the ecology of estuarine channels of the pacific northwest coast: a

195

Click here to load reader

Upload: dinhhanh

Post on 21-Jan-2017

274 views

Category:

Documents


15 download

TRANSCRIPT

Page 1: The ecology of estuarine channels of the Pacific Northwest coast: A
Page 2: The ecology of estuarine channels of the Pacific Northwest coast: A

" ~ . : ~ v T ~ FISH h VI:LT~L':": -.A FWS/OBS-83/05 w ~ I . . ~ . ~ - ~ c - ~ * - i i -'stH

December 1983

NMA - Sfidell CompYLe. C O D " V ~ * ~ 1010 cause f4auIev~rd

Slidell, LA 70458

THE ECOLOGY OF ESTUARINE CHANNELS OF THE PACIFIC NORTHWEST COAST:

A COMMUNITY PROFILE

Char1 es A. Sirnenstad Fisheries Research Institute

Coll ege of Ocean and Fishery Sciences University of Washington

Seattle, WA 98195

Project Officer Jay F. Watson

U.S. Fish and Wildlife Service 500 N.E. Mu1 tnomah Street

Portland, OR 97232

Prepared for

U.S. Department o

Page 3: The ecology of estuarine channels of the Pacific Northwest coast: A

L i b r a r y o f Congress Card No. 83-600586

This repor t should be cited as:

Simenstad, C.A. 1983. The ecology of estuar ine channels of the Pac i f ic Northwest coast : a communi t y p r o f i l e . U.S. F i s h W i l d l . Serv. FWS/OBS-83/05. 181 PP 9

Page 4: The ecology of estuarine channels of the Pacific Northwest coast: A

PREFACE

This p r o f i l e o f t he es tuar ine channel h a b i t a t s o r subecosystems, considerabl e h a b i t a t s o f the P a c i f i c Northwest i s one e f f o r t was dedicated t o d e t a i l i n g hydro- i n d ser ies o f conmuni ty p r o f i l e s synthe- 1 og ica l , geonorphological , and chemical s i z i ng in fo rmat ion pe r t i nen t t o spec i f i c components and processes o f the systems as hdb i ta t s o f p a r t i c u l a r i n t e r e s t t o envi - w e l l as the b i o l o g i c a l . These f a c t o r s i n ronmental managers. The i n t e n t o f the concert w i t h the b i o t a d i c t a t e bo th the ser ies i s t o provide s c i e n t i f i c i n fo r - short - and long-term ecological s t r u c t u r e o a t i o n i n a format t h a t i s usefu l t o a and func t i on o f these hab i ta ts . The f i n a l broad spectruin of users i nc lud ing envi - chapter in tegra tes the in fo rmat ion i n t he rormentdl managers, col 1 ege educators, and preceding chapters by d e t a i l ing consider- i n te res ted laypersons. Th i s s p e c i f i c a t i ons f o r management. p r o f i l e focuses or1 the cornpl ex network o f channels o f var ious o r i g i n s i n the estu- Any questions o r comments about o r a r i n e reaches o f the coastal waters of the requests f o r pub1 i c a t i o n s sho r~ ld be Pac i f i c Pbrthwest. The geographic scope d i rected to: o r study area i s p r i m a r i l y t h a t reg ion o f the coast from S t r a i t o f Juan de Fuca on In format ion Transfer Special i s t the no r th t o Cape Plendoci no, Cal i f o r n i a , National Coastal Ecosystems Team on the south. U.S. F i sh and W i l d l i f e Serv ice

NASA/Sl i d e l 1 Computer Conpl ex I n order t o exp la in the ecology with- 1010 Gause Boul evard

i n these channel systetns and t h e i r Sl i d e l l , LA 70458 ec1~1 og ica l re1 a t i onsh ips t o the adjacent

i i i

Page 5: The ecology of estuarine channels of the Pacific Northwest coast: A

COr4VERSI ON FACTORS

Metric t o U.S. Customary

To Obtain

mil 1 imeters (m) centimeters (cm) meters (m) ki1 ometers (km)

inches inches feet mil es

2 square meters (m ) square ki 1 ometers (km ) hectares (ha)

square fee t square miles acres

gal 1 ons cubic feet acre-feet

l i t e r s (1) cubic meters (m3) cubic meters (m )

milligrams (mg) grarns (g) kilograms (kg) metric tons (rat) metric tons ( m t ) ki l ocal ori es (kcal )

ounces ounces pounds pounds short tons BTU

1.8(C0) t 32 Fahrenheit degrees Cel s ius degrees

U.S. Customary t o Metric

inches inches feet ( f t ) fa thoms miles ( m i ) nautical miles ( m i )

mil 1 imeters centimeters meters meters kilometers kil meters

2 square feet ( f t ) acres 2 square miles (mi )

square meters hectares square ki 1 ometers

1 i ters cubic meters cubic meters

grams kil ograms metric tons ki 1 ocal ori es

Celsius degrees

gallons (gal) cubic feet ( f t ) acre- feet

ounces (oz) pounds ( I b ) short tons (ton) BTU

Page 6: The ecology of estuarine channels of the Pacific Northwest coast: A

CONTENTS

Page

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . PREFACE i ii . . . . . . . . . . . . . . . . . . . . . . . . COPNERSION FACTORS i v . . . . . . . . . . . . . . . . . . . . . . . . . LIST UF FIGURES v i i i . . . . . . . . . . . . . . . . . . . . . . . . . . LIST OF TABLES x i . . . . . . . . . . . . . . . . . . . . . . . . . ACKNOWLEDGMENTS x i i

. . . . . . . . . . . . . . . . . . . . . CHAPTER 1 . 1NTRODUCTI.ON 1

1.1 Ob jec t i ves . . . . . . . . . . . . . . . . . . . . . . * 1 1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . 2

. . . . . . CHAPTER 2 . PHYSICAL DESCRIPTION OF ESTUARINE CHANNELS 4

2.1 D e f i n i t i o n a n d D e s c r i p t i o n . . . . . . . . . . . . . . . 4 2.2 Geomorphol ogy . . . . . . . . . . . . . . . . . . . . . 4 2.3 C i r c u l a t i o n . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Water Mass C h a r a c t e r i s t i c s . . . . . . . . . . . . . . . 12

2.4.1 Phys ica l . . . . . . . . . . . . . . . . . . . . 12 2.4.2 Chemi c a l . . . . . . . . . . . . . . . . . . . . 14

2.5 Subs t ra te C h a r a c t e r i s t i c s . . . . . . . . . . . . . . . 18

2.5.1 Phys ica l . . . . . . . . . . . . . . . . . . . . 18 2.5.2 Chemical . . . . . . . . . . . . . . . . . . . . 21

2.6 I t e m i z a t i o n and C l a s s i f i c a t i o n o f E s t u a r i n e Channel Hab i t a t s i n Region . . . . . . . . . . . . . . 25

. . . . . . . CHAPTER 3 . PRIMARY PRODUCTION I N ESTUARINE CHANNELS 32

. . . . . . . . . . . . . . . . . . . 3.1 Ben th ic Mi c ro f l o r a 32 . . . . . . . . . . . . . . . . . . . . . . . 3.2 Macroalgae 32 . . . . . . . . . . . . . . . . . . . . . . 3.3 Angiosperms 33 . . . . . . . . . . . . . . . . . . . . . 3.4 Phy top lank ton 33 3.5 Est imates o f Standing Crop and Pr imary . . . . . . . . . . . . . . . . . . . Produc t i on Rates 34 3.6 D r i v i n g and L i m i t i n g Var iab les t o Pr ir f lary

P roduc t i on . . . . . . . . . . . . . . . . . . . . . . 35

. . . . . . . CHAPTER 4 UETRITUS PROCESSING IN ESTUARINE CHANNELS 38

4.1 D e t r i t u s Sources . . . . . . . . . . . . . . . . . . . . 38 4.2 D i s t r i b u t i o n of D e t r i t u s . . . . . . . . . . . . . . . . 4 1 4.3 Fungi and B a c t e r i a Co lon i za t i on . . . . . . . . . . . . 42 . . . . 4.4 Phys ica l . Chemical. and B i o l o g i c a l C o n d i t i o n i n g 42

Page 7: The ecology of estuarine channels of the Pacific Northwest coast: A

. CHAPTER 5 INVERTEBRATE ASSEMBLAGES OF ESTUARINE CHANNELS . . . . 46

5.1 Ben tn i c In fauna and Sessi 1 e € p i fauna . . . . . . . . . . 46 5.2 M o t i l e Epifauna . . . . . . . . . . . . . . . . . . . . 52 5.3 Ep iben th i c Zooplankton . . . . . . . . . . . . . . . . . 54 . . . . . . . . . . . . 5.4 Pel a y i c Zoopl ankton and Neuston 62

. CHAPTER 6 FISH ASSEMBLAGES OF ESTUARINE CHANNELS . . . . . . . . 68

6.1 Demersal F ishes . . . . . . . . . . . . . . . . . . . . 68 6.2 Pe lag i c F ishes . . . . . . . . . . . . . . . . . . . . . 71 . . . . . . . . . . . . . 6.2.1 Resident Pe lag ic Fishes 73

6.2.2 Anadromous Pe lag i c F i shes . . . . . . . . . . . . 78 6.2.3 I ch thyop l ankton . . . . . . . . . . . . . . . . . 86

. . . . . . . . . CHAPTER 7 BIRD ASSEMBLAGES OF ESTUARINE CHANNELS 87

. . . . 7.1 Shal low-Probing and Surface-Searching Shorebi rds 87 7.2 Waders . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.3 Sur face and D i v i n g Waterb i rds . . . . . . . . . . . . . 94 7.4 A e r i a l -Searching B i r d s . . . . . . . . . . . . . . . . . 95

CHAPTER 8 . MAMMALS OF ESTUARINE CHANNELS . . . . . . . . . . . . 97

. . . . . . . . . . . . . . . . . . 8.1 T e r r e s t r i a l Mammal s 99 . . . . . . . . . . . . . . . . . . . . 8.2 Aqua t i c Mammals 99 8.3 Mar ine Mammals . . . . . . . . . . . . . . . . . . . . . 100

CHAPTEK 9 . TRUPHIC AND COMMUNITY ECOLOGY OF ESTUARINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . CHANNELS 103

9.1 P r i n c i p a l Pathways o f Energy Flow through . . . . . . . . . . . . . . . . . . I n t e r n a l Food Webs 103 9.2 Roles o f P reda t ion and Compet i t i on I n t e r a c t i o n s

i n S t r u c t u r i n g Communities and Food Webs . . . . . . . 112 9.3 Es tua r i ne Channels as C r i t i c a l Reproduct ive.

Nursery . Foraging. and Refug ia Hab i t a t s . . . . . . . 113 9.4 I n t e r r e l a t i o n s h i p s among Es tua r i ne Channel

H a b i t a t s and R i ve r i ne . Wetland. Oceanic. and Other Es tua r i ne Hab i t a t s . . . . . . . . . . . . . . . 115

CHAPTEK 10 . SUMMARY . THE RULE OF CHANNEL HABITATS I N . . . . . . . . ESTUARINE ECUSYSTEMS AND MANAGEMENT IMPLICATIONS 117

. . . . . . . . . . . . 10.1 Sources and Mechanisms o f Impact 119 10.2 U t i l i z a t i o n o f and Dependence on Channels b y Eco- . . . . nomica i l y - and E c o l o p i c a l l y - I m p o r t a n t Species 124 10.3 Rates and Pathways o f Recovery from Shor t - term . . . . . . . . . . . . . . . . . . . . . . . Impacts 125

v i

Page 8: The ecology of estuarine channels of the Pacific Northwest coast: A

Page

10.4 Methods o f Channel Res tora t ion and R e h a b i l i t a t i o n . . . . . . . . . . . . . . . . . . . . 126

10.5 Research Gaps and P r i o r i t i e s . . . . . . . . . . . . . . 127 10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . 129

LITERATURE CITED . . . . . . . . . . . . . . . . . . . . . . . . . 130 APPENDICES: A. Glossary o f Terms . . . . . . . . . . . . . . . . 159

8. Sediment C l a s s i f i c a t i o n Schemes . . . . . . . , . 165 C. T i da l Channel C h a r a c t e r i s t i c s f.leasurements. . . . 167 D. Summary o f Current Research and

Research Groups/Centers Addressing Es tua r i ne Channel Ecology o r E f f ec t s o f A l t e r a t i o n o f Channel Hab i ta ts . . . 175

v i i

Page 9: The ecology of estuarine channels of the Pacific Northwest coast: A

LIST OF FIGURES

F i g. Page

1.1 Locat ion o f estuar ies i n Oregon and Washington . . . . . . . 2

2.1 Kepresentat i ve estuar ine channel c lasses and geomorphologi es and associated e s t u a r i ne . . . . . . . . . . . . . . . . . . . . features and regions 5

2.2 Example of estuar ine channel hab i t a t s i n P a c i f i c k r t h w e s t ; ( A ) braided mainsten channels o f main arm of Fraser River are separated by sa l tmarsh h a b i t a t , and (B) c loser view o f b l i n d channels i n sa l trnarsh h a b i t a t on Woodward Is1 and. . . . . . . . . . . . . . . . . . 6

2.3 Estuar ine channel mouth deposi t ional p a t t e r n s associated w i th macrot idal systems i n t h e absence ( A ) and presence (6 ) of s t rong wave a c t i o n . . . . . . . . . 8

2.4 Estuar ine channel dimensional c h a r a c t e r i s t i c s . . . . . . . . 9

2.5 Estuar ine c l a s s i f i c a t i o n diaoram i 11 us t r a ti ng seven types o f es tuar ine c i r c u l a t i o n . . . . . . . . . . . . . . . . . . . . 11

2.6 Sediment s ize f r a c t i o n (% wet weight) d i s t r i b u t e d a t seven channel bottom and slope l o c a t i o n s i n Grays Harbor 20 . . . . . . . . . . . . . . . . . . . . . . . .

2.7 V o l a t i l e so l ids (% o f t o t a l dcy we igh t ) i n sed i - ments a t seven channel bottom and s lope l o c a t i o n s i n Grays Harbor . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 D i s t r i b u t i o n o f organic mat ter ( v o l a t i l e s o l i d s , chemi cal oxygen demand, and t o t a 1 organ ic carbon ) i n sediments a t fourteen channel bottom and s lope/ bank locat ions i n Grays Harbor 24 . . . . . . . . . . . . . . .

3.1 Primary product ion compartments and d r i v i n g v a r i - ab les and l i m i t i n g f ac to r s i n f fuenci ng d i s t r i bu- t i o n , standing crop, and r a t e o f p roduc t ion 36 . . . . . . . . .

tua r i ne channel h a b i t a t s of t h e . . . . . . . . . . . . . . . . . . . . . s t * 39

e mechanisms and f lows mical , and b i o l o g i c a l

43 . . . . . . . . . . . . . . . .

Page 10: The ecology of estuarine channels of the Pacific Northwest coast: A

Fig. Page

4.3 T e r r e s t r i a l (wood chips, t r e e bark, and leaves) d e t r i t u s o f varying p a r t i c l e s izes deposited on l i t t o r a l f l a t s o f Duckabush R iver estuary, Hood . . . . . . . . . . . . . . . . . . . . . . Canal, Washington 43

5.1 Representat ive i l l u s t r a t i o n o f common benthic i n - fauna and sess i l e epifauna assemblages o f estuar ine . . . . . . . . . . channel hab i ta t s o f t h e P a c i f i c Northwest 49

5.2 Representat ive i l l u s t r a t i o n o f common m o t i l e ep i - fauna assemblages o f estuar ine channels o f t he Paci f i c Northwest . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Representat ive i l l u s t r a t i o n o f common epibenthic zooplankton assemblages o f es tuar ine channel hab i ta t s . . . . . . . . . . . . . . . . . . o f t h e P a c i f i c Northwest 57

5.4 Representat ive i l l u s t r a t i o n o f common pe lag ic zoo- prankton and neuston assemblages o f es tuar ine channels o f t he P a c i f i c Northwest . . . . . . . . . . . . . . . . . . 64

6.1 Kepresentat ive i l l u s t r a t i o n o f common f i s h assem- . . . . blayes o f es tuar ine channels o f t h e P a c i f i c Northwest 72

6.2 Mean Shannon-Weaver d i v e r s i t y index o f demersal f i shes i n the Columbia R iver estuary as a func- t i o n o f l o c a t i o n along the l o n g i t u d i n a l ax is ( A ) and over t he 18-month sampling pe r iod (B) . . . . . . . . . . 72

6.3 Mean Shannon-Weaver d i v e r s i t y index o f pel agic f ishes i n the Columbia R iver estuary as a func- t i o n o f l o c a t i o n along the l o n g i t u d i n a l ax i s ( A ) . . . . . . . . . . and over the 18-month sampling pe r iod (B) 77

6.4 Tidal channel t r a p ne t set i n b l i n d channel o f Fraser River estuary t o sample j u v e n i l e salmon u t i l i z i n g . . . . . . . . . . . . . . . . . . . . . . sal tmarsh h a b i t a t 82

7.1 Representat ive i l l u s t r a t i o n o f common b i r d assemb- . . . . lages o f es tuar ine channels o f t h e P a c i f i c Northwest 91

7.2 Representat ive avi fauna o f es tua r ine channel hab i ta t s . . . . . . . . . . . . . . . . i n t h e p a c i f i c Northwest

7.3 Seabird ( p r i m a r i l y rh inoceros auklets, com marbled murrelets, and pigeon gui 1 lemots) t i on i n Grays Harbor, Washington, October . . . . . . . . . . . . . . September 1975

8.1 Representat ive i l l u s t r a t i o n o f common blages o f es tuar ine channels o f t h e P

i x

Page 11: The ecology of estuarine channels of the Pacific Northwest coast: A

Fig. -

8.2 Pac i f i c harbor seal haulout s i t e along channel i n Wil lapa Bay, Washington, June 1980 . . . . . . . . . . . . . 101

8.3 Maximum t o t a l abundance of P a c i f i c harbor seals a t haulout s i t e s i n three of Washington's coasta l estuaries i n 1980 and i n 1981 . . . . . . . . . . . . . . . 102

9.1 Representative food web of es tuar ine channel hab i ta ts o f t h e P a c i f i c Northwest. 111 . . . . . . . . . . . . . . . . . .

10.1 Conf igurat ion o f channel h a b i t a t s i n the Cot umbia R iver estuary i n 1868-1875 ( A ) and recent t ime (B). . . . . . 118

10.2 Late 1800's dredging o f Uuwamish R ive r channels and l i t t o r a l f l a t s i n E l l i o t t Bay, Seat t le , Washington . . . . . 120

10.3 Example o f where d i k ing and f i l l i n g have removed ( b l i n d or t i d a l ) channel h a b i t a t i n Fraser R iver estuary: { A ) i 1 lus t ra tes d i k i n g o f subs id ia ry (enter ing from lower r i g h t ) channel and b l i n d channels i n sal tmarsh and (B) shows h i s t o r i c a l channel pa t te rns s t i l l ev ident i n e x i s t i n g f i e l d s . . . . . . 122

Page 12: The ecology of estuarine channels of the Pacific Northwest coast: A

LIST OF TABLES

Page

2.1 Loca t ions , c h a r a c t e r i s t i c s , and c l a s s i f i c a t i o n o f p r i n c i p a l e s t u a r i n e channel h a b i t a t s i n t h e P a c i f i c . . . . . . . . . . . . . . . . . . . . . . . . N o r t h w e s t . . 26

5.1 I t e m i z a t i o n and c h a r a c t e r i s t i c s o f ben th i c in fauna and sess i 1 e ep i fauna common t o e s t u a r i n e channel habi - . . . . . . . . . . . . . . . . t a t s o f t h e P a c i f i c Northwest 50

5.2 I t e m i z a t i o n and c h a r a c t e r i s t i c s o f m o t i l e ep i fauna common t o e s t u a r i n e channel h a b i t a t s o f t h e P a c i f i c . . . . . . . . . . . . . . . . . . . . . . . . . . Northwest 56

5.3 I t e m i z a t i o n and c h a r a c t e r i s t i c s o f ep i ben th i c zooplankton common t o e s t u a r i n e channel h a b i t a t s . . . . . . . . . . . . . . . . . . o f t h e P a c i f i c Nor thwest 58

5.4 I t e m i z a t i o n and c h a r a c t e r i s t i c s o f p e l a g i c zoopl ank- t o n and neuston common t o e s t u a r i n e channel h a b i t a t s . . . . . . . . . . . . . . . . . . o f t h e P a c i f i c Nor thwest 65

6.1 I t e m i z a t i o n and c h a r a c t e r i s t i c s o f demersal f i s h e s . . . . common t o e s t u a r i n e channels o f t h e P a c i f i c Northwest 63

6.2 I t e m i z a t i o n and c h a r a c t e r i s t i c s o f p e l a g i c f i s h e s . . . . common t o e s t u a r i n e channels o f t h e P a c i f i c Northwest 74

6.3 L i f e h i s t o r y c h a r a c t e r i s t i c s o f f i v e spec ies of . . . . P a c i f i c salmon i n no r t heas te rn P a c i f i c Ocean r e g i o n 80

6.4 Species r es i dence t imes o f j u v e n i l e . . . . . . . . . . . . salnon i n Washington S t a t e e s t u a r i e s 83

6.5 General e s t u a r i n e r u n t i m i n g and es t imated i n d i v i d u a l res idence t imes f o r a d u l t P a c i f i c . . . . . . . . salmon i n Washington S t a t e e s t u a r i e s

7.1 I t e m i z a t i o n and c h a r a c t e r i s t i c s o f b i r d s common t o . . . e s t u a r i n e channels o f t h e P a c i f i c Northwest

8.1 I t e m i z a t i o n and c h a r a c t e r i s t i c s o f mammals e s t u a r i n e channels o f t h e P a c i f i c Northwes

9.1 P r i n c i p a l p r e f e r r e d p r e y taxa o f j u i n P a c i f i c Northwest e s t u a r i e s base and o t h e r stomach con ten ts da ta sou

x i

Page 13: The ecology of estuarine channels of the Pacific Northwest coast: A

This synthesis o f i n f o m a t i o n on estuar ine channel s o f t he P a c i f i c North- west woul d have been v i r t u a l l y impossibl e wi thout the a i d and assistance o f many i nd i v idua l s , t o whom I extend my utrnost grat i tude. John Cooper, Jay Watson, Nancy Nelson, and t h e i r c o l l eagues i n the U.S. Fish and W i l d l i f e Service were re- sponsible f o r i n i t i a t i n g and susta in ing the e f fo r t , provid ing reference mater ia l , and generating c r i t i c a l reviews. Robert do l ton and Duane Hig ley (Oregon State Univers i ty , Corval l i s ) , David Levy (West- water Research Centre, Vancouver, B. C. ), Co l in Levings (Department o f t he Environ- ment, Vancouver, B.C.), Ed Roy (Univer- s i t y o f Washington, Seat t le ) , Dennis Paul son (Uni vers i t y o f Washington, Seat t le) , and Rocky Beach (Oregon Depart- ment o f F ish and Wild1 i fe , As to r i a ) a l l

cont r ibu ted data, reports, ideas, and review comments which were the crux of t h i s synthesis. Independent reviewers who a1 so provided extremely const ruc t ive comr~ents included A1 y n Duxbury (Univer- s i ty of 'rlashington, Sea t t l e ) , Tom Gamer {Oregon Department o f Fish and W i l d l i f e , Hewport), and Char1 es M i l 1 e r (Oregon S ta te Un ivers i ty , Corval l i s ) . The i n - c red ib l y f i n e i t 1 us t ra t i ons were prepared by Cathy Eaton Walker o f Fr iday Harbor, Washington. Appreciat ion i s extended t o Dr. Dennis Yi l lows, D i r e c t o r o f the Uni- ve rs i t y of Washington's Fr iday Harbor Laborator ies, f o r the oppor tun i ty t o ob- t a i n o r i g i n a l a e r i a l photographs o f es tuar ine channel s i n Puget Sound. I arl a1 so gratefu l f o r t he photographs pro- vided by Rocky Reach, Dave Levy, and Denni s Paul son.

