the high-level trigger of the alice experiment

17
The High-Level Trigger of the ALICE Experiment Heinz Tilsner Kirchhoff-Institut für Physik Universität Heidelberg International Europhysics Conference on High-Energy Physics 2003 Aachen Further information: http://www.ti.uni-hd.de/HLT

Upload: scarlett-hayes

Post on 30-Dec-2015

23 views

Category:

Documents


1 download

DESCRIPTION

The High-Level Trigger of the ALICE Experiment. Heinz Tilsner Kirchhoff-Institut für Physik Universität Heidelberg International Europhysics Conference on High-Energy Physics 2003 Aachen. Further information: http://www.ti.uni-hd.de/HLT. Content. - PowerPoint PPT Presentation

TRANSCRIPT

The High-Level Trigger of theALICE Experiment

Heinz TilsnerKirchhoff-Institut für Physik

Universität Heidelberg

International Europhysics Conference on High-Energy Physics 2003 Aachen

Further information: http://www.ti.uni-hd.de/HLT

Content

•Physics Applications of the High-Level Trigger

•Online Pattern Recognition and Event Reconstruction

•Computing Infrastructure

Physics Applications I

Open-charm trigger:

• Momentum filter (low pt cut)

• Examination of the event topology

Jet-Trigger:

• Online jet trigger from TPC inspection of central Pb-Pb collisions at 200 Hz

• Cone jet-finder algorithm for online

Pile-up removal:

• Reconstruction of all tracks in the TPC• Reconstruction of the event vertex• Pile-up reduction by using a cut on impact parameter of

tracks• Data reduction about a factor 5

Physics Applications II

e+e- Trigger:

TRD TPC

1) TRD-TPC track matching and precise tracking of e+e— candidates

2) PID and inv. mass analysis of e+e—pairs

HLT system

Di-Muon Trigger:

Using information of the di-muon spectrometers to determine the transversal momentum

pt cut

HLT reduces event rate about a factor of 10 by:

• combining TRD tracklets with TPC and ITS tracking• adding PID rejection power from TPC dE/dx

Reconstructing J/Ψ and Y by their leptonic decays into e+e- pairs

HLT Functionality

local pattern recognition –

detector specific

local pattern recognition –

detector specific

global pattern recognition

eventreconstruction

trigger decisionresulting trigger decision is based on fully analyzed and reconstructed events

local pattern recognition (detector specific):

• cluster finder

• tracklets

global pattern recognition:

• e.g. global tracking in TPC

Time budget:Online analysis needs 12s for one eventwith dN/dY=4000or2400 CPUs at event rate of 200 Hz

parallel processing on PC cluster

Fast Pattern Recognition

FPGA co-processor:

• releases CPU resources of host CPU• online Hough Transform is essential for tracking

in dense environment

low multiplicity events

sequential feature extraction on space points• cluster finder• track follower

high multiplicity events

iterative feature extraction on raw data:• tracklet finder (Hough transform)• parallel cluster evaluation

Low Occupancy

D eco de r F IF O (lpm ) Me rge rP o s t

P roce ss ing

R A M (lpm )

T es tb ench

T op s truc ture

se qse q

F ile :C harg es

F ile :C lus te rs

1. Cluster finder (FPGA):• cluster finding• centroid calculation• deconvolution

2. Tracking (host CPU)

Hardware implementation:

Decoder:• decoding incoming ADC sequences (ALTRO list)• calculating charge, sequence charge, and time of

a sequence

Merger:merges sequences of adjacent pads to clusters

Verification of functionality:C++ code = VHDL code

High Occupancy: Hough Transform

Local Hough transform

Clusteranalysis

Peaks=track candidates

Hough Transform:

Transformation of coordinate space (R, Φ) to parameter space (Φ0, κ)

Φ0: emission angleΚ: curvature

Hough Transform in FPGA Co-Processor

Data FormatDecoder

Data FormatDecoder

XYZTransformer

XYZTransformer

ABETransformer

ABETransformer

Back Linked List TPC coordinates Local coordinates Parameter Space (ALTRO sequences) (Padrow, Pad, Time) (X, Y, Z) (A,B,E) (k,phi,eta-index)

Detector Data LinkDetector Data Link Histogram 1Histogram 1

.

.

.

.

.

.

Histogram N-1Histogram N-1

Histogram NHistogram N

Histogram 2

ADC count FindMaxima

FindMaxima10-to-8 Bit

Converter

10-to-8 BitConverter

Behavioral (VHDL) model of Hough Transform simulated and compared with software

FPGA Co-Processor as Part of the Front-End Processor

Front-End Prozessor:

• First layer of the HLT-clusters

• Input for event data into the cluster (via optical link)

• “normal“ PC, equipped with Read-Out Receiver Card (RORC)

Ordinary PC cluster + PCI RORC = HLT

DetectorData Link

Datapointer

List

Pus

h re

adou

t P

oint

ers

PCI

Hostmemory

PCIHostbridge

smallDerandom.Evt. Buffer

CP

U

iCache

dCache

CP

U

iCache

dCache

CP

U

iCache

dCache

CP

U

iCache

dCache92

MB

/sec

500

kB/ e

vt

NetworkInterface

FPGA Co-Prozessor

PCI 66/64FPGA

FPGA:

