the impact of different dose calculation algorithms and ... · the impact of different dose...

41
DEPARTMENT OF RADIATION PHYSICS THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis, Gothenburg spring 2015 Axel Larsson Supervisors: Anna Bäck a Ph.D. medical physics Anna Karlsson Hauer a Ph.D. medical physics a) Department of therapeutic radiation physics, Sahlgrenska University Hospital, Gothenburg Email: [email protected] Tel: +46 70 616 48 07

Upload: buihanh

Post on 14-Feb-2019

241 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

DEPARTMENT OF RADIATION PHYSICS

THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis, Gothenburg spring 2015 Axel Larsson

Supervisors: Anna Bäcka Ph.D. medical physics

Anna Karlsson Hauera Ph.D. medical physics

a) Department of therapeutic radiation physics, Sahlgrenska University Hospital, Gothenburg Email: [email protected] Tel: +46 70 616 48 07

Page 2: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

The author is thankful for the great support from his supervisors Anna Bäck and Anna Karlsson Hauer. Special thanks to Magnus Gustavsson, Sahlgrenska University Hospital, for

his support with the film measurement technique and Sebastian Sarudis, Sahlgrenska University Hospital, for the help with the collapsed cone calculations.

Gothenburg, June 2015

Page 3: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

Abstract  

Background: The   use   of   the   IMRT   and   VMAT   technique   enables,   in  many   cases,   an   increased   absorbed   dose   to   the   tumor,   with   a   more  conform   dose   distribution,   compared   to   conventional   radiation  therapy.  Invers  treatment  planning  is  used  to  create  IMRT  and  VMAT  plans.   The   treatment   plan   is   made   up   of   several,   often   small   or  irregular,  MLC   openings.   Small   and   irregular  MLC   openings   increase  the  complexity  in  dose  calculation  and  dose  delivery,  mainly  due  to  the  absence   if   charge   particle   equilibrium   (CPE).     Götstedt   et   al   (2015)  developed   two   different   aperture-­‐based   complexity   metrics:    converted  aperture  metric  and  edge  area  metric,  and  evaluated  them  for   30   different   static   MLC   openings.   These   metrics   provide   a  complexity   score   for   each  MLC  opening.   The  metrics  were   evaluated  for  the  anisotropy  analytical  algorithm  (AAA)  and  0.25  cm  calculation  grid  size  using  three  EPID  measurements  and  one  film  measurement.  A  correlation  between  the  complexity  scores  for  both  metrics  and  the  difference   between   calculated   and   measured   dose   distribution   was  found,  for  both  EPID-­‐  and  film  measurements.      In   this   this   study   it   was   investigated   how   the   two   earlier   described  metrics   correlate   with   the   difference   between   calculated   and  measured   dose   when   the   dose   calculation   is   made   using   the   dose  calculation   algorithms   pencil   beam   convolution   (PBC),   acuros   XB  advanced   calculation   algorithm   (AXB)   and   the   collapsed   cone  algorithm   (CC).   This   study   is   based   on   film   measurements.   The  previous   film   measurement   made   by   Götstedt   et   al   (2015)   was  complemented  by  two  further  film  measurements  in  order  to  take  into  account   the   precision   in   the  measurement   procedure.   The   impact   of  different   dose   calculation   resolutions   on   the   correlation   was   also  investigated.    Method: The   30   different  MLC   openings   described   in   Götstedt   et   al  (2015)   were   used.   These   MLC   openings   were   measured   on   two  separate  occasions  using  a  6  MV  photon  beam  and  Gafchromic®  EBT3  film.   The   films   were   calibrated,   scanned   and   analysed   in   RIT113  (Radiological   imaging   technology).   In   the   analysis,   measured   and  calculated  absorbed  dose  was  compared.  The  percentage  of  pixels  that  did   not   deviate   (calculated   vs   measured)   more   than   5   %   and   3   %  normalized   to   the   calculated  maximum  absorbed  dose   in   each  of   the  MLC  opening  (i.e.  5  %  and  3  %  dose  difference  pass  rate)  were  used  as  a  measure  of  the  comparision.  

Page 4: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

Results: High   correlation   coefficients   i.e.   pearsons´s   r-­‐values   were  found  for  each  metric  and  all  the  dose  calculation  algorithms  tested.  A  lower  correlation  coefficient  was   found   for  Acuros  XB.  A  higher  dose  calculation   resolution   generated   a   better   match   between   calculated  and  measured   dose   distribution.   The   complexity   scored   for   both   the  metrics   correlated   with   the   evaluation   results   for   all   examined  calculation   resolutions.   The   calculated   dose   differences   for   the  different  MLC  openings  were  dependent  on   the  examined  calculation  algorithm.  The  PBC  algorithm  performed  generally  worse   than  other  algorithms   and   AAA   performed   generally   better   than   the   other  algorithms.    Conclusion: The   conclusions   from   Götstedt   et   al   (2015)   were  confirmed   for   AAA.   The   average   spread   of   the   dose   difference   pass  rate   values   from   the   three   different   film   measurements,   i.e.   the  standard   deviation,   was   generally   within   3   %   for   the   5   %   dose  difference  pass  rate  criterion  and  4  %  for  the  3  %  dose  difference  pass  rate  criterion.  The  scores  for  the  converted  aperture  and  the  edge  area  metric   correlate   with   the   dose   difference   between   measured   and  calculated  dose  distribution,  also  for  the  PBC,  AXB  and  CC  algorithm,  as  well   as   for   the   AAA   calculations   with   different   dose   calculation  resolution.  A  slightly  lower  r-­‐value  was  found  for  AXB  compared  to  the  other  algorithms.    

Page 5: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

Abbreviations AAA  –  Anisotropic  analytical  algorithm  

AXB  –  Acuros  XB    

CC  –  Collapsed  cone  convolution  

CPE  –  Charge  particle  equilibrium  

DICOM  –  Digital  imaging  and  communications  in  medicine    

EPID  –  Electronic  portal  imaging  device  

IMRT  –  Intensity-­‐modulated  radiation  therapy  

LBTE  –  Linear  Boltzmann  transport  equation  

MC  –  Monte  carlo  

MLC  –  Multi  leaf  collimator  

MU  –  Monitor  unit  

OAR  –  Organs  at  risk  

OD  –  Optical  density  

PBC  –  Pencil  beam  convolution  

QA  –  Quality  assurance  

QC  –  Quality  control  

SD  –  Standard  deviation  

SNR  –  Signal  to  noise  ratio  

TERMA  –  Total  energy  released  per  unit  mass  

TPS  –  Treatment  planning  system  

VMAT  –  Volumetric-­‐modulated  arc  therapy  

Page 6: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

List of Contents 1. Introduction ............................................................................................................ 1

1.1 Aim ................................................................................................................................. 3 2. Theory ..................................................................................................................... 4

2.1 Converted aperture metric .............................................................................................. 4 2.2 Edge area metric ............................................................................................................ 5 2.3 Pencil Beam Convolution Algorithm (PBC) .................................................................... 5 2.4 Anisotropy Analytical Algorithm (AAA) ........................................................................... 6 2.5 Acuros XB (AXB) ............................................................................................................ 6 2.6 Collapsed cone convolution (CC) ................................................................................... 7

3. Material and methods ............................................................................................ 8 3.1 The Different MLC Openings .......................................................................................... 8 3.2 Film Measurement .......................................................................................................... 9 3.3 Calculation of Dose Distributions .................................................................................. 11 3.4 Evolution of the Dose Difference .................................................................................. 12

4. Results .................................................................................................................. 14 4.1 Precision of the Film Measurement Procedure ............................................................ 14 4.2 Different Dose Calculation Algorithms .......................................................................... 19 4.3. Different Grid Size ....................................................................................................... 23

5. Discussion ............................................................................................................ 26 6. Conclusions ......................................................................................................... 29 7. References ........................................................................................................... 30 Appendix ................................................................................................................... 32

Page 7: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

1

1. Introduction Radiation  therapy  plays  an  important  role  in  the  treatment  of  cancer,  and  it  is  used  as  a  treatment   for  more   than   half   of   all   the   cancer   patients  world  wide   (IAEA,   2004).   The  radiation   treatment   design   is   simulated   in   a   treatment   planning   system   (TPS)   prior  delivery  to  patient.  The  dose  distribution  is  calculated  and  optimized  in  the  TPS.    Intensity-­‐modulated   radiation   therapy   (IMRT)   is   a   radiation   technique   where   the  fluence  of  the  beam  is  non-­‐uniform  (Kahn,  2010).  With  IMRT  the  fluence  in  a  beam  at  a  static   gantry   angle   can   be   adjusted   during   radiation   delivery   based   on   user-­‐defined  constrains.  This  enables  higher  and  more  conformal  absorbed  dose  distributions  to  the  tumor  with   less   absorbed  dose   to  OAR.  Another   radiation   technique   is   the   volumetric  modulated  arc  therapy  (VMAT).  For  VMAT  the  treatment  is  delivered  at  the  same  time  as   the   gantry   is   rotating   around   the   patients   and   with   a   continuously   changing   MLC  shape,  dose  rate  and  angle  speed  of  the  gantry  (O´Daniel  et  al,  2012).      VMAT  has  the  potential  to  deliver  a  conformal  dose  distribution  with  less  monitor  units  (MU)   and   shorter   treatment   time   compared   to   IMRT   technique   (Younge   et   al,   2012).  Shorter   treatment   time   reduces   the   risk   of   patient   movement   during   treatment   and  gives  the  patient  an  increased  comfort.      Unlike  conventional   radiation   therapy,   IMRT  and  VMAT  often  have  a  greater  ability   to  increase   the   dose   to   the   target  with   a   reduced   dose   to   healthy   tissue   (McNiven   et   al,  2010).  However,  the  characteristics  of  the  IMRT/VMAT  treatment  make  higher  demands  on  treatment  planning,  dose  delivery  and  quality  assurance.    An   IMRT/VMAT  treatment  plan   is  created  using  an  optimization  algorithm   in   the  TPS.  This  optimization  procedure  creates  a  treatment  plan  based  on  user-­‐defined  constrains  that   tells   the   system  what   the   prescribed   absorbed  dose   should   be   for   the   target   and  maximum   permissible   absorbed   dose   for   the   OAR.   This   generates   a   treatment   plan  composed  of  unique  MLC  openings  with  different  sizes  and  shapes  (Kahn,  2010).    During   optimizing   of   VMAT  or   IMRT  plans   the  TPS   creating  more   small   and   irregular  shaped   MLC   openings   compared   to   conventional   treatment   planning     (Younge   et   al,  2012).  Small  or  irregular  MLC  openings  make  it  more  difficult  for  the  TPS  to  calculate  an  accurate  dose  distribution  due  to  regions  lacking  charge  particle  equilibrium  (CPE).  Fog  et   al   (2011)   showed   that   apertures   consisting   of   small   subfields   or   large   fields  containing   isolated   MLC   leaves   could   give   rise   to   significant   dose   calculation   errors.  Small  MLC  openings  also  lead  to  a  more  pronounced  dependence  on  the  position  of  the  MLC  leafs  during  delivery  and  the  MLC  modeling  in  the  TPS  (LoSasso  et  al,  1998).      Because  of  the  complex  nature  of  the  IMRT/VMAT  technique,  it  is  necessary  to  confirm  that   the  TPS  has   calculated   the  dose  distribution  correctly  and   that   the   insecurities   in  