Page 14: The ecology of estuarine channels of the Pacific Northwest coast: A

CHAPTEK 1

Hn estuary i s a t r u e inter face, because i t provides the aquat ic boundary between r i v e r i n e and marine ~ c o s ~ s ~ € ! ~ s and because i t i s t he p r i n c i p a l source of i n t e r a c t i o n between man and the sea. Sediments, n u t r i e n t s , b io ta , and commerce mutual l y f l ow amony t h e t e r r e s t r i a l , r i v e r i n e , and marine h a b i t a t s v i a t he estuary, w i t h t he m a j o r i t y o f these i n - t e rac t i ons occur r ing w i t h i n t h e channels which form the es tuary 's c i r c u l a t o r y sys- tem. The importance o f es tua r ies t o nav i - ga t ion , t ranspor ta t ion , and e x p l o i t a t i o n o f food organisrns has been appreciated by man f o r centur ies , w i t h a consequent ia l ly long h i s t o r y o f uses and abuses. Unfor- t una te l y , t h e s c i e n t i f i c knowledge about and pub l i c apprec ia t ion f o r t h e eco log i - c a l r o l e o f es tuar ies i s a recent and s t i 1 l -devel o p i ng phenomenon. Long before t h e re1 a t i onsh i ps between these a1 te ra - t i o n s and the s t r u c t u r e and product ion o f es tuar ine b i c t a were considered, however, es tuar ine channels became read i l y -ava i l - able condui ts f o r i n d u s t r i a l e f f l u e n t s and domestic wastes. And perhaps even e a r l i e r , adjacent t i d e f l a t s and wet1 ands were claimed f o r ag r i cu l t u re , indus t ry , and co lon i za t i on which r e s u l t e d i n major mod i f i ca t i on o f channels through d i k i n g and f i l l i n g . I n general, i t wasn't u n t i l e f f e c t s upon human hea l th and f i s h e r i e s became obvious i n t he most heavi ly- impact- ed es tua r ies t h a t such eco log ica l r e l a - t i onsh ips entered i n t o t h e management o f estuar ies.

'see t h e Glossary o f Terms, Appendix A, f o r d e f i n i t i o n o f terms u t i l i z e d i n t h e f o l l o w i n g tex t .

A1 though perhaps not as heav i l y u t i 1 - i zed as other (e.g., east coast) es tuar - ies, Pac i f i c Northwest coast es tua r ies have been u t i l i z e d ex tens ive ly f o r l o g and 1 umber t ranspor t , storage and processing; harvest, cu l t u re , and processing o f f i n - f i s h and s h e l l f i s h ; dredginy, f i l l i n g , and d i k i n y ; and i n d u s t r i a l and urban waste d i sposal w i th 1 i tt l e acknowledgment o r knowledye o f t he r o l e estuar ies p lay i n maintenance and product ion o f f i s h and w i l d l i f e . Although much o f the more d i - r e c t , de le te r i ous impacts have been m i t i - gated i n cases where commercially or oth- erwise important species have been over t - l y threatened, p ro tec t i on and management o f es tuar ies has s t i l l not been approached on a scale o f t he ecosystem or i t s h i yher l e v e l components--communities or hab i ta ts .

It i s being recognized, however, t h a t e f f e c t i v e management o f coasta l ecosystems i s best accomplished a t t h e l eve l o f t he community o r h a b i t a t (Gossel i n k e t a I. 1979), r a the r than a t the species or taxa leve l . It i s only a t the community l e v e l t h a t eco loy ica l re la t i onsh ips among b i o t - i c and a b i o t i c components can be i n t e r - preted i n terms o f the func t i ona l proc- esses which e f f e c t the dynamics o f the system's s t r u c t u r e and production. Thus, t h e r o l e o f r i v e r i n e inputs, es tuar ine c i r c u l a t i o n , sa l i n i t y gradients, n u t r i e n t and mater ia l f luxes, and sediment s t ruc- t u r e i n determining the composition, d i s - t r i b u t i o n , and standing stock o f estuar- i n e b i o t a can be t rans la ted i n t o manaye- ment recommendations f o r the maintenance o f key processes. It i s the extended i n h i b i t i o n of these key processes, r a t h e r than short-term pe r tu rba t i on o f species populat ions, which w i l l u l t i m a t e l y deter- mine the r e s i l ience o f the ecosystem and i t s component c m u n i t i e s and hab i ta t s t o na tu ra l and man-induced a1 te ra t ions .

Page 15: The ecology of estuarine channels of the Pacific Northwest coast: A

This document has been prepared wi th t h e o b j e c t i v e o f p rov i d i ng es tuar ine re- source managers w i t h a synopsis of the e x i s t i n g knowledge about t h e ecology of es tua r i ne channels i n t h e P a c i f i c North- west. Incorpora ted i n t o t h i s p r o f i l e i s a summary o f t h e p r i n c i p a l phys ica l , chem- i c a l environments and b i o l o g i c a l features o f channel communities, as we1 1 as an i n - t e r p r e t i v e syn thes is o f the i n t e r n a l dy- namics of t h e community and i t s r e l a t i on - sh ips w i t h o t h e r communities i n the aggregate es tua r i ne ecosystem.

And, wh i l e t h i s community p r o f i l e has been s p e c i f i c a l l y prepared t o provide i n f o rma t i on f o r t h e assessment, planning and p e r m i t t i n g a c t i v i t i e s o f the U.S. Fish and W i l d l i f e Serv ice, i t w i l l nope fu l l y c o n s t i t u t e an educa t iona l source document f o r a l l those i n t e r e s t e d i n t he ecologi- c a l value o f es tuar ies .

1.2 SCOPE

PORT MOODY ARM STRAIT OF GEORGIA

STRAIT OF JUAN DE FUCA

QUINAULT RlVER

GRAYS HARBOR

WILLAPA BAY

PUYALLUP RlVER

COLUMBIA RlVER

NECANICUM RlVER

NEHALEM BAY

NETARTS BAY SAND LAKE

NESTUCCA BAY SALMON RlVER

SILETZ BAY

YAQUlNA BAY

The reg i o n o f geographic coverage SIUSLAW RlVER (Fig. 1.1) i s t h e Columbian Province

I r/

(Cowardin e t a l . 1979), i n c l ud i ng the UMPQUA RIVER

Northwest P a c i f i c Coast from Cape Hendo- cino, Ca l i f o rn i a , t o t h e S t r a i t o f Juan de Fuca on t h e Washington-Canada border. COQUILLERIVER

This embraces coas ta l es tuar ies as wel l as t h e continuum o f es tua r i es forming the i n l a n d seas o f Puyet Sound and the south- ROGUE RIVER

ern S t r a i t o f Georgia, w i t h t h e l a t t e r PlsToLRIVER

t e rm ina t i ng between Vancouver on the main1 and and Nanaimo o n Vancouver I s 1 and. CALIFORNIA PT ST GEORGE -

Estuar ine channel h a b i t a t s a re de- f i n e d as i n c i s e d s u b t i d a l es tua r i ne bot- TRINIDAD HEAD

toms o r depressions which con ta in sa l ine (> 0.05~/,,) water masses f r e e l y exchanged t5rough t i d a l and r i v e r i n e currents. This d e f i n i t i o n i s in tended t o encompass both the p r i n c i p a l c o r r i d o r o f water movement Fig. 1.1. Loca t ion o f es tua r i es i n Oregon through t h e estuary , t y p i c a l l y a long i t s and Washington. main l o n g i t u d i n a l ax is , as we l l as the cornplex d e n d r i t i c o r anaStomosin9 d ra in - res iden t o r t r a n s i t i o n a l , i n o r on t h e ayes which d i s sec t t i d e f l atS and Sal t - water column or sub t i da l subs t ra te . marshes.

1.3 METHODS The b i o t i c community charac te r i z ing

es tua r i ne channels i n vo l ves t h e micro- Th is community p r o f i 1 e was cons t ruc t - and macrof lora and fauna found, whether ed through a syn thes is of t h e physioyra,-

2 ,

Page 16: The ecology of estuarine channels of the Pacific Northwest coast: A

phy, b i o t a , e c o l o y i c a l i n t e r a c t i o n s , and e f f e c t s o t human nlanipul a t i o n s i n channel nabi t a t s of P a c i f i c Northwest es tuar ies . M a t e r i a l was gathered from pub l i shed as w e l l as unpubl ished r e p o r t s and o the r "gray" l i t e r a t u r e , some of which a re c i t - ed as examples of t h e processes be ing de- sc r ibed . Unless 0 therw i se c i t e d , i n t e r - p r e t a t i o n s and conc lus ions based upon un- pub l i sned data a re sole11 those o f t h e

author.

Reference sources o f p a r t i c u l a r use i n t h i s s yn thes i s included t h e U.S. F i s h and W i l d i 1 f e Serv ice , B i o l o g i c a l Serv ices Program's Eco log i ca l C h a r a c t e r i z a t i o n o f t h e P a c i f i c Northwest Region (P roc to r e t a l . 1980) and P a c i f i c Coast Eco log i ca l I nven to r y (Beccas io e t d l . 1981).

Page 17: The ecology of estuarine channels of the Pacific Northwest coast: A

CYAPTER 2

PHYSICAL DESCRIPTION OF ESTUARINE CHANNELS

2.1 DEFINITION AND DESCRIPTION

A1 though a d iverse ar ray o f mor- occurs the p r i n c i p a l t ranspor t of water phol ogies character ize P a c i f i c Northwest i n t o and ou t of t he estuary; subs id ia r estuaries, a1 1 basi cdl l y meet t he gener- (stream) channels through which mino; al ly-accepted d e f i n i t i o n of P r i t cha rd water t ransport occurs; and b l i n d o r t i d a l (1967), "An estuary i s a semi-enclosed channels which p r i m a r i l y d ra in f l a t s o f coastal body o f water which has a free t i d a l l y o r f lood- int roduced water ra the r connection w i th the open sea and w i t h i n than runof f from associated wet1 ands and which sea water i s measurably d i l u t e d w i t h uplands. Examples o f several o f these freshwater derived from land drainage." classes of channels are found i n the By t h i s d e f i n i t i o n we exclude coastal Fraser River estuary (Fig. 2 . 2 ) . lagoons, brackish seas, and sa l i n e lakes which have ne i ther the dynamic t i d a l 2.2 GEOMORPHOLOGY exchange o f sea water nor r i v e r i n e i npu t o f freshwater characterized by t r u e es tu - P r i tchard (1967) and Russel 1 (1967) a r i es and where r i v e r i n e input i s t y p i c a l - a l so c l a s s i f i e d fou r types o f es tuar ies l y exceeded by evaporation. I n t h e Pacif- based upon t h e i r geological o r i g i n and i c Northwest, however, es tuar ine "systems" devel opnent: 1) drowned r i v e r v a l l eys, such as Puget Sound and the S t r a i t of which were produced by r i s e s i n sea l e v e l Georgia also meet t h i s d e f i n i t i o n of an o r subsidence o f land; 2 ) f j o rds , wherein estuary, but which, because of t h e i r deep, U-shaped estuar ies were formed by predominantlymarine nature, we w i l l a l so g l a c i a l act ion; 3) b a r - b u i l t estuaries, exclude i n favor o f addressing the srnaller created by accumulation o f sediments estuar ies found w i t h i n them. across an open r ivermouth o r coastal

b igh t ; and 4) estuar ies r e s u l t i n g from Within an estuary, channels are t e c t o n i c processes such as f a u l t i n g .

defined as, "an open conduit e i t h e r natu- There i s a lso a t l e a s t one case i n the r a l l y o r a r t i f i c i a l l y created which p e r i - P a c i f i c Northwest o f a f i f t h type o f odi c a l l y o r continuously conta ins moving estuary, t h a t created by man-made mani pu- water, o r which forms a connecting l i n k l a t i o n s of r i v e r course and shore l ine between two bodies of standing water" rnorphol ogy. (Langbein and I s e r i 1960). As such, channels const i tu te c r i t i c a l in te r faces Configurat ions o f t i d a l l y in f luenced w i t h i n the estuary i t s e l f , l i n k i n g l i t t o - de l t as ~ h i c h form in te rsec t i ons between r a l and s u b l i t t o r a l , r i v e r i n e and marine es tua r ine channels and the ocean are habi tats. The wl at ionsh ip between estu- governed by sediment d ispersal and accumu- ar ine channels and other components o f the l a t i o n pat terns. Wright and Coleman estuary are i l l u s t r a t e d i n F igure 2.1. (1973), Coleman and Wright (1975), and With in t h i s d e f i n i t i o n f a l l t h ree bas ic Wright (1977) have suggested t h a t these c l asses o f channels: mains tem channel s pa t te rns are determined by the i nte rac t i on (thalwegs o f Proctor e t a1 . 1980) wherein between o u t f l ow d i spe rs ion ( i nc lud ing

4

Page 18: The ecology of estuarine channels of the Pacific Northwest coast: A

Estuarine Features IDENTIFYING CHANNEL CLASSES < CHANNEL GEOMORPHOLOGY

REGIONS

3

v ESTUARINE

\ MARINE

Fig. 2.1. Representat ive estuar ine channel classes and geomorphologies and associated es tuar ine features and regions.

i n e r t i a l , buoyancy, and f r i c t i o n a l pro- cesses) and basinal processes ( i nc lud ing waves, t i des , longshore d r i f t , ocean cur- ren ts ) . I n the absence o f overpowering t i d e and wave e f fec ts , deposi t ional pat- terns depend upon the r e l a t i v e dominance o f : 1 ) ou t f low i n e r t i a , 2 ) boundary sheer st ress seaward o f the mouth, and 3 ) out- f low s t r a t i f i c a t i o n (buoyancy). I n e r t i a - dominated e f f l u e n t s produce narrow r i v e r - mouth bars. Wright (1977) mai nta ins t h a t

i n e r t i a l e f fec ts are t y p i c a l l y exceeded by e i t h e r tu rbu len t bed f r i c t i o n (boundary sheer st ress) o r e f f l u e n t buoyancy ( s t r a t - i f i cat ion) , which resu l t s i n t r i a n g u l a r "middle-ground" bars w i t h frequent channel b i f u r c a t i o n i n the former case and narrow d i s t r i b u t a r y mouth bars w i t h elongate d i s t r i b u t a r i e s having p a r a l l e l banks and few b i fu rca t i ons i n the l a t t e r case. Where t i d a l currents a re t y p i c a l l y strong- e r than r i v e r out f low (i.e., macrot idal

Page 19: The ecology of estuarine channels of the Pacific Northwest coast: A

F i g . 2.2. Example of estuarine cb,annel habitats in the Pacific Northwest; A ) braided mainstem channels of main arm of Fraser River are separated by sal tmarsh hab i ta t , and B ) a closer view o f blind channels i n saitmarsh habi ta t on Woodward Island (Photographs courtesy of David Levy, Westwater Research Centre, University of Bri t ish Columbia, Can- a d a ) .

Page 20: The ecology of estuarine channels of the Pacific Northwest coast: A

env i ronii ients) , b i d i r e c t i o n a l c u r r e n t s c r e a t e s a n d - f i l l ed , funnel-shaped d i s t r i b- u t a r i e s i n which 1 i n e a r t i d a l r i dges have rep1 aced t h e d i s t r i b u t a r y mouth ba r (F ig . 2.3A) ; where s t r o n g wave a c t i o n i n te r cep t s t h e r i v e r mouth, c o n s t r i c t e d o r de f l ec ted channel s develop (F i g . 2 .3B) . S w i f t (1976) a1 so developed ca tego r i es o f " t i d a l i n l e t " tnorphologi es, i n c l u d i n g (1) over- l ap , ( 2 ) o f f s e t , and ( 3 ) symmetr ica l , which could be app l i ed t o P a c i f i c North- west es tua r i es . See E l l i o t t (1978a and b) and Reineck and Singh (1980) f o r f u r t h e r d i s cuss i on o f d e l t a and i n l e t s t r u c t u r e .

The s t r u c t u r e o f e s t u a r i n e channels r e f l e c t s , i n p a r t , t he o r i g i n s and devel - opment o f t h e es tuary as governed by t he dynariiic f o r ces o f r i v e r i n e and t i d a l components. Morphologies o f channel s u s u a l l y r e f 1 e c t t h e o r i g i n a l r i v e r b e d shape and p a t t e r n i n drowned r i v e r v a l l e y s w h i l e channels i n bar -bu i 1 t e s t u a r i e s are o f t e n ephemeral i n l o c a t i o n and form. Given the g l a c i a l f o rma t i on o f f j o r d s , channels i n these e s t u a r i e s tend t o be s t a b l e and re1 a t i v e l y permanent. Th is v a r i a t i o n i n s t a b i l i t y i s r e f l e c t e d i n f o u r bas i c channel c o n f i g u r a t i o n s : 1) f i x e d channels, which were e r o s i o n a l l y created, u s u a l l y remain i n t h e same loca- t i o n and t h e bed i s deepened ove r t ime ; 2 ) b ra ided channels, which are cha rac te r i zed by many d i v i s i o n s i n t o sma l l e r branches around l e n t i c u l a r bars o r i s 1 ands, w i t h t h e branches u n i t i n g a t v a r i o u s downstream l o c a t i o n s ; 3 ) meandering channels, which have a simple, w ind ing course t h a t changes s y s t e m a t i c a l l y over t ime; and 4 ) dend r i t i c channels, which have i r r e g u l a r branches 1 eading t o a common channel.

The p r i n c i p a l c h a r a c t e r i s t i c s o f the channel bank are i t s s lope and subs t ra te , which a re n o t o n l y c o r r e l a t e d b u t a re a l s o a f f e c t e d by t h e o r i e n t a t i o n and v e l o c i t i e s o f t h e r i v e r and t i d a l c u r r e n t s a t t h a t p o i n t . Bank slope can be c l a s s i f i e d i n t o f o u r g r a d i e n t c, l asses: 1) v e r t i c a l , 90"-45"; 2 ) steep, 45"-30"; 3 ) moderate, 30"-5"; and 4 ) shal low, 5"-0".

Subs t r a t e can be de f i ned as e i t h e r conso l ida ted (combined o r f i r m rock o r s o i l ) o r unconsol i d a t e d ( l oose and d i sas-

soc ia ted p a r t i c l e s ) . Unconsol i d a t e d sedinents can be c l a s s i f i e d on t h e b a s i s o f p a r t i c l e d iameter as: 1 ) s i l t o r c l a y , 2 ) sand, 3 ) g rave l , 4 ) cobble, and 5 ) boulder and [nay be f u r t h e r d i v i d e d w i t h i n these ca tegor ies (Appendix B) . F u r t h e r d iscuss ion o f t h e sediment c h a r a c t e r i s t i c s o f es tua r i ne channels i s presented i n Sec t ion 2.5.

One o f t h e few d e t a i l e d s t ud i es o f es tua r i ne channel morphology was Levy and No r t hco te ' s (1981) documentat ion o f t i d a l ( b l i n d ) channel c h a r a c t e r i s t i c s i n t h e F raser R i ve r Estuary. Twenty-two h a b i t a t c h a r a c t e r i s t i c s were measured a t 15 sepa- r a t e b l i n d channels, most o f which were dendr i t i c i n charac te r . The channels were f u r t h e r c l a s s i f i e d i n t o f o u r orders : 1) channels o f l a r g e s u b t i d a l sloughs o r reaches which never dewater a t l ow t i d e ; 2) l a r g e channels which exper ience h i g h v e l o c i t y t i d a l f l ows and u s u a l l y do n o t dewater a t low t i d e ; 3 ) i n t e r t i d a l chan- n e l s which branch o f f second o rde r chan- n e l s o r s loughs and u s u a l l y dewater com- p l e t e l y a t l ow t i de ; and 4 ) sma l l i n t e r - t i d a l channels which branch o f f second o r t h i r d o rde r channels and always dewater a t low t i d e . These and severa l o t he r charac- t e r i s t i c s may be u t i l i z e d t o d e f i n e most b l i nd and subs i dary e s t u a r i n e channels and some may be app l i ed t o t h e c h a r a c t e r i s t i c s o f mainstem channels (F i g . 2.4). Appendix C l i s t s t he measurements and t h e values which Levy and Nor thcote (1981) ob ta ined f rom t h e i r c h a r a c t e r i z a t i o n o f t i d a l channel h a b i t a t s i n t he Fraser R i ve r Estuary; t h e ma jo r d e s c r i p t o r s o f channel ~norphology i n d i c a t e d predominant ly t h i r d o r d e r channels w i t h r e l a t i v e l y un i fo rm t o t a l depths (Dc; 2 = 1.75 +- 0.33 m), t r ough depths (Dt; 8.69 + 5.63 cm), and inouth w i d t h s ( W 1 -t W ; 13.2 + 6.0 in) b u t more v a r i a b l e t o t a l ?engths L ; 579.6 ?

