the electron cyclotron maser relativity in action

53
The Electron Cyclotron Maser Relativity in Action K. R. Chu (朱國瑞) Department of Physics National Taiwan University and Department of Physics National Tsing Hua University

Upload: others

Post on 10-Apr-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Electron Cyclotron Maser Relativity in Action

The Electron Cyclotron Maser

— Relativity in Action

K. R. Chu (朱國瑞)

Department of Physics

National Taiwan University

and

Department of Physics

National Tsing Hua University

Page 2: The Electron Cyclotron Maser Relativity in Action

Outline

Overview of vacuum electronics

Principle of the electron cyclotron

maser (ECM)

ECM-based devices (gyrotrons)

- significance and applications

Mode competition

Issues at THz

Summary

Page 3: The Electron Cyclotron Maser Relativity in Action
Page 4: The Electron Cyclotron Maser Relativity in Action

Vacuum Electronics for the Generation

of Coherent Radiation

Microwave tubes: matured in the 1960s

Cornerstones:

Relativistic electronics: 1970s – present

Cornerstones:

1. Magnetron

2. Klystron

3. Traveling Wave Tube (TWT)

1. Free Electron Laser (FEL)

2. Electron Cyclotron Maser (ECM)

Page 5: The Electron Cyclotron Maser Relativity in Action

電子流如何產生電磁波-以速調管(klystron)為例

直流電子與電磁波作用: <P>t = <I0E0cosωt>t = 0

交流電子與電磁波作用: <P>t = <I0cosωtE0cosωt>t = ½ I0E0

→ 需要一個「群聚」機制,使電子由直流變交流

Page 6: The Electron Cyclotron Maser Relativity in Action

Comparison between Conventional

and Relativistic Electronics

Conventional Relativistic

Microwave Electronics Electronics

Examples Magnetron, Klystron, TWT ECM, FEL

Frequency < 1011 Hz 1010 Hz – X-ray

Power < 106 W 104 W – 1010 W

Electron Energy < 105 V 103 V – 1010 V

Beam Current < 102 A 1 A – 106 A

Basic Circuit equations Maxwell equations

Equations + Fluid equations + Relativistic kinetic eq.

Page 7: The Electron Cyclotron Maser Relativity in Action

Outline

Overview of vacuum electronics

Principle of the electron cyclotron

maser (ECM)

ECM-based devices (gyrotrons)

- significance and applications

Mode competition

Issues at THz

Summary

Page 8: The Electron Cyclotron Maser Relativity in Action

Physical Conditions Required for the

Generation of Coherent Radiation

1. A mechanism for the RF fields to

bunch a DC electron beam into an

AC electron beam.

2. Synchronism between the bunched

electrons and the RF fields.

Page 9: The Electron Cyclotron Maser Relativity in Action

Basic Model of the

Electron Cyclotron Maser (ECM)*

*Discovered independently by:

R. Q. Twiss, classical theory(1958)

A. V. Gaponov, classical theory(1959)

J. Schneider, QM theory(1959)

R. H. Pantell, experiment(1959)

RF structure

Page 10: The Electron Cyclotron Maser Relativity in Action

Cyclotron motion

in uniform magnetic field

(independent of particle energy)

(depend on particle energy)

c

c

qBm

qBm

Non-relativistic cyclotron frequency :

Relativistic cyclotron frequency :

2

2

1

1v

c

q F v B

Page 11: The Electron Cyclotron Maser Relativity in Action

Electron dynamics in a 37 GHz,

TE01 mode gyrotron oscillator

0B

bunching

Principle of the Electron Cyclotron Maser– a Relativistic Bunching Mechanism

0

c

eBm

gain energy, rotate slower

lose energy, rotate faster

azimuthal

bunching

Page 12: The Electron Cyclotron Maser Relativity in Action

A Competing Mechanism– Axial Bunching

magnetic force

Axial bunching due toRFe Bv electric force

Azimuthal bunching due

to RFe E

Page 13: The Electron Cyclotron Maser Relativity in Action

year author(s) bunching mechanismattributed to

———————————————————————

1959 Pantell axial

1959 Gaponov axial

1959 Gaponov and Zhelznyakov azimuthal

1964 Bott axial

1964 Hirshfield and Wachtel azimuthal

1965 Bott azimuthal

1966 Schriever and Johnson axial

Early observations of stimulated cyclotron radiation in fast-wave structures

Page 14: The Electron Cyclotron Maser Relativity in Action

All experiments worked under the same set

of conditions:

(1) fast-wave structure

(2) DC magnetic field

(3) spiraling electron beam

(4) electron cyclotron resonance

But there were two interpretations for the

observed radiation. Which one was correct?

fast-wave structure

A Physics Issue

Page 15: The Electron Cyclotron Maser Relativity in Action

Mechanism Competition

Azimuthal and axial bunching mechanisms, though

simultaneously present, are always in competition such

that one partially offsets the other.

Azimuthal bunching dominates,

if (fast-wave).

Axial bunching dominates,

if (slow-wave)2 2 2zk c

Thus, early observations of stimulated cyclotron

radiation in fast-wave structures could only be

explained by the azimuthal bunching mechanism.

K. R. Chu and J. L. Hirshfield, Phys. of Fluids 21, 461 (1978).

K. R. Chu, Rev. Modern Phys. 76, 489 (2004), Secs. II & IV.

2 2 2zk c

Page 16: The Electron Cyclotron Maser Relativity in Action

Outline

Overview of vacuum electronics

Principle of the electron cyclotron

maser (ECM)

ECM-based devices (gyrotrons)

- significance and applications

Mode competition

Issues at THz

Summary

Page 17: The Electron Cyclotron Maser Relativity in Action

ECM-Based Devices (Gyrotrons)

B

Magnet

Electron

beamElectron

gun

Magnetic field

Interaction structure

Page 18: The Electron Cyclotron Maser Relativity in Action

Types of ECM-Based Devices

Phase control

Broad bandwidth

High-resolution space

radar

High average power

Fusion plasma heating

Industrial processing

Phase control

Narrow bandwidth

Particle acceleration

Space radar

Continuous frequency

tunability

Not yet exploited

Page 19: The Electron Cyclotron Maser Relativity in Action

Shape and Dimension Comparison of 30 GHz Traveling-Wave Amplifier Circuits

TE11 mode gyro-TWT

coupled-cavity TWT

helix-TWT

3.7 mm

0.8 mm

6.0 mm

Page 20: The Electron Cyclotron Maser Relativity in Action

Significance of the ECM

one photon per excitation,large interaction space

multiple photon per electron,large interaction space

multiple photon per excitation,interaction space~ wavelength

Page 21: The Electron Cyclotron Maser Relativity in Action

Current and Potential Applications of

High-Power Millimeter/Submillimeter Waves

materials processing

Page 22: The Electron Cyclotron Maser Relativity in Action

NTHU High Frequency Electrodynamics Lab

Page 23: The Electron Cyclotron Maser Relativity in Action

Comparison of the NTHU Gyro-TWT with

the state-of-the-art TWT

The NTHU Experimental

Gyrotron Traveling-Wave Amplifier

Page 24: The Electron Cyclotron Maser Relativity in Action

Applications of the Gyro-TWT

W-band upgrade of the

Haystack radar (operated

by MIT Lincoln Laboratory)

1. Satellite and orbital debris

radar measurements:

2. Missile and space object

tracking:

Ka-band upgrade of the U. S.

Army Kwajalein Atoll radar

complex (operated by MIT

Lincoln Laboratory)

Page 25: The Electron Cyclotron Maser Relativity in Action

Gyroklystron and Applications

94GHz, 100kW Gyroklystron,

Naval Research Laboratory

W-band Advanced Radar for Low Observable Control (WARLOC)

Radar image of cloud from the WARLOC

Page 26: The Electron Cyclotron Maser Relativity in Action

The Gyromonotron Oscillator

165 GHz, TE31,17 mode,

2.2 MW coaxial

gyromonotron for

fusion plasma heating

(Piosczyk et al.,2002)

Page 27: The Electron Cyclotron Maser Relativity in Action

D-T fusion reaction Nature’s fusion reactor: Sun

Sea water Energy

Page 28: The Electron Cyclotron Maser Relativity in Action

Application of the Gyromonotron:

Fusion plasma heating

ITER Tokamak

Participants: EU, USA,

Russia, Japan,

China, Korea

Cost: US$15 Billion

Completion date: 2015

Plasma temp: 108 K

Output power: 500 MW

Page 29: The Electron Cyclotron Maser Relativity in Action

ITER Plasma Heating System

R. Vernon et al., in the 16th ANS Meeting on the Technology of Fusion Energy, Madison, Wisconsin, 2004

Page 30: The Electron Cyclotron Maser Relativity in Action

Application of the Gyromonotron:

Active Denial Technology

Infrared image of silhouette targets Vehicle-mounted ADT concept

Page 31: The Electron Cyclotron Maser Relativity in Action

Application of the Gyromonotron:materials characterization, plasma wave

scattering, and electron spin resonances, etc.

Research Center for Development of Far-Infrared Region

University of Fukui, Japan

Page 32: The Electron Cyclotron Maser Relativity in Action

Outline

Overview of vacuum electronics

Principle of the electron cyclotron

maser (ECM)

ECM-based devices (gyrotrons)

- significance and applications

Mode competition

Issues at THz

Summary

Page 33: The Electron Cyclotron Maser Relativity in Action

parasitic modes

operating mode

22

0

2

0 z

22

0

final voltage

Mode Competition in the Gyromonotron

―One should find such a

start-up scenario which will

provide the initial excitation

of the desired mode, which,

being excited, will suppress

all parasites.‖

G. S. Nusinovich, IEEE Trans.

Plasma Sci. 27, 313 (1998)

―The desired mode must be excited before unwanted

modes are excited as the gun voltage is raised to its

steady-state value.‖

K. E. Kreischer and R. J. Temkin, Phys. Rev. Lett. 59, 547 (1987).

Page 34: The Electron Cyclotron Maser Relativity in Action

Mode Competition in the Gyro-TWT

―Beam perturbations associated with one mode will

appear as deleterious velocity and energy spreads to

another mode of different frequency and field profile.‖

L. R. Barnett et al., Phys. Rev. Lett. 63, 1062-1065 (1989)

K. R. Chu,‖ Rev. Modern Phys. 76, 489 (2004), Sec. VI.

TE11

TE21

TE11

TE21

11 21 (TE ) & (TE ) vs out osc inP P P

11TE

11TE

21TE 21TE

Page 35: The Electron Cyclotron Maser Relativity in Action

Mode Competition in the Gyro-BWO

―Asymmetry of field

profiles plays a dominant

role in mode competition.

A mode with a favorable

field profile will suppress

another mode with a less

favorable field profile.‖

K. F. Pao et al., Phys. Rev. Lett. 95,

185101 (2005).

0

0.4

0.8

1.2

0

0.4

0.8

1.2

0 1 2 3 4 5 6 7

Z (cm)

0

0.4

0.8

1.2

Linear field profiles

Am

plit

ude (

norm

aliz

ed s

cale

)

l = 1

l = 2

l = 3

most favorablefield profile

least favorablefield profile

-0.4

0

0.4

0.8

1.2

-0.4

0

0.4

0.8

1.2

0 1 2 3 4 5 6 7

Z (cm)

-0.4

0

0.4

0.8

1.2

Am

plit

ude a

nd e

nerg

y d

epositio

n r

ate

(norm

aliz

ed s

cale

)

l = 1, 1.56 Ist3.4 A

l = 2, 3.69 Ist2.85 A

l = 3, 5.94 Ist2.23 A

Lt=5.0cm L2=1.2cm

r1=0.303cm r2=0.2565cm

L1=0.7cm

f = 32.62 GHz

f = 33.81 GHz

f = 34.69 GHz

effective interactionlength

effective interaction length

effective interaction length

r3=0.23cm

Page 36: The Electron Cyclotron Maser Relativity in Action

Mode Competition in the Gyro-BWO

The latest-starting, lowest-order l = 1 mode eventually

dominates.

0

40

80

120

160

Pout (k

W)

0 1 2 3

Time (s)

l = 3

l = 2

(a)

(b)

Fre

quency (

GH

z) 36

35

34

33

32Time (s)

0

1

2

3

l = 1

Particle simulation (Ib = 4.8 A)

0

40

80

120

160

Pout (k

W)

0 1 2 3

Time (s)

l = 3

l = 2

(a)

(b)

Fre

quency (

GH

z) 36

35

34

33

32Time (s)

0

1

2

3

l = 1

Experiment (Ib = 4.88 A)

K. F. Pao, T. H. Chang, C. T. Fan, S. H. Chen, C. F. Yu, and K. R. Chu,

Phys. Rev. Lett. 95, 185101 (2005).