Page 8: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

2

dose   delivery   from   the   treatment   machine   are   in   tolerance.   This   is   done   by   quality  assurance   (QA)   (Nelms   et   al,   2011).   The   QA   includes   IMRT   quality   control   (QC).   A  common   way   for   IMRT   QC   is   to   compare   the   TPS   calculated   dose   distribution   with  corresponding  measured  dose  distribution  in  a  phantom.  Common  QC  methods  that  are  in   use   nowadays   have   been   found   to   miss   relevant   clinical   differences   between  calculated   and   delivered   dose   distributions   (Nelms   et   al,   2011;   Götstedt   et   al,   2015;  Nilsson  et  al,  2013).    By   taking   advantage  of   complexity  metrics   that   describes   the   calculation   and  delivery  complexity   by   calculating   a   complexity   score   in   the  dose   calculation  process,   complex  MLC  openings  can  be  avoided  before  the  treatment  plans  are  approved  (Götstedt  et  al,  2015).  Complexity  metrics  can  also  be  used  as  a  supplement  and  simplification  of  the  QA  process  by  giving  a  signal  to  the  physicist  of  which  QA  method  that  may  be  required  and  which  treatment  plans  that  need  detailed  examination.  QA  measurements  require  a  lot  of  staff  time  and  demands  machine  time.    Younge  et  al  (2012)  showed  that  highly  complex  MLC  openings  are  not  always  needed  to   create   a   clinically   accepted   VMAT   plan,   instead   it   is   an   unwanted   effect   of   the  optimizing  process   in   the  TPS.  Oliver  et  al   (2011)  concluded   that  decreasing   the  MU:s  and   creating   MLC   openings   with   increased   opening   area   should   lead   to   more   stable  treatment  plans  with  preserved  quality.    Complexity   metrics   can   also   be   used   in   the   optimization   procedure   to   force   the  optimizer   to  create   treatment  plans  with   less  complex  apertures  (Younge  et  al,  2012).  Younge   at   el   (2012)   developed   a   function   that   was   integrated   in   the   optimization  process.   The   function  penalized   small   and   irregular  MLC  openings. The   study   verified  that   penalizing   small   and   irregular  MLC   openings   could   give   an   increased   agreement  between  calculated  and  measured  absorbed  dose  with  negligible  changes  in  the  planed  dose  to  target  and  OAR.    The  two  aperture-­‐based  metrics  evaluated  in  this  study  is  the  converted  aperture  metric  based  on  the  distance  between  the  MLC  leave  positions  and  the  edge  area  metric  based  on  the  circumference  of   the  MLC  opening   in  relation  to   the  area  of   the  opening.  These  metrics  were  developed  in  a  previously  study  (Götstedt  et  al,  2015).  The  study  examined  the   correlation   between   the  metric   scores   and   the   difference   between   calculated   and  measured  absorbed  dose.  The  evaluations  were  performed  with  three  electronic  portal  imaging  device   (EPID)  measurements   and  one   film  measurement   and   the   calculations  were  performed  with  the  anisotropic  analytical  algorithm  (AAA). The  results  indicated  a  correlation  between  the  metrics  and  the  percentage  of  pixels  that  did  not  deviate  more  than  3  %  or  5  %  normalized  to  the  maximum  calculated  absorbed  dose.    The  correlations  were  calculated  with  pearsons´s  r-­‐value.  The  pearsons´s  r-­‐value  gives  the  linear  dependence  i.e.  correlation  between  two  variables  by  giving  a  value  between    

Page 9: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

3

-­‐1   and   1   (Djurfeldt   et   al,   2010).   -­‐1   och   1   means   a   negative   or   positive   correlation  respectively.  A  value  close  to  0  means  that  no  correlation  exists.    This  project  is  a  complement  and  an  extension  of  the  study  by  Götstedt  et  al  (2015)  for  the   converted   aperture   and   the   edge   are   metric.   The   influence   on   the   correlation  between   the  metric   scores   and   the   difference   between  measured   and   calculated   dose  distribution  were  investigated  when  different  dose  calculation  algorithms  and  grid  sizes  were  used.    1.1 Aim

§ Reproduce   the   film   measurements   from   Götstedt   el   at   (2015)   to   study   the  precision  for  the  measurement  procedure.  

 § Evaluate  the  correlation  between  the  two  different  complexity  metrics,  edge  area  

and  converted  aperture  metric,  and  the  dose  difference  (i.e.  difference  between  measured  and   calculated  dose  distributions)  between  measured  and   calculated  dose   distributions   for   the   pencil   beam   convolution   (PBC),   collapsed   cone   (CC)  and  acuros  XB  (AXB)  algorithms.  

 § Study  the  impact  of  the  dose  calculation  grid  size  on  the  correlation  between  the  

dose  differences  and  the  two  complexity  metrics  when  using  the  AAA  algorithm.  

Page 10: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

4

2. Theory

2.1 Converted aperture metric The  converted  aperture  metric  is  based  on  the  distances  between  the  MLC  leaves  both  parallel   and   opposed   the  MLC   direction   (Götstedt   et   al,   2015)   (figure   1).   The  metric  gives,   for   a   MLC   opening,   a   complexity   score   value   between   0   (non-­‐complex)   and   1  (complex).  The  distances  are  measured  every  5  mm.  

 

                                                                                                                 

Figure 1. For the converted aperture metric the distances between MLC leaves are measured both parallel (green solid line) and opposed (red dashed line) the MLC direction. The MLC leaves are 5 mm wide.

 

The  conversion  function,  f,  penalizes  smaller  distances  compared  to  larger  distances  (eq.  1).    

𝑓(𝑥) = 1− 𝑒−𝑥    (𝐸𝑞. 1)  

 

With  the  distances  (mm)  and  the  equivalent  field  size  as   input  arguments  the  function  derives  a  value  between  0  (complex)  and  1  (non-­‐complex).  The  complexity  score  is  then  given  by  the  following  equation  (Götstedt  et  al,  2015):  

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑  𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒  𝑚𝑒𝑡𝑟𝑖𝑐 = 1− 𝑓 𝑑! ∙ 𝑓 𝑎!"    (𝐸𝑞. 2)  

 

where  di   is  the  measured  distances  and  aeq   is  the  equivalent  square  field  size.  To  get  a  higher  score  for  increasing  complexity,  and  a  lower  score  for  decreasing  complexity,  the  

Page 11: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

5

score  is  subtracted  from  one.  The  calculations  were  performed  in  an  in-­‐house  MatLab® software.  

2.2 Edge area metric The  edge  area  metric  depends  on  the  length  of  the  edge  of  the  MLC  opening  (Götstedt  et  al,   2015).   As   for   the   converted   aperture   metric,   the   edge   area   metric   calculates   a  complexity   score   based   on   the   MLC   opening.   The   MLC   opening   is   divided   into   two  different  areas.  The  first  area,  Ae,  includes  5  mm  on  both  sides  of  the  MLC  edge  (figure  2).  The  second  area,  Ao  (mm2),  are  defined  as   the  rest  of   the  area  of   the  MLC  opening.  The  edge  area  metric  is  given  by  the  following  equation:  

 

𝐸𝑑𝑔𝑒  𝑎𝑟𝑒𝑎  𝑚𝑒𝑡𝑟𝑖𝑐 =𝐴!

𝐴! + 𝐴!      (𝐸𝑞. 3)  

 

As  for  the  converted  area  metric,  a  higher  score,  between  zero  and  one  means  that  the  field  is  more  complex.    

Figure 2. Schematic graph of the areas for the edge area metric. Area Ae (green and light green) includes 5 mm on both sides of the edges of the MLC leaves. The remaining area, Ao, is marked as white. The MLC leves are 5 mm wide.

2.3 Pencil Beam Convolution Algorithm (PBC) The   pencil   beam   convolution   algorithm   (PBC)   is   implemented   in   Eclipse   TPS   (Varian  medical  systems,  2010)  but  similar  algorithms  are  also  implemented  in  other  treatment  planning  systems.        

Page 12: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

6

The   absorbed   dose   is   calculated   by   convolving   total   energy   released   by   unit   mass  (TERMA)   with   a   pencil   beam   kernel.   The   pencil   beam   kernels   describe   the   dose  deposition  from  all  photons  and  electrons  emerging  from  an  in-­‐finite  part  of  the  beam.      In  every  voxel  the  TERMA  is  calculated  based  on  the  beam  model.  This  model  describes  the  fluence  from  the  accelerator  and  is  calculated  once  and  for  every  unique  accelerator.  It  is  based  on  measured  parameters  like  MLC  transmission  factors  and  dose  profiles.    The  irradiated  volume  is  divided  into  finite  voxels.  The  voxel  size  is  defined  by  the  grid  size  chosen  by  the  user.  The  dose  calculation  resolution  i.e.  grid  size  can  be  chosen  to  be  0.125   cm,   0.25   cm,   0.5   cm   or   1.0   cm   for   PBC.   Reduced   grid   size   improves   the   dose  calculation  resolution  and  vice  versa.  The  convolving  process  takes  place  in  each  voxel.  The  total  dose  in  a  voxel  is  calculated  by  superposition  of  the  smaller  dose  depositions.    

2.4 Anisotropy Analytical Algorithm (AAA) The  anisotropic  analytical  algorithm  (AAA)   is  a  3D  pencil  beam  convolution  algorithm  developed  by  Varian  medical  systems  (Varian  medical  systems,  2010).  The  grid  size  can  be  chosen  between  0.1  cm  and  0.5  cm.          The  dose  calculation  model  is  divided  into  a  beam  model  and  a  dose  calculation  model.  The   first  one  describes   the  beam  in   the  phase  space  plane  by  different  source  models.  The   source   models   are   the   primary-­‐,   secondary-­‐,   wedge   scattering-­‐,   and   electron  contamination  source  model.      Monoenergetic   pencil   beam   kernels   are   transformed   to   polyenergetic   pencil   beam  kernels.  They  are  also   scaled  based  on   the  electron  density   (heterogenities)   along   the  central  axis  of  the  kernel  and  in  six  lateral  directions.    The  beam  is  divided  into  finite  beamlets.  Every  beamlet  is  convolved  with  a  kernel.  This  is  done  for  every  source.  The  total  energy  in  every  voxel  is  given  by  superposition  of  the  doses  from  the  different  source  models.      