505.3 m), t o t a l area (At; 5,370.3 i 5,143.1 mz), and r e f u g i a area (357.9 2 648.4 m2). T h e i r analyses o f t h e r e l a - t i o n s h i p between channel c h a r a c t e r i s t i c s and f i s h assemblage cornposi t i o n i i l u s - t r a t e d some s i g n i f i c a n t assoc i a t i ons be- tween p a r t i c u l a r assemblages and channel c h a r a c t e r i s t i c s , i n c l u d i n g channel mor- phol ogy (see Sec t ion 6.2.2).

Page 21: The ecology of estuarine channels of the Pacific Northwest coast: A

Fig, 2 . 3 . Estuarine channel mouth depositional pat terns associated w i t h macrotidal sys- tems in the absence (A ) and presence (5) o f strong wave action (from Wright 1977).

Page 22: The ecology of estuarine channels of the Pacific Northwest coast: A

TRANSVERSE SECTION

Measurements: W1+W2 = w i d t h b e t w e e n tops o f banks perpendic- u l a r t o a x i s o f channel (m)

Ac = transverse area (m2) u and u; b a l k a n g l e s as measured by t a n - l Dc/W1

At = t o t a l area, t y p i c a l l y meaz~.-ed by and t a n - 1 D,/WE. respec t i ve ly ; (')

p lanimetry frm char ts (m2) Channel C h a r a c t e r i s t i c s :

Dc = t o t a l depth (m) t o t a l l eng th = l e n g t h o f main ax is channel (LC) and subchanne ls (1 (m)

Dt = depth o f t rough i n bottom of channel which u s u a l l y c a r r i e s r e s i d u a l t i d a l per imeter = w e t t e d p e r i m e t e r (P ) o f main a x i s f l ow (cm) channel a n d subchannel s; (m)

E i = e l e v a t i o n o f channel b o t t m a t g rad ien t = drop i n e l e v a t i o n (€?-El ) between mouth (m) mouth a n d e n d o f channel, d i v i d e d by

E2 = e l e v a t i o n o f end o f b l i n d channel (m) a x i s l e n g t h (LC); (m/m)

o r i e n t a t i o n = o r i e n t a t i o n o f main a x i s from t r u e E3 = e l e v a t i o n o f surrounding bank (m) nor th; ( " )

H = he igh t o f surrounding vege ta t ion ; va r ies seasonally b u t t y p i c a l l Y mea-

average bank a n g l e = mean of a and a ,; (" )

sured a t peak p roduc t ion p e r i o d ; (m) angular d e f l e c t i o n = angular d e f l e c t i o n t o pre-

LC = ax is leng th from mouth t o fu r thes t v a i l i n g f l o w i n g t i d e o r r i v e r cu r ren t ; p o i n t on p r i n c i p a l a x i s of channel (m) ( "1

= lenn th o f subchannels (m) re fug ia area = a r e a o f watered pools remaining i n '1-5 channel a t l o w t i d e ; (m2)

Fig. 2.4. ~stuarine channel dimensional characteristics (adapted from Levy and North- cote 1981).

9

Page 23: The ecology of estuarine channels of the Pacific Northwest coast: A

2.3 CIRCULATION mixed estuary ; and 0 1 i n d i c a t e s a we l l -m ixed estuary .

Estuar ine c i r c u l a t i o n i s u s u a l l y descr ibed i n tenns o f the r o l e played b y A f u r t h e r c l a s s i f i c a t i o n o f es tua r i es t i d a l cu r ren t s r e l a t i v e t o t h a t o f r i v e r proposed by Hansen (1965) and Hansen and f l ow and i n v o l ves c h a r a c t e r i z a t i o n of R a t t r a y (1966) i n co rpo ra tes two dimension- water movements, m i x i ng processes, and t h e 1 ess para~ne te rs t o desc r i be t h e develop- d i s t r i b u t i o n o f sa l i n i t y and temperature ment of s t r a t i f i c a t i o n and g r a v i t a t i o n a l resu l t i n g from these dynamic phys i ca l convec t ion i n es tua r i es . Th is approach processes. The na tu re o f t i d a l c yc l es can u t i l i z e s s t r a t i f i c a t i o n - c i r c u l a t i o n d ia- a l so in f luence es tua r i ne c i r c u l a t i o n . I n grams ( F i g . 2.5) t o descr ibe a continuum t h e P a c i f i c Northwest, t i d e s a re p u r e l y of es tua r i ne c o n d i t i o n s where t h e o rd i na te d i u r n a l o r se~n id i r una l f o r o n l y a few days of the f i g u r e i s t h e r a t i o o f t h e t i d a l - p e r month and a r e gene ra l l y c l a s s i f i e d as averaged s a l i n i t y d i f f e r e n c e between t he mixed (Thornson 1981). A t r a d i t i o n a l bottom and surface, 6 s = sb-Ss, t o t he scheme o f c l a s s i f i c a t i o n (Stommel and depth- and t ida l -averaged sa l i n i ty (so ) a t Farmer 1952; Cameron and P r i t cha rd 1963; a g iven ' locat ion, and t h e absc issa repre - Review by Bowden 1967) i n vo l ves v a r i a t i o n s sen ts t h e r a t i o o f t h e t i da l - ave raged ne t about t h e s imp les t r e l a t i o n s h i p between c i r c u l a t i o n v e l o c i t y a t t h e surface, US, r i v e r water and s a l t water, i.e., i n t h e t o the averaged, c ross - sec t i ona l ne t r i v e r absence of o t h e r in f luences, t h e lower r u n o f f f l o w v e l o c i t y , Uf. Th is c l a s s i f i - dens i t y r i v e r water w i l l f l o w as a d i s - c a t i o n scheme d i s t i n g u i s h e s seven types of t i n c t l ayer , separated by a d i s c e r n i b l e es tua r i es : i n t e r f a c e , ove r s a l t water. The p r i n c i p a l fac to rs i n f l u e n c i n g t h i s r e l a t i o n s h i p Well-mixed es tuar ies ; i nc lude f r esh water f low, t i d a l cu r ren t s and r e s u l t i n g turbu lence, t he phys i ca l (11 t ype la , where t he n e t f l o w i s sea- dimensions o f t h e estuary, t h e Cor io l i s ward a t a l l depths and upstream e f fec t . As a r e s u l t , f o u r types o f es tu - t r a n s f e r of seawater i s c o n t r o l l e d by a r i e s have been descr ibed around these d i f f u s i o n and sa l i n i t y s t r a t i f i c a t i o n va r i a t i ons : 1) s a l t wedge, which i s i s s l i g h t , and r i v e r - f l o w dominated; 2 ) two- layer f l o w (2 ) t ype l b , t h e v a r i a t i o n o f t ype 1 w i t h entrainment, which i s r i ve r - f l ow where t h e r e i s apprec iab le s t r a t i f i - dominated as m o d i f i e d by t i d a l cu r ren ts ; c a t i o n ; 3) two-layer f l o w w i t h v e r t i c a l mixing, which i s a combined e f f e c t o f r i v e r f l o w P a r t i a l l y - m i x e d es tua r i es ; and t i d a l !n ix ing; and 4 ) v e r t i c a l l y homogeneous, where t i d a l cu r ren t s are t h e (3 ) t ype 2a, where n e t f l o w reverses a t dominant phys i ca l process a f f e c t i n g c i r c u - dep th and both advec t ion and d i f f u - l a t i o n and where t h e degree o f m ix ing may s i o n a r e impo r t an t determinants of va ry l a t e r a l l y . A number o f cases excep- t h e f l u x of s a l t wa te r upstream and

s t r a t i f i c a t i o n i s s l i g h t , and (4 ) t ype 2b, the v a r i a n t t o t ype 2 where

s t r a t i f i c a t i o n i s prominent;

F j o r d es tua r i es ;

( 5 ) t ype 3a, where advec t i on dominates by accoun t ing f o r over 99% o f t h e up- s t ream seawater t r a n s f e r w i t h 1 i t t l e s t r a t i f i c a t i o n , and

t h e m i x i ng ( 6 ) t y p e 3b, where t h e lower l a y e r i s deep t h a t t h e s a l i n i t y g r a d i e n t a assoc ia ted c i r c u l a t i o n a re e f f e c t i v l y su r face phenomenon; and,

10

Page 24: The ecology of estuarine channels of the Pacific Northwest coast: A

10

SALT WEDGE

FRESHWATER FLOW OVER DEEP,

1

0.1

SALT FLUX BY ADVECTION

a 0 1

M = Mississippi River 1 C = Columbia River

es tua ry I

LEGEND --

Y = Yaquina Bay a t mile 14

N = North River 7 u = upstream

J = James River es tua ry BC = Bay Center d = downstream (numbers ind ica te miles from r i v e r charqe periods W = Wil lapa River mouth) 1 = iow d i s -

charqe periods NA = Nahcotta Channel N M = narrows of Mersey

es tua ry NE = Nemh River

JF = S t r a i t of Juan de 1 Fuca I

S = S i l v e r Bay _]

Fig. 2.5. Es tua r ine c l a s s i f i c a t i o n diagram i 1 l u s t r a t i n g seven types of e s t u a r i n e c i r c u - l a t i o n ( c i r c l e d numbers, l e t t e r s ) from Hansen and Ra t t r ay (1966). Data po in t f o r Yaquina Bay i s from Cal laway (1971) and da ta f o r Willapa Harbor i s from CH2M-Hi1 1 (1981).

Page 25: The ecology of estuarine channels of the Pacific Northwest coast: A

Sal t-wedge estuary;

( 7 ) where the a r che t yp i ca l s t r a t i f i c a t i o n i s w e l l developed.

But as a r e s u l t 3 f extremes i n s t r a t i f i - c a t i o n i n the upper v s . lower reaches o f d n es tuary and i n r i v e r discharge, t h e es tuar ies can a c t u a l I y span severa l c l as- s i f i c a t i o n s , as i n d i c a t e d by t h e l i n e s connect i rly o r ex tend i ng the var ious sarnpl e po i t i t s i n Fig. 2.5. Using t h i s scheme, Harisen and R a t t r a y (1966) compared t h e Columbia R ive r e s t u a r y (drowned r i v e r v a l l e y ) w i t h t h e S t r a i t o f Juan de Fuca ( f j o r d ) . They i l l u s t r a t e d t h a t the Colum- b i a Z i ve r estuary a c t u a l l y s h i f t e d from a type l h t o a type 2b i n response t o de- creasirig r i v e r f l ow w h i l e t he S t r a i t o f Juari de Fuca f e l l i n t o a type 3a estuary . They a lso inc luded f o u r o t he r es tua r i es f o r coinparison (F i g . 2.5). CH2M-Hi1 1 (1931) a l s o i n d i c a t e d t h a t f i v e s i t e s i n W i l lapa Harbor ( a l s o inc luded i n F ig . 2.5) sar~ ip led du r i ng June f e l l w i t h i n o r between type 3a and 3b. C l a s s i f i c a t i o n s o f some o f t he l a r y e r es tua r i es have been assigned i t 1 Sec t ion 2.6.

The c o n f i g u r a t i o n o f t he mouth o f the estuary can have a marked e f f e c t on t h e dynarnics o f t i d a l c i r c u l a t i o n through t h e estuary. Goodwin e t a l . ' s (1970) t i d a l ar ia lys i s o f th ree Oregon coas ta1 es tua r i es i nd i ca ted t h a t t h e Inore c o n s t r i c t e d entrances t o A1 sea and S i l e t z Bays pro- duced "choking" o f t i d a l ampl i tude and t r u r l ca t i on o f t i d a l a m p l i f i c a t i o n a t t h e entrance t o t he es tua r y ~ h i c h was n o t ev iden t i n Yaquina Bay. T i da l cq~ r ren t s a l s o tended t o reach 9 igher maxima i n t h e co r \s t r i c ted , "choked" es tua r i es ( o v e r 2 m sec-1 i n Si l e t z Bay, 1 rn sec-' i n A1 sea Bay, and 0.6 rn s e c - I i n Yaquina Bay). Phase s h i f t s between t i d a l e l eva t i ons and t i d a l cu r ren t s o f 90" t o 100' and t h e temporal d i s t r i b u t i o n of t i d a l amp1 i f i c a - t i o n through t he t h r e e es tua r i es a l so i nd i ca ted the presence o f (p rogress ive ) r e f 1 ected o r resona t ing waves.

One diinensi ona1 , v e r t i c a l l y - i nte- g ra ted models o f c i r c u l a t i o n i n t he Fraser R ive r es tuary (Crookshank 1971; Ages 1979) have been u t i l i z e d t o document the i n t e r -

a c t i v e e f f e c t o f t i d e s and r i v e r d ischarge upon water su r face e l eva t i ons . They i 1 l u s t r a t e t h a t r i v e r d ischarge c o n t r i b - u tes p rog ress i ve l y lrlore t o t h e r i s e and f a l l o f water su r face e l e v a t i o n a t p o i n t s f u r t h e r up ( u p r i v e r ) t he es tuary and t h a t , as d ischarge increases, t h e p o i n t where t he d a i l y t i d a l f l u c t u a t i o n s ( r i s e and fa11 o f water) cease t o e x i s t moves down t he estuary. One o f the more i n t e r e s t i n g s imu la ted c h a r a c t e r i s t i c s o f t h a t es tua r y was a s i g n i f i c a n t t ime l a g between t h e u p r i v e r propagat ion o f t h e f l o o d and ebb t i d e s (e.g., ebb t i d e t a k i n g two hours t o move t h e same d is tance t h a t t h e f l o o d moved i n one hour).

Few s tud ies have compared o r c l a s s i - f i e d c i r c u l a t i o n among d i f f e r e n t c lasses o f es tuar ine channels o r w i t h i n channel systems. O f f i c e r (1976) p rov ides t he most d e t d i l e d and q u a n t i t a t i v e i n f o r m a t i o n t o date. While many o f t h e above schemes can be app l ied b road ly t o es tua r i ne channels, the re a re a nu~nber o f f a c t o r s , such as ~ i n d s , bas in (bottom) and channel bathy- inetry, and coas ta l storm surges, each o f which may become more impor tan t i n a f f e c t - i n g c i r c u l a t i o n p a t t e r n s on t h e smal l sca le . For exainple, Pe th i c k (1980) i n d i - cated t h a t sha l low water asyrninetric t i d e s a r e respons i bl e f o r ve l o c i t y asymnietry and d e n d r i t i c channel ~norphology i s responsi - b l e f o r t h e p o s i t i o n and s t r e n g t h o f v e l o c i t y surges w i t h i n t i d a l channels.

2.4 WATER MASS CHARACTER1 ST1 CS

2.4.1 Phys ica l

Phys ica l c h a r a c t e r i s t i c s o f t he wa te r masses occupying es tua r i ne channels exh i b - i t broad s p a t i a l and temporal v a r i a t i o n due t o the f l u x and rn ix ing o f d i f f e r e n t water masses over sho r t - t e rm ( i .e., t i d - a l ) , i n t e r v e d i a t e ( i .e., s torm event) , and long- term ( i .e., seasonal cyc les ) . Whi le some fea tu res o f any one water mass may be r e l a t i v e l y p red i c t ab l e , e.g., t i d a l v o l - ume, t h e s y n e r g i s t i c i n t e r a c t i o n s among r i v e r i n e , marine, and ambient es tua r i ne water masses and meteoro log i c a l events c r e d t e b a s i c a l l y s t ochas t i c (random) pa t t e rns o f water volume, v e l o c i t y , tern- pera tu re , sediment con ten t ( t u r b i d i t y ) ,

Page 26: The ecology of estuarine channels of the Pacific Northwest coast: A

and d e n s i t y over t ime. The v a r i a t i o n o f these parameters a l s o changss kvi th phys i - c a l l o c a t i o n i n t h e es tua r y i n response t o t h e p r o p o r t i o n a l r e p r e s e n t a t i o n o f the t h r e e bas i c water masses and bas i n c o n f i g - u r a t i o n .

T o t a l wa te r volume o f an es tua r y g e n e r a l l y depends upon r i v e r i n e r u n o f f and t i d a l i n f l u x . Runo f f volume depends upon p r e c i p i t a t i o n regimes and t he dra inage b a s i n o f the r i v e r s and t r i b u t a r i e s t o the estuary . Given t h e range i n s i z e o f dra.inage bas i n s c o n t r i b u t i n g t o P a c i f i c Northwest es tuar ies , from 6.68 x 105 km2 f o r the Columbia R i v e r t o l e s s than 20 km2 f o r Inany small es tua r i es a long t h e coas t , t h e range i n average annual d i scharge volume i s co r respond ing ly h igh ; from over 7,600 m3 sec-1 f o r t h e Columbia R i v e r t o l e s s t han 20 m3 sec-1 f o r smal l streams, r e s p e c t i v e l y . Shor t - te rm f l u c t u a t i o n s , however, may be very d r a ~ n a t i c, e s p e c i a l l y d u r i n g w i n t e r s torm events. For example, s h o r t d u r a t i o n w i n t e r s t o m f r e s h e t s i n t h e Columbia R i v e r can a c t u a l l y exceed t he annual sus ta ined summer f r e s h e t o f ove r 14,000 m3 sec-1 (Fox 1981). F lush ing tirnes, i n terms o f t he number o f t i d a l cyc les requi red t o rep1 ace t h e e s t u a r y ' s volume, vary as a f u n c t i o n o f r i v e r d i s - charge and coas ta l u p w e l l i n g (Duxbury 1979). Sum:ner f l u s h i n g t imes f o r seven coas ta l es tua r i es , summari zed by Johnson and Gonor (1982), va ry between 4 t o 5 t i d a l cyc les (Salmon and N e t a r t s R ive rs e s t u a r i e s ) compared t o 63-68 t i d a l c y c l e s (Coos Bay). Neal (1965) es t imated f l u s h - i n g t imes f o r t h e Columbia R i ve r es tua r y t o be between two and t e n t i d a l cyc les . Pearson and Gotaas (1951), C a l l away (1965), and S t e i n and Denison (1965) es t imated average f l u s h i n g t imes f o r Grays Harbor o f between 5 and 48 days ( 10 and 96 t i d a l c y c l e s ) depending upon r i v e r f l o w va lues. Using a water mass budget approach, Duxbury (1979) es t imated month ly replacement ra tes o f between 20% (June) and 16G% (January) day-1 and corresponding res idence tirnes of 5.0 and 0.60 days, r espec t i ve l y , f o r i n n e r (upper ) Grays Harbor estuary . F l ush i ng tirnes o f coas ta1 e s t u a r i e s i n t h e P a c i f i c Northwest, how- ever, may be h i g h l y v a r i a b l e depending upon nearshore ocean cond i t i ons . I n

Wi l l apa Bay a s t r ong no r t hwes te r l y wind du r i ng t h e summer can b r i n g upwe l led water i n t o t h e bay from t h e ocean, promot ing r a p i d f l u s h i n g . A t o t h e r t imes t h e Colum- b i a R i v e r plume nay e s s e n t i a l l y b l ock t h e tu rnover o f bay and ocean water :nasses, and complete f l u s h i n g a t such tirnes cou ld take more t han 20 days (U.S. Army Corps o f Engineers 1976). F l ush i ng t imes o f w i th in -channe l water masses have n o t been addressed, but , g i ven t h e f a c t t h a t most o f t h e t r a n s p o r t occurs through these channels, we m igh t sa fe l y assume t h a t they a r e somewhat s h o r t e r than those o f t h e es tua r y as a who1 e.

Temperature reg iines i n es tua r i ne channels r e f l e c t t h e i n f l u e n c e o f b o t h exogenous r i v e r i ne and mari ne water masses as w e l l as endogenous es tua r i ne wate r nasses t r anspo r t ed o f f subl i t t o r a l and 1 i t t o r a l f l a t s . M i x i ng o f these t h r e e wate r masses v i t h i n t h e channel h a b i t a t c rea tes a temperature s t r u c t u r e which v a r i e s i n a conse rva t i ve manner accord ing t o t h e r e l a t i v e c o n t r i b u t i o n o f each water Inass. Mar ine waters represen t t h e l e a s t v a r i a b l e temperature source. There i s o n l y a narrow seasonal range between 3°C and app rox i na te l y 17.0°C depending upon t h e presence and e x t e n t o f cods ta l upwe l l - i ng (FlcGary 1971; Oregon S ta te U n i v e r s i t y 1971; P r o c t o r e t a l . 1980) and t h e i n f l u - ence o f r i v e r i n e plumes from major sources such as t h e Columbid (McGary 1971), F raser (Waldichuck 1957; Tabata 1972), and Skagi t R i ve r s (Cannon 1978). R i v e r temperatures tend t o e x h i b i t a g r e a t e r temperature range over t ime, rang ing from 0°C t o over 25°C depending upon a i r temperature, p re - c i p i t a t i o n , s o l a r inc idence and snow/gla- c i a1 r u n o f f . The waters i n an e s t u a r y ' s channels a re de r i ved u l t i m a t e l y from exogenous sources which a re e n t r a i n e d over 1 i t t o r a l and upper subl i t t o r a l f l a t habi - t a t s du r i ng f l o o d t i d e cyc l es and r i v e r i n e f l ood events. Heat ing o r c a o l i n g o f t h e f l a t s p r i o r t o and du r i ng t h e p e r i o d o f i nunda t i on can r e s u l t i n r a p i d and extreme e l e v a t i o n o r depress ion o f ambient wa te r mass temperatures .

