the four-transmembrane protein ip39 of euglena forms ... filethe four-transmembrane protein ip39 of...

13
The four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki * , Yasuyuki Ito * , Yuji Yamazaki, Katsuhiko Mineta, Masami Uji, Kazuhiro Abe, Kazutoshi Tani, Yoshinori Fujiyoshi & Sachiko Tsukita Supplementary Information

Upload: lenguyet

Post on 15-Aug-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

The four-transmembrane protein IP39 of Euglena forms strands by

a trimeric unit repeat

Hiroshi Suzuki*, Yasuyuki Ito*, Yuji Yamazaki, Katsuhiko Mineta, Masami Uji, Kazuhiro Abe,

Kazutoshi Tani, Yoshinori Fujiyoshi & Sachiko Tsukita

Supplementary Information

Page 2: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

a

bCarbon side

Carbon side

Luminal side

C

Supplementary Figure S1 | Cross-link experiment of solubilized IP39 protein.(a) SDS-PAGE analysis of the fractions during the purification procedure of IP39 from Euglena gracilis, followed by Western blotting probed with anti-IP39 polyclonal antibodies (kindly provided by Dr. T. Suzaki) (lanes 1, 2) or Coomassie Brilliant Blue (CBB) staining (lanes 3, 4). The Western blotting shows the differences in the composition ratios of oligomers before (lane 1, NaOH-treated membrane fraction) and after (lane 2, OG-solubilized supernatant) solubilisation. The sample in lane 3 is identical to that of lane 2, and lane 4 represents the final purified fraction of IP39 after anion-exchange chromatography. (b) A schematic diagram illustrating the locations and topology of a vesicular crystal and carbon films on an electron microscopy grid. The two sandwiching carbon films contact the outer surface of the crystal, causing distortions of the structures. (c) Purified IP39 proteins solubilised in buffer containing 2% OG were treated with glutaraldehyde (GA) at the indicated concentrations at 37ºC for 1 h. As a control, the tetrameric membrane protein, rat aquaporin-4 (rAQP4; ~32 kD)46, purified and solubilized in 2% OG were treated the same way. Both samples were subjected to SDS-PAGE and silver-stained. Bands I, II, III and IV correspond to monomers, dimers, trimers, and tetramers, respectively. The 10-mM GA concentration is sufficient for the rAQP4 to completely form the cross-linked tetramer, but most of the IP39 fraction comprises monomers.

43

CBB stain

I

II

III

1 2

W.B.anti-IP39

(kDa)

I

II

I

II

III

IV

0 0.1 1 10 100 0 0.1 1 10 100 GA (mM)

IP39 rAQP4

65

80

120

25

5040

(kDa)

37

50

75

100

150

Page 3: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

ba

c

Luminal side

Carbon-contacting side

Carbon-contacting side

Supplementary Figure S2 | Antibody-bound 2D crystals of IP39.(a) Negatively stained IP39 crystals bound with the IgG of the anti-phosphotyrosine antibody, labelled with 15-nm gold-conjugated secondary antibodies. During the blocking and binding procedures, the crystalline vesicles were subjected to deformation, but the observed gold labelling on the vesicles shows that the antibodies can specifically recognise and bind the antigens on the crystal surface. The black bar represents 200 nm. (b) Negatively stained IP39 crystals with the addition of the Fab fragments of anti-phosphotyrosine antibody. Reconstituted vesicles incubated with Fab without any harsh treatment maintained their size and shape and the crystalline arrays of the proteins were preserved with some decrease in the resolution (see Supplementary Figure S5 and Supplementary Table S1, S2). The black bar represents 500 nm. (c) Schematic diagram illustrating the attachment of the Fab fragments on IP39 molecules in a 2D crystal. The crystal vesicle does not allow the Fab fragments to permeate the lipid bilayer, and thus the epitopes on the carbon-contacting sides are labeled by the antibodies.