2.5 Acuros XB (AXB) The   acuros   XB   algorithm   is   implemented   in   the   Eclipse   TPS   (Varian  medical   systems,  2010).   AXB   is   considered   to   be   a   fast   algorithm   compared   to   MC   even   though   the  computing   time  compared   to  other  clinical   calculation  algorithms   is   somewhat   longer.  The  grid  sizes  available  to  be  chosen  are  between  0.1  cm  and  0.3  cm.  The  beam  model  is  the  same  as  for  the  anisotropic  analytical  algorithm  (AAA).    

Page 13: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

7

Acuros   XB   calculates   the   absorbed   dose   by   solving   the   linear   Boltzmann   transport  equation   (LBTE)   (Vassiliev   et   al,   2010).   The   LBTE   describes   macroscopically   how  ionizing  particles  for  example  photons  and  electrons  interact  with  different  matter.    LBTE  is  solved  in  Eclipse  by  numerical  methods  (Varian  medical  systems,  2010).  In  the  calculations,   limitations   in   accuracy   are   induced   because   of   the   discrete   variables   in  angle,  energy  and  space.  Acuros  XB  calculates  absorbed  doses  in  heterogenic  material  in  the  same  order  of  accuracy  as  MC  calculations  (Fogliata,  2011).  The  long  computing  time  compared  to  other  calculation  algorithm  is  a  disadvantage  (Vassiliev  et  al,  2010).    

2.6 Collapsed cone convolution (CC) The   collapsed   cone   convolution   (CC)   algorithm   is   implemented   in   the   Oncentra   TPS  (Nucletron).  The  grid  size  can  be  chosen  between  0.1  cm  and  0.5  cm.  The  beam  model  is  made  up  of  two  models:  one  that  describes  the  primary  fluence  and  another  that  takes  into  account  the   fluence  of  head-­‐scatter  components.  These  are  stored   in  separate  2D-­‐  matrices.    CC  uses  analytical  point  kernels  to  describe  the  dose  deposition  from  primary  photons  in   the  medium   (Ahnesjö,   1989).   A   point   kernel   gives   the   dose   deposition   distribution  from  primary  photons  and  scattered  photons.  The  absorbed  dose  is  calculated  by  a  3D  convolution/superposition   method   like   the   AAA   and   PBC   algorithms.   The   deposited  energy,  within  a  solid  angle  Ω,   is  transported  to  voxels  positioned  along  a   line  inside  a  cylindrical   coordinate   system.  Every   line  defines   an  axis  of   a   cone.  The   line   is  passing  thought   the  middle   point   of   a   3D   voxel   defined   in   a   cartesian   coordinate   system.   The  total   energy   deposited   along   the   line   is   transported   to   this   voxel.   That   means   that  parallel   lines,  one  for  every  cartesian  voxel,  gives  the  total  absorbed  dose  in  the  whole  radiated  volume.    CC  is  an  algorithm  that  effectively  takes  into  account  heterogeneities  due  to  the  use  of  a  cylindrical  coordinate  system.  

Page 14: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

8

3. Material and methods

3.1 The Different MLC Openings 30  MLC  openings  of  varying  complexity  were  used  in  this  study.  The  MLC  openings  were  described   in  a  previous  study  (Götstedt  et  al,  2015).  The  MLC  openings  have  different  shapes   and   sizes   and   were   created   in   the   EclipseTM   treatment   planning   system   (v.  11.0.47,  Varian  Medical   Systems).  The  MLC  openings  were  divided   into   six   series,  A-­‐F  (figure   3).   In   each   series   the   six   openings   were   numbered   1-­‐5.   Increased   number  indicates  increased  complexity  within  the  series.  The  circumference  and  area  of  series  A  are  decreasing,  while  the  shape  of  the  MLC  opening  is  retaining  a  square  shape.  The  jaws  of  series  A  form  a  10  cm  x  10  cm  large  area.  In  series  B  the  MLC  opening  area  is  slightly  decreasing   with   a   considerable   increased   circumference.   Series   D   simulates   small  subfields.   Series   D   and   E   have   a   constant   MLC   opening   area,   with   an   increasing  circumference.   Series   C   and   F   have   a   constant   circumference,   with   a   decreasing  MLC  opening  area.  

Figure 3: 30 different MLC openings described by Götstedt et al (2015) were used in this study. The MLC openings were divided into five series A-F. Increased number indicates increased complexity within the series. The MLC leaves are 5 mm wide.

Page 15: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

9

3.2 Film Measurement Film  dosimetry  was  carried  out  using  Gafchromic®  EBT3  film.  70   films  were  prepared:  60   films   for   the  measurement   of   the   30  MLC  openings   in   two  different   occasions   and  further  10  films  for  the  calibration.      Two   film   measurements   were   performed   in   this   study.   Each   film   measurement   was  done  on  three  subsequent  days.  During  day  one  all   the  40  films  were  scanned  with  an  Epson  Expression  1650  Pro  scanner  to  get  information  about  the  unique  features,  such  as   irregularities   and   transparency,   in   each  pixel   for   each   film.   For   each   scan   the   films  were   placed   in   the   same   reproducible   way   in   the   scanner   and   four   scans   were  performed.   The   first   scan   was   for   heating   the   film   and   this   scan   was   disregarded   in  further  analysis.  The  other  three  directly  subsuquent  scans,  that  were  made  for  each  of  the   films   during   a   day   of   irradiation   were   averaged   to   increase   signal   to   noise   ratio  (SNR).   This   was   made   in   an   in-­‐house   developed   program   written   in   Matlab©  (Mathworks).        On  the  same  day  as  the  scanning,  all  films  were  irradiated  to  a  uniform  absorbed  dose  of  2  Gy.  It  was  done  to  obtain  the  radiation  sensitivity  of  each  film,  which  was  a  part  of  the  calibration.  A  6  MeV  photon  beam  was  used  to  deliver  the  dose  (Cliniac®  iX  linac,  Varian  medical  systems).  The  films  were  placed,  perpendicular  to  the  beam,  at  10  cm  depth  in  a  30   cm   ×   35   cm   solid-­‐water   phantom.   To   ensure   complete   backscatter   7   cm   of   solid  water  was  placed  under  the  film  (figure  4).  Two  films  were  placed  on  top  of  each  other  and  irradiated  at  the  same  time.  The  gantry  angle  was  set  to  0  degrees,  the  field  size  to  40  cm  ×  40  cm  and  the  source  to  skin  distance  (SSD)  to  90  cm.  The  treatment  table  was  placed   in  90  or  270  degrees  during   the  delivery  of   the   first-­‐half  of   the  dose.  Then,   the  table  was  rotated  180  degrees  before  the  second  half  of  the  dose  was  delivered.  This  was  done  to  give  the  films  as  homogeneous  absorbed  dose  as  possible  by  taking  into  account  possible  skewness  in  the  beam  from  the  accelerator.  The  number  of  MUs  to  be  delivered  was  calculated  according  to  equation  4:    

                 𝑀𝑈 =𝐷

(1.172120 )×  𝑀!"#$%      (𝐸𝑞. 4)  

   D  (Gy)  is  the  absorbed  dose  to  deliver  and  !.!"#

!"#    (Gy/MU)  is  the  reference  output.  Mratio  is  

given  by  equation  5.  

𝑀!"#$% =𝑀 ∙ 𝐾!"𝑀!"#

     (𝐸𝑞. 5)  

 𝑀(C)   is   the   averaged   value   of   three   output   measurements.   The   Mratio   was   calculated  before  and  after  the  radiation  of  the  films.  The  second  Mratio  measurement  verified  that  the   Mratio   did   not   change   during   the   film   measurements.   M   was   measured   with   an  

Page 16: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

10

ionizing  chamber  at  10  cm  depth  in  a  solid-­‐water  phantom  with  the  dimensions  20  cm  ×  20   cm.   The   field   size   was   10   cm   ×   10   cm   and   the   SSD   was   90   cm.   The   linac   was  calibrated  to  deliver  1  Gy  at  10  depth  in  water  for  a  field  opening  of  10  cm  ×  10  cm  at  SSD   90   cm.   In   each   irradiation   120   MU   was   delivered.   Mref   is   the   reference   value.  Pressure  (mmHg)  and   temperature  (oC)  were  measured  at  each  occurence   to  give   the  pressure-­‐  and  temperature  factor  KTP.    

   Day  two,  more  than  18  hours  after  the  first  irradiation,  the  films  where  scanned  again.  The  scan  was  performed  in  the  same  way  as  previously  describe.  Later  on  the  same  day,  day  2,   the  measurement  started  by   irradiating  each  of   the  30   films  with  one  of   the  30  different  MLC  openings.  The  number  of  MUs   for   the  MLC  openings  were   calculated   to  deliver  about  2  Gy  in  the  center  of  the  MLC  opening  at  10  cm  depth  with  a  SSD  of  90  cm.  The   dose   and  MU   calculations   were   carried   out   in   EclipseTM.   The   calculated  MUs   are  listed  in  table  5,  in  appendix.  Each  of  the  films  was  placed  in  the  same  reproducible  way  during  irradiation.      The  double  exposure  method  was  used  to  calibrate  the  films  to  interconnect  the  optical  density   with   absorbed   dose.   The   principles   are   the   same   as   described   by   Zhu   et   al  (1997).  A  calibration  curve  was  calculated  according  to  equation  6.  The  purpose  of  the  calibration   procedure   was   to   fit   a   polynome   by   tuning   the   parameters   A,   B   and   C   to  correlate   the   absorbed   dose   with   the   optical   density.   Parameter   A   and   B   applies   for  every  batch  and  C  gives   the   sensitivity   in  each  pixel  of   every   film.  The  parameter  C   is  produced  from  the  2  Gy  exposure  on  day  one.    

𝑂𝐷 =𝐴×𝑑𝑜𝑠𝑒𝐵×𝑑𝑜𝑠𝑒 + 𝐶×𝑑𝑜𝑠𝑒        (𝐸𝑞. 6)  

   

Figure 4. A photo of the linac and the couch. The gantry angel was at 0 degrees and the couch at 90 or 270 degrees angle during day one. The couch is positioned at 270 degrees in the photo (left). The 40 films were placed at 10 cm depth in a solid-water phantom with 10 cm solid-water on top of the films (right).

Page 17: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

11

On  day  two,  after  the  second  scan  and  after  the  delivery  of  the  30  MLC  openings,  10  films  for  the  calibration  were  irradiated  to  a  predetermined  absorbed  dose.  One  film  was  left  unirradiated.  The  MUs  were  calculated  as  previously  describe  according   to  equation  4  and  are  listed  in  table  1.    