The r e s u l t o f t he dynamic m i x i ng o f these water masses w i t h i n t h e channels reduces t he temperature extremes b u t s t i 11

Page 27: The ecology of estuarine channels of the Pacific Northwest coast: A

a l lows cons i derab le shor t - te rm ( w i t h i n 2.4-2 .wed t i d a l c y c l e s ) v a r i a t i o n . Temperatures i n channel Qabi t a t s i n the Columbia R ive r Estuar ine m i x i ng o f the h i g h l y v a r i - es tuary r a n g e between 5°C and 25°C (Park able cor icent ra t ions o f d i s so l ved s a l t s and e t a l . 1972); 5°C and 20°C i n Grays Harbor composit ions o f d i s so l ved ma te r i a l charac- (Loehr and C o ' l l i a s 1981); and 4°C and 23°C t e r i s t i c o f r i v e r waters w i t h t h e r e l a - i n the Duwamish g i v e r estuary (Lenarz t i v e l y uni form chemical c o ~ n p o s i t i o n of 1969). T i d a l e f f e c t s caused temperatures coasta l sea water produces a c h a r a c t e r i s- i n the Salnlon R ive r estuary t o f l u c t ua te t i c (n ix ing se r i es between d i l u t e and from 7.3"C d u e t o t he presence of rnarine sa l i ne end-members ( ~ u r t o n and L i s s 1976). water on i ncom ing sp r i ng t i d e s t o 18.Z°C Composition o f r i v e r waters i s i n f l uenced on ou tgo i ng t i d e s \then r i v e r water was by p r e c i p i t a t i o n and rock and s o i l weath- p resen t ( Johnson and Gonor 1982). Fine- er ing. As a r e s u l t , cons iderab le va r i a - r e s o l u t i o n salnpl i n g of t ~ n p e r a t u r e and t i o n occurs as a r e s u l t o f t he geo log i ca l s a l i n i t y a t one s t a t i o n i n t he Salmon character o f the dra inage area and d i f f e r - R ive r e s t u a r y through a c01nplet.e t i d a l ences i n the p ropo r t i ona l c o n t r i b u t i o n o f c y c l e (Johnson and Gonor 1982) i l l u s t r a t e d ground water f l o w and sur face runof f t h d t t h e t empe ra tu re o f the water mass (L iv ings tone 1963; Gibbs 1970). I n gener- measured l a t e i n t h e ebb t i d e o r i g i n a t e d a l , calc ium, bicarbonate, and s i l i c a t e are i n d low s a l i n i t y water mass frorn a t l e a s t u s u a l l y the major d isso lved c o n s t i t u e n t s 3 la;) up t h e es tuary . i n r i v e r waters, w h i l e sodium, magnesium,

ch l o r i de and sul f a t e predominate i n sea water. I n t h a t sea water s a l t s comprise

Sedilnent i s t ranspor ted i n t o o r ap;~roxirnately 282 of the d isso lved m a t e r i - through t h e e s t u a r y i n suspension o r i n a1 a t 5°/,0 s a l i n i t y , t h e chemical compo- boundary l a y e r f l o w along the bottom as s i t i o n of seawater predominates e a r l y i n bed load. A c c o r d i n g l y , sirdilrient load and es tuar ine m ix ing processes (Bur ton and t h e sources of t he scdi~nent w i t h i n the L i s s 1976). es tuar ine c h a n n e l vary seasonal l y w i t h r j v e r d i s c h a r g e arid t i d a l f l u x (Boggs and This r e l a t i o n s h i p was b e s t i l l u s - Jones 1976; Sche idegyer and PhippS 1976). t r a t e d f o r the Columbia R i ve r es tua r y

(Park e t a1 . 1972) , where S i02 (250-0 u ?I), 02 (6.5-0.5 ml L -1 ) and w i n t e r NO3 (35-0

Suspended sediitlent i s ; composed p r i n - I ~ M ) could be a t t r i b u t e d t o r i v e r sources c i p a l l y o f sand and f i n e r p a r t i c l e s and r ~ h i l e PO4 (2.0-0 EM), t o t a l CO (2.0-1.0 va r ies w i t h w a t e r depth and ve l oc i t y . uM), a l k a l i n i t y (2.0-1.0 meq $-1 ) , and Suspended s e d i ~ l l e n t s i n the Columbia R ive r surmner N O 3 values (20-0 u M ) o r i g i n a t e d above the e s t u a r y c o n s i s t of p a r t i c l e s ~ 6 3 p r i n c i p a l l y from oceanic water masses. A In i n d i ame te r a n d t h e t o t a l suspended load recent review o f h i s t o r i c a l water qua1 i t y i n t o the estuary, which can vary three- datd i n the Columbia R i ve r es tua r y ( P a c i f - f o l d fro111 y e a r t o yea r was est imated t o i c Northwest River Basins Commission 1980) be 9.5 x 106 t o n s y r - I (Haushi ld e t a l . i nd i ca ted cons iderable seasonal v a r i a t i o n 1966). suspended sedi:nent concentrat ions i n n u t r i e n t concen t ra t ions a1 though n u t r i - can vary f r o m 13-0 t o 38.5 m L - ~ a t the en t pa t t e rns had changed l i t t l e over the 9 surface, 12.5 t o 69.6 mg L' w i t h i n t h e l a s t 20 years. Representat ive surnlner s a l t wedge and 12.5 t o 59.9 m~ L - l 1 m n u t r i e n t values were 0.002 rng L-1 PO4-P, above the b o t t o m , depending upon l o c a t i o n undetectab le n i t r a t e , and 4.0 mg L-1 i n the e s t u a r y , t i d a l stage, and cu r ren t S i02 i n r i v e r i n e p o r t i o n s of t h e es tuary v e l o c i t y ( u n i v e r s i t y of Washinqton Depart- and 0.070 mg L-1 p04-P, 0.20 mg L-1 NO3-N nlent of oceanography 1980). To ta l mean and 2.0 mg L-1 sio2 i n marine reg ions; t h e sediment f l u x i n drainage channels i n t h e da ta suggested n i t r a t e and phosphate lower e s t u a r y i n February 1980 ranged d e p l e t i o n occurs w i t h i n t h e es tua r y d u r i n g between 0.2 and 1.0 mg an-2 set-1 a t l a t e sulnlner a1 though coas ta l u p w e l l i n g may Chinook and Sand I s l a n d and between 0.1 increase n u t r i e n t l e v e l s (NOg, PO4) i n t h e and 0.7 mg tin-2 S ~ C - 1 a t f lwaco, lower es tuary d u r i n g t h e summer (Haer te l

14

Page 28: The ecology of estuarine channels of the Pacific Northwest coast: A

e t a l . 1969; Oregon S t a t e Univ. School of Oceanography 1980b). I n coinpari son, sp r i ng and surnlner values o f NO3-N and t o t a l PO4-P i n t h e Grays Harbor es tua r y ranged between 0.018 arid 0.055 mg L-I and 0.003 and 0.060 mg L-1, r e s p e c t i v e l y (Herman 1975).

A1 though i t i s p robab le t h a t n u t r i e n t i n p u t s i nto es t u a r i ne channel h a b i t a t s a re a r t i f i c i a l l y e l eva ted du r i ng pe r i ods o f h i g h r i v e r d ischarge due t o r u n o f f of n i t r o g e n and phosphorus from a g r i c u l t u r e and s i l v i c u l tu re -app l i e d f e r t i l i z e r s i n t h e watershed, no causal da ta i s a v a i l ab le f o r P a c i f i c Northwest e s t u a r i e s . C o l l i a s and L i n c o l n (1977), however, c a l c u l a t e d t h a t t h e average i n f l o w o f phosphate i n t o t h e main bas i n o f Puget Sourid was 1,223 m e t r i c tons and t h e c o n t r i b u t i o n o f phos- phate f rom a l l sewers was 12.6 r l l e t r i c tons, co~npared t o 18,400 i n e t r i c tons o f phosphate i n t h e main bas i n a t any giver1 t ime.

Sa1 i n i t y has t r a d i t i o n a l l y beer1 employed as an index o f m ix ing , a1 thougl i t h i s has been c r i t i c i z e d because t he d e f i n i t i o n o f sa l i n i t y depends upon t h e essen t i a1 constancy o f t h e re1 a t i ve p ro - p o r t i o n s o f t he d i s s o l v e d i ons i n sea wate r and t h e i n t r o d u c t i o n o f r i v e r water causes depar tures frorn t h e n e a r l y cons tan t i o n i c r a t i o s o f oceanic waters (Bu r t on and L i s s 1976). As i n d i c e s o f m ix ing , ch l o - r i n i ty, c h l o r o s i t y o r i s o t o p i c oxygen r a t i o (180/169) va lues have a l s o been suyges t e d as su i tab1 e paraineters (Boy1 e e t a l . 1974), b u t o f these o n l y c h l o r i n i t y has been r~easured f r e q u e n t l y i n es tua r i ne channels o f t h e P a c i f i c Northwest. Con- s i d e r i n g t h a t our p r ima ry concern i n t h i s syn thes is i s t h e b i o l o g i c a l s t r u c t u r e and dynamics o f e s t u a r i n e channel communities, t h e s p a t i a l and temporal d i s t r i b u t i o n o f s a l i n i t y s t r u c t u r e i n t h e es tua r y i s an app rop r i a t e i n d i c a t i o n o f t h e ma jo r chemi - c a l f a c t o r s s t r u c t u r i n g these com~nuni t i e s (Caspers 1967).

S a l i n e oceanic water i s t r anspo r t ed i n t o an es tua r y by b o t h advec t ion and d i f f u s i o n (Bowden 1967). Advected oceanic water masses a re general l y r e f e r r e d t o as t h e " sa l t wedge" a1 though d i f f u s i o n p ro -

cesses can cause t he i n t r u s i o n of s a l i n e water beyond t h e upstrearn 1 i ~ n i t o f t he s a l t wedge. I n such e s t u a r i e s as t h e Columbia R ive r , i t appears t h a t l o n g i t u d i - tial s a l t t r a n s p o r t v i a d i f f u s i o n may be s i g n i f i c a n t (Hansen 1965; Hughes 1968; Dyer 1973; Hughes and R a t t r a y 1980; Fox 1981). 5a l i n i t y g rad i en t s can be d i s t i n c t and sharp i n s i t u a t i o n s where f r e s h and s a l i n e water masses are s t r a t i f i e d , o r broad and v a r i a b l e where v e r t i c a l m i x i ng predoininates. Thus, t f ie degree o f bo th s a l i n i t y i n t r u s i o n and s t r a t i f i c a t i o n i s dependent upon es t ua r y inorphol ogy, r i v e r discharge, sen i - d i u rna l and s p r i ng-neap t i d a l cyc les, and shor t - term, s t o c h a s t i c events such as storms; i n terins o f es tua r y morphology, t he r a t e o f change o f cross- sec t i ona l area through t h e es tuary and t h e bed topography are impor tan t f a c t o r s de te rmin ing sa l i n i t y d i s t r i b u t i o n (Prandl e 1951).

A1 though most si lnul a t i o n models o f es tua r i ne c i r c u l a t i o n , such as those produced f o r t h e Fraser R i ve r es tua r y (Crookshank 1971; Ages and Wool l a r d 1976), a r e v e r t i c a l l y i n t e g r a t e d ( o r , a t bes t , i n t e g r a t e over two depth sec to r s ) , accu- r a t e d e s c r i p t i o n s o f c u r r e n t f l o w must take i n t o account t h e dynamic e f f e c t o f sa l i n i t y i n t r u s i o n upon cur ren ts . De- t a i l e d e m p i r i c a l s t u d i e s a re r equ i r ed before more complex models can be assem- b led. Such f i e l d documentat ion i n t h e F raser (Ages 1975) has i l l u s t r a t e d t h e r o l e of t h e s a l t wedye i n mod i fy ing t h e t i d a l e f f e c t upon su r f ace ou t f low. I n t h i s ins tance, t h e sa1 t wedge cont inues i t s upstrearr) rrlotion a f t e r f l o o d s lack, then r e t r e a t s down t h e es tuary bu t main- t a i n s i t s shape u n t i l i t i s f i n a l l y ca r - ri ed ou t as a homogeneous water mass. I n t he Columbia Ri ver estuary , sa l i n e water can be de tec ted as f a r as 42 km u p r i v e r under t h e combinat ion o f ex t reme ly l ow r i v e r d ischarge and neap f l o o d t i d e s , b u t o n l y as f a r as 10 km under h i g h r i v e r discharge, w i t h s t r a t i f i c a t i o n more p ro - nounced d u r i n g neap t i d a l c yc l es t han sp r i ng t i d a l c y c l e (Hansen 1965; Dyer 1973; McConnell e t a1 . 1979; Jay 1981; Fox 1981). It should be noted, however, t h a t the a r che t yp i ca l s a l t wedge i s n o t yener- a l l y found i n t h e Columbia R i v e r es tua r y

Page 29: The ecology of estuarine channels of the Pacific Northwest coast: A

(D. Jay, Univ. Wash., pers. comm.).

Loehr and C o l l i a s (1981) i n d i c a t e d t h a t t h e e x t e n t of s a l i n i t y i n t r u s i o t i i n Grays Harbor i n June and J u l y 1966 ( r i v e r f lows, 49.1 m3s-1 and 68.4 m3s-1, respec- t i v e l y ) v a r i e d accord ing t o t h e range o f t i d a l c y c l e (i.e., neap vs. sp r i ng ) . The ex ten t o f i n t r l r s i o n s h i f t e d f o u r m i l es over t h e t i d a l c y c l e du r i ng a neap and l e s s than a m i l e du r i ng a - sp r i ng t i d a l c yc l e . Simenstad and Egyers (1981) i n d i - ca ted t h a t sa l i n i t i e s i n channel h a b i t a t s between March and October 1980 were r e l a - t i v e l y u n i f o r m (we l l mixed) i n t h e c e n t r a l p o r t i o n o f t h e es tua r y (Cow Po in t , +loon I s l a n d ) , b u t t y p i c a l l y s t r a t i f i e d a t t he upper (Cosmo?ol i s ) and 1 ower (S tearn 's B l u f f ) extremes o f m i x i ng zone. Sal i n i - t i e s a t t h e l a t t e r two s i t e s ranged w i d e l y between 5 " / , , and 25"/,, bu t covered a narrower range hetween 25"/,, and 36O/,, a t t i le s i t e (Wes t p o r t ) near t h e mouth o f t h e es tuary .

S a l i n i t y ranges a t th ree channel s i t e s (RM 1.0, 2.2 and 3.7) i n Yaquina Bay betwwen 1960 and 1973 were 11.7°/00 (34.1- 22.4'/,,; ~i = 29.7"/,,) a t the lower end of the estuary , and 16.3"/,, (34.1- 17.8"/,,; S; = 28.2"/,,) and 24.1°/,, (33.5-9.4"/,,; S i = 27.3"/,,) f u r t h e r up t h e es tua r y (U .S . Army Corps o f Engineers 1975).

Levy and Levings (1978) documentation o f su r f ace s a l i n i t y a t a channel i n t he Squamish R i v e r es tuary a1 so i nd i ca ted the brodd seasonal f l u c t u a t i o n s which can e x i s t a t one s i t e . The maxima o f 26- 27"/,, occur red i n t he w i n t e r and l e s s t han 4O/,, susta ined du r i ng the s p r i n g and sumrner ~non ths . This seasonal e f f e c t was a l s o i l l u s t r a t e d f o r a b l i n d , d e n d r i t i c channel h a b i t a t i n t h e Fraser R i ve r estu- a r y ( K i s t r i t z and Yesaki 1979), where water f l o o d i n g the channel and :narsh was b rack i sh (3-8°/0,) o n l y du r i ng h i g h w i n t e r t i d e s , d e s p i t e the g rea te r t i d a l range d u r i n t h e summer (%5 m) than t h e w i n t e r (1.3 m3.

R i v e r waters a re t y p i c a l l y more a c i d i c than sea water b u t pH grad ien ts i n e s t u a r i n e channel s are a1 so a f f e c t e d

s i g n i f i c a n t l y by v a r i a t i o n s i n t he chemi - c a l composit ion o f t he m i x i ng water masses. pH values i n t h e Columbia R i v e r es tuary range from 5.8 t o 8.3 b u t u s u a l l y f a l l between 7.6 and 7.9 w i t h i n t h e m i x i ng zone; t r i b u t a r y channel waters i n t h e area of Youngs Bay have been repo r t ed t o be s l i g h t l y more a c i d i c than main channel water i n t he ad jacent es tua r y (Park e t a l . 1980; P a c i f i c Northwest R i ve r Basins Cofl~nission 1980). Herrman (1975) docu- mented spring-summer pH values between 6.94 and 7.25 i n the upper Grays i i a rhor estuary, w i t h t he su r face waters u s u d l l y 0.08 pH u n i t s l e s s than t h e more s a l i n e bottom waters. A 13-year wa te r qua1 i t y data base f o r Yaquina Bay (U.S. Army Corps of Engineers 1975), however, i l l u s t r a t e d q u i t e un i fo rm pH values a t t h r e e l o c a t i o n s through the es tuary ( a t r i v e r m i l e s 1.0, 2.2 and 3.7), w i t h ranges between 7.6 and 8.6 (pH ji = 3.1 a t a l l t h ree l o c a t i o n s ) .

D isso lved oxygen (DO), i n a d d i t i o n t o be ing the essen t i a1 e l ernent i n ae rob i c inetabolism by aqua t i c organisms, i s i n - volved i n t he b iochemica l breakdown o f organic ma t t e r i n marine environments. I n essence, aqua t i c o r g a n i s m a re c o n s t a n t l y competing f o r f r e e d i s so l ved oxygen and w i l l i n c u r phys i o l og i ca l l i m i t a t i o n s when d isso lved oxygen 1 eve1 s decrease be1 ow approxirnately 5 pprn; t h e t o l e rance t o depressed d i sso l ved oxygen i s h i g h l y v a r i a b l e among aqua t i c o rgan i sas, however, and many n a t u r a l l y d i ve rgen t s t r u c t u r e s o f marine water colurnn and ben th i c commu- n i t i e s a re due t o d i f f e r e n t d i s so l ved oxygen regimes.

Due t o [n i x ing o f ri v e r i n e and marine water masses and t h e i r t y p i c a l r a p i d f l u x through the h a b i t a t , e s t u a r i n e channels t y p i c a l l y do n o t exper ience d i s so l ved oxygen d e p l e t i o n except du r i ng s i t u a t i o n s o f seasonal minima i n water exchange o r due t o increased o rgan ic load ings by organic p o l l u t a n t s .

D isso lved oxygen i s considered t o be p r i n c i p a l ty regu la ted by: 1 ) t he r a t e o f a d d i t i o n o f b i o l o g i c a l oxygen demand (BOD); 2) t h e n e t r a t e o f a d d i t i o n o r removal o f oxygen by ben th ic oxygen demand, photosynthes is , and r e s p i r a t i o n ;

Page 30: The ecology of estuarine channels of the Pacific Northwest coast: A

3) t h e r a t e o f r eae ra t i on ; and 4 ) t h e r a t e o f removal o f BOD by sed i :nen ta t ion o r abso rp t i on (Dobbins 1954). Longi t u d i na l d i spe rs i on , t h e r a t e a t which a m a t e r i a l i s d i spersed by eddies and d i f f u s i o n , i s n o t u s u a l l y a s i g n i f i c a n t f a c t o r i n l a cus - t r i n e and s t r e a ~ n systems b u t i s though t t o be riiore impor tan t i n e s t u a r i n e channel s . Gunnerson (1966, 1967) and Thornann (1957) p rov i de evidence t h a t p a t t e r n s o f d i s - so lved oxygen concen t ra t i on i n es tua r i es may be h i g h l y pe r i od i c , p o t e n t i a l l y exh ib - i t i n g annual, 14-day, 24-hour, and 12-hour cyc l es w i t h t h e low f requency e f f e c t s be ing re1 a t i v e l y more i rnpor tant than those a t t r i b u t a b l e t o h igh- f requency phenomena. These cyc les could be reasonably c o r r e l a t - ed t o d a i l y and spr ing-neap t i d e v a r i a - t i o n s , s o l a r r a d i a t i o n i n t e n s i t y , and pho tosyn thes is .

Lena rz ' s (1969) d e t a i l e d a n a l y s i s o f water q u a l i t y data from t h e Duwamish R i ve r es tua r y i n d i c a t e d t h a t t h e 1 owes t concen- t r a t i o n o f d i s s o l v e d oxygen i n the channel p robab ly was assoc ia ted wit:? t h e upstream edge o f t h e s a l t wedge. St reamf low was pos i t i v e l y c o r r e l a t e d t o d i s s o l v e d oxygen concen t ra t i on and t h i s r e l a t i o n s h i p was a t t r i b u t e d t o increased t u rbu l ence ( d i f f u - s i o n ) , l ower r e t e n t i o n t ime, and g r e a t e r d i l u t i o n o f BOD w i t h increased s t reamf low. The t i m i n g o f a l g a l blooms, which o f t e n inc reased d i sso l ved oxygen concen t ra t i ons dramat i c a l l y, were a1 so determined t o be r e l a t e d t o s t rearnf low and t i d a l pr ism.

D isso lved oxygen l e v e l s i n e s t u a r i n e channel s o f t he Paci f i c Nor thwest are n a t u r a l l y h igh , be i ng a t o r near sa tu ra - t i o n , except i n a few h i g h l y developed e s t u a r i e s w i t h h i g h BOD l oad ings . The Columbi a R i v e r es tua r y r ep resen t s the P a c i f i c Northwest coas t ' s l a r g e s t system r e 1 a t i v e t o n a t u r a l d i s s o l v e d oxygen concen t ra t ion . Most e s t u a r i n e waters a re usual l y supersaturated (8-6 mg d u r i n g s p r i n g and summer inonths- and s l i g h t l y undersa tu ra ted (<6 mg L-I) d u r i n g f a l l and w i n t e r months; pho tosyn thes is i s cons id - ered t o ma in ta i n t h e s u p e r s a t u r a t i o n s t a t e w h i l e b iochemica l o x i d a t i o n and r e s p i ra - t i o n reduces the s a t u r a t i o n d u r i n g fa11 and w i n t e r (Park e t a l . 1972). Oxygen d e p l e t i o n (<4 mg L-1) o f t e n occurs i n

mar ine water niasses du r i ng surniner inonths when csas ta l u w e l l i n g causes low oxygen water masses t o i n t r u d e i n t o t h e es tuary .

Wind and waves appear t o be impo r t an t f ac to r s de te rmin ing d i s so l ved oxygen l e v e l s i n W i l l apa Bay, a l a rge , r e l a t i v e l y s h a l l ow n a t u r a l coas ta l es tuary . Flaxirna o f up to 15 mg L-1, occur i n t he w in te r , normal l e v e l s a r e 8 t o 11 mg C-1, and summer values range between 5 and 9 mg L Surniner va lues a re cornparati v e l y 1 ow because o f h i ghe r teinperatures and coas ta l upwel l i ng o f oxygen-depleted i n t e r n e d i a t e water (U.S. Army Corp Engineers 1976).

Grays Harbor, a coas ta l es tua r y w i t h h i s t o r i c a l l y h i ghe r BOD l o a d i n g than t he Columbia R i ve r estuary , has e x h i b i t e d d isso lved oxygen d e p l e t i o n d u r i n y low- f low surniner months, when a t i d a l water mass w i t h d i s so l ved oxygen l e v e l s as low as 2 my L-1 moved throubh t h e channels o f t he i nne r es tuary w i t h t i d a l a c t i o n (Loehr and C o l l i a s 1981). Sur face water d i s so l ved oxygen a t f i v e channel s i t e s i n Grays Haroor between March and October 1980 were t y p i c a l l y below s a t u r a t i o n (65% inin.) i n t h e upper es tuary and above s a t u r a t i o n i n t h e m idd le and lower reg ions o f t h e estuary (Simenstad and Egyers 1981).