Page 4: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

L F L I I A S

T S L L

L T F A

S L I

V F I A

P

Q G V A T

K D

W S

W

R T W

V D

W L

K N C

P H

L P Q

V S

F A I

Y/H T C Q E

D N

I D Q

K M S G G

V A

S G V

C R G Y F

A A

L I K F L G L Y

A L F A

A T L M

L F T A V V A

L Y V C T L T F

C I L V

L A F S

S F L M W I V

I I L F A F V L

F V C G

A L F A

S/A V I F V Q T

G K

L W S K P I

A L A

C N Q E A Y

Q P G N

K

I

T L F

P L

C

W G Y

G Y S

A/Q

S F

K P

F I

P H

E E

A E

A A

V P

Y M

P P

P V Y

L E

P Q

P Y

Y

V P

P Y

E Y

A V

P E

V A P

-/S L/V

A P/Y

S/P

Y/P

P Y

A V

A/Q

P A/P

Y A

P/V

P V L

A A

Y G P V G

V K H

P A

T K

G A

M

ExtracellularSide

IntracellularSide

N-terminalC-terminal

Supplementary Figure S3 | Secondary structure and topology map of IP39.Predicted transmembrane topology of the IP39 polypeptide is represented by the strand of amino acids. The transmembrane regions overlaid on the grey band were predicted using the SOSUI server47. Blue and red letters indicate positively- and negatively-charged residues, respectively. Green letters indicate the consensus motif between the PMP-22/EMP/MP20/Claudin superfamily. Magenta letters indicate potential phosphorylation tyrosine sites. Two characters in one oval indicate the amino acid sequences of IP39_alpha (left) and IP39_beta (right). The black triangle indicates the excision point of the first methionine.