Page 37: The Electron Cyclotron Maser Relativity in Action

Outline

Overview of vacuum electronics

Principle of the electron cyclotron

maser (ECM)

ECM-based devices (gyrotrons)

- significance and applications

Mode competition

Issues at THz

Summary

Page 38: The Electron Cyclotron Maser Relativity in Action

Issues at THz: Heavy Wall Losses

01TE mode attentuation in copper waveguides

( 1.06 cutoff frequency)f

0 2 4 6 8 10 12 14 16 18

z (cm)

0

0.2

0.4

0.6

0.8

1

1.2

P

cu= 1.72 10

f = 35 GHz , fc = 33 GHz

f = 1000 GHz , fc = 942.9 GHz

1000 GHz ( = 0.093 mm) f r

35 GHz ( = 2.65 m ) mf r

Higher order modes are preferable.

Higher order modes are unaviodable.

Many applications require a broad tuning range.

Page 39: The Electron Cyclotron Maser Relativity in Action

Issues at THz: High B-field

2 ' 2( ) ( )c Lsm mn mns m sH J k r J k r

Up to 40 T is required for fundamental cyclotron

harmonic interaction (s =1)

s>1 harmonic interaction is preferable.

Interaction strength:

Can s>1 modes compete with s =1 mode?

Page 40: The Electron Cyclotron Maser Relativity in Action

Beam-Wave Resonance Chart

s = 2

s = 3

waveguide modes

0, 1z z ck v s s

Page 41: The Electron Cyclotron Maser Relativity in Action

The Fukui 2nd Harmonic THz Gyrotron~100 W THz wave

CW gyrotron in a

20 T SC magnet

1s

2s

0 4 8 12 16 20

z (mm)

0

2

4

r w (

mm

)

Ib (max): 1 AVb: 30 kV

α: 1.1

Δvz/vz: ~10%

Page 42: The Electron Cyclotron Maser Relativity in Action

Particle Simulation of the Fukui Experiment

1,22,2

0,2

1,32,3

0,3

3,3

1,4

4,3

2,4

0,4 3,4

4,4

2,5

0,5

3,5

1,6

4,5

2,6

5,5

3,6

1,7

6,5

6,6

6,7

3,9

6,9

7,108,95,8

4,6

1 A

4 8 12 16 20

B (T)

200

400

600

800

1000

fre

qu

en

cy (

GH

z)

(a)

1s

2s

Multi-mode,

particle-in-cell

simulation

Experiment

=1 AbI

Page 43: The Electron Cyclotron Maser Relativity in Action

Ist vs B-Field for the Fukui Experiment(in the range of 16-17 T)

0

0.2

0.4

0.6

0.8

1

I st (

A)

16 16.2 16.4 16.6 16.8 17

B (T)

TE79TE35TE16

TE89

TE6,10

TE0,12

TE4,11

TE45

(1)(1)

(1)

(2)(2)

(2)

(2)(2)

Examined next

Page 44: The Electron Cyclotron Maser Relativity in Action

Governing mechanism: Nonlinear variation of Hsm

General trend: s =1 mode suppresses s>1 modes.

s = 1 interaction:

Coupling strength (Hsm) almost

unchanged throughout the

interaction.

0.4

0.8

1.2

1.6

Hsm/H

sm

0

5 7 9 11 13 15

z (mm)

(a)

0.8

0.9

1

1.1

1.2

Hsm

/Hsm

0

5 7 9 11 13 15

z (mm)

(b) 2s

1s

In the nonlinear regime,

increases for energy-gaining electrons

decreases for energy-losing electro

ns

unfavorable for competiti

on

smH

= 2 interaction :s

Harmonic Mode Competition– governing mechanism and general trend

Page 45: The Electron Cyclotron Maser Relativity in Action

0

4

8

12

I b (

A)

0 1 2 3

t (s)

0

4

8

12

16

20

Pout (

kW

)

0 1 2 3

t (s)

TE89

(2)

(1)TE35

(1) (2)35 89TE TE Competition between the and Modes

0

0.2

0.4

0.6

0.8

1

I st (

A)

16 16.2 16.4 16.6 16.8 17

B (T)

TE79TE35TE16

TE89

TE6,10

TE0,12

TE4,11

TE45

(1)(1)

(1)

(2)(2)

(2)

(2)(2)

16.76 T

(2)89

(1)35

The TE mode, though

excited first, is eventually

suppressed by the TE

mode.