Simi 1a r d i s s o l v e d oxyyen d e p l e t i o n has been repo r t ed f o r Coos Bay, another h i y h l y industrialized es tuary , where d i s- so lved oxyyen concen t ra t i on o t 1 t o 2 my L - ~ occur red d u r i n g l a t e summer and e a r l y f a l l when t he BOD o f o r yan i c wastes was added t o t h e water masses d l ready dep le t - ed by t h e i n f l u x o f oceanic water d u r i n y l ow r i v e r d ischarge ( P a c i f i c Nor thwest R i v e r Basins Commission 1971). The l o w e s t d i sso l ved oxygen concen t ra t ions have been documented w i t h i n t h e dredged channel o f t h e Isthmus Slough, which i s p o o r l y f l u shed , i s h e a v i l y i n d u s t r i a l i z e d , and i nc l udes l o g s to rage (Oregon S ta te Univer- s i t y 1977).

Lenarz ' s (1969) ana l ys i s o t e leven rnontns of h i yh resolution mon i t o r i ng o f water qua1 i t y i n t he channel o f t h e Duwam- i s h R i ve r es tua r y documented d i s s o l v e d oxyyen depress ion below 5 my L-1 d u r l n g

Page 31: The ecology of estuarine channels of the Pacific Northwest coast: A

severa l pe r iods i n t h e summer; t h e lowest values, 3 t o 4 el!, L-I, were assoc ia ted w i t h t h e upstream edge (bot tom) o f t h e s a l t wedye.

B i ocherni c a l oxygen demand has not been as w ide l y r epo r t ed as d isso lved oxy- gen. Five-day BOD l e v e l s i n Yaquina Bay averaged 1.2 mg L-1 tnrouyhout the es tu - a r y and a maxima o t 6.6 my L-1 was re - corded w ~ t h i n two m i l e s o f t he trlouth (U.S. Army Corps o t Enyineers 1975). Surriiner va lues i n t irays Harbor ranyed between 1.45 t o 5.13 my L - ~ (Herrman 1975).

2.5 SUBSTKATE CHARACTERISTICS

2.5.1 Phys ica l

Channel subs t ra tes r e f l e c t both h i s - t o r i c and ex tan t cond i t i ons . The yeo loy i - c d l h i s t o r y o f t he es tuary and i t s water- shed determines t h e c h a r a c t e r i s t i c s o f t h e m a t e r i a l tn rouyh which the channel 1s be iny c u t and o f t h e sediment load borne by r i v e r i n e cu r ren ts . Uynarrlic hydro loy i - c a l , t i d a l , and mete ro loy ica l forces, however, a f f e c t t h e coinplex e ros lon and deposi t i o n processes which are cons tan t l y s t r u c t u r i n y t h e channel. The reader i s r e f e r r e d t o E l l i o t t (1978a & b) and Kein- eck and Sinyh (1980) f o r rriore d e t a i l e d d iscuss ions o f sedimentat ion processes.

t r o s i o r i can occur throuyh cor ros ion (chemical ) , c o r r a s i o n (mechanical ) , and c a v i t a t i o n (Morisawa 1968), a ided by t he suck iny, l i f t i n y fo rces o f vo r tex a c t i o n (Matthes 1947). Under vo r tex a c t i o n loos- ened m a t e r i a l s are sucked upward and down- streasi w i t h tne vo r tex current . Local d i s c o n t i n u i t i e s o r separat ions o f f low oc- cu r where t he re i s a change i n cu r ren t d i - r e c t i o n and v e l o c i t y caused by obstac les o r impingeelent on channel wa l l s . The r e s u l t i s a nonunifor111 d i s t r i b u t i o n o f energy a t t h a t p o i n t , which produces a veer ing and ove r t u rn i ny o f water rnasses as s p i r a l f l ow. Water v e l o c i t y , s i ze o t obs t r uc t i ons , spacing and s i ze o f obsta- c l e s and t he sharpness o f channel bends d i c t a t e the amount o f separa t ion , t u rbu - lence, and vor tex ac t ion .

Besides yrowing deeper o r c u t t i n y new beds, channels a1 so widen by l a t e r a l co r ras ion and weather ing o f t h e w a l l s du r i ny h i yh water f l ow , which i nc l udes t i d a l i n f l u x e s . 80th channel c u t t i n g and widening a re inediated by t h e r e s i s t a n c e o f t h e bed ma te r i a l . The c r i t i c a l e ro - s ion v e l o c i t y o f unconsol i d a t e d ma te r i a1 va r ies as a f unc t i on o f t h e g r a i n s i ze . H ju l strom (1935) i n d i c a t e d v e l o c i t y de- creased from ~ 2 0 0 - 5 0 0 cm sec-1 ( ~ 4 - 1 U kno ts ) f o r p a r t i c l e s 1 pm d ia . t o ~ 2 0 - 5 0 cm sec-1 (Q0.4-1.0 kno t s ) f o r p a r t i c l e s between 100 pm and 1 mm, and increased t o 500 cm sec- I ( Q:O kno t s ) f o r p a r t i c l e s as la rge as 100 iilm d i a . As a r e s u l t , e ros ion of sand requ i r es lower v e l o c i t i e s than o f e i t h e r s i l t o r g rave l . Sternbery (1967) est imated t h a t t h e c r i t i c a l d ray v e l o c i t y r equ i r ed t o i n i t i a t e general sediment mot ion i n a Puget Sound channel was 2.2 cm sec-1 f o r sediment y r a i n s i zes between 0.3 t o 1.1 riim d i a .

P a r t i c l e s en t r a i ned and t r anspo r t ed by a water mass are depos i ted when t h e cu r ren t i s no longer s u f f i c i e n t t o c a r r y them e i t h e r as suspended p a r t i c l e s ( s e d i - ment load) o r as bottom t r a n s p o r t e d (bed load) p a r t i c l e s . Depos i t i on o f t h e sed i - ment load occurs w i t h l o s s o f competence caused by a dec l i ne i n g rad i en t , a reduc- t i o n i n v e l o c i t y o r a decrease i n volume. S e t t l i n y v e l o c i t i e s range t rom 0.1 cm sec- I ( 0 . ~ 0 2 kno t ) f o r p a r t i c l e s Q 20-30 Dm d ia . t o Q100-3UU cm sec-1 ( ~ 1 - 6 k n o t s ) fo r p a r t i c l e s 2-10 cm d i a . ( H j u l s t r o m 1935; Sundborg 1956). These re1 a t i o n s h i p s vary as a f u n c t i o n o t t h e c h a r a c t e r i s t i c s of t h e p a r t i c l e (e.y., s p e c i f i c g r a v i t y ) and water lrlass (e.y., s a l i n i t y ) .

Thus, t h e dynamic changes i n ve loc - i t y , d i r e c t i o n , sediment load and d e n s i t y o t water rnasses moving th rouyh e s t u a r i n e channels r e s u l t s i n s p a t i a l l y and tempor- a l l y v a r i a b l e sediment s t r u c t u r e th rouyh t he es tuary , and w i t h cons iderab le v a r i a - b i 1 i t y arnong es tua r i es . A p a r t i c u l a r l y prominent fea tu re t o most e s t u a r i e s i s a zone of minimum sediment p a r t i c l e s i z e which t y p i c a l l y occurs w i t h i n t h e "mix- i ny ," "entrapment ," " t u r b i d i t y maximum," o r " n u l l " zone where upstream bottom t i d - a l c u r r e n t s approx imate ly ba lance down-

Page 32: The ecology of estuarine channels of the Pacific Northwest coast: A

st ream r i v e r c u r r e r i t s ( A r t h u r and t i a l l 1979; L l oern 1979). Maxin1u111 s e t t l i n y o f suspended p a r t i c l e s o c c u r s w i t h i n t n i s zone d u r i n y s l a c k wa te r , b u t 111uch i s resuspended d u r i n y t l ood o r ebb c u r r e n t s . The rr l ix iny o f r i v e r i r l e arla sa i i n e water masses a l s o r e s u l t s i n t h e t l o c c u l a t i o n o t f i n e p a r t i c l e s , b o t h sed iment ( c l a y ) and o r y d n i c d e t r i t u s , and t h e s e aggre- y a t e s s e t t l e w i t h i n t h i s e n t r d p l ~ ~ e n t zone.

Hub l~e l 1 and Ci l enn (1973) docu~l lented t n a t t h e mean s i z e o f channe l sedi l l lent i n t h e Col urribia R i v e r e s t u a r y became p r o - y r e s s i v e l y f i n e r downstrearrl t l i r o u y h the f l u v i a l and t r a n s i t i o n a l r e g i o n s , o n l y t o becorne c o a r s e r i n t h e m a r i n e r e y i o n o f t h e e s t u a r y . Th is r e l a t i o n s h i p was v e r i - f i e d i n t h e rirore d e t a i l e d C R E D D P ~ s t u d i e s o f t h e Columbia K i v e r e s t u a r y . The s e d i - ment p a r t i c l e s i n t h e rlrai n channel were shown t o decrease i n modal s i z e fro111 500- 3UU 1,111 (1.01)-1.754) o f t Grays Uay t o 3UO- 175 1 rn (1.75- 2.5114) o f t Baker Uay (Roy e t a l . 1 9 7 9 ; U n i v e r s i t y o t Washinyton Ue- partrr lent o f Oceanoyrapny 1980) . V a r i a t i o n i n channel s e d i ~ n e n t s t r u c t u r e , however, i s w i d e l y apparen t and can be r e l a t e d t o the c u r r e n t speed and t h e e x t e n t o f cornmunica- t i o n w i t h r i v e r i n e o r t i d a l f l o w ( U n i v e r - s i t y o f Washinyton Uepar tment o f Ucean- ography 1980). Sed in~en ts i n channels w i t n open corr~municat ion w i t h t h e Colurribia K i v e r , one o f t h e e s t u a r y ' s r l la jor t r i b u - t a r i e s , o r t h e d e n s i t y - d r i v e n f l ow f rom t h e ocean, t e n d t o be c o a r s e r than s e d i - ments on ad jacen t sub1 i t t o r a l o r 1 i t t o r a l f l a t s . Where water f l o w i s r e s t r i c t e d t o o n l y one end o f t h e channel t h e sediment y r a i n s i z e i s usua l l y f i n e r t h a n on t h e a d j a c e n t f l a t s . Channel b a t h y m e t r j !nay a1 so a f f e c t t hese r e l a t i o n s h i p s , as f i n e - g r a i n e d s e d i n ~ e r ~ t s may a l s o be found i n deep segments o f l a r y e channe ls where t h e r e a r e l o w v e l o c i t y w a t e r areas below channel s i l l depths.

These r e 1 a t i o n s h i ps between sedirrlerlt s t r u c t u r e and chanr?el ~ n o r p h o f oyy have a l s o been i l 1 u s t r a t e d w i t h i n Coos Bay, where Hancock e t a l . (1980) il l u s t r a t e d t h a t

sed i~ l i en t y r a i n s i z e r e m a i n e d r e l a t i v e l y c o n s t a n t (250 v111) w i t n i n t h e Coos n a v i ya- t i o n chdnnel b u t was a n o r d e r o f ~ n a y n i - t u d e t i n e r (b2 ~111) i n Is thmus Slouyh, wh ich does n o t have s i g n i f i c a n t f r e s h wa te r c u r r e n t f l o w t h r o u g h t h e channel .

[ ) i f f e r e n t i a l d i s t r i b u t i o n o f s e d i - ment c o r i ~ p o s i t i o n i s a1 s o we1 1 ill u s t r a t e d i n Phipps and ~ c n e r n r e r ' s (1980) d a t a t o r t h e hot tor r~s drld s l o p e s o f t h e Grays t ia rbor n a v i y a t i o n chdnnel ( F i g . 2.6). Gravel and coarse p a r t i c l e s t r o n l r i v e r i n e sources tended t o be d i s t r i b u t e d i n t h e h i y h e s t and l owes t reaches o f t h e e s t u a r y , i n d i - c a t i n y b o t h r i v e r i n e ar id mar ine sources. S i l t s and c l a y s a c c u m u l a t e d w i t h i n t h e rn i x iny zone, p r o b a b l y l r lo re t h e r e s u l t o f f l o c c u l a t i o n p rocesses t h a n o f s e t t l i n y . F i n e s (predor i~ i n a n t l y s a n d ) con~posed rnost o f s e d i n ~ e n t s i n t h e l o w e r e s t u a r y and p robab ly rep resen ted s e t t 1 i ny f ronl b o t h r i v e r i n e and e s t u a r i n e w a t e r nlasses. The p r i n c i p a l d i t f e r e n c e b e t w e e n bo t tom and s l o p e h a b i t a t s was t h e l o n y i t u d i n a l p o s i - t i o n o f t h e peak o c c u r r e n c e o f y r a v e l , wh ich was lower i n t h e e s t u a r y i n t h e channel bo t tom s e d i m e n t s . Th is p r o b a b l y r e f l e c t e d t h e n i y h e r c u r r e n t v e l o c i t i e s a l o n y t h e bo t tom o t t h e c h a n n e l .

Sediments i n t h e m a i n s t e m channel o f Yaquina Bay t a l l i n t o t h r e e realnls o f d e p o s i t i o n (Kulm and B y r n e 1967). The I l ia r ine red lm, e x t e n d i n g 3 k~rl i n t o t i l e e s t u a r y f rom i t s m o u t h , c o n t a i n s w e l l - s o r t e d , subangu la r t o subrounded, f i n e t o medium sana. Tne m a r i n e - t l u v i a t i l e rea l r r~ , o c c u r r i n g b e t w e e n 3 k~rr dnd 1U ~ I I I

frorn t h e mouth o f t h e e s t u a r y , has s e d i - r r~ents w i t h a w ide r a n y e I n t e x t u r e , t r o m w e l l - t o p o o r l y - s o r t e d , a n y u l a r t o sub- rounded s i l t t o isediurn Sdnd. Tne t l u v i - a t i l e r e a l m i n t h e upper reaches o f t h e e s t u a r y t u r t h e r than 10 kln frorn t h e rnouttl i s c h a r a c t e r i z e d by s e d i r l ~ e n t s wh ich a r e p o o r l y s o r t e d , a n y u l a r t o subdnyu l a r y r a i n s 9 f S i l t t o c o d r s e sand. L r a i n s i z e i n t h e l ower 10 kt11 o t t h e e s t u a r y averayes 217 bm (150-291 urn) and 279 L l r n

i n t h e channel above 10 krn.

Tne o n l y c o m p r e h e n s i v e s tudy o f sub- 2 ~ ~ , ~ ~ b i ~ ~j~~~ ~ ~ t ~ ~ ~ y Oata Develop- s i d i a r y and b l i n d e s t u a r i n e channels i n

ment Program. t h e r e g i o n , t h a t o f t h e Westwater Research

Page 33: The ecology of estuarine channels of the Pacific Northwest coast: A

CHANNEL BOTTOM

C)

CHANNEL SLOPE p GRAVEL I

I , I

/

STATION LOCATION

( X wet wei n Grays Ha

d i s t r i b u t e d at seven

Page 34: The ecology of estuarine channels of the Pacific Northwest coast: A

Centre, U n i v e r s i t y o f B r i t i s h Columbia s t ud i es i n t h e t-raser R i ve r es tuary , de- s c r i bed sediments t rom t h e cen te r t rouyhs o f d e n d r i t i c channels a t Woodward and Barber I s l a n d s and Ladner Marsh as be ing sandy, w i t h t h e y r a i n s i z e rang ing be- tween 75 m and 192 In (Levy and Nor th- c o t e 1981). S n ~ i t h ' s (1980a) s t ud i es i n n o r t h e r n Puyet Sound i n d i c a t e d sediments f rom a d e n d r i t i c channel a lony t he d e l t a o f t he Nor th Fork Skag i t K i v e r were corn- posed p redominan t l y o f sand (81.13% by we i yh t ) and s i l t ( l k1 .322 )~ w i t h medn y r a i n s i z e o f 97.4 urn (3.36 @ ). Sedi- ments froin t h e bank (t 1.0 m e l e v a t i o n MLLW) o f a p r i n c i p a l t i d a l channel away f r o ~ r l t h e d e l t a were coarser (229.2 urn C2.13 $1) and sand ie r (89.88%)) and had a y r e a t e r sand t o mud r a t i o (8.88) t han d i d t h e sample f rom t h e d e n d r i t i c channel on t h e face o f t h e d e l t a (3.36).

Bed l oad t r a n s p o r t o f sediment has n o t been w e l l documented except i n the Columbia K i v e r es tuary where, a1 though t h e r e i s cons i de rab le annual v a r i a t i o n (Jay and Good 1977), t h e d i r e c t i o n o f t r a n s p o r t has been i d e n t i f i e d by t h e o r i e n t a t i o n o f bedforms ( U n i v e r s i t y o f Wasninyton Department o f Uceanoyraphy 1980). These s t ud i es have i n d i c a t e d t h a t t h e r e i s ne t downstream t r a n s p o r t i n most channels above Tonyue Po in t , below which bed l oad t r a n s p o r t reverses d i r e c t i o n i n response t o t i d a l f l ow. The m i x i ng r e y i o n o f t h e es tuary r ep resen t s d t r d n s i t i o n zone f o r bed load w i t h i n t h e channel and has ext remely compl ex bedform pa t t e rns . Tagged sediments re leased a t t h e mouth o f t h e es tuary d u r i n y t h e 1980 summer low- f l o w p e r i o d i n d i c a t e d a y r e a t e r ( l o n g i t u d - i n a l d i s t ance ) t r a n s p o r t o u t o t t h e es tu - a r y du r i ny low t i d a l ranye than i n t o t h e es tuary d u r i n y h i gh t i d a l ranye.

2.5.2 Chemical

Es tua r i ne sediment chemis t ry can oe cha rac te r i zed by t h e m i n e r a l o g i c a l and cherni ca I composi t ion o f t h e sediment par- t i c l e s and assoc ia ted i n t e r s t i t i a l d e t r i - t u s which, i n yenera l , can be r e l a t e d t o t h e y r a i n s i z e s t r u c t u r e (Bur ton and L i s s 1976). M ine ra l og i ca l composi t i o n o f es tu - a r i n e channel sedirnents i s q u i t e v a r i a b l e

due t o t h e d i f f e r e n t phys iograph ic prov- inces (e.g., Co1 ulnbia K i ve r Basin, Oreyon Coast Range, Olympic Mountains, Cascade Mountains) c o n t r i b u t i n g sediments t o Pac- i f i c Northwest es tua r i es . For example, i n t h e Colu~nbia K i ve r , qua r t z , f e l d s p a r and vo l can i c m ine ra l s a re t h e dominant c o n s t i t u e n t s i n sand p a r t i c l e s ; qua r t z , fe ldspar and mica comprise t h e ma jo r min- e r a l s i n s i l t ; and nrontmori 11 i n i t e , c h l o r - i t e , and k a o l i n i t e a re t he p r i n c i p a l corn- ponents o f c l a y ( F o r s t e r 1972). However, these c o n s t i t u e n t s chanye d r a m a t i c a l l y a long t h e course o f t h e r i v e r , such t h a t t h e c o n t r i b u t i o n o f quar tz , hornblende and auy i t e decrease downri ve r and volcan- i c rock frayinents and hypersthene become more prominent below t he Bonnev i l l e Dam (Whetten e t a l . 1969). Thus, hypersthene, c l i nopyroxene cauy i t e , and hornblende cha rac te r i ze t h e sediment rnineraloyy o f t h e es tuary (Venkatarathnam dnd McManus 1973; N i t t r o u e r 1978), a1 thouyh c l inopy- roxene a t t h e mouth o f t h e es tuary i s probably coas ta l - de r i ved sediment (Univer- s i t y o f Washington Department o f Oceanog- raphy 1980). C l i nopyroxene a1 so charac- t e r i zes Grays Harbor sediments (Scheideg- ger and Phipps 1976). Kulm and 8yrne (1967) recognized t h ree d i s t i n c t i v e s u i t e s o f heavy minera ls i n t he channel sediments o f Yaquina bay--marine, rnarine- f l u v i a t i l e , and f l u v i a t i l e . Marine sed i - ments, cha rac te r i zed Dy pyroxenes such as d iops ide , and nypersthene, extend approx- ima te l y 3 k111 i n t o the es tua r y ; t he marine- f l u v i a t e s u i t e occurs over approx i~na te ly 6 km and i s cha rac te r i zed bd micas, nlus- cov i t e , and b i o t i t e , w i t h reduced c o n t r i - b u t i o n s by metarnorphic m inera ls such as k y a n i t e , s t a u r o l i t e , and s i 1 l i rnan i te ; and t h e f l u v i a t i l e s u i t e , cha rac te r i zed by t h e micas, hemat i te , and l i m o n i t e , occurs i n t h e upper r e y i o n o f t he estuary .