Page 5: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

IP39_alphaIP39_betaEMP-3PMP-22EMP-2EMP-1Claudin-3Claudin-4Claudin-1Claudin-2MP20

K T L F L I S A I T S L L A F T L S L I A I F V W K D T W D L W K C I A V S Q 63

M K G Y F A A T Q V F I V S G C V F A F L A L V F A F L . I I G K K A L A 128

L Y V C T L T F L A F S C I L V S F L MW I Q K Y S Y G W I C A V V A T F L A F L A M L L F 195

K I 263

K T L F L I S A I T S L L A F T L S L I A I F V W K D T W D L W K C I A V S Q 63

M K G Y F A A T Q V F I V A G C V F A F L A L V F A F L . I I G K K A L A 128

L Y V C T L T F L A F S C I L V S F L MW I Q K Y S Y G W I C A V V A T F L A F L A M L L F 195

K I 264

M S L L L L V V S A L H I L I L I L L F V A T L WW T L S N L W Y C T W N D T 49

V S G W L K A V Q V L M V L S L I L C C L S F I L F M F . Q L Y T G G L F 97

Y A T G L C Q L C T S V A V F T G A L I Y A E G F G Y C F A L A W V A F P L A L V S G I I Y 156

I H 163

M L L L L L S I I V L H V A V L V L L F V S T I W I V G A D L W Q C S T S S G 48

S S E W L Q S V Q A T M I L S I I F S I L S L F L F F C . Q L F T G G R F 96

Y I T G I F Q I L A G L C V M S A A A I Y T E Y Y G F A Y I L A W V A F P L A L L S G V I Y 153

V I 160

M L V L L A F I I A F H I T S A A L L F I A T V WW V G F D V W R C T N T N C 48

F Q S T L Q A V Q A T M I L S T I L C C I A F F I F V L . Q L F R G E R F 95

V L T S I I Q L M S C L C V M I A A S I Y T D G Y G Y S Y I L A W V A F A C T F I S G M M Y 160

L I 167

M L V L L A G I F V V H I A T V I M L F V S T I W L V S S G L W K C T N S C S 50

Y A D A L K T V Q A F M I L S I I F C V I A L L V F V F . Q L F T G N R F 95

F L S G A T T L V C W L C I L V G V S I Y T N Y H G Y S Y I L G W I C F C F S F I I G V L Y 151

L V 157

S M G L E I T G T A L A V L G W L G T I V C C A W R V S G T W G L WM C V V S T G 59

L A Q D L Q A A R A L I V V A I L L A A F G L L V A L V G C V Q D A K I T 117

I V A G V L F L L A A L L T L V P V S W S A R R M G A G L Y V G W A A A A L Q L L G G A L L 180

C C 220

S M G L Q V M G I A L A V L G W L A V M L C C A W R V T G T W G L WM C V V S T G 60

L A Q D L Q A A R A L V I I S I I V A A L G V L L S V V G C L E D A K T M 118

I V A G V V F L L A G L M V I V P V S W T A Q R M G A S L Y V G W A A S G L L L L G G G L L 181

C C 209

N A G L Q L L G F I L A F L G W I G A I V S T A W R I Y G T Y G L WM C V S S T G 60

L N S T L Q A T R A L M V V G I L L G V I A I F V A T V G C L E D Q R M A 119

V I G G A I F L L A G L A I L V A T A W Y G Q Y F G Q A L F T G W A A A S L C L L G G A L L 182

C C 211

S L G L Q L V G Y I L G L L G L L G T L V A M L W K T S G T S G L WM C A T S T G 60

L G A D I Q A A Q A MM V T S S A I S S L A C I I S V V G F C Q E A R V A 118

V A G G V F F I L G G L L G F I P V A W N L R F I G E A L Y L G I I S S L F S L I A G I I L 181

C F 230

M Y S F M G G G L F C A W V G T I L L V V A T A WM Q Y G . H G L W R C L G K C Y 52

T E A Y W N A T R A F M I L S S L C A T S G I I M G I V A F A Q Q T S R P 98

F S A G I M F F A S T F F V L L A L A I Y T V W F S W S Y I L G W V A L L M T F F A G I Y M 158

C A 173

CC

CC

CCCC

IP39_alphaIP39_betaEMP-3PMP-22EMP-2EMP-1Claudin-3Claudin-4Claudin-1Claudin-2MP20

IP39_alphaIP39_betaEMP-3PMP-22EMP-2EMP-1Claudin-3Claudin-4Claudin-1Claudin-2MP20

IP39_alphaIP39_betaEMP-3PMP-22EMP-2EMP-1Claudin-3Claudin-4Claudin-1Claudin-2MP20

Supplementary Figure S4 | Multiple sequence alignment.The amino acid sequences of genes in PMP-22/EMP/MP20/Claudin superfamily were aligned by Clustal W48.IP39_alpha from Euglena gracilis (GenBank ID: AB167379.1), IP39_beta from Euglena gracilis (GenBank ID: AB167380.1), PMP-22 from Homo sapiens (RefSeq ID: NP_696997), EMP-1 from Homo sapiens (RefSeq ID: NP_001414), EMP-2 from Homo sapiens (RefSeq ID: NP_001415), EMP-3 from Homo sapiens (RefSeq ID: NP_001416), MP20 from Bos taurus (RefSeq ID: NP_776527), Claudin-1 from Homo sapiens (RefSeq ID: NP_066924), Claudin-2 from Homo sapiens (RefSeq ID: NP_065117), Claudin-3 from Homo sapiens (RefSeq ID: NP_001297) and Claudin-4 from Homo sapiens (RefSeq ID: NP_001296). Residues with higher similarity are highlighted in the darker grey. The conserved W-LW-C-C motif sequences are highlighted in yellow. Cylinders above the sequences indicate putative transmembrane regions of IP39 predicted by SOSUI47. The aligned sequences were drawn using ALINE49.