Two-mode simulation:

Beam pulse

Page 46: The Electron Cyclotron Maser Relativity in Action

1,22,2

0,2

1,32,3

0,3

3,3

1,4

4,3

2,4

0,4 3,4

4,4

2,5

0,5

3,5

1,6

4,5

2,6

5,5

3,6

1,7

6,5

6,6

6,7

3,9

6,9

7,108,95,8

4,6

1 A

4 8 12 16 20

B (T)

200

400

600

800

1000

fre

qu

en

cy (

GH

z)

(a) =1 AbI

1,22,2

0,2

1,32,3

0,3

3,3

1,4

4,3

2,4

0,4 3,4

4,4

2,5

0,5

3,5

1,6

4,5

2,6

5,5

3,6

1,7

6,5

6,6

6,7

4,6

10 A

4 8 12 16 20

B (T)

200

400

600

800

1000

fre

qu

en

cy (

GH

z)

(b)

0,6

=10 AbI

1,22,2

0,2

1,32,3

0,3

3,3

1,4

4,3

2,4

0,4 3,4

4,4

2,5

0,5

3,5

1,6

4,5

2,6

5,5

3,6

1,7

6,5

4,6

15 A

4 8 12 16 20

B (T)

200

400

600

800

1000

fre

qu

en

cy (

GH

z)

(c)

0,6

=15 AbI

Simulated Mode Charts– verification of the governing mechanism and general trend

More and more 2 modes

get suppressed as rises

above of more and more

1 modes.

b

st

s

I

I

s

Page 47: The Electron Cyclotron Maser Relativity in Action

Summary

• ECM-based devices provide unique radiation sources in the mm wave regime for a variety of applications.

• They are also intriguing nonlinear systems, understanding of which is key to the realization of the full potential of this class of devices.

Page 48: The Electron Cyclotron Maser Relativity in Action

同步輻射研究中心(位於新竹科學園區)

加速環

儲存環

高頻系統

高頻系統

加速環

儲存環

Page 49: The Electron Cyclotron Maser Relativity in Action

高頻系統

電源供應器

高頻控制系統

60 kW速調管

冷卻系統

同軸傳輸線

微波循環器

Page 50: The Electron Cyclotron Maser Relativity in Action

Engineering and Fabrication of Microwave Tubes

CAD Engineering

Drawing

Precision

MachiningBrazing

Tube

Assembly

Hot

Test

High voltage, high vacuum, high precision, high temperature

Page 51: The Electron Cyclotron Maser Relativity in Action
Page 52: The Electron Cyclotron Maser Relativity in Action

“University Training of Tube Engineers in the US and broad,”

plenary paper presented at IVEC, 2006 by

Dr. G. Caryotakis, Head, Klystron Department, SLAC

46532181097Overall rank

(Highly

subjective)

51051430-5052510How many PhD

degrees last year?

“LOW

LEVEL ”

SomewhatYESYESYESYESNo

Only via

professional

Societies

SOME

INTERACTIONInteraction with

industry?

FEW IN MW

INDUSTRY

Low salariesYESYESYESSOME

Few

industrial

jobs

Research

labs

Thales at Ulm.

But most go

to Solid State

NOAdequate

employment?

SOMEYESYESYESYESYESYESNoYESSOME EXP.

FACILITIES

Practical training

university

facilities?

YESYESYESYESYESYESYES

NO

Graduate

Courses

YES

U of

Karlsruhe

YES

(as part of

plasma

science)

Are Vacuum

Electronics

courses offered?

IsraelRussiaIndiaTaiwanKoreaChinaUKFranceGermanyJapan

University Training in Vacuum Electronics (Europe and Asia)

Survey Results –Countries in Order of Descending GDP

Page 53: The Electron Cyclotron Maser Relativity in Action

Thank you