   

 On   day   three,  more   than   18   hours   after   the   second   irradiation,   all   the   40   films  were  scanned  again.  The  optical  density   for   the  10   individual   films   irradiated  with  different  absorbed  doses  was  measured   from  a  2.5   cm  ×  2.5   cm  region-­‐of-­‐interest   (ROI)   in   the  center   of   the   10   films.   An   in-­‐house   developed   software   in   Matlab©   was   used.   The  parameters  A  and  B  were  calculated  in  Excel  (Microsoft  corporation)  and  then  applied  to  the  films  with  an  in-­‐house  developed  software  in  Matlab©.  

3.3 Calculation of Dose Distributions The  dose  distributions   from  the  different  MLC  openings  were  calculated  with   the  AAA  (v.10.0.28),   PBC   (v.10.0.28)   and   AXB   (v.11.0.31)   algorithms   in   EclipseTM   (v.11.0.47,  Varian  medical  systems)  and  with  the  CC  (v.4.0)  in  Oncentra©  (v.5.3,  Nucletron).      The   phantom   used   in   the   TPS   was   the   same   as   used   by   Götstedt   et   al   (2015).   The  dimensions   of   the   phantom   were   30   cm   ×   30   cm   ×   30   cm   (figure   5).   The   phantom  material  was   set   to  water   in   the  TPS.   The   isocenter   for   the   individual  MLC  openinges  were  placed  at  10  cm  depth  centrally  in  the  phantom.  The  chosen  dose  calculation  grid  sizes   for   the   AAA   algorithm   were   0.125   cm,   0.25   cm   and   0.5   cm   and   for   the   other  algorithms   the   grid   size   was   set   to   0.25   cm.   The   calculated   coronal   absorbed   dose  distributions  at  10  cm  depth,  for  the  individual  MLC  openings,  were  exported  to  RIT113  (v.5.4)  for  evaluation.  The  dose  distributions  exported  from  the  TPS  had  the  dimensions  22.59  cm  ×  28.39  cm  and  the  resolution   in-­‐plane  was  0.056  cm  ×  0.056  cm.  Thus,   the  resolution  of  the  exported  data  was  considerably  higher  than  the  resolution  of  any  of  the  calculated  grid  sizes.  

Film Dose (Gy) #MU0 1   0   0  2   0.28   26  3   0.56   52  4   0.75   77  5   1.00   103  6   1.50   155  7   2.01   207  8   3.00   310  9   3.00   413  10   5.00   517  

Table 1. Absorbed dose with corresponding number of MU used for the calibration of the films.

Page 18: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

12

 

3.4 Evolution of the Dose Difference The   film   measurements   were   evaluated   pixel-­‐by-­‐pixel   in   RIT113   (v.5.4,   Radiological  Imaging  technology  INC).  The  measured  absorbed  dose  data  was  individually  imported  and  registrered  with  the  corresponding  calculated  absorbed  dose  data  (DICOM-­‐RD)  for  each  MLC  opening.  When  the  films  were  imported,  the  calibration  curve  was  applied  to  convert  the  blackening  of  the  film  to  absorbed  dose.  A  median  9  pixels  ×  9  pixels  filter  was  applied  for  noise  reduction  of  the  measured  dose  data.      The  registration  between  the  measured  and  the  calculated  dose  distributions  was  done  with  a  four-­‐point-­‐match.  The  registration  points  was  saved  and  used  when  matching  the  same   measured   data   with   another   corresponding   calculated   dose   distribution.   New  templates  were  created  for  the  films  in  the  second  measurement.    Orthogonal  dose  profiles,  horizontally  and  vertically,  were  used  to  verify  the  registration  (figure  6).  If  the  dose  profiles  did  not  match  symmetrically,  the  points  in  the  four-­‐point-­‐match   were   relocated   in   accordance   with   the   result   of   the   profile   evaluations.   The  normalization   was   performed   in   the   central   part   of   the   individual   MLC   opening.   For  D2:D5  a  mean  value  of  the  individual  openings  was  used  for  the  normalization.  In  the  B-­‐series   and   C-­‐series   the   central   part   in   the   largest   open   part   of   the  MLC   opening  was  used.  Normalization  was  done  with  a  0.5  cm  ×  0.5  cm  ROI  for  all  openings,  except  A5,  D5  and  F5  there  a  0.3  cm  ×  0.3  cm  ROI  was  used  because  of  the  small  MLC  openings,  and  to  avoid  placing  the  normalization  ROI  in  the  sharp  absorbed  dose  gradients.  The  median  value  within  the  ROI  was  used  for  normalization.  A  dose  cut-­‐off  threshold  of  10  %  was  used  to  exclude  pixels  that  had  received  less  than  10  %  of  the  maximum  calculated  dose  in  the  analysis.  Dose  difference  pass  rate  was  used  as  a  measure  of  agreement  between  

Figure 5. The 30 cm × 30 cm × 30 cm phantom used in the calculations of the absorbed dose distributions. The A1 MLC opening is visualized with the corresponding calculated 3D dose distribution in EclipseTM. The phantom material was set to water in the TPS.

Page 19: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

13

the  measured  and  calculated  dose  distribution.  The  dose  difference  pass  rate  gives  the  precentage  of  evaluated  pixels  that  do  not  deviate  more  than  a  selected  precentage.   In  the   evaluation   of   the  dose  differences   in   this   study   and   in   the   study  by  Götstedt  et   al  (2015)  a  3  %  and  a  5  %  dose  difference  pass  rate  criterion  was  used.    

Figure 6. Dose difference analyzes in RIT113. The calculated and the measured coronal dose planes in colored scale (left), the vertical and the horizontal absorbed dose profiles (upper middle and upper right) and the dose difference between the calculated and measured dose data visualized in 3D and 2D (lower middle and lower right).

Page 20: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

14

4. Results

4.1 Precision of the Film Measurement Procedure Pass   rate   values   calculated   for   the   different   MLC   openings   differed   depening   on   the  investigated  algorithm.  Pass  rate  values  for  the  criterion  of  5  %  and  3  %  are  shown  in  figure  7   and  8   respectively.   The   SD  was   calculated   from   the   three   film  measurements  and   is  shown  in   the   figures  as  error  bars.  The  pass  rate  values  decreased  with  a  more  complex   MLC   opening.   PBC   showed   in   generall   a   lower   pass   rate   value   regerdless  complexity  compered  to  the  other  algorithms  and  AAA  showed  in  generall  a  higher  pass  rate  value  regardless  complexity.  When  a  part  of  the  field  area   is  complex  (series  C)   it  seems   to   be   not   so   complex   for   the   algorithms,  which   also   emerges   for  Götstedt  et   al  (2015).  

Figure 7. The measured pass rates for the 5 % criterion for the 30 different MLC openings. The pass rates were evaluated for the AAA, PBC, CC and AXB algorithm. The error bars correspond to 1 SD.

0  

50  

100  

1   2   3   4   5  5  %-­‐  d

d  pa

serate  (%

)  

MLC  opening  

       Series  A  

0  

50  

100  

1   2   3   4   5  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

     Series  B  

0  

50  

100  

1   2   3   4   5  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

Series  C  

0  

50  

100  

1   2   3   4   5  

5  %-­‐dd  pa

ss  ra

te  

MLC  opening  

   Series  E  

0  

50  

100  

1   2   3   4   5  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

           Series  F  

0  

50  

100  

1   2   3   4   5  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

Series  D  

1,#87,19# 2,#87,36# 3,#86,01# 4,#83,63# 5,#80,78#1,#78,11# 2,#76,49#3,#70,99#

4,#64,77#5,#53,58#

1,#85,77# 2,#81,55#3,#74,13#

4,#65,82#5,#60,63#

1,#81,95# 2,#80,92# 3,#77,40# 4,#74,44#5,#68,09#

1# 1,5# 2# 2,5# 3# 3,5# 4# 4,5# 5#

E.serien#

AAA# PBC# AcurosXB# CC#

Page 21: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

15

0  

50  

100  

1   2   3   4   5  3  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

     Series  A  

0  

50  

100  

1   2   3   4   5  3  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

     Series  B  

0  

50  

100  

1   2   3   4   5  3  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

 Series  C  

0  

50  

100  

1   2   3   4   5  3  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

   Series  D  

0  

50  

100  

1   2   3   4   5  3  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

   Series  E  

0  

50  

100  

1   2   3   4   5  3  %-­‐  d

d  pa

ss  ra

te  (%

)  

MLC  opening  

         Series  F  

1,#87,19# 2,#87,36# 3,#86,01# 4,#83,63# 5,#80,78#1,#78,11# 2,#76,49#3,#70,99#

4,#64,77#5,#53,58#

1,#85,77# 2,#81,55#3,#74,13#

4,#65,82#5,#60,63#

1,#81,95# 2,#80,92# 3,#77,40# 4,#74,44#5,#68,09#

1# 1,5# 2# 2,5# 3# 3,5# 4# 4,5# 5#

E.serien#

AAA# PBC# AcurosXB# CC#

     

Figure 8. The measured pass rates for the 3 % criterion for the 30 different MLC openings. The pass rates were evaluated for the AAA, PBC, CC and AXB algorithm. The error bars correspond to 1 SD.

Page 22: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

16

The   dose   differences   between   measured   and   calculated   absorbed   dose   distributions  were  larger  than  3  %  or  5  %  exclusively  close  to  the  edges  of  the  MLC  opening.  In  figure  9  the  colored  dose  differens  maps  for  the  deviations  between  measured  and  calculated  dose  distributions  for  the  B:4  MLC  opening  are  visualized.  

AAA PBC AXB CC

B:4

Figure 9. Colored dose difference maps from the comparison of the absorbed dose distribution from a film measurement and the calculated dose distributions from the investigated dose calculation algorithms. The color scale gives the precentage dose differens.

Page 23: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

17

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

Edge  area  metric  

r  =  -­‐0,84  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

3  %-­‐  d

d  pa

ss  ra

te  (%

)  

Edge  area  metric  

r  =  -­‐0,90  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

3  %-­‐  d

d  pa

ss  ra

te  (%

)  

Converted  aperture  metric  

r  =  -­‐0,85      

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

Converted  aperture  metric  

r  =  -­‐0,80  

!"!!!!!!!

!10,00!!!!!

!20,00!!!!!

!30,00!!!!!

!40,00!!!!!

!50,00!!!!!

!60,00!!!!!

!70,00!!!!!

!80,00!!!!!

!90,00!!!!!

0,00! 0,10! 0,20! 0,30! 0,40! 0,50! 0,60! 0,70! 0,80! 0,90! 1,00!

5"%"pass"rate"

Converted"Aperture"Metric"

Pencil"Beam"Serie!A! Serie!B! Serie!C! Serie!D! Serie!E! Serie!F!

r"="90,89"

The   results   for   AAA   from   Götstedt   et   al   (2015)   was   successfully   reproduced   for   the  investigated  complexity  metrics.  Pass  rates,  with  corresponding  standard  deviation  for  the   evaluated   dose   differences   between   the   measured   and   calculated   absorbed   dose  distributions  for  the  30  MLC  openings  were  plotted  against  the  scores  of  the  complexity  metrics   (figure   10).     The   SD   was   calculated   from   the   three   film   measurements.   The  standard   deviation,  was  most   often  within   3  %   for   the   5  %  dose   difference   pass   rate  criteria   and  4  %   for   the  3  %  dose  difference  pass   rate   criteria.  A  higher  pearsons´s   r-­‐value  was  found  for  all  combinations  of  metrics  and  pass  rate  criteria  compared  to  the  film  measurement  by  Götstedt  et  al  (2015)  (table  2).    

