne dépend pas de facteurs externes

Page 60: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Le dilemme du parasite

Page 61: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Le dilemme du parasite

• Un parasite peut– augmenter sa transmission, ou– prolonger la duration de lʼinfection– mais pas les deux en même temps

• ce dilemme est capturé par lʼanalyse graphique…

Page 62: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

…mais… la réalité ?

• dans le modèle :durée de lʼinfection = survie de lʼhôte

• souvent pas très réaliste :– infections terminées par le système

immunitaire (guérison)– compétition avec dʼautres parasites

Page 63: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Infections multiples

Page 64: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Infections multiples

Page 65: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Infections multiples

• parasites partagent leurs hôtes• reduit transmission en long terme• favorise transmission en court terme• mène à une virulence augmentée

+ Eshel 1977 + Levin & Pimentel 1981+ Nowak & May 1994+ van Baalen & Sabelis 1995

Page 66: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Modèles compétition intra-hôte• Superinfection

– la souche la plus virulente remplace les autres– (Levin & Pimentel 1981, Nowak & May 1994)

– chaque souche a une chance de gagner– Gandon et al. 2001, 2002)

• Coinfection– les souches coexistent à lʼintérieur de

lʼhôte– (Eshel 1977, van Baalen & Sabelis 1995)

Page 67: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Superinfection

S

I J

Page 68: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Superinfection

σ : Aggressivité intra-hôte

Page 69: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Invasion

le mutant envahit si

fitness ≠ taux de reproduction de base !

β∗S +σβ∗Iµ+α∗+σβI

> 1

R0 =β∗S

µ+α∗

Page 70: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

`• virulence optimale maximise

• en contraste avec cas simple, dépend de plein de choses– densité hôtes saines,– densité hôtes infectés (avec souche

residente)– stratégie de la souche residente

β∗S +σβ∗Iµ+α∗+σβI

Page 71: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Cas simple

• supposons σ constant• virulence optimale maximise

• presque comme résultat déjà obtenu, sauf que virulence dépend du ʻforce dʼinfectionʼ du resident (β*I )

βµ+α+σβ∗I

Page 72: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Résumé

Modèle simple sans compétition intra-hôte : - pas de « virulence management »

Avec compétition intra-hôte :

- infection difficile → moins d’infections multiples

- moins d’infections multiples → virulence diminuéeEwald: « C’est ce que je dis tout le temps ! »

Page 73: The Interaction Between Evolution and Ecology · Life History Theory Community Ecology Invasion. Population Genetics. Well-known standard case: Sexual reproduction Diploid genetics

Virulence & infections multiples

niveau populationnelinteractions sociales, interactions ecologiques, compétition, ressources, santé publique

niveau individuelinfectivité, mortalité, immunité, comportement, visites médicales, vaccination

niveau intra-hôtephysiologie, dynamique intra-hôte, aspects moléculaires, médication