Oryanic ma t t e r i n es tua r i ne channel sediments, p r i n c i p a l l y p a r t i c u l a t e oryan- i c ma t t e r (POM), o r i y i n a t e s f rom t h e e x c r e t i o n by animals and decomposit ion o f p l a n t s and an imals and o ryan ic p a r t i c l e s t r a n s p o r t e d i n t o t h e es tuary which have s e t t l e d i n a s s o c i a t i o n w i t h i n o r g a n i c ( m i n e r a l ) p a r t i c l e s . A v a r i e t y o f meas- u res have been u t i i i z e d t o quan t i f y o r - gan ic mat te r . Each eva lua tes a d i f f e r e n t

Page 35: The ecology of estuarine channels of the Pacific Northwest coast: A

spectrum of t h e t o t a l o r g a n i c o r i t s r e l a t i v e chemical o r o i o l o g i c a l r e a c t a b i l - i t y . These l n c l u d e , b u t d r e no t l l ~ l l i t e d t o : I ) v o l a t i l e s o l i d s ; 2 ) b iochemica l oxyyen denland; 3 ) c h e r n l c a l oxyyen demand; and, 4 ) t o t a l o r yan . r c carbon.

because s e t t l i n y o t oryar l i c p a r t i - c l e s , i n c l u d i n g t h o s e r e s u l t t n y from f l o c - c u l a t ~ o n processes, i n v o l v e s ~ a s ~ c d l ly t ne sdirle processes w h l c h determine i n o r - yan l c sed lnrentd t lon , t n e d l s t r l b u t l o n o t o r y a n i c ~ i ~ d t t e r t l l r o u g h an es tuary i s usud l ly c l o s e l y i n t e y r d t e d wi th sediment s l ze d l s t r l b u t l o n . f x c e p t l o n s t o t n i s yenerd l i z a t i o n o c c u r when p o i n t sources o t o r y d n i c m a t t e r ( e . y . , oryan l c po l l u t - d n t s ) w l t n r n t ne e s t u a r y dolmnate l o c a l s c d l ~ e n t d t l ~ n p a r t 1 c l e s . Accord i ng 1 y , ~t~axintua o r y a n i c c o n t e n t o f estuarine chdnnel sediments 1 s u s u a l l y c o r r e l a t e d w l t t i t h e c l l s t r i b u t i u n o f t i n e sediment p d r t l c l c s assoc l a t e d wl t h the m lx lny zone o t t t ie es tud ry , w i t h v d r i a t i o n due t o ( hdnr i r l bdthynretry , 1111 5 correlation i s B r s t I 1 l u s t r a t e d by t h e d l s t r l b u t l o n o t s r d l l l ~ r n t o ryar l i c ~ n a t t e r t n rouyh the ~ n a i n - s t e ~ n channel o t G r a y s Harbor (F lgs . 2.1 dnd L . k $ ) . I n y e n e r a 1 , pedk concen t ra t i ons o f setfltlrent o r g a n i c s o c c u r I n the i n n e r t larbor dnd c e n t r a l m ~ x i n y zone p o r t i o n o f t l t ta es tud ry , p a r t i c v l d r l y i n a s s o c i a t i o n w i t t l s i l t drld c l d y t r a c t i o n s (see F i g . 2 . Hecause tnu t r l dnne l slopes and bdnks trave lower ( ~ n t e ~ r a t e d ) water v e l o c - l t 1c2s t h i n do t h e chdnnel bottonis, t i n e o rgdn i c p a r t i c l e s n a v e a lonyer pe r i od o t tlti~e clur lng wh ich t o s c r t l e there. As a r e s u l t , t h e channe l bank and s lope h a b i - t . d t 5 O t GrdJs HdTDOr t ~ ~ l ~ d l 11 1 u s t r d t - ed h i g h e r l e v e l s o f o r r a n i c s which s t a r t e d Occu r r l ny f u r t h e r u p the es tuary ( i n l a n d ) than d i d t nose o f t h e cnanne l bottonrs.

! - o r colr tpar ison, d redge sanlples o t r s t u a r l n e channel sea i rnen ts I n the Cnetco K i v e r , Coos @ay, L o q u i l i e Bay, Koyue K i v e r , Siuslaw say, Umuqua gay, and ' r 'aqu~nd Bay e s t u a r r e s nave Rad t o t a l v o i d t i l e s o l ~ d s v a l u e s rang iny between 1 .t33-4.1)4%+ 0.38-8.7 7 X , 0.44-0.50%, 1.19- 1.34%, O.Zb- 0.61%, 0.91-3.272, and 0.49- tf.78x, r e s y e c t i v e t y (Percy e t 51. 1974).

E s t u a r i e s niay a c t as yeocnemical t r a p s f o r d i s s o l v e d i r r a t e r i a l t h rouyh f l o c - c u l a t i o n and sed imen ta ion processes. T h i s r e s u l t s i n a n e t t r a n s t e r o f t r a c e e le - ments and o r y a n i c m a t t e r t o sediments (and b e n t h i c o r g a n i sins), p a r t i c u l a r l y i n anox i c h a b i t a t s where t h e p t i ys i co-chemi- c a l c o n d i t i o n s (e . y . , r edox p o t e n t i a l ) a re conduc i ve t o t h e f i x i n g o f t r a c e e le- ments i n e s t u a r i n e sed iments (Bu r ton and L i s s 1976). I n g e n e r a l , N i , Co, C r , V, Ha, Sr , Pb, Ln and Y c o n c e n t r a t i o n s a re s i m i l a r i n 5 0 t h drroxic and o x i d i z i n g sedi- rlrents b u t irln, Cu, Se, Zr and Mo, alony w i th t h e m a j o r e lemen ts o f phosphorus, CdrbOn, and s u l f u r , a r e co lnpat ive ly en- r i c h e d i n anox i c sedir i lents. AM Test , Inc, (1981) r e p o r t e d Cu i n sedilr lent e l u t r i a t e front (;rays Hdrbor as h i g h as 1.2 my L-1; z i n c as n i b h as 1.85 "19 L-1; and Pt, as h i y h as 0.12 my L-1. Organ ic p o l l u t a n t s , i n c l u d i nt, g e t r o l cum hydrocarbons, pes t i - c i d e s , PCBs ( p o l y c h l o r i n a t e d b ipheno ls ) , and pu 1 pnri 1 1 contaari n d n t s , a1 so tended t o be more c o n c e n t r a t e d i n t h e f i n e r sedi- nrents a d j a c e n t t o t h e channe l . Ove ra l l , pe t ro leum hyd roca rbon c o n c e n t r a t i o n s as h i g h as ti mg L-1, PCB's as h i y h as 8.4 ppb, and p e s t i c i d e s ( p r i m a r i l y a l d r i n and BHC corrtyounds) as h i g h as 4.3 ppb oc- c u r r e d i n t h e e l u t r i a t e s trorlr channel and a d j a c e n t sed iments i n t h e i n d u s t r i a l i z e d r e y i o n s o f t h e e s t u a r y .

S a l i n i t i e s o f i n t e r s t i t i a l water i n t he t o p 6 cln o f t t l e channe l sediment i n t he t ' r ase r K i v e r e s t u a r y were descr ibed by Chapnlan (1981) as h a v i n g a d e f i n i t e y r a d i e r i t s t r u c t u r e , g a r t i c u l a r l y i n t n e nresoha l ine r e g i o n o f t h e e s t u a r y , and t h a t t h e rllayni t u d e o f t h e g r a d i e n t s changed s e a s o n a l l y . Maxi~l~uir i s a l i n i t y g raaa t i on w i t h i n t h e sedinrent 1 aye rs was ooserved t o c o i n c i d e w i t h t h e s p r i n y f r e s h e t . This suyges ts t h a t sedilr lent chemi s t r y and i n - fauna coln~iruni ty s t r u c t u r e rnay 5e i n f l i i -

enced by t h i s y r a d i e n t s t r u c t u r e over annual t i m e s c a l e s , a l t h o u y h t h i s has n o t been i n v e s t i g a t e d .

Page 36: The ecology of estuarine channels of the Pacific Northwest coast: A

CHANNEL BOTTOM

$ 2 0 1 CHANNEL SLOPE

O SOUTH BUOY WHITCOMB CROSSOVER MOON COW POINT COSMOPOLIS JETTY 13 FLATS CHANNEL ISLANO

F ig. 2.7 . V o l a t i l e s o l i d s (% of t o t a l dry weight) i n sed iments a t seven channel bottom and slope loca t i ons i n Grays Harbor.

Page 37: The ecology of estuarine channels of the Pacific Northwest coast: A

7 - 6 - 8, 5 - 1 \

4 - I

3 - I

2 - I , ,_ CHANNEL /O- - -0 SLOPEIBANK

1 - o---o---od' \ /

0 - MID-CHANNEL

SLOPEiBANK

MID-CHANNEL

z 2 -

a MIDCHANNEL

a~ - SLOPEIBANK u fK 0 0

Fig. 2.8. D i s t r i b u t i o n of organic matter ( v o l a t i l e ygen demand, and t o t a l organic carbon) i n sediments bottom and slope/bank 1 ocations i n Grays Harbor.

24

so l i ds , chemical ox- a t fourteen channel

Page 38: The ecology of estuarine channels of the Pacific Northwest coast: A

2.6 ITEMILATIUN AND CLASSIFICATION dF c l ass i f i e d dccord i ny t o t h e i r dorni nan t ESTlJARINE CHANNEL HABITATS IN channel nabi t a t c h a r a c t e r i s t i c s . Tab1 e REGION 2.1 l i s t s t h e e s t u a r i e s , t h e i r ex ten t ,

type, morptIology , slope, and s u b s t r a t e A t o t a l o f 116 e s t u a r i e s i n t he Pa- c h a r a c t e r i s t i c s f o r those where such

c i f i c Northwest have been i d e n t i t i e d and i n f o rma t i on i s known.

Page 39: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 2.1. Locations, characteristics, and classification of principal estuarine channel habitats in the Pa- c i f i c fiorthwest. See text a t end of t a b l e for further explanation of classification categories. Data sources included USGS (1978, '1980); Uilliams et a l . (1975); Smith e t a l . (1977); U.S. Army Corps of Engineers (1976); Proctor e t a l . (1980)); and Johnson and Gonor (1982); British Columbia data for 1981 only (Environment Canada 1982) .

Tota l kverage Annuat € G e n t

Drainage Annual M x i n u E s t u a r i n e Area Ui s r h a r Area Estuary Channel Bar@ (kd) Estuary Wdterfheds Type1 lbrpholo& slope3 s u b s t r a t e 4

( C a l r f o r n i a )

Eel River Eel R i v e r 8 ,9M 7,322 21,776 S a l t R ive r - -

Humboldt 8ay Elk R i v e r - J a c o ~ e Creek - -

62 OR Fresnwater Creek - - - Salmn Creek - -

Mad K i v e r Ebd R i v e r 1,256 1,336 2.290

L i t t l e R ive r L i t t l e K i v e r

Redwood Creek

Klamath R ive r

Smith H i v e r

1'2 Kedwood Creek 01

Klamath R ive r

Smith H i v e r

(Oregon)

Winchuck Hi ver W i nchuck Hi v e r

Chetco Bay Chetco K i v e r

P i s t o l R i v e r

Royue R i v e r

Elk River

Sixes K i v e r

C o j u i l l e Bay

Coos Bay

P i s t o l R i v e r

Rogue R i v e r

Elk R i v e r

Sixes R i v e r

C o q u i l l e R ive r

Coos R iver lstnmus Slouyh South Slouyh

Umpqua H i ver

Siuslaw River

Umpqua R i v e r

Siuslaw R iver

Page 40: The ecology of estuarine channels of the Pacific Northwest coast: A

> > .r .- P: r

L L Y L L m a , L

L m

a, 5 5 a, aJ

L Y Y L U W Y L m L.-.r > L

L > L w w m u > L L > W a ,

. r L w aJ . r w > L - a, LL.? a Y a, ~ a , $ F,:: w w w a > L a , > W L .- a , w .- > u > u a m Y > w .- .-

Y.7 > Y x r > L Y .- .r a, w Z . ~ > U U ~ E E > E ~ > > L w X L x c m z w 0 CL .-

v, Z" m a, .r U L 0 r v , E c .- ,:$ .-Y X m , r w Z Z P I X 4 C L K > C L - C E -

4-1 c c N C 3 U O , u n v, m - m n .r - m m a m m m .- C J O m o . - c - c m ~ m m m v , - S S X . - ~ G L P : ~ ~ Y . - + I

- m E U m 3 ~ c h . r L W C , @ ' - ~ - + I ~ c s c = a U m ~ D - 5 - m m ~ , c - - m - c 2 % - c 3 m 3 m m 3 L - m - L O x s w m w E m U m . r U m a, W.- a .-.-.-.- 01 m a 0 0 0 L a, ~ m 0 0 m S c . r 0 a, 0s.r 0 3 =- 4 W > W W wl Z Z L WJ I - X L Y L Z Z U 3 S 3 - 2 P Z m Z a Z 3 Z U W 3 U 3 1 1

L

L Y

w L a, h '?! k

L a , ? 'r > > 4 z w L m h 10 h Y 'C

.F m P: - h w o n m

'Y h 9 .r .r a , m ~ " 5 m E 10

m Y x m Y m n m . , - u m m o E U C , m

w . r 0 J, +.' C N c z u 2 - Q * m . r e 0 0 3 L 5 - C m w E x + o m - m 5 . 5 - U v , 0 - 7 - # A * c u - S U 8 - m - m . - a Y o m .- < z w l m 2 2 ; Z z z u m 22

3 -

Page 41: The ecology of estuarine channels of the Pacific Northwest coast: A

BB H? M G-S

Quinaul t R i v e r Qujnaul t River 1,124 2.520 l ,4M BB F H G

08 F? M G Oueets R3ver Queets R ~ v e r 1,153 3.690 3,bW Bl3 F M G

Ka la locn Creek Kala locn Creek BB n n ti- S

Hoh Rtver Hoh R i v e r 774 2,240 1.3W BB F M I;-S

(ioodtnan Creek Goodman Creek 82

Vui l l a y u t e R ~ v e r mi 1 l a y u t e R ive r 1,629 F M G- S

Ozet te R i v e r Oze t te H i v e r 229 45 B I F M ti

Mukkaw Bay Waatch R i v e r 33 35 a3 Sooes R i v e r 105 -

95

Sai 1 Rf ver Sai 1 R i v e r 14 - 20

Sekiu R ive r Sekiu R i v e r

Hoko K i v e r Hoko R i v e r

C l a l l a m Bay C l a l l a m R i v e r

Pysht K i v e r Pysht R i v e r

L y r e R i v e r L y r e R i v e r

Fresnwater Bay Efwna R i v e r

New Uunyeness l a y Uunqeness H iver

U i scovery Bay Snow Creek Dean Creek

P o r t Townsend Say Cnimacum Creek

P o r t Ludlow Ludlow Creek - F

Squami sh Harbor Snine Creek - - F

Thorndyke Bdy Tnorndyke Creek 31 F

Page 42: The ecology of estuarine channels of the Pacific Northwest coast: A

Taraoo Bay Tarboo Creek 32

Jackson Cove Marple Creek Spencer Creek

Qu i 1 cene Bay 0 i y Qui 1 cene R i v e r L i t t l e y u i l c e n e Riv.

Dosewall i p s R i v e r Dosewall i p s Hi ve r - Duckabush R iver Duckabush R i v e r 172

Hamma Harnma K i v e r Harnma K i ve r 219

L i 11 iwaup Bay L i l l i w a u p Creek - Annas Bay Skokonlish R i v e r 622

B i g M iss ion Creek R i g M iss ion Creek

Lynch Cove Union H i v e r 6 1

Tahuya R iver Tahuya R i v e r

Oewatto Bay Dewattor K i v e r 48

Anderson Cove Anderson Creek - S t a v i s Bay S t a v i s Creek

Seabeck Bay Seabeck Creek

L i t t l e Beef Harbor L i t t l e Beef Creek

B i g Beef Harbor B i g Beef Creek 36

Por t Gamble Gamble Creek M i l l e r Lake

Appl e t r e e Cove Appl e t r e e Creek

M i l l e r Bay Grovers Creek

L i b e r t y Bay Dogf i sh Creek

Dyes I n l e t C lear Creek Strawberry Creek - Chico Creek

S i n c l a i r I n l e t - Gors t Creek -

G-S

ti-s

G-S

ti-S

ti-s

ti- s

(continued)

Page 43: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 2.1. Concluded.

T o t a l Averaye Annual Ex ten t

Drainage Annual Maximum E s t u a r i n e Area D ischar e D ischar e Area Estuary Channel

(km2) Bank

Watersheds m 3 y ) (m3 e (kin2) Typel ~ o r p h o 1 o y . y ~ Sl ope3 s u b s t r a t e 4

O l a l l a Bay

Gig Harbor

Bur ley Lagoon

Case I n l e t

O l a l l a Creek

Crescent Creek

B u r l ey Creek

Rockey Creek Coul t e r Creek Sherwood Creek

Hammersley I n l e t

Oakland Bay

M i l 1 Creek

Go1 dsborough Creek

Skookum I n l e t

Oyster Bay

Skookum Creek

Kennedy Creek

E l d I n l e t

C a p i t o l Lake Deschutes K i v e r

Henderson I n 1 e t

Ni squal ly Reach

Woodard Creek

Ni squal l y R i v e r M c A l l i s t e r Creek

Chambers Bay

Comnencement Bay

Sh i l sho le Bay

Chambers Creek

Puya l lup H i v e r

Cedar K i v e r Lake Wasnington Sammamish Lake

t v e r e t t Harbor

Por t Susan

Skag i t Bay

Samish Bay

Be1 l i n y h d ~ l ~ bay

Drayton Harbor

Snohomi sh H i ve r

S t i l l a y u a m i s h H i v e r

S k a y i t K i v e r

Samish K i v e r

Nooksack K i v e r

Dakota Creek C a l i f o r n i a Creek

Page 44: The ecology of estuarine channels of the Pacific Northwest coast: A

L w

L > w L C w

I 2 0 1 C

L w :

'a .- C P C . r . Y > Y . -

c 2 a m a e m m w . w E - ' ] w o o r m m L O * V) E . . - r u u c '2 .- v,

.r m U ..- w m L W n C, a m - ' 2 4 , . ,

3 c 0 m r z s s z g s L U U

Page 45: The ecology of estuarine channels of the Pacific Northwest coast: A

CHAPTEK 3

PR IMAHY PRODUCTION IN ESTUARINE CHANNELS

The p roduc t i on o f p l a n t biomass and Stockner (1976) l i s t e d f i v e spec ies through the pho tosyn the t i c . f i x a t i o n o f O t diatoms - Me los i ra 111onil i f o r ~ n i s , M.

m

Carbon occurs a t seve ra l phy loyenet ic c f . n ~ l n m ~ l ~ i d e s , Nav icu la cancel l a t a , N. - l e v e l s i n e s t u a r i n e channel hab i ta ts . g rev i I l e i , and P leuros i nia z e s t u a r i i - as This p r imary p r o d u c t i o n i s yenerated by dominant i n t h e ----? cent ra det t a r e g i o n o f both a l g a e and t r u e f lower ing p l an t s o r the Squarnish K i ve r estuary ; N. ~ r e v i l l e i any iosyern~s. E s t u a r i n e a1 gae, however, was t he one species noted t o occu r p a r t i - are a taxonomical l y and ~no rpho loy i ca l l y c u l a r l y i n 1 i t t o r a l f l a t ( t i d a l ) channel d i v e r s e yroup o f f l o r a , i n c l ud i ny epiphy- hab i t a t s f rom January t o May. t i c s i n g l e - c e l l ed n l i ~ rophy toben thos and p e l a y i c phy top l ank ton ( i l , diatoms, 3.2 MACKOAL(;AE d i n o f l a g e l l a t e s ) , e p i ben th i c f i lamentous forms, and sess i l e ~ ~ r a c r o a l g a e ( i . e . , sea- As w i t h t n e rnicrophytobenthos, ses- weeds, k e l p s ) . E s t u a r i n e anyiosperms are s i l e macroalyae does n o t c h a r a c t e r i s t i c - u s u a l l y l i m i t e d t o seayrasses, p r i n c i p a l - a l l y occur i n e s t u a r i n e channels due t o l y Zos te ra spp., b u t can a lso inc lude 0 th - the usual water depths and uns tab le , f i n e - e r submerged dqua t i c p l a n t s such as pond- tex tu red subst ra tes. S i m i l a r l y , t h e no t -

Zannichel l i a ab le except ions would i nc l ude shal low Cerabophyl- channels w i t h low c u r r e n t v e l o c i t i e s ,

lum spp., and Elodea spp, - --- i .e., b l i n d d e n d r i t i c channels on 1 i t t o r - a1 f l a t s , and channel banks w i t h n a t u r a l

3.1 U E N T H I C MICKOFCUKA o r a r t i f i c i a l cobble t o so l i d rock sub- s t ra te . Macroalyae a r e a l s o found a t -

E s t u a r i n e m i c r o f l o r a (microscopic tached t o a r t i f i c i a l subs t ra tes such as p l a n t s ) t y p i c a l l y i n c l u d e s benth ic micro- p i 1 inys, buoys and bulkheads. a lyac such as d ia toms (Uaci 1 lar iophyceae) which occu r on o r i n t h e upper 1 cm of A1 though no t as d i v e r s e and r obus t bottom sediinents, a1 t h o u y h I i v i n g diatoms an assemblage as t h e marine seaweeds and can be found as deep as 18 cm as a r e s u l t kelps, t he re are a number o f e s t u a r i n e o f d i e 1 v e r t i c a l n l i y r a t i o n w i t h i n t h e macroalyae which a re w ide ly d i s t r i b u t e d sediment (McLusky 1981 ) . and h i g h l y p roduc t i ve w i t h i n t he narrow

s a l i n i t y and subs t ra te c o n d i t i o n s they A 1 though microphytobenthos o f ten con- a re adapted to. These gene ra l l y i n c l u d e

t r i b u t e t h e major p o r t i o n of the pr imary va r ious blue-green a lgae and spec ies o f p roduc t i on i n l i t t o r a l f l a t hab i t a t s of Enteromor ha spp, and Fucus sp.; i n t h e P a c i f i c Northwest e s t u a r i e s , t h e unstab le + Pact r c Northwest t he s p e c i f i c t axa a r e ben th ic env i rons o f e s t u a r i n e channel hab- E. c l a t h r a t a var, c r i n i t a , E. i n t e s t i n a l - i t a t s wou ld suyyest tha t ; l n l c ro f l o ra assm- -is, E. 1 inea and E. d i s t i c h u s . O t h e r s - blayes a r e r e l a t i v e l y 1 im i t ed i n these d ~ m i i i a n t r ~ h a l i n e mat- gae i n c l u d e h a b i t a t s . Notable e x c e p t i o n s might be i n Monostroma arc t icum, E. f lexuosa, E. m i n i - t h e case sf shal low b l i n d o r subs id ia ry ma, Ulva channels where in b o t t o m sediments are more s tab le ; unforunate ly , p r a c t i c a l l y no i n - fanna t ion e x i s t s r e l a t i v e t o species corn- p o s i t i o n or S t ruc tu re of m i c r o f l o r a i n es- eroy and Stockner (-indicated t h a t L. t u a r i n t channels o f t h i s region. Pomeroy r i p a r i u m and V. dichotoma a r e macroalgae -

32

Page 46: The ecology of estuarine channels of the Pacific Northwest coast: A

r e p r e s e n t a t i v e o f 1 i t t o r a l channel hab i - t a t s i n t he Squamisn K i v e r estuary .