Figure 10. The pass rates for the dose difference evaluation of the measured and calculated dose distributions versus the complexity metric scores for AAA. A dose difference criterion of 5 % (left) and 3% (right) was used. The error bars correspond to 1 SD.

Anisotropic Analytical Algorithm

0,01,$$76,45$$$$$

0,10,$$65,45$$$$$0,25,$$61,69$$$$$

0,40,$$51,74$$$$$

0,60,$$36,63$$$$$

0,02,$$74,86$$$$$0,07,$$69,93$$$$$

0,13,$$61,77$$$$$

0,18,$$54,79$$$$$

0,31,$$38,46$$$$$

0,01,$79,28$0,02,$78,29$0,04,$77,30$0,06,$74,48$0,10,$73,60$0,01,$$74,99$$$$$

0,05,$$65,69$$$$$

0,11,$$56,65$$$$$0,17,$$50,86$$$$$

0,27,$$45,74$$$$$

0,01,$$76,45$$$$$

0,10,$$65,45$$$$$0,25,$$61,69$$$$$

0,40,$$51,74$$$$$

0,60,$$36,63$$$$$

0,02,$$74,86$$$$$0,07,$$69,93$$$$$

0,13,$$61,77$$$$$

0,18,$$54,79$$$$$

0,31,$$38,46$$$$$

0,01,$79,28$0,02,$78,29$0,04,$77,30$0,06,$74,48$0,10,$73,60$0,01,$$74,99$$$$$

0,05,$$65,69$$$$$

0,11,$$56,65$$$$$0,17,$$50,86$$$$$

0,27,$$45,74$$$$$

0,02,$$78,11$$$$$0,03,$$76,49$$$$$0,07,$$70,99$$$$$

0,11,$$64,77$$$$$

0,19,$$53,58$$$$$

0,00,$$84,21$$$$$0,01,$$81,37$$$$$

0,04,$$76,88$$$$$

0,11,$$67,40$$$$$

0,35,$$47,91$$$$$

0,02,$78,10666667$0,03,$76,49$0,07,$70,99$

0,11,$64,77$

0,19,$53,58$

0,00,$$84,21$$$$$0,01,$$81,37$$$$$

0,04,$$76,88$$$$$

0,11,$$67,40$$$$$

0,35,$$47,91$$$$$

0,00$ 0,10$ 0,20$ 0,30$ 0,40$ 0,50$ 0,60$ 0,70$ 0,80$ 0,90$ 1,00$

Pencil'Beam'Series$A$ Series$B$ Series$C$ Series$D$ Series$E$ Series$F$

r'='-0,89'

.

Page 24: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

18

Table 2. Persons´s r-values from the evaluation of the pass rates for the dose difference evaluation of the measured and calculated dose distributions versus the complexity metric scores for AAA. The persons´s r-values in the first column are from one film measurement performed by Götstedt et al (2015) and the persons´s r-values in the second column are from all three film measurements.

  Götstedt et al (2015) This study Metric r (5 %) r (3 %) r (5 %) r (3 %) Conv.   -­‐0.76   -­‐0.78   -­‐0.80   -­‐0.85  Edge.   -­‐0.79   -­‐0.83   -­‐0.84   -­‐0.90  

Page 25: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

19

4.2 Different Dose Calculation Algorithms Dose  difference  pass  rates  when  comparing  the  measured  and  calculated  absorbed  dose  distributions   was   studied   individually   for   PBC   (figure   11),   AXB   (figure   12)   and   CC  (figure   13).   Pearson’s   r-­‐values  were   calculated   for   all   the   individual   linear   fits   of   the  dose  difference  pass  rates  and  the  complexity  metrics  scores   for   the  30  MLC  openings  (table   3).   The   SD   was   calculated   from   the   pass   rate   values   from   the   three   film  measurements.   High   pearsons´s   r-­‐values   were   found   for   all   combinations   of   metrics,  pass  rate  criteria  and  algorithms.

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

Converted  aperture  metric  

r  =  -­‐0,89  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

3  %-­‐  d

d  pa

ss  ra

te  (%

)  

Converted  aperture  metric  

r  =  -­‐0,93  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

3  %-­‐  d

d  pa

ss  ra

te  (%

)  

Edge  area  metric    

r  =  -­‐0,95  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

Edge  area  metric  

r  =  -­‐0,94  

Pencil Beam Convolution

Figure 11. The pass rates for the dose difference evaluation of the measured and calculated dose distributions versus the complexity metric scores for PBC. A dose difference criterion of 5 % (left) and 3 % (right) was used. The error bars correspond to 1 SD.

0,01,$$76,45$$$$$

0,10,$$65,45$$$$$0,25,$$61,69$$$$$

0,40,$$51,74$$$$$

0,60,$$36,63$$$$$

0,02,$$74,86$$$$$0,07,$$69,93$$$$$

0,13,$$61,77$$$$$

0,18,$$54,79$$$$$

0,31,$$38,46$$$$$

0,01,$79,28$0,02,$78,29$0,04,$77,30$0,06,$74,48$0,10,$73,60$0,01,$$74,99$$$$$

0,05,$$65,69$$$$$

0,11,$$56,65$$$$$0,17,$$50,86$$$$$

0,27,$$45,74$$$$$

0,01,$$76,45$$$$$

0,10,$$65,45$$$$$0,25,$$61,69$$$$$

0,40,$$51,74$$$$$

0,60,$$36,63$$$$$

0,02,$$74,86$$$$$0,07,$$69,93$$$$$

0,13,$$61,77$$$$$

0,18,$$54,79$$$$$

0,31,$$38,46$$$$$

0,01,$79,28$0,02,$78,29$0,04,$77,30$0,06,$74,48$0,10,$73,60$0,01,$$74,99$$$$$

0,05,$$65,69$$$$$

0,11,$$56,65$$$$$0,17,$$50,86$$$$$

0,27,$$45,74$$$$$

0,02,$$78,11$$$$$0,03,$$76,49$$$$$0,07,$$70,99$$$$$

0,11,$$64,77$$$$$

0,19,$$53,58$$$$$

0,00,$$84,21$$$$$0,01,$$81,37$$$$$

0,04,$$76,88$$$$$

0,11,$$67,40$$$$$

0,35,$$47,91$$$$$

0,02,$78,10666667$0,03,$76,49$0,07,$70,99$

0,11,$64,77$

0,19,$53,58$

0,00,$$84,21$$$$$0,01,$$81,37$$$$$

0,04,$$76,88$$$$$

0,11,$$67,40$$$$$

0,35,$$47,91$$$$$

0,00$ 0,10$ 0,20$ 0,30$ 0,40$ 0,50$ 0,60$ 0,70$ 0,80$ 0,90$ 1,00$

Pencil'Beam'Series$A$ Series$B$ Series$C$ Series$D$ Series$E$ Series$F$

r'='-0,89'

Page 26: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

20

Acuros XB

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

Converted  aperture  metric  

r  =  -­‐0,52  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

3  %-­‐  d

d  pa

ss  ra

te  (%

)  

Converted  aperture  metric  

r  =  -­‐0,70  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

Edge  area  metric  

r  =  -­‐0,71  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

3  %-­‐  d

d  pa

ss  ra

te  (%

)  

Edge  area  metric  

r  =  -­‐0,81  

Figure 12. The pass rates for the dose difference evaluation of the measured and calculated dose distributions versus the complexity metric scores for AXB. A dose difference criterion of 5 % (left) and 3% (right) was used. The error bars correspond to 1 SD.

!"!!!!!!!

!10,00!!!!!

!20,00!!!!!

!30,00!!!!!

!40,00!!!!!

!50,00!!!!!

!60,00!!!!!

!70,00!!!!!

!80,00!!!!!

!90,00!!!!!

0,00! 0,10! 0,20! 0,30! 0,40! 0,50! 0,60! 0,70! 0,80! 0,90! 1,00!

5"%"pass"rate"

Converted"Aperture"Metric"

Pencil"Beam"Serie!A! Serie!B! Serie!C! Serie!D! Serie!E! Serie!F!

r"="90,89"

0,01,$$76,45$$$$$

0,10,$$65,45$$$$$0,25,$$61,69$$$$$

0,40,$$51,74$$$$$

0,60,$$36,63$$$$$

0,02,$$74,86$$$$$0,07,$$69,93$$$$$

0,13,$$61,77$$$$$

0,18,$$54,79$$$$$

0,31,$$38,46$$$$$

0,01,$79,28$0,02,$78,29$0,04,$77,30$0,06,$74,48$0,10,$73,60$0,01,$$74,99$$$$$

0,05,$$65,69$$$$$

0,11,$$56,65$$$$$0,17,$$50,86$$$$$

0,27,$$45,74$$$$$

0,01,$$76,45$$$$$

0,10,$$65,45$$$$$0,25,$$61,69$$$$$

0,40,$$51,74$$$$$

0,60,$$36,63$$$$$

0,02,$$74,86$$$$$0,07,$$69,93$$$$$

0,13,$$61,77$$$$$

0,18,$$54,79$$$$$

0,31,$$38,46$$$$$

0,01,$79,28$0,02,$78,29$0,04,$77,30$0,06,$74,48$0,10,$73,60$0,01,$$74,99$$$$$

0,05,$$65,69$$$$$

0,11,$$56,65$$$$$0,17,$$50,86$$$$$

0,27,$$45,74$$$$$

0,02,$$78,11$$$$$0,03,$$76,49$$$$$0,07,$$70,99$$$$$

0,11,$$64,77$$$$$

0,19,$$53,58$$$$$

0,00,$$84,21$$$$$0,01,$$81,37$$$$$

0,04,$$76,88$$$$$

0,11,$$67,40$$$$$

0,35,$$47,91$$$$$

0,02,$78,10666667$0,03,$76,49$0,07,$70,99$

0,11,$64,77$

0,19,$53,58$

0,00,$$84,21$$$$$0,01,$$81,37$$$$$

0,04,$$76,88$$$$$

0,11,$$67,40$$$$$

0,35,$$47,91$$$$$

0,00$ 0,10$ 0,20$ 0,30$ 0,40$ 0,50$ 0,60$ 0,70$ 0,80$ 0,90$ 1,00$

Pencil'Beam'Series$A$ Series$B$ Series$C$ Series$D$ Series$E$ Series$F$

r'='-0,89'

Page 27: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

21

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

Converted  aperture  metric  

r  =  -­‐0,73  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  3  %-­‐  d

d  pa

ss  ra

te  (%

)  Converted  aperture  metric.  

r  =  -­‐0,85  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

Edge  area  metric  

r  =  -­‐0,85  

0  

20  

40  

60  

80  

100  

0,00   0,20   0,40   0,60   0,80   1,00  

3  %-­‐  d

d  pa

ss  ra

te  (%

)  

Edge  area  metric  

r  =  -­‐0,91  

!"!!!!!!!