Page 6: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

IP39 IP39+Fab

4

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

4

2

2

2

2

4

4

3

3

3

3

4

4

4

3

3

4

4

1

1

2

2

1

1

2

2

3

3

2

2

1

4

4

2

2

3

4

4

2

2

3

3

2

2

2

4

4

4

4

4

1

1

2

2

1

3

3

3

3

3

4

2

3

2

2

2

2

2

2

4

4

4

4

1

1

1

1

1

4

1

1

2

2

2

2

4

2

2

1

1

2

4

22

1

1

1

1

1

4

4

4

4

1 1

4

4

1

1

1

1

1

3

3

4

4

4

3

3

4

4

4

1

1

3

1

1

4

44

2

2

2

1

1

4

4

2

2

33

4

4

3

3

3

4

4

4

a*

b*

33

2 233 33 22

332

2

2

2

3

3

33

3

3

1

1

2

2

3

3

4

4

3

3

4

4

2

2

1

1

1

1

3

3

4

4

4

4

1

1

1

1

1

1

4

4

4

4

2

2

2

2

2

2

4

4

4

4

4

4

3

3

4

4

2

2

2

2

1

1

3

3

4

4

2

2

1

1

4

4

4

4

4

4

1

1

2

2

4

4

3

3

3

3

4

4

3

3

4

4

2

2

3

3

3

3

2

2

2

2

2

2

4

4

2

2

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

3

3

3

3

4

4

2

2

2

2

4

4

2

2

2

2

4

4

3

3

4

4

3

3

4

4

4

4

4

4

3

3

4

4

4

4

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

3

3

4

4

4

4

4

4

3

33

5 Å

7 Å

20 Å

a*

b*

Tilt axis

b

c

d f

e

a 0º 45º

0.008 0.024 0.041 0.057 0.073 0.090 0.106 0.123-2000

2000

0

4000

-180

0

180

90

-90

Phase

Amplitude

lattice line (1,2)

0.139

z*, Å-1

-2000

2000

0

4000

-180

0

180

90

-90

lattice line (4,2)

0.008 0.024 0.041 0.057 0.073 0.090 0.106 0.123 0.139

Phase

Amplitude

z*, Å-1

0.003 0.014 0.024 0.035 0.045 0.056 0.066 0.077-400

600

0

800

-180

0

180

90

-90

lattice line (1,2)

0.087

400

200

-200

0.098

Phase

Amplitude

z*, Å-1

0.003 0.014 0.024 0.035 0.045 0.056 0.066 0.077

0

1000

-180

0

180

90

-90

lattice line (4,2)

0.087 0.098

Phase

Amplitude

z*, Å-1

Supplementary Figure S5 | Analysis of the 2D crystals of IP39 without/with Fab.(a, b) IQ-plots38 calculated from representative non-tilted (a) and 45º-tilted (b) images of a frozen-hydrated IP39 crystal taken by cryo-electron microscopy. Because the 21 symmetry along a* was broken due to the mechanical contact of the 2D crystals with the carbon support films, the diffraction pattern gave a broken mirror symmetry along a* and reflections with an odd index on the a* axis appeared in (a). (c-f) Representative lattice lines from the 3D data sets of the IP39 crystals without (c,d) or with (e,f) the addition of the Fab fragments. The phase and amplitude data are shown in the upper and lower panels of each figure, respectively. The indices of these lattice lines are indicated in the lower panels.

44

1

32

4

4

4

13

4

2

3

2

214

2

2

4

2

4

1

4

4

1

44

34

24

4

3

3

3

4

5 Å

7 Å

20 Å

Page 7: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

Supplementary Figure S6 | Diffraction anisotropy of the IP39 crystal.Averaged F/sigma values are plotted for the two unit cell axes of the 2D crystal (black and red for a* and b*, respectively). The maximum indices of H and K were determined to be 21 and 5, respectively (see Materials and Methods). From the plot, the averaged F/sigma of the reflections used is above 2.2 (shown as a grey dotted line). Thus, the effective resolution is 8.3, 11.9, and 8.3 Å resolution along the a*-, b*-, and c*-axis, respectively.

0 0.05 0.1 0.15Resolution (1/Å)

1.5

2.5

3.5

|F| /

σ

along a* axisalong b* axisalong c* axis

K=5 H=212.2

Page 8: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

b c d

Supplementary Figure S7 | Cross-sections of B-Mol1, 2, and 3.(a) Molecular surfaces of the Mol1-3 density map contoured at 1.2σ and superimposed model helices are indicated by the same colour code as in Figure 6. The dashed lines in the whole structure indicate the positions for each section shown in b-d. (b-d) The cross-sections parallel to the membrane plane are viewed from the intracellular side of the B-strand and coloured according to the contour levels by gradation from blue (1.2σ) to red (4.6σ). The surfaces of the Mol1-3 trimeric units are represented by gray mesh and the model helices are coloured as in a. The right-angled arrows in the boxes indicate the directions of the a- and b-axis.