3.3 ANGIOSPERMS

The p r i n c i p a l taxon o f angiosperms o r t r u e f l o w e r i n g p l a n t s common t o P a c i f i c Northwest e s t u a r i e s i s ee l yrass, Los te ra spp; t h i s i n c l udes t h e p r i n c i p a l i nd igen- ous suecies. Z. marina. as we1 1 as a r a r e r - - species, Z. n o l t i i ( = Z. arnericana). Whi le L . natii-rs i n on ly i n l i t t o r a l zones l ~ i t c h o c k and Cronuu is t 1973). Z. mar ina ' occurs i n sub1 i t t ' o r a l zones a d , as w i t h t h e ben th i c a lyae , may be found i n s h a l l ow, non-mai nstem channels. Sub- s t r a t e s t r u c t u r e , i n a d d i t i o n t o t i d a l e l e v a t i o n and c u r r e n t o r wave ac t i on , ap- pears t o be a p r i n c i p a l determinant of e e l yrass d i s t r i b u t i o n and abundance. A l - thouyh ee ly rass can be found growing i n subs t r a t es r any i ny trom s o f t mud t o grav- e l mixed w i t h coarse sand, i t s optimum subs t r a t e compos i t i on appears t o be muddy o r s i l t y sand w i t h median y r a i n d iameters o f -250 pm (2 4 ) and s o r t i n y below 500 pm (1.0 4 ) ( P h i l l i p s 1974). Eelgrass beds i n Grays Harbor p e r s i s t i n h a b i t a t s where f i n e sand (62-500 m) predominates (J.L. Smi t h e t a1 . 1976) . E e l grass occurrence i n Coos Bay was r e l a t e d t o t h e o rgan i c con ten t and t u rnove r r a t e o f sediments

i n es tua r i es , nannopl ank ton i c diatoms ap- pear t o be t h e ~r lost abundant forms d u r i n y t h e summer and f a l l pe r iods o f peak phyto- p lank ton p roduc t i on (Stockner and C l i f f 1979).

P roc to r e t a l . (1980) i d e n t i f i e d 34 taxa o f diatoms as c h a r a c t e r i s t i c o f es tu - a r i n e channel h a b i t a t s ; o t these, Chaeto- ceros spp., Melosi ra spy., and Skeletonema costatum were cons idered abundant, and Achnathes spp. and Lauder ia spp. were considered common cons t i t uen t s . Karentz and M c I n t i r e (1977) l i s t e d t h e 42 ntost abundant diatorn taxa i n Yaquina Bay, o f which C v l i n d r o u t v r x i s so.. Chaetoceros s u b t i 1 is; ~ e l o s ' i r " a sulcat'a,. Tha lass i os i r a dec ip iens , - C. s o c i a l i s , - C. d e b i l i s , Amphi- p r o r a paludosa, and S u r i n e l l a ovata corn- p r i sed more than f i v e percen t o f t h e t o t a l c e l l count. Anderson (1972) descr ibed d i - atoms o f t h e inshore r e y i o n o f t he Colum- b i a K i ve r plume as o r i g i n a t i n g i n p a r t f rom the estuary . Th is assemblaye was dominated by As te r i one l l a formosa, Melo- s i r a i s l a n d i c a , and Thalassionerna n i t z - sch io ides d u r i n u t he w i n t e r and bv a r i c h f l o r a o f p r e d o ~ n ~ n a n t l ~ As te r i one l la japon- i ca , Chaetoceros comyressus, C. rad icans, - Rhizoso len ia a l a t a , R. a l a t a -g rac i 11 ima, K. delicatul'a, and: f r m s s i m a du r i ny - t h e summer. The d ia tom assemblaye i n t h e

(Oregon S t a t e U n i v e r s i t y 1977). A Columbia K i v e r es tua r y i n A p r i l and May d e t a i l e d syn thes is o f i n f o rma t i on on e e l - 1980 was found t o be dominated by a r e l a - srass "ecosvstem" anpears i n P r o c t o r e t t i v e l y few f reshwate r species, i n c l u d i n y a l . (1980; Skc t i on 3.211.3, Vol . 2).

3.4 PHYTOPLANKTON

p r i m a r i l y As te r i one l l a formosa, Me los i r a i slandica, M. d i s t ans , Stephanodiscus han t zsch i i , i i d S. a s t r aca var . m inu tu l a IOreuon S ta te ~ n f i e r s i t y School oi' Ocean-

Al though perhaps n o t developed t o t h e ex ten t t h a t phy top lank ton popu la t i ons ? n rnore s t ab l e , l ess t u r b i d marine ( e . g . , ocean ic ) o r e s t u a r i n e (e.g., f j o r d ) hab i - t a t s are, phy top lank ton o f es tua r i ne chan- n e l s undoubtedly c o n s t i t u t e t h e p r i n c i p a l source o t a u t o t r o p h i c p roduc t i on i n these h a b i t a t s . Three f u n c t i o n a l s i z e groups can be sa id t o t y p i t y phytop lankton: 1) u l t r a p l a n k t o n , (2 pm, c o n s i s t i n g o f p r i n - c i p a l l y b a c t e r i a ; 2) nannopl ankton, 2-20 unl, c o n s i s t i n g o f sinall d iatoms and mic ro - f 1 ayel l a t e s ; and 3 ) microp lankton, 20-2UU put, c o n s i s t i n g o f l a r y e diatoms and d i no - f 1 aye1 1 ates. A1 thouyh d i n o f lage l l a t e s a re occas ional l y abundant (McMurray 1977)

ogra ihy 1980b). The o f un i que l y marine, es tuar ine , o r r i v e r i n e phytop lank- t o n o r a combinat ion o f these assemblages w i t h i n one channel l o c a t i o n i n an es tuary w i l l depend upon c i r c u l a t i o n t r a n s p o r t and n l i x iny o f water masses, which a r e h i g h l y v a r i a b l e over shor t - te rm ( t i d a l ) and long- term (seasonal) t ime sca les (see Sec t ion 2.3).

Dominant phy top lank ton taxa d u r i n y s p r i n g blooms i n Bu r ra rd I n l e t (Seymour R i ve r es tuary w i t h some i n f l u e n c e f rom Fraser R i v e r ) i n c l uded Skel etonema cos ta - tum, Cer tau l i n a b e r y o n i i , and Tha lass io - - s i r a spp. i n t h e o u t e r i n l e t ; S, costaturn - 7

-

Page 47: The ecology of estuarine channels of the Pacific Northwest coast: A

ana Coscinodiscus spp. i n t h e i n n e r i n l e t ; and S. costatum and Tha lass i os i r a spp. i n ~ n d i i i n and P o r t Moody Arms (Stockner and C l i f f 1979). Dominants d u r i n g f a l l blooms were somewhat d i f f e r e n t : C. be r yon i i i n t h e o u t e r i n l e t ; S. costati im, Thalassio- t h r i x sp,. and c.-beryonii i n t h e i n n e r - inlet; and C. costatum, n i t z s h c i a spp. and Exuv ie l l? sp. i n I n d i a n and Po r t Moody Arms.

3.5 ESTIMATES OF STANDING CROP AND PR IMAKY PRODUCTION RATES

Two aspects are g e n e r a l l y cons idered i n e v a l u a t i n g au to t r oyh i c p roduc t i on : 1 ) t h e d i s t r i b u t i o n o f t h e producer biomass ( s t and ing c rop) and, 2 ) t h e r a t e o f photo- syn thes is . Measurements o f phys ica l and chemical parameters i n f l u e n c i n g these two Oar iab les are a1 so documented simul tane- ous l y i n o rder t o determine t he env i ron- mental f a c t o r s c o n t r o l l i n y t he f i x a t i o n of p l a n t carbon. M i c r o f l o r a and phyto- p l ankton s tanding s tock a r e t y p i c a l 1y assessed by: 1 ) c h l o r o p h y l l a concen- t r a t i o n i . , y cm-3 o r my-m-3); 2) p a r t i c u l a t e carbon and n i t r o en (C/N); o r 3 ) g r a v i m e t r i c i . . , my L - 7 o r my m-3) analyses, Macroalyae and anyiosperm s tand ing stock i s commonly ex ressed i n B y r a v i m e t r i c terms (i.e., y m- ). Rates o f p r ima ry p roduc t ion o f m i c r o f l o r a and phy top lank ton are y e n e r a l l y est imated through e i t h e r 1 ) measurin labe led car - bon uptake ( e . mg C - hr-1) du r i ng i n c u b a t i o n a t r ep resen ta t i ve 1 i g h t 1 eve1 s o r , 2) measuring oxygen e v o l u t i o n o r up- take ove r an incuba t ion per iod , which y i e l d s b o t h p roduc t ion (i.e., mg C m-3 hr-1, mg C nl-2 h r - 1 ) and r e s p i r a t i o n r a t e i n f o rma t i on .

A1 though est imates o f mean pr imary p roduc t i on o f m ic ro hytobenthos as h i yh Y as 108 mg C IR-2 h r - have been documented f o r a 1 i t t o r a l f l a t h a b i t a t i n t h e Colum- b i a H i v e r estuary ( M c l n t i r e and Amspoker 1981), most gross l ~ r i m a r y p roduc t ion r a t e es t imates i n lower 1 i t t o r a l h a b i t a t s o f t h a t e s t u a r y and i n Grays Harbor (Thom, unpubl ished) average 0.5 my C m-2 hr-1. Given t h e increased water depths, lower temperatures and uns tab le ben th ic condi- t i o n s of es tua r i ne channel subs t ra tes , i t

i s l i k e l y t h a t p roduc t ion r a t e s i n these nab i t a t s are s i g n i f i c a n t l y lower and more v a r i a b l e than a re those o f l i t t o r a l f l a t s . Pomeroy and Stockner (1976) descr ibed p ro - d u c t i o n o f channel - t ype d ia tom asse~nbl ayes on t he Squamish R iver es tuary as r a n y i n between approx imate ly 0.5 and 1.0 g C m- !! day-1, a l though tnese were n o t ob ta ined f rom cnannel h a b i t a t s per se. --

Gross pr imary p roduc t i on o f es tua r - i n e macroal gae on I i t t o r a l f l a t s i n Grays Harbor was found t o ran e between approx i - mate ly 1.5-2.5 g C m - 2 h r - 1 f o r Entero- morpha c l a t h r a t a var. c r i n i t a (A-, 1.0-1.5 g h r - 1 f o r E. i n t e s t i n a l i s (Auyust ) , 0-0.3 y C m-2 hr'=l f o r E. l i n z a (June) and 0.5-1.0 y C m-2 h r - l for Fucus d i s t i c h u s (June, August) (Thom, unpub-

Pomeroy and Stockner (1976) i n - d i c a t e d t h a t s t r o n g l y euryhal i n e macroal- gae assemblages were gene ra l l y l e ss p ro - d u c t i v e (mean p roduc t ion o f 0.6 g C m-2 day-1) than weakly euryhal i n e assemblages (2.2 y C m-2 day-1) on t h e Squamish K i v e r es tuary de l t a . These p roduc t i on va lues a r e pr0baDly a l s o r ep resen ta t i ve o f es tu - a r i n e channel macroalgae which are d i s - t r i b u t e d i n h i g h s u b l i t t o r a l e l e v a t i o n s . P roduc t ion o f e p i p h y t i c macroal gae on Zos- t e r a blades has n o t been es t imated but - epiphy tes on Thalass ia have been est i rnat - ed t o equal 20% o f t h e es t imated average n e t p roduc t i on o f t h a t seagrass i n F l o r i d a (Jones 1968).

Rates o f pr imary p roduc t i on by e e l - grass va ry cons iderab ly over t h e temper- a t e d i s t r i b u t i o n (c i r cumpo la r ) o f Los te ra marina, i n p a r t a f u n c t i o n o f t h e wide range i n t u r i o n d e n s i t i e s w i t h i n ee ly rass beds (Proc to r e t a l . 1980) and i n s tand ing s tock , which va r ies between 6 and 5157 g ( d r y ) m-2 (McKoy and McMi l lan 1977). P roduc t i on est imates w i t h i n t h e P a c i f i c Northwest r e g i o n e x i s t o n l y f o r Puyet Sound and range between 0.16 and 1.9 y C m-2 h r - 1 (Phi 11 i p s 1969, 1972).

Phytop lankton biomass and p roduc t i on has been sys tema t i ca l l y measured i n es- t u a r i n e channel h a b i t a t s o f on l y Yaquina Bay (McMurray 1977; Johnson 1981), t h e Columbia R i ve r (Haer te l e t a l . 1969; Oregon S t a t e Uni v. School o f Oceanography

Page 48: The ecology of estuarine channels of the Pacific Northwest coast: A

138Ub), and t he Eraser K i ve r es tua r i es (Takatlastli e t a ] . 1973; Stockner and C l i f f 1979). McMurrdy (1977) found s tand iny s tock du r i ny the s p r i n g phy top lank ton blooril i n Yaquina Bay t o range betweer1 71.1 and 1.1 x 108 y ~ n - ~ and p roduc t ion t o range between 4.7 and 172 my C m-3 n r - 1 over t h e same per iod . Johnson's (1981) s t ud i es o f upper Yaquina Bay be- tween J u l y and November 1973 and 1974 doc- umented an average phytop I ankton s tand iny s tock o f 5-6 my m-3, w h i l e ri~aximum produc- t i o n o f 78 t o 104 ing c ma3 h r - 1 occurred i n J u l y and Auyust. Ch lo rophy l l a meas- ureinents o f phy top lank ton biomass-i n t he Col urrlbia R ive r es tuary between A p r i l and November 1980 va r i ed between approximate- l y 1 and 18 my m-3, w i t h t he h i yhes t va l - ues occu r r i ny froin May th rouyh Ju l y (Ore- yon S ta te Univ. , School of 0cea.nography 1 J80b). Higher biomass concen t ra t ions tended t o occur i n t h e upper, r i v e r i n e r e g i o n o f t h e estuary and lower va lues i n t h e downstream, marine reg ion . S p a t i a l v a r i a t i o n i n d i c a t e d rriore hornoyeneity above t he e s t u a r y ' s l r ~ i x i n y zone r e g i o n and extreme v a r i a t i o n i n o r near subs id- i a r y channels ( i .e. , Younys and Lewis and C la rk R i ve r s ) . Pr imary p roduc t ion meas- ured as carbon uptake peaked a t between 2 5 and 3 5 mg U in-3 h r - 1 d u r i n y Ju ly . A1 thouyh sirni 1 a r l y h i gh p roduc t ion would have a l s o beer7 expected i n May because o f t h e h i y h c h l o r o p h y l l a va lues a t t h a t t ime, t he e r u p t i o n o f Rt. S t . Helens and t h e r e s u l t i n g increased i no rgan i c suspend- ed sediment r a i sed t he l e v e l of l i y h t ex- t i n c t i o n of pny tosyn thes is (see Sec t ion 3 . 6 ) . Phytoplankton c e l l s l e s s than 10 1!1i1, which predominate near t h e mouth of t h e es tuary , and g rea te r than 33 prrl, which predominate i n t h e upper es tuary , accounted f o r most o f t h e product ion.

Stockner and C l i f f (1979) i n d i c a t e d t h a t c h l orophyl 1 a yenera l l y decreased from a maximum o f -approx imate ly 800 my m-2 i n t h e poo r l y f lushed, upper reach (Po r t Moody Arm) o f t h e es tuary t o l e ss than 150 my in-2 i n t he more seaward s t a t i o n s i n ou te r Bu r ra rd I n l e t . The f j o r d - t y p e es tua r i ne h a b i t a t s of i nne r Bu r ra rd I n l e t and I nd i an and Por t Moody Arms showed peak p r imary product i o n r a t e s o f between 4 and 6.6 y C m-2 day-1 d u r i n y

s p r i n g and autumn bloOinS, 1-2 y C l r 2

day-1 i n the sulllmer i n t e r i m , and essen- t i a l l y n e y l i r i b l e p r o d u c t i o n Detween November and Mdrch (S tockne r and C l i f f 1979).

A number o f a b i o t i c and b i o t i c fdc - t o r s con t r o l o r i n f 1 u e n c e t he [ ~ r o d u c t i o n , d i s t r i b u t i o n , and abundance o f au to t roph- i c a l ly-produced ca rDon , and the f a t e o f tne d i f f e r e n t s i i c ro - a n d macrophyt ic pro- ducers. 1 hese re1 a t i o n s h i p s are concept- u a l l y i l l u s t r a t e d i n F i y . 3.1. A11 pro- ducers u t i l i z e l i y h t a n d n u t r i e n t s as t h e bas i c i ng red ien t s i n assembliny o r yan i c n~o lecu les , i n i t i a l l y carbohydrates ( g l u - cose) which a re t r a n s f e r r e d and t r ans - formed i n t o amino a c i d s , p r o t e i n , and o t h e r complex nlo1 e c u l es essen t i a l f o r o rydn i sins' s u r v i v a l , growth, and repro - duc t ion . As t h e u n i v e r s a l element i n - vo lved i n these b i o l o g i c a l reac t ions , c a r - bon i s yeneral l y r e g a r d e d as t h e most ap- p r o p r i a t e cociunodity t o map energy f l o w th rouyh t h e ecosystem.

I n a d d i t i o n t o t n e pho tosyn the t i c i n y r e d i e n t s o f 1 i y h t a n d n u t r i e n t s , o t h e r phys ica l parameters s u c h as temperature and s a l i n i t y c o n t r o l t h e yross r a t e of b i o l o y i c a l r e a c t i o n s . Uther env i ronmen- t a l va r i ab l es such a s v e r t i c a l m i x i n y through t he wate r co'lumn, l i y h t a t t enu - a t i o n , subs t r a t e s t r u c t u r e and s t a b i 1 i t y , and shading r e g u l a t e t h e magnitude and ex ten t o t s o l a r r a d i a t i o n a v a i l a b l e t o producers and t hus u l t i r n a t e l y a f f e c t b o t h biomass and t h e r a t e of p roduc t i on by these oryanisms. Toye the r , these v a r i - ab l es a re c o n s i d e r e d d r i v i n g v a r i a b l e s ( i n y r e d i e n t s o r c o n d i t i o n s 1 i m i t i n g photo- s yn thes i s ) and c o n t r o l l i n y f a c t o r s ( a f - f e c t i n g t h e d i s t r i b u t i o n of producers, p r i rna r i l y through p h y s i c a l o r rnetaboi ic e f f e c t s ) .

R I n t i r e and h s p o k e r (1981) i n d i - ca ted t h a t s t r u c t u r a l p r o p e r t i e s (mean y r a i n s i ze , skewness, s o r t i n y c o e f t i - c i e n t ) of mudf lat Sed iments i n t h e Colum- b i a K i ve r estuary were h i g h l y c o r r e l a t e d

Page 49: The ecology of estuarine channels of the Pacific Northwest coast: A

Fig. 3.1. Primary production compartments and d r i v i n g var iab les and 1 i m i t i n g f a c t o r s i n f l uenc ing d i s t r i b u t i o n , standing crop, and r a t e o f product ion i n es tuar ine channel h a b i t a t s of the P a c i f i c Northwest.

w i th t h e b i o l o g i c a l var iables o f microaf- gal biomass and production. The lack o f any s i g n i f i c a n t co r re la t i ons w i t h 1 i y h t i n t e n s i t y and temperature suggests t h a t the microphytobenthos i s h i yh l y adapted t o achieve t h e i r maximum photosynthetic r a t e a t r e l a t i v e l y low l i g h t i n t e n s i t i e s and temperatures. Thus, substrate char- a c t e r i s t i c s may be the more c r i t i c a l fac- t o r i n f l uenc iny standing crop and gross product ion, by regu la t ing the a b i l i t y o f microalgae t o colonize and pe rs i s t i n hab i ta t . Welch e t al . (1972) found the ch lo rophy l l 5 concentrations o f periphy- ton on submerged a r t i f i c i a1 substrates i n

the Duwami sh R i ver estuary d i r e c t l y corre- 1 ated w i t h l i g h t i n t e n s i t y , i n c l u d i n g t h a t caused by increased water t u r b i d i t y r e s u l t i n g from a ra iny period. Tempera- t u r e was r e l a t i v e l y no t as important a fac tor . The s p a t i a l d i s t r i b u t i o n o f per iphyton, however, i n t he Uuwamish River estuary appeared t o be regulated by s a l i n i t y s t ruc ture .

Phytoplankton biomass d i s t r i b u t i o n and product ion are even more a f fec ted by hydro1 oy i ca l cond i t ions w i t h i n es tuar ine channel h a b i t a t s due t o the inf luences o f

Page 50: The ecology of estuarine channels of the Pacific Northwest coast: A

v e r t i c a l m i x i ng of t h e water column. ~ 1 - though i no rgan i c n u t r i e n t s , p a r t i c u l a r l y n i t r ogen , were found t o be p o t e n t i a l l y l i m i t i n g i n l a t e s p r i n g and Summer i n t h e Columbia R ive r es tuary , 1 i g h t a t t e n u a t i o n i n t h e water column was Cons ide rd t o be of pr imary importance i n c o n t r o l l i n y t h e amount o f photosynthes is p e r u n i t phyto- p lank ton biomass t h rouyhou t t h e year (Oregon S ta te U n i v e r s i t y Schoo l o f Ocean-

ography 1980b) - A s i m u l a t i o n model of phy top l ank ton p h o t o s ~ n t h e s i s and g row th i n t he o u t e r r e a c h e s of t h e F rase r R i v e r es- t u a r y i n d i c a t e d t h a t n i t r a t e l e v e l s were 1 i m i t i n g d u r i ng t h e summer, t h a t tempera- t u r e was l i m i t i n g p roduc t i on nea r t h e su r - face d u r i n g t h e w i n t e r and s p r i n g , and t h a t l i g h t was the P r i n c i p a l l i m i t i n g f a c - t o r a t t he sur face t h e r e s t o f the year , and a t depth t h r o u g h o u t t h e yea r .

Page 51: The ecology of estuarine channels of the Pacific Northwest coast: A

UETKITUS PKUCESSING I N ES'TUAKINE CHANNELS

I n a d d i t i o n t o the var ious pr imary producers cha rac te r i z i ng es tua r i ne channel h a b i t a t s , descr ibed i n Chdpter 3, t h e r o l e o f o r yan i c d e t r i t u s as p o t e n t i a l sources of t r o p h i c carbon t ranspor ted i n t o and made ava i 1 ab le w i t h i n the channel h a b i t a t must be considered. Recent evidence tlas i 1 l u s t r a t e d t h a t , d i r e c t l y throuyh d e t r i - t i v o r y o r i n d i r e c t l y through heterocrophic processes, d e t r i t u s may c o n s t i t u t e t he dominant pathway o f t r o p h i c carbon i n t o e s t u a r i n e food webs (Darnel1 1961; Odum 1970; Qasim and Sankaranarayanan 1972; Shubnikov 1977; C o r r e l l 1978). D e t r i t u s may a l s o have a va luable r o l e i n s t a b i l - i z i n y es tua r i ne systems by l e v e l i n g ou t t n e seasonal v a r i a t i o n s i n pr imary pro- d u c t i o n (McLusky 1981).