!10,00!!!!!

!20,00!!!!!

!30,00!!!!!

!40,00!!!!!

!50,00!!!!!

!60,00!!!!!

!70,00!!!!!

!80,00!!!!!

!90,00!!!!!

0,00! 0,10! 0,20! 0,30! 0,40! 0,50! 0,60! 0,70! 0,80! 0,90! 1,00!

5"%"pass"rate"

Converted"Aperture"Metric"

Pencil"Beam"Serie!A! Serie!B! Serie!C! Serie!D! Serie!E! Serie!F!

r"="90,89"

Collapsed Cone Convolution

Figure 13. The pass rates for the dose difference evaluation of the measured and calculated dose distributions versus the complexity metric scores for CC. A dose difference criterion of 5 % (left) and 3% (right) was used. The error bars correspond to 1 SD.

0,01,$$76,45$$$$$

0,10,$$65,45$$$$$0,25,$$61,69$$$$$

0,40,$$51,74$$$$$

0,60,$$36,63$$$$$

0,02,$$74,86$$$$$0,07,$$69,93$$$$$

0,13,$$61,77$$$$$

0,18,$$54,79$$$$$

0,31,$$38,46$$$$$

0,01,$79,28$0,02,$78,29$0,04,$77,30$0,06,$74,48$0,10,$73,60$0,01,$$74,99$$$$$

0,05,$$65,69$$$$$

0,11,$$56,65$$$$$0,17,$$50,86$$$$$

0,27,$$45,74$$$$$

0,01,$$76,45$$$$$

0,10,$$65,45$$$$$0,25,$$61,69$$$$$

0,40,$$51,74$$$$$

0,60,$$36,63$$$$$

0,02,$$74,86$$$$$0,07,$$69,93$$$$$

0,13,$$61,77$$$$$

0,18,$$54,79$$$$$

0,31,$$38,46$$$$$

0,01,$79,28$0,02,$78,29$0,04,$77,30$0,06,$74,48$0,10,$73,60$0,01,$$74,99$$$$$

0,05,$$65,69$$$$$

0,11,$$56,65$$$$$0,17,$$50,86$$$$$

0,27,$$45,74$$$$$

0,02,$$78,11$$$$$0,03,$$76,49$$$$$0,07,$$70,99$$$$$

0,11,$$64,77$$$$$

0,19,$$53,58$$$$$

0,00,$$84,21$$$$$0,01,$$81,37$$$$$

0,04,$$76,88$$$$$

0,11,$$67,40$$$$$

0,35,$$47,91$$$$$

0,02,$78,10666667$0,03,$76,49$0,07,$70,99$

0,11,$64,77$

0,19,$53,58$

0,00,$$84,21$$$$$0,01,$$81,37$$$$$

0,04,$$76,88$$$$$

0,11,$$67,40$$$$$

0,35,$$47,91$$$$$

0,00$ 0,10$ 0,20$ 0,30$ 0,40$ 0,50$ 0,60$ 0,70$ 0,80$ 0,90$ 1,00$

Pencil'Beam'Series$A$ Series$B$ Series$C$ Series$D$ Series$E$ Series$F$

r'='-0,89'

Page 28: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

22

Pearsons´s  r-­‐values  for  the  dose  difference  comparisions  between  measured  and  calculated  absorbed  dose  distributions  for  the  different  algorithms  were  calculated  (table  3).      

Algorithm Metric r (5 %) r (3 %)  AAA   Conv.   -­‐0.80   -­‐0.85    AAA   Edge.   -­‐0.84   -­‐0.90    PBC   Conv.   -­‐0.89   -­‐0.93    PBC   Edge.   -­‐0.94   -­‐0.95    AXB   Conv.   -­‐0.52   -­‐0.70    AXB   Edge.   -­‐0.71   -­‐0.81    CC   Conv.   -­‐0.73   -­‐0.85    CC   Edge   -­‐0.85   -­‐0.91    

Table 3. The pearson´s r-values for the different algorithms and metrics.

Page 29: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

23

4.3. Different Grid Size The   impact   of   different   dose   calculation   resolution   on   the   correlation  between  metric  score   and   dose   difference   passrate   was   examined.   This   is   shown   for   the   converted  aperture   metric   and   edge   area   metric   in   figure   14   and   15   respectively.   The   SD   was  calculated  from  the  three  film  measurements  and  is  shown  as  error  bars  in  the  figures.  A  correlation   was   found   for   all   combinations   of   metrics,   pass   rate   criteria   and   dose  calculation   resolution.   The   pass   rates   for   the   evaluated   dose   distributions   were  genereally   increased   for   higher   dose   calculation   resolutions.   However,   only   minor  differences   in   the   correlation   values   for   the   two   investigated   metrics   versus   the  evaluated  pass  rates  were  observed  when  altering  the  calculated  dose  resolution  (table  4).  

0  10  20  30  40  50  60  70  80  90  

100  

0,00   0,10   0,20   0,30   0,40   0,50   0,60   0,70   0,80   0,90   1,00  

5  %-­‐  d

d  pa

ss  ra

te  (%

)  

Converted  aperture  metric  

0  10  20  30  40  50  60  70  80  90  

100  

0,00   0,10   0,20   0,30   0,40   0,50   0,60   0,70   0,80   0,90   1,00  

3  %-­‐  d

d  pa

ss  ra

te  (%

)  

Converted  aperture  metric  

Anisotropic Analytical Algorithm Converted Aperture Metric

Figure 14. The pass rates for the dose difference evaluation of the measured and calculated dose distributions versus the complexity metric scores for different grid sizes. A dose difference criterion of 5 % and 3 % was used. The error bars correspond to 1 SD.

0,56,%72,61%

0,75,%52,10% 0,89,%48,64%0,96,%42,67%

1,00,%30,02%

0,5,%69,76%0,64,%62,75%

0,74,%50,43%

0,75,%37,99% 0,85,%35,43%

0,44,%77,28%0,47,%66,90%

0,49,%74,36%0,51,%69,84%0,53,%70,66%0,52,%62,76%

0,67,%57,73%0,77,%48,07%

0,90,%36,04%1,00,%28,83%

0,54,%66,16%0,56,%69,30%0,65,%62,52%

0,74,%51,07%

0,90,%34,65%

0,42,%79,78%0,47,%69,99%

0,56,%65,04%

0,70,%53,23%

1,00,%35,83%

0,56,%89,41% 0,75,%88,62% 0,89,%84,74%0,96,%78,96%1,00,%71,18%

0,5,%89,21% 0,64,%86,02% 0,74,%86,26%0,75,%83,85% 0,85,%79,65%0,44,%90,38%0,47,%91,56%0,49,%90,27%0,51,%86,27%0,53,%89,83%

0,52,%96,07%0,67,%89,47% 0,77,%87,38% 0,90,%85,58%

1,00,%79,61%

0,54,%93,09%0,56,%92,63%0,65,%90,18%0,74,%91,99% 0,9,%87,55%0,42,%93,28%0,47,%94,27%0,56,%93,61% 0,70,%92,42% 1,00,%90,13%0,56,%90,85%

0,75,%84,55% 0,89,%80,72%0,96,%76,28%1,00,%71,11%

0,50,%86,39% 0,64,%84,57% 0,74,%82,10%0,75,%77,32%

0,85,%59,00%

0,44,%90,31%0,47,%90,12%0,49,%88,74%0,51,%85,33%0,53,%87,74%0,52,%88,11%0,67,%81,48% 0,77,%79,35%

0,90,%71,86%1,00,%69,24%

0,54,%87,19%0,56,%87,36%0,65,%86,01%0,74,%83,63% 0,90,%80,78%0,42,%91,24%0,47,%89,73%0,56,%88,46%

0,70,%82,74%1,00,%73,93%

0,00% 0,10% 0,20% 0,30% 0,40% 0,50% 0,60% 0,70% 0,80% 0,90% 1,00%

DOSMATRISINVERKAN-5%0-PASSRATE-

0,5%cm% 0,125%cm% 0,25%cm%

Page 30: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

24

Anisotropic Analytical Algorithm Edge Area Metric

Figure 15. The pass rates for the dose difference evaluation of the measured and calculated dose distributions versus the complexity metric scores for different grid sizes. A dose difference criterion of5 % and 3 % was used. The error bars correspond to 1 SD.

0  10  20  30  40  50  60  70  80  90  100  

0,00   0,10   0,20   0,30   0,40   0,50   0,60   0,70   0,80   0,90   1,00  

3  %-­‐  d

d  pa

ss  ra

te  (%

)  

Edge  area  metric  

0  

10  

20  

30  

40  

50  

60  

70  

80  

90  

100  

0,00   0,10   0,20   0,30   0,40   0,50   0,60   0,70   0,80   0,90   1,00  

5  %-­‐  d

d  pa

ss  ra

te(%

)  

Edge  area  metric  

0,56,%72,61%

0,75,%52,10% 0,89,%48,64%0,96,%42,67%

1,00,%30,02%

0,5,%69,76%0,64,%62,75%

0,74,%50,43%

0,75,%37,99% 0,85,%35,43%

0,44,%77,28%0,47,%66,90%

0,49,%74,36%0,51,%69,84%0,53,%70,66%0,52,%62,76%

0,67,%57,73%0,77,%48,07%

0,90,%36,04%1,00,%28,83%

0,54,%66,16%0,56,%69,30%0,65,%62,52%

0,74,%51,07%

0,90,%34,65%

0,42,%79,78%0,47,%69,99%

0,56,%65,04%

0,70,%53,23%

1,00,%35,83%

0,56,%89,41% 0,75,%88,62% 0,89,%84,74%0,96,%78,96%1,00,%71,18%

0,5,%89,21% 0,64,%86,02% 0,74,%86,26%0,75,%83,85% 0,85,%79,65%0,44,%90,38%0,47,%91,56%0,49,%90,27%0,51,%86,27%0,53,%89,83%

0,52,%96,07%0,67,%89,47% 0,77,%87,38% 0,90,%85,58%

1,00,%79,61%

0,54,%93,09%0,56,%92,63%0,65,%90,18%0,74,%91,99% 0,9,%87,55%0,42,%93,28%0,47,%94,27%0,56,%93,61% 0,70,%92,42% 1,00,%90,13%0,56,%90,85%

0,75,%84,55% 0,89,%80,72%0,96,%76,28%1,00,%71,11%

0,50,%86,39% 0,64,%84,57% 0,74,%82,10%0,75,%77,32%

0,85,%59,00%

0,44,%90,31%0,47,%90,12%0,49,%88,74%0,51,%85,33%0,53,%87,74%0,52,%88,11%0,67,%81,48% 0,77,%79,35%

0,90,%71,86%1,00,%69,24%

0,54,%87,19%0,56,%87,36%0,65,%86,01%0,74,%83,63% 0,90,%80,78%0,42,%91,24%0,47,%89,73%0,56,%88,46%

0,70,%82,74%1,00,%73,93%

0,00% 0,10% 0,20% 0,30% 0,40% 0,50% 0,60% 0,70% 0,80% 0,90% 1,00%

DOSMATRISINVERKAN-5%0-PASSRATE-

0,5%cm% 0,125%cm% 0,25%cm%

Page 31: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

25

The  persons´s  r-­‐values  from  the  dose  difference  comparision  between  measured  and  calculated  absorbed  dose  distributions  for  different  grid  sizes  were  calculated  (table  4).      The  highest  pearsons´s  r-­‐value  (r  =  -­‐0.98)  was  calculated  between  edge  area  metric  and  3  %   dose   difference   for   0.5   cm   dose   calculation   resolution.   The   lowest   pearsons´s   r-­‐value  was  found  between  the  edge  of  the  area  index  and  5  %  dose  difference  for  0.125  cm  grid  size.    