(b)

(c)

(d)

Mol3Mol2

Mol1

a

ab

ab

ab

Page 9: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

180º

Supplementary Figure S8 | Stereo EM density maps of a trimeric unit in strand B.The EM density maps (light gray mesh) of the Mol1-3 in the IP39 crystal are contoured at 1.2σ and shown in stereo. The model helices are superimposed in the maps and indicated by the same colour code as in Fig. 4e. Both upper and lower panels represent views parallel to the membrane plane.

Page 10: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

Supplementary Table S1 | Phase residuals of all orthogonal space groups calculated by ALLSPACE44

Space group Phase residual (No.) Phase residual (No.) Target residual based on vs. other spots vs. theoretical statistics statistics taking Friedel (90º random) (45º random) weight into account p1 13.5 (52) 9.6 (52) p2 17.5†(26) 8.7 (52) 19.3 p12_b 26.2 (20) 38.7 (8) 14.6 p12_a 76.5 (18) 6.6 (4) 14.1 p121_b 68.7 (20) 60.2 (8) 14.6 p121_a 14.6†(18) 6.5 (4) 14.1 c12_b 26.2 (20) 38.7 (8) 14.6 c12_a 76.5 (18) 6.6 (4) 14.1 p222 52.4 (64) 9.3 (52) 15.8 p2221_b 20.6‡(64) 10 (52) 15.8 p2221_a 54.8 (64) 10.8 (52) 15.8 p22121 56.4 (64) 37.7 (52) 15.8 c222 52.4 (64) 9.3 (52) 15.8 p4 34.9 (34) 9.4 (52) 17.9 p422 54.8 (76) 9.4 (52) 15.5 p4212 52.1 (76) 37.7 (52) 15.5 †Acceptable ‡Should be considered

Page 11: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

Supplementary Table S2 | Electron crystallographic data (IP39)

Two-dimensional crystal

Space group P2

Lattice constants a = 174.3 Å, b = 59.3 Å, c = 200.0 Å (assumed), γ = 90.0°

Used number of images

Approximate tilt angle

0° 4

20° 51

45° 96

60° 159

Total 310

Resolution limit

For map

In membrane plane (Å) 8.3, 11.9 (a*, b* directions)

Normal to membrane plane (Å) 8.3

For merging

In membrane plane (Å) 7.0

Normal to membrane plane (Å) 8.0

Range of underfocus (Å) 8,700 ~ 33,200

Number of observed reflections 33,162

Number of independent reflections 18,946

Overall weighted phase residualsa 39.4

Overall weighted R-factora 0.355

a. Used reflections are better than IQ 7.

Page 12: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

Supplementary Table S3 | Electron crystallographic data (IP39+Fab)

Two-dimensional crystal

Space group P2

Lattice constants a = 174.3 Å, b = 59.3 Å, c = 200.0 Å (assumed), γ = 90.0°

Used number of images

Approximate tilt angle

0° 11

20° 29

45° 158

Total 198

Resolution limit

For map

In membrane plane (Å) 10.3, 11.9 (a*, b* directions)

Normal to membrane plane (Å) 14.3

For merging

In membrane plane (Å) 10.0

Normal to membrane plane (Å) 14.3

Range of underfocus (Å) 6,200 ~ 23,000

Number of observed reflections 13,936

Number of independent reflections 5,728

Overall weighted phase residualsa 36.2

Overall weighted R-factora 0.404

a. Used reflections are better than IQ 7.

Page 13: The four-transmembrane protein IP39 of Euglena forms ... fileThe four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat Hiroshi Suzuki*, Yasuyuki Ito*,

Supplementary references

46. Hiroaki, Y. et al. Implications of the aquaporin-4 structure on array formation and cell

adhesion. J. Mol. Biol. 355, 628–639 (2006).

47. Hirokawa, T., Boon-Chieng, S. & Mitaku, S. SOSUI: classification and secondary structure

prediction system for membrane proteins. Bioinformatics 14, 378–379 (1998).

48. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680 (1994).

49. Bond, C. S. & Schüttelkopf, A. W. ALINE: a WYSIWYG protein-sequence alignment

editor for publication-quality alignments. Acta Crystallogr. D Biol. Crystallogr. 65, 510–

512 (2009).