• implementing the PCIbus protocol

• co-processor for online analysis

Data Volume + Event Rates

front-endelectronics

Event Building

High Level Trigger System

Permanent Storage System

4.56 TBytes/sec

FEP FEP FEP FEP FEP

216 DDL

TPC Detector364 MB/event

80 µs readout time200 … 1000 Hz L2A

front-endelectronics

15 TBytes/sec

TRD Detector30 MB/event

2 µs readout time1000 Hz L2A

18 DDL

FEP FEP

front-endelectronics

diMuon Detector500 kB/event

1µs readout time1000 Hz L2A

10 DDL

FEP

front-endelectronics

ITS, spare

1000 Hz L2A

20 GBytes/sec

< 1.25 GBytes/sec

< 1.25 GBytes/sec

HLT Cluster Setup

CP

U: 40%

CP

U: 40%

EM/ES

PM PM

EM

EM/ES

PM PM

EM

EM/ES

PM PM

EM

EM/ES

PM PM

EM

EM/ES

PM PM

EM

EM/ES

PM PM

EM

TT

Patches

-

1 65432

CF

AU

FP

CP

U: 100%

CF

AU

FP

CF

AU

FP

CF

AU

FP

CF

AU

FP

CF

AU

FP

1 65432

CF

AU

FP

CP

U: 100%

CF

AU

FP

CF

AU

FP

CF

AU

FP

CF

AU

FP

CF

AU

FP

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

CP

U: 50

-60%T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

T T

EM

CP

U: 50

-60%

CP

U: 50

-60%

EG/ES

SM SM

HL

0

EM/ES

PM PM

EM

EM/ES

PM PM

EM

HL

1H

L 2

HL

3

FPFP

CFCF

AUAU

Event Merger

Cluster Finder

ADC Unpacker

File Publisher

Tracker

EG/ES

T

EM

PM

SM

Patch Merger

Slice Merger

Rate>430 Hz

Rate>430 Hz

CP

U: 60%

CP

U: 60%

Brutto Data Rate:3*1.2 MB/s In3*720 kB/s Out

Brutto Data Rate:9*2.7 MB/s In9*500 kB/s Out

Brutto Data Rate:1.6 MB/s In210 kB/s Out

Brutto Data Rate:6*4 MB/s In6*260 kB/s Out

EM/ES

0 1 2 3 4 5

cave

counting house

RORC

NICPC

I

RORCRORC

NICNICPC

I

RORC

NICPC

I

RORCRORC

NICNICPC

I

RORC

NICPC

I

RORCRORC

NICNICPC

I

HL

T F

ront

-End

Pro

cess

ors

RORC

NICPC

I

RORCRORC

NICNICPC

I

HLT Network

Min.6

nodes per

TPC sector

NICPC

I

NICNICPC

I

NICPC

I

NICNICPC

I

NICPC

I

NICNICPC

I

NICPC

I

NICNICPC

I

NICPC

I

NICNICPC

I

HL

TC

ompu

te N

odes

x18x2

achieved event rate = 430 events/s

Example: TPC sector

Data Transport within the HLT-Cluster

SubscriberSubscriber

PublisherPublisher

PublisherPublisher

PublisherPublisher

newevent

newevent

(Sub)Event Scatterer

Lo

ad b

alan

cin

gF

an-o

ut

(Sub) Event Gatherer

Publisher

Subscriber

Subscriber

Subscriber

newevent

newevent

Publisher

MergingCode

SubsSubs

Event mBlock 0

Event mBlock 1

Event mBlock 0, 1 …

(Sub)Event Merger

Node B

Data consumer

PublisherPublisherSubscriberSubscriber

Bridge

Network CodeNetwork Code

New Event

Node A

Data producer

PublisherPublisher SubscriberSubscriber

Bridge

Network CodeNetwork Code

New Event

Network datatransport

Bridging between Nodes

Fault Tolerance

(1) Network connection disconnected

(2) Faulty PC node is removed from data path

(3) Spare node inserted into data path

no single event is lost!

• Software framework with embedded fault tolerance

• Automatic re-configuration of the data path

Test setup with 7 computers:

A

B

C

D

E

data

sin

kda

ta s

ink

wor

ker

nod

e

wor

ker

nod

ew

orke

r n

ode

wor

ker

nod

ew

orke

r n

ode

spar

e no

desp

are

node

supe

rvis

orsu

perv

isor

data

sou

rce

data

sou

rce

data

sin

kda

ta s

ink

wor

ker

nod

e

wor

ker

nod

ew

orke

r n

ode

wor

ker

nod

ew

orke

r n

ode

spar

e no

desp

are

node

supe

rvis

orsu

perv

isor

data

sou

rce

data

sou

rce

Prototypes

32 dual Pentium III PCsrunning Linux

Network connection:

• FastEthernet

• GigaBit Ethernet

• SCI

RORC: Read Out Receiver Card

Summary

HLT enables event selection based on physical signatures

Online event analysis assisted by FPGA co-processor

HLT allows for a significant reduction of the data volume

Functional concept of the HLT exists

Fault-tolerant software successfully tested

Further information: http://www.ti.uni-hd.de/HLT