    Pearsons´s r-values

Metric Grid size (cm) 5 % pass rate 3 % pass rate

Conv.   0.5   -­‐0.82   -­‐0.85  

Edge.   0.5   -­‐0.95   -­‐0.98  

Conv.   0.25   -­‐0.80   -­‐0.85  

Edge.   0.25   -­‐0.84   -­‐0.90  

Conv.   0.125   -­‐0.85   -­‐0.86  

Edge.   0.125   -­‐0.72   -­‐0.73  

Table 4. Persons´s r-values for the correlation between the metrics and the pass rates for different grid sizes. Dose difference criteria of 5 % and 3 % were used.

Page 32: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

26

5. Discussion Compared  with   the   film  measurement   in   the  study  of  Götstedt  et  al   (2015),   this  study  demonstrated   a   stronger   correlation   between   both   metrics   and   pass   rate   criteria.  Reasons  for  the  stronger  correlation  demonstrated  in  this  study  for  the  AAA  algorithm  can   be   because   of   a  more   comprehensive   statistical   data.   The   study   by   Götstedt   et   al  (2015)   was   based   on   one   film   measurement,   while   this   study   was   instead   based   on  three  measurements.    The  spread  of   the  pass  rate  values  could  arise   from  the  different   film  calibrations   that  have  been  used  in  the  first  measurement  of  Götstedt  et  al  (2015)  and  in  this  study,  due  to  the  use  of  different  film  batches.  Another  thing,  that  could  affect  the  pass  rate,  is  the  user-­‐dependent   registration  of   the  measured  and   the  calculated  dose  distribution.  For  the  3  %  pass  rate  criteria,  the  spread  in  the  result  is  greater  than  for  the  5  %  pass  rate  criteria.   The   dose   difference   histogram   for   the   measured   and   the   calculated   dose  ditributions  are  visually  shown  to  be  close  to  normally  distributed.  The  3  %  criterion  is  generally  placed  in  the  steep  gradient  of  the  normal  distribution,  while  the  5  %  criterion  is   positioned   further   out   in   a   more   flat   part   of   the   distribution.   It   leads   to   a   greater  dependance  on  how  well  the  film  and  the  calculated  dose  distribution  matched  for  the  number  of  pixels  that  fall  within  5  %.      One  reason  for  the  difference  in  the  correlation  coefficients  between  the  different  dose  calculation  algorithms  can  be  related  to  the  quadratic  fields  of  series  A.  With  respect  to  the  linear  fit  it  can  been  seen  that  the  pass  rate  for  the  MLC  openings  in  series  A  deviates  compared   to   the   other   MLC   openings.   Exclusion   of   series   A   gave   an   equivalent  correlation   for   all   algorithms   (table  6   appendix).   This   could  be  due   to  1)  Each  metric  assigns   the  square   fields  a   too  high  complexity  score,  2)  The  MLC  openings  receives  a  higher  pass  rate  value  than  what  they  should  have.  

The  first  reason  could  be  due  to  the  leakage  between  the  edges  of  the  closed  MLC  leaves  (figure   16   appendix).   However   analysis   made   for   the   series   A   when   the   leakage   is  excluded   has   not   affected   the   result   substantially.   The   closed   MLC   leaf   pairs   are   not  included   in   the   complexity   score   calculation  process  which   could   contradict   to   higher  complexity   scores.  The   leakage  between   the  MLC   leaves   is  not  measured   in   this   study  due  to  the  10  %  cut-­‐off.  That  can  be  a  reason  a  too  high  pass  rate  value.  The  other  reason  is  probably  due  to  something   in   the   film  and  evaluation  process.  Götstedt  et  al   (2015)  found  that  the  film  measurements  generated  higher  pass  rate  values  compared  to  EPID  measurements.  This  was  assumed  to  come  from  that  the  EPID  measurements  were  not  normalized  compared  to  the  film  measurement.  In  their  results,  the  difference  between  the  pass  rates  for  EPID  and  film  measurement  was  greatest  in  series  A.      In   the  evaluation  of   the   films  the  registration  has  been  based  on  the  AAA  algorithm.   It  could   have   penalized   the   other   algorithms   because   of   the   dependance   of   the  shortcomings  of  AAA.  This  has  been  investigated  by  calculating  all  openings  with  Acuros  

Page 33: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

27

XB   (0.1   cm   grid   size)   and   creating   an   independent   registration   template   for   AXB.   It  turned  out  that  match  with  Acuros  XB  differed  0-­‐3  pixels  (1  pixel  =  0.0169  cm)  against  the  original  AAA  registration,  which  was  adopted  as  negligible.  The  evaluation  of  some  fields  with   the   new  AXB   template   showed   only   negligible   increase   or   decrease   of   the  pass  rates.    The  evaluation  of   the  edge  area  metric  showed  slightly  higher  Pearson’s   r-­‐values   than  the  evaluation  of  the  converted  aperure  metric.  One  explanation  for  this  may  be  that  a  large  part  of  the  calculation  and  MLC  position  errors  occur  in  edges  of  the  MLC  opening,  i.e.  the  penumbra  region  (figure  9  and  figure  16,  appendix).  Götstedt  et  al  (2015)  have  also   shown  by  EPID  measurements   that   the  edges  of   the   fields   contribute  most   to   the  calculation  errors.  Edge  area  metric  is  based  on  the  ratio  of  the  edge  area  and  the  total  area  and  could  perhaps  provide  a  better  measure  of  the  proportion  of  penumbra,  since  it  takes  the  MLC  opening  edges  more  into  account  compared  to  converted  aperture  metric.  The   latter   metric   is   based   on   the   distance   between   the   MLC   leafs   and   does   not  specifically  take  penumbras  into  account.  This  needs  to  be  investigated  further  in  order  to  draw  any  conclusions.  The  edge  area  metric  has  proved  to  give  a  higher  r-­‐value   for  EPID  measurements  as  well  (Götstedt  et  al,  2015).    When  evaluated  the  pass  rate  two  different  dose  differens  criteria  have  been  used.  Pixels  that  have  received  a  absorbed  dose  that  deviate  more  than  5  %  or  3  %  of  the  estimated  maximum  dose  does  not  pass  the  criteria.  The  Pearson’s  r-­‐vaulues  are  slightly  higher  for  the  3  %  pass  rate,  compared  with  the  5  %  pass  rate.  One  explanation  can  be  due  to  the  fact  that  fewer  pixels  manages  the  3  %  dose  difference  critera  which  indicates  a  bigger  fail  rate.  When  the  metric  is  made  to  just  give  one  measure  of  the  error,  it  could  be  that  the   3   %   criterion   give   a   fairer   picture   of   the   complexity.   This   needs   to   be   further  investigated.  The  better  correlation  of  the  3  %  criterion  has  not  been  demonstrated  for  EPID  measurements  (Götstedt  et  al,  2015).    In   this   study   EBT3   film   measurements   have   been   used   as   dosimetry   system.   It   is  important   to   note   the   uncertainties   in   the   film   measurement   for   example   in   the  calibration  and  registration  processes.  The  advantage  of  film  measurements  is  the  very  high  detection  resolution.      The  highest  pearsons´s  r-­‐value   i.e.  correlation  coefficient  was  calculated  for  the   lowest  resolution   i.e.   highest   grid   size   because   of   the   steeper   line.   The   lower   correlation  coefficient  was  between  the  edge  area  metric  and  5  %  dose  difference  of  0.125  cm  grid  size  because  of  the  steeper  line.  The  reason  for  the  different  slopes  may  have  to  do  with  more  and  less  smeared  penumbras.  Less  smeared  penumbras  appears  with  higher  dose  calculation   resolution   and   more   smeared   penumbras   appears   with   lower   dose  calculation   resolution.   Dose   difference,   i.e.   calculation   and   delivery   errors,   is   present  mainly  at  the  edges  there  the  edge  area  metric  is  working.  The  edge  area  that  has  a  static  area  of  10  mm  along  the  edges  could  maybe  overestimate  the  area  of  error.  One  could  

Page 34: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

28

imagine  that  the  edge  area  metric  would  perform  better  if  the  edge  area  was  chosen  less  to  be  less  than  10  mm  when  using  the  0.125  cm  grid  size.  This  would  need  to  be  further  investigated  in  future  studies.    That   higher   dose   calculation   resolution   reduces   the   error   in   the   estimated   absorbed  dose  has  been  shown  in  a  previous  study  by  Ong  et  al  (2011).  The  study  was  based  on  film   measurements   in   polysterene   and   cork   with   square   shaped   MLC   openings.   The  conclusion   was   that   a   0.10   cm   grid   size   compared   with   0.25   cm   grid   size   in   some  situations   gave   a   20  %   better   agreement   between   the   calculated   and  measured   dose  distribution.   Calculations   were   performed   with   the   AAA   (V.8).   A   later   version   of   the  algorithm  AAA   (v.10)  was   found   to   further   reduce   the   error.   It  may   be   that   this   also  applies  to  other  field  shapes  and  later  versions  of  the  AAA,  but   it  must  be  investigated  further  in  order  to  be  confirmed    The   pass   rate   values   for   the   0.5   cm   grid   size   has   the   highest   spread   i.e.   standard  devidation.   It  may  be  due   to   that   a   lower  dose   calculation   resolution  provides  a  more  stretched   dose   profile   which   makes   it   more   difficult   to   register   the   calculated   and  measured   dose   profile   in   the   evaluation   process.   However,   this   has   not   been  investigated.    In   future   studies,   it  would  be   interesting   to   compare   the  measured  dose  distributions    with   MC   simulations..   MC   is   often   considered   as   a   gold   standard   for   estimation   of  absorbed  dose  (referens)  It  would  also  be  interesting  to  use  0.5  cm  and  0.125  cm  grid  size  for  the  PBC,  CC  and  AXB  algorithms.  

Page 35: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

29

6. Conclusions The  conclusions  from  Götstedt  et  al  (2015)  were  confirmed  for  AAA.  The  average  spread  of  the  dose  difference  pass  rate  values  from  the  three  different  film  measurements,   i.e.  the  standard  deviation,  was  most  often  within  3  %  for  the  5  %  dose  difference  pass  rate  criteria  and  4  %  for  the  3  %  dose  difference  pass  rate  criteria.  The  scores  for  converted  aperture  metric  and  edge  area  metric  correlate  with  the  difference  between  measured  and  calculated  dose  distribution,  also  for  the  PBC,  CC,  and  AXB  algorithm,  as  well  as  for  the  AAA  calculations  with  different  dose  calculation  resolution.    

 

   

Page 36: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

30

7. References  

• Ahnesjö  A,  “Collapsed  cone  convolution  of  radiant  energy  for  photon  dose  calculation  in  heterogeneous  media”,  (1989),  Med.  Phys.  16  (4),  577-­‐592.  

• Bush   K,   Gagne   I.   M,   Zavgorodni   S,   Ansbacher   W,   Beckham   W,   “Dosimetric  valisation  of  Acuros® XB  with  Monte  Carlo  methods   for  photon  dose  calculations”,  (2011),  Med.  Phys.  38  (4),  2208-­‐2221.  

• Das   I.   J,   Ding   G.   X,   Ahnesjö   A,   “Small   fields:   nonequilibrium   radiation  radiation  dosimetry”,  (2008),  Med.  Phys.  35  (1),  206-­‐215  

• Djurfeldt   G,   Larsson   R,   Stjärnhagen   O,   "Statistisk   verktygslåda-­‐  samhällsvetenskaplig   orsaksanalys   med   kvantitativa   metoder",  (2010),  Studentlitteratur,  ISBN:  978-­‐91-­‐44-­‐04896-­‐3.  

• Du  W,   Cho   S,   Zhang   X,   Hoffman   K,   Kudchadker   R,   “Quantification   of   beam  complexity   in   intensity-­‐modulated   radiation   therapy   treatment  plans”,  (2014),  Med.  Phys.    41  (2),  Article ID: 021716.  

• Fog   L,   Rasmussen   J,   Aznar   M,   Kjær-­‐Kristoffersen   F,   Vogelius   I,   Engelholm   S,  Bangsgaard   J,   “A   closer   look   at   RapidArc®   radiosurgery   plans   using  very  small  fields”,  (2011),  Phys.  Med.  Biol.  56,  1853-­‐1863.  

• Fogliata   A,   Nicolini   G,   Clivio   A,   Vanetti   E,   Mancosu   P,   Cozzi   L,   “Dosimetric  validation   of   the   Acuros   XB   advanced   dose   calculation   algorithm:  fundamental   characterization   in  water”,   (2011),   Phys.  Med.  Biol.   56   (9),  1879-­‐1904.  

• Fogliata  A,  Vanetti  E,  Albers  D,  Brink  C,  Clivio  A,  Knöss  T,  Nicolini  G.  Cozzi  L,  “On  the   dosimetric   behavior   of   photon   dose   calculation   algorithms   on  the   presence   of   simple   geometric   heterogeneities:   comparison   with  Monte  Carlo  calculations”,  (2007),  Phys.  Med.  Biol.  52  (5),  1363-­‐1385.  

• Götstedt   J,   Karlsson   Hauer   A,   Bäck   A,   ”Development   and   evaluation   of  aperture-­‐based   complaxity   metrics   using   film   and   EPID  measurements   of   static  MLC   openings”,   (2015),  Med   Phys   42   (7),   3911-­‐21.  

• IAEA,   ”Commissioning   and   quality   assurance   of   computerized  planning   systems   for   radiation   treatment   of   cancer”,   (2004).   Read   30  Mars  at  http://www-­‐pub.iaea.org/mtcd/publications/pdf/trs430_web.pdf  

• Kahn.  F,  ”The  physics  of  radiation  therapy”,  (2010),  Lippincott  Williams  &  Wilkins,  Baltimore.  

• Li   X.   A,   Soubra  M,   Szanto   J,   Gerig   L.   H,   “Lateral   electron   equilibrium   and  electron   contamination   in   measurement   of   head-­‐scatter   factors  

Page 37: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

31

using   miniphantoms   and   brass   caps”,   (1995),   Med.   Phys.   22   (7),   1167-­‐1170.  

• LoSasso  T,  Chui  C,  Ling  C,  "Physical  and  dosimetric  aspects  of  a  multileaf  collimation   system   used   in   the   dynamic   mode   for   implementing  intensity   modulated   radiotherapy",   (1998),   Med.   Phys.   25   (10),   1919-­‐1927.  

• McGarry  C,  Chinneck  C,  O´Toole  M,  O´Sullivan  J,  Prise  K,  Hounsell  A,  “Assessing  software   upgrades,   plan   properties   and   patient   geometry   using  intensity   modulated   radiation   therapy   (IMRT)   complexity   metrics”,  (2011),  Med.  Phys.  38  (4),  2027-­‐2034.  

• McNiven   A,   Sharpe   M,   Purdie   T,   “A   new   metric   for   assessing   IMRT  modulation   complexity   and   plan   deliverability”,   (2010),  Med.   Phys.   37  (2),  505-­‐515.  

• Nelms  B,  Zhen  H,  Tomé  W,  ”Peer-­‐beam,  planar  IMRT  QA  passing  rates  do  not   predict   clinically   relevant   dose   errors”,   (2011),   Med.   Phys.   38   (2),  1037-­‐1044.  

• O´Daniel   J,   Das   S,   Wo   Q,   Yin   F,   “Volumetric-­‐modulated   arc   therapy:  effective   and   efficient   end-­‐to-­‐end   patients-­‐specific   quality  assurance”,  (2012),  Biol.  Phys.  82,  (5),  1567-­‐1574.  

• Oliver   M,   Bush   K,   Zavgorodni   S,   Ansbacker  W,   Beckham  W,   “Understanding  the   impact   of   RapidArc   therapy   errors   for   prostate   cancer”,   (2011),  Med.  Phys.  12,  (3),  32-­‐43.  

• Ong  C,  Cuijpers  J,  Senan  S,  Slotman  B,  Verbakel  W,  “Impact  of  the  calculation  resolution   of   AAA   for   small   fields   and   RapidArc   treatment   plans”,  (2011),  Med.  Phys.  38  (8),  4471-­‐4479.  

• Metcalfe  P,  Kron  T,  Hoban  P,  ”The  physics  of  radiation  therapy  x-­‐rays  and  electrons”,  (2007),  Medical  Physics  Publishing,  Madinson.  

• Varian   medical   systems,   “Eclipse   algorithms   manual   reference   guide”,  (2010),  Varian  medical  systems,  INC,  Hansen  way.  

• Zhu   Y,   Kirov   A.   S,   Mishra   V,   Meigooni   A.   S,   Williamsson   J.   F,   “Quantitative  evalution   of   radiochromic   film   response   for   two-­‐dimensional  dosimetry”,  (1997),  Med.  Phys.  24  (2),  223-­‐231.  

• Younge  K,  Martha  M,  Jean  M,  McShan  D,  Fraass  B,  Roberts  D,  “Penalization  of  aperture   complexity   in   inversely   planned   volumetric  modulated   arc  therapy”,  (2012),  Med.  Phys.  39  (11),  7160-­‐7170.  

• Nilsson   J,   Karlsson  Hauer   A,   Bäck   A,   "IMRT   patient-­‐specific   QA   using   the  Delta4   dosimetry   system   end   evaluation   based   in   ICRU   83  recommendations",  (2013),  "J.  Phys.:  Conf.  Ser.  444,  1-­‐4.

Page 38: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

32

Appendix

MLC opening Depth (cm)

SSD (cm) MU Dose (Gy)

A1   10   90   261   2  A2   10   90   276   2  A3   10   90   290   2  A4   10   90   304   2  A5   10   90   303   2  B1   10   90   250   2  B2   10   90   254   2  B3   10   90   257   2  B4   10   90   257   2  B5   10   90   258   2  C1   10   90   249   2  C2   10   90   250   2  C3   10   90   251   2  C4   10   90   252   2  C5   10   90   253   2  D1   10   90   246   2  D2   10   90   247   2  D3   10   90   249   2  D4   10   90   249   2  D5   10   90   250   2  E1   10   90   256   2  E2   10   90   256   2  E3   10   90   257   2  E4   10   90   259   2  E5   10   90   263   2  F1   10   90   241   2  F2   10   90   245   2  F3   10   90   250   2  F4   10   90   259   2  F5   10   90   279   2  

Table 5. Parameters at the radiation of the 30 different MLC openings.

Page 39: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

33

With serie A Without serie A Algorithm Metric Pass rate

(5 %) Pass rate

(3%) Pass rate

(5 %)

Pass rate (3 %)

Difference (5 %)

Difference (3 %)

AAA   Conv.   -­‐0.80   -­‐0.85   -­‐0.89   -­‐0.9   11.89   6.08  AAA   Edge.   -­‐0.84   -­‐0.90   -­‐0.85   -­‐0.87   1.20   -­‐3.68  PBC   Conv.   -­‐0.89   -­‐0.93   -­‐0.94   -­‐0.83   5.59   -­‐10.27  PBC   Edge.   -­‐0.94   -­‐0.95   -­‐0.94   -­‐0.95   0.36   -­‐0.39  AXB   Conv.   -­‐0.52   -­‐0.70   -­‐0.88   -­‐0.87   69.10   23.79  AXB   Edge.   -­‐0.71   -­‐0.81   -­‐0.89   -­‐0.86   25.26   6.29  CC   Conv.   -­‐0.73   -­‐0.85   -­‐0.9   -­‐0.89   23.10   4.87  CC   Edge.   -­‐0.85   -­‐0.91   -­‐0.88   -­‐0.89   3.75   -­‐1.79  

Table 6. The Pearsons´s r-values for the correlation between pass rates and metrics. Different algorithms were investigated. The correlation was evaluated with and without the a-serie.

Page 40: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,

34

Comparisons between Calculated Dose Distributions with AAA as Reference

AAA Vs. PBC

AAA Vs. CC

AAA Vs. AXB

A:1 A:5

Figure 16. Colored dose difference maps from the comparison of the calculated absorbed dose distribution from AAA and the calculated dose distributions from the other investigated dose calculation algorithms.

Page 41: THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND ... · THE IMPACT OF DIFFERENT DOSE CALCULATION ALGORITHMS AND GRID SIZES ON APERTURE-BASED COMPLEXITY METRICS M.sc. Thesis,