Darnel l (1967) has ae f ined o ryan ic d e t r i t u s as " a l l t ypes o f b i oyen i c mate- r i a l i n va r ious stages o f m i c rob i a l de- cornposi t i o n which represent p o t e n t i a l en- e ryy sources t o r consumer species." U e t r i - t u s inc ludes both p a r t i c u l a t e and "subpar- t i c u l a t e " mat ter . 8y t h e re fe rence t o m i c r o b i a l decomposit ion and u t i l i z a t i o n by consumers, t h i s d e f i n i t i o n appears t o be 1 i ~ n i t e d t o what i s commonly r e f e r r e d t o as f i n e p a r t i c u l a t e o ryan ic carbon (FPOC). Since much o f t h i s ma te r i a l has o r i y i n a t e d trom much l a r y e r organic par- t i c l e s which were inechanica l ly o r biochem- i c a l l y reduced t o FPUC, t h i s d e f i n i t i o n should be expanded t o i n c l ude any f r e e (non-at tached) p a r t i c l e s o f organic mat te r which no longer , if ever, produce carbon th rouyn photosynthesis. Inc luded i n t h i s expanded d e f i n i t i o n , the re fo re , a re b i o - genic p a r t i c l e s o f both p l a n t and animal o r i g i n as we1 1 as free-formed ( through chemical o r geo log ica l processes) p a r t i - c1 es, and i nc l ud i ny associated sorbed d i s - so lved substances an5 t h e r e s i d i n g mi- crobes ( C h r i s t i a n and Wetzel 1978).

4.1 DETRITUS SOURCES

Unfo r tuna te ly , t h e r e i s scant i n f o r - mat ion t o i n d i c a t e the sources o f d e t r i - t u s t h a t a re produced w i t h i n o r t r a n s p o r t - ed i n t o es tuar ine channel h a b i t a t s o f t h e region. Thus, on l y specu la t i ve i n f e rences can be made o f t h e r e l a t i v e c o n t r i b u t i o n o f p o t e n t i a l d e t r i t u s sources.

D e t r i t u s which i s usable by es tua r - i ne channel d e t r i t i v o r e s , cons idered t o be p r i m a r i l y FPOC, i s de r i ved from t h r e e o r i g i n s : 1) t h a t e n t e r i n g t h e es tuary a l - ready i n FPUC form, p r e v i o u s l y co l on i zed o r immediately co lon ized by microbes once i n t h e estuary ; 2 ) t h a t e n t e r i n y t he estu- ary as l a r y e r p a r t i c l e s (LPOC) and, through mechanical and m i c r o b i a l ac t i on , be iny reduced t o FPOC w i t h i n t h e es tuary ; and 3 ) t h a t formed by t h e c r e a t i o n o f o r - ganic p a r t i c l e s ( D a r n e l l ' s [ I 9671 subpar- t i c u l a t e d e t r i t u s ) throuyh t h e process o f f l o c c u l a t i o n o f d i s so l ved o r yan i c carbon which has been e i t h e r t r anspo r t ed i n t o o r generated w i t h i n t h e es tuary (F ig . 4.1). Both p a r t i c u l a t e and d i s so l ved carbon can en te r v i a r i v e r i n e o r marine i n f l o w s o r can be der i ved froin autochthonous produc- t i o n w i t h i n t he channel o r i n assoc ia ted es tua r i ne hab i t a t s .

Organic p a r t i c l e s depos i ted i n t o r i v - e r s can i nc l ude t r e e leaves and needles froin f o res ted watersheds as w e l l as t r e e brancnes and whole t r e e t r unks . D e t r i t a l p a r t i c l e s indigenous t o t h e r i v e r i n c l u d e phy top l ankton, o t he r ( pe r i phy ton ) a1 ya l c e l l s , zooplankton exuvi ae and feces, and f i s h and o the r f reshwate r animal feces. Marine d e t r i t u s inc ludes detached macroal- gae, phytop lankton c e l l s, zooplankton ex- uv iae and feces, and f i s h and o t h e r animal feces. I n a d d i t i o n t o s i m i l a r macrophyte and animal sources, d e t r i t u s p a r t i c l e s

Page 52: The ecology of estuarine channels of the Pacific Northwest coast: A

RlVERlNE SOURCES MARINE SOURCES

F i g . 4.1. P o t e n t i a l sources and pathways c o n t r i b u t i n g t o d e t r i t u s i n e s t u a r i n e channel h a b i t a t s of t he P a c i f i c Northwest.

produced un ique ly w i t h i n t he es tuary i n c l ude absc ised eel grass blades and r h i - zomes and e s t u a r i n e marsh p lan ts . I n a d d i t i o n t o t h e i n f l u x of s i n k i n g phyto- p lank ton c e l l s , mats o f ben th i c micro- f l o r a es tab l i shed on l i t t o r a f l a t s a re f l o a t e d o f f t h e f l a t s and i n t o channel h a b i t a t s du r i ng h i y h t i d e cyc les (C. O. M c I n t i r e and M. C. Anispoker, Oreyon S ta te Univ., unpubl. i n f o rma t i on ) .

D isso lved o ryan ic carbon (DOC) i n r i - vers i s cons idered t o be p r i m a r i ly a l loch- thonous, de r i ved from t he l each iny of t e r - r e s t r i a l 1 i t t e r , 1 i v i n g vegetat ion, and s o i l s (F isher and L ikens 1973; McDowell and F i s h e r 1976; Mu1 ho l l a n d 1981) ; howev- e r , t he c o n t r i b u t i o n of autochthonous f reshwater sources such as leachates from aqua t i c macrophytes and phytop lankton and exc re ta from aqua t i c animals has no t Deen f u l l y evaluated. Marine DUC, on t h e o t h e r hand, i s e s s e n t i a l l y autochthonous,

o r i y i n a t i n g from l each ing by zooplankton and from animal exc re ta ; some leachates from nearshore marine a1 yae and a1 y a l de- t r i t u s may a l s o c o n s t i t u t e an unknown por- t i o n o f mar ine DOC. The gene ra t i on o f DUC w i t h i n the es tuary , however, may surpass t h a t o f bo th r i v e r i n e and mar ine sources due t o acce le ra ted l each ing o f e x t r a c e l l u - l a r DOC from t h e ex tens i ve 1 i t t o r a l a lgae and sa l tmarsh rnacropnyte assemblayes common t o P a c i f i c Northwest es tua r i es .

Leaching o r e x c r e t i o n o f DOC has a l s o heen tound t o be app rec i ab l e i n phyto- p l ank ton and pe r i phy ton ( A n i t d e t a l . 1963; He l l ebus t 1965, 1374; Fogg 1366, 1977) and i n mar ine and e s t u a r i n e macro- phytes (Crag ie and McLachlan 1964; S i ebu r t n and Jensen 1969; S i e b u r t h 1969; Vel i m i rov 1980). Mann (1972) suyyested t h a t over 90% of t h e p r o d u c t i o n o f mar ine macroyhytes en te r s t h e coas ta l mar ine food web as d i s so l ved o rgan i c mat te r .

Page 53: The ecology of estuarine channels of the Pacific Northwest coast: A

S iebu r t h (1969) c a l c u l a t e d t h a t 30% o f t h e t o t d l carbon o r 401 o t t h e ne t carbon f i x e d d a i l y by the l i t t o r a l f u co i d , Fucus ves icu losus , i s exuded as DOC. Muc3i-X t h i s exuded DOC i s apparent ly comprised o f d i s s o l v e d carbohydrates, which Burney and S iebu r t h (1977) est imated t o account f o r 10 t o 20% o f t h e t o t a l DOC i n Narra- yanse t t Bay, Rhode I s 1 and.

Format ion o f FPOC from UUC through t h e f o rma t i on o f molecule masses c a l l e d aggregates has been pos tu l a t ed as a major source o f d e t r i t u s i n es tuar ies . I n - creased p a r t i c l e sedimentat ion r e s u l t s frorn f o rma t i on o f l a rge r , denser agyre- gates. Ayyreyates from suspensions o f c l a y and phytop l ankton p a r t i c l e s form i n t h e presence o f e l e c t r o l y t e s such as would be encountered i n es tua r i ne m i x i ng zones (Anv imelech e t a l . 1982). Al though t h e exac t mecnani s~n o f aggregate fo rmat ion from DOC i s no t we l l def ined, t h e a c t i o n o f bubbles r i s i n y t o t h e water sur face and bubble forrndt ion a t t h e a i r - sea i n t e r - face where oryanics tend t o De h i g h l y con- c e n t r a t e d (Harvey 1966; Goering and Wallen 1967 ; W i l l i a~ns 1967 ; N i sh i zawa 1971) ap- pear t o be impor tant processes i n c r e a t i n g t h e s u r f a c e requ i red f o r d p a r t i c l e nuc le- us (Ka~nsey 1962; i l ay lo r and Su tc l i f f e 1963; K i l e y 1963, 1970; S u t c l i t t e e t a l . 1963; K i l e y e t a l . 1964, 1965; Krone 1978; Wallace dnd Duce 1978). i3arber (1966) conc l Uded t h a t microoryani sms were r e q u i r e d i n aygregate to rmat ion bu t the c u r r e n t evidence suyyests t h a t b a c t e r i a , o r yan i c , o r i no rgan ic p a r t i c l e s can a l l a c t as t he nuc l e i f o r i n i t i a t i n g ayy reya t ion ,

Tne fo rmat ion o f d e t r i t a l ayyregates i s acce le ra ted i n es tua r i ne channel nab i - t a t s as a r e s u l t o f severa l phys ica l and ct lemical processes t h a t occur w i t h t he m i x i n g of s a l i n e and f r esh water. These processes i n consort account f o r " s a l t f 1 occul a t i on," wherein even extremely 1 ow s a l i n i t i e s promote the p r e c i p i t a t i o n , f 1 occu t a t i o n , and agyreyat i o n o f d i sso l ved o r y a n i c s i n t o organic d e t r i t u s p a r t i c l e s p rone t o h i ghe r s e t t l i n g r a t es (S iebru th and Jensen 1968; Gardner and Menzel 1974; Sholkowi t z 1976). While i t i s apparent t h a t b o t h chemical (i.e., i o n i c a t t r a c -

t i o n ) and phys i ca l ( i .e . , increased par- t i c l e ~ 0 l l i ~ i 0 n S alony s a l i n i t y y r a d i e n t s ) mechani srns a r e i n t e r r e l a ted i n f l occul a- t i o n (Krone 1978), no d e f i n i t i v e work has been performed t o i s o l a t e and d e f i n e t he f unc t i ona l processes o f FPOC f o r ~ n a t i o n f ro~n DOC.

Avnimel ech e t a1 . I s (1982) expe r i - ments on t h e f l o c c u l a t i o n and sedimenta- t i o n o f a lgae-c lay ayyregates i n t he presence o f an e l e c t r o l y t e suyyested t h a t increased c l a y concen t ra t ion would prornote increased f l o c c u l a t i o n and sedirnentai t on o f a1 yae i f t h e a v a i l a b i 1 i t y o f aygreyate n u c l e i i s a 1 i m i t i n g f a c t o r . Th is i m p l i e s t h a t f l o c c u l a t i o n o f a1 ya l d e t r i t u s i n P a c i f i c Northwest es tua r i es would be en- hanced g r e a t l y du r i ny s p r i n y f r e s h e t s when suspended sediment 1 oads e n t e r i n g t he es tua r i es a r e a t a rnaxin~urn.

Therefore, sources o f o r yan i c d e t r i - t u s t o es tua r i ne channels, whether d i s - solved or p a r t i c u l a t e , depend upon assoc i - a ted t e r r e s t r i a l , marine, and es tua r i ne hab i t a t s , and w i t h i n t h e channel a r e t he product of d number o f complex and i n t e r - r e l a t e d es tua r i ne c i r c u l a t i o n and chelni- c a l processes which have no t y e t been suc- c e s s f u l l y so r t ed out. Nairnan and S i b e r t ( 1978) presented a seasonal l y - s t r uc tu red ernpi r i c a l budget o f o rgan ic carbon and n u t r i e n t i n p u t s t rom t h e Nanaimo K i v e r t o the estuary and concl uded t h a t , compared t o i n s i t u p r imary p roduc t i on i n t h e rnud- f l a t l h a b i t a t s , f l u v i a l DOC (es t imated t o be 2 x l o 3 g C m-2 y r - l ) impor ted i n t o t h e es tuary v i a t h e r i v e r may be t h e y r e a t e s t source o f carbon t o t h a t system. H i v e r i n e inpu t o f a l lochthonous FPOC was es t imated t o equal 56 y C m-2 y r - 1 and t o be a t l e a s t h a l f de r i ved from t h e r i v e r ' s p e r i - phyton community. Uahm e t a l . (1981) es- t ima ted t h a t i n 1974 t h e Columbia R ive r expor ted approx imate ly 5YU.4 x 1U3 m e t r i c tons o f t o t a l organic carbon (TOC) of which 891 was DUC and 11% was POC; over h a l f o f t he annual TUC en te red t h e es tua r y between A p r i l and J u l y , 16% o f i t i n June. While t he TOC and DOC l e v e l s were most h i y h l y c o r r e l a t e d w i t h r i v e r d i scharye, POC was c o r r e l a t e d w i t h p r imary produc- t i v i t y u p r i v e r .

Page 54: The ecology of estuarine channels of the Pacific Northwest coast: A

I n a d d i t i o n t o C : N r a t i o s (Mann 1972), l i y n i n degrada t ion products (Gardner and Plenzel 1974; Hedyes and Mann 1979; MacCubbin and Hodson 1980), and var ious chelnical i so tope c h a r a c t e r i s t i c s used t o t i n g e r p r i n t sources o f d e t r i t a l ma t t e r (Pe te rs e t a l . 1978; Sweeney and Kaplan 1980; Estep and Dabrowski 1980), t h e r a t i o of two s t a b l e ca rbon isotopes, c 1 3 / ~ 1 2 (abbrev ia ted as 6 1 3 ~ ) , has recen t - l y been u t i l i z e d t o i d e n t i f y t h e y o s s i b l e o r i g i n s o f o ryan ic carbon p resen t i n con- sumer oryanisrns. Th is i s p o s s i b l e oecause t he 1 3 ~ values o f an animal ' s t i s s u e s a re u s u a l l y una l t e red trom those o f t h e Carbon i n i t s food source (DeNiro and Eps te in 1978; Teer i and Schoel let- 1979). This ap- proach has been used, appa ren t l y success- f u l l y , i n documenting t h e impor tance o f vd r ious carbon sources t o e s t u a r i n e and marine d e t r i t i v o r e s (Thayer e t a l . 1978; Hai nes dnd Montayue 1979; McConnauyhey and McKoy 1979; F r j 1981). Us ing l i y n i n o x i d a t i o n products i n c o n j u n c t i o n w i t h 6 1 3 ~ , Hedges and Mann (1979) i n d i c a t e d t h a t the POC from t h e Columbia R ive r de- pos i t ed i n o f f s h o r e sediments was dominat- ed by yymnosperm woods and non-woody angiosperm t i s sues .

Usiny 14c- labe l l i n g techniques, S i b e r t e t a l . (1977b) amassed evidence t h a t the p roduc t ion of d e t r i t i vo rous har - p a c t i c o i d copepods i n t h e Nanaimo R i ve r es tuary (see Sec t ion 5.3) was supported predomi n a n i y by t he b a c t e r i a1 f 1 ora asso- c i a t e d w i t h o r yan i c d e t r i t u s which was presumed t o o r i g i n a t e from seve ra l exoge- nous and endogenous sources, i n c l ud i ng : (1) meadows form t h e seaward areas ( 2 ) a l y a e from i n t e r t i d a l areas; ( 3 ) sd l t inarsh p l a n t s from landward areas; and (4 ) down- stream t r a n s p o r t from t he up l and areas of t h e es tua r y ' s watershed. I n t h e i r v?cent 613c s t ud i es o f d e t r i t u s - b a s e d food webs i n Hood Canal, Wissmar and Si~nenstad (F ish . Kes. Ins t . , univ. Wash., unpubl. d a t a ) have found t h e d e t r i t u s Sources t o va ry seasonal 1 1 , w i t h sh i f t i n y con t r i bu - t i o n s o f r i v e r i n e , mar ine and endemic estuar ine-produced carbon. A t t he Same t ime, a cons iderab le r e c y c l i n g o f autoch- thonous carbon w i t h i n t h e e s t u a r y was a prominent c h a r a c t e r i s t i c o f t h e d e t r i - t i v o r e component of t h e e s t u a r i n e food web.

41

Very l i t t l e i n f o r r r l a t i on e x i s t s on t h e depos i t i on , d i s t r i b u t i o n and f l u x of d e t r i t u s i n e s t u a r i n e c h a n n e l s , and ~ i r - t u a l l y none e x i s t s f o r t h e P a c i f i c Nor th- west. P i c k r a l and Odum (1976) found t h a t t h e non-uniform d i s t r i b u t i o n o f d e t r i t u s i n a V i r y i n i a saltrnarsh t i d a l creek r e l a t - ed t o t he morpholoyy and h y d r d u l i c regime o f t he creek. They deduced t h a t d e t r i t u s p a r t i c l e s , hydrodynall l ical ly e q u i v a l e n t t o t i n e sand and s i l t p a r t i c l e s , tended t o accumulate i n low v e l o c i t y zones i n s i d e meanders and behind s i 11 s ; stor l r i events, however, were r espons ib l e f o r p e r i o d i c a l - l y f l u s h i n g d e t r i t u s accumula t ions frorn t h e t i d a l creek.

The f l u x o t d e t r i t a l p a r t i c l e s w i t h - i n channels probably occurs i n con junc t i on w i t h t h e sediment bedload and 1s l n f l u - enced oy s i m i l a r t a c t o r s ( h e c t i o n 2.5.1). Accord iny ly , v a r i a t i o n s i n boundary l a y e r v e l o c i t i e s determine t h e s i z e d i s t r i b u - t i o n , f l u x , and accumu la t i o r~ o f d e t r i t u s p a r t i c l e s through channels, Uepos i t i ond l rey ions , where c u r r e n t v e l o c i t i e s a r e lowest , would be expected reg ions o f d e t r i t u s accumul a t i on . Th i s i s observed i n b l i n d o r subs i d i a r y channe l s w i t h low- e r ve l o c i t y reyiines which t e n d t o accumu- l d t e more d e t r i t u s t n a n do mainsten1 channels.

But , as w i t h suspended i no r yan i c p a r t i c l e s , t he inainstern channe l s i n !nix- i n y o r entrapment zones o f e s t u d r i e s a l s o probably c o n s t i t u t e l o c a t i o n s o f maximum s e t t l i n g o f o rgan ic p a r t i c 1 es and ino ryan- i c - o r yan i c p a r t i c l e agyregates. A1 though t h e lony - te rm ne t t r a n s p o r t i s p robab ly seawdrd, d e t r i t u s p a r t i c l e s may rernai n w i t h i n t h i s zone f o r p e r i o d s lony enouyn t o be ex tens i ve l y u t i 1 i zed by d e t r i t i - vores. Naiman and S i b e r t (1978) p o i n t e d ou t t h e importance of " r e t e n t i o n s t r u c - t u res " as t r aps of o r y a n i c d e t r i t u s , and i d e n t i f i e d oys te r beds, macroalyae, and spaces around coobles as FPOC r e t e n t i o n s t r u c t u r e s and l ogs and e e l y r a s s as LPOC r e t e n t i o n s t r uc tu res . To t h i s l i s t snoul a a l s o be added t h e eineryent p l a n t assem- b layes o f es tua r i ne s a l t marshes. They conc I uded t h a t f j o r d and drowned r i v e r

Page 55: The ecology of estuarine channels of the Pacific Northwest coast: A

v a l l e y estuar ies, w i t h 1 i t t l e oceanic exchange, l arye areas, and nunlerous types o f r e t e n t i o n s t r u c t u r e s may be t h e most e f f i c i e n t r e t a i n e r s o f a1 ~ O C ~ ~ ~ O ~ O U S

d e t r i t u s .

4.3 FUNGI AND UACTEKIA COLUNIZATION

~ i c r o o r y a n i s m s , p r i m a r i l y b a c t e r i a , f u n 5 i , and protozoa, r a p i d l y co1 on ize f r e s h d e t r i t u s p a r t i c l e s and a re l a r y e l y r e s p o n s i b l e fo r c o n d i t i o n i n g d e t r i t u s t o t h e s tage where i t i s p n y s i c a l l y and nu- t r i t i o n a l l y v i ab l e f o r consumption by d e t r i t i vores and o t h e r pr imary consumers (Fenchel and Jdrgensen 1977). Ha r r i son and Ha r r i son (1380) i n d i c a t e d t h a t i n mi crocosrn experiments, f r e s h Los te ra mar ina blades supported a two-week bloom d f s p e n d e d bac te r i a . They a l s o found t h a t f resh d e t r i t u s had 100 x 103 bac- t e r i a c e l 1s mm-2 w n i l e ayed d e t r i t u s nad o n l y 20-40 x 103 c e l l s mm-2. Colon iza- t i o n by microa lyae (pennate diatoms, t l d y - e l 1 a t e d p ras i nophytes, and f i 1 amentous b lue-greens) , however, tended t o be i n - v e r s e l y re1 ated t o b a c t e r i a d e n s i t y when i n o r g a n i c n u t r i e n t s were l i m i t i n g , suy- g e s t i n y t h a t e i t h e r t n e two yroups were competing t o r t he a v a i l a b l e n u t r i e n t s o r t h a t one o r the o t h e r was produc ing inhib- i t o r y substances (Del ucca and McCracken 1977).

S t u a r t e t a l . (1981) conducted c o n t r o l l e d experiments o f h e t e r o t r o p h i c u t i l i z a t i o n of p a r t i c u l a t e (43-63 vm) k e l p d e b r i s and found t h a t ~ t~dx imu l i~ bac- t e r i a biomass (%4 my 1-1) occur red w i t h i n t e n days; t h e r e a f t e r , phayot rophic f l aye l - 1 a tes , c i 1 i ates, amoebae, and choanof 1 ag- e l l a t e s success ive ly domindted t h e mic ro - b i a l co~ru~lunity. Dur ing the i n i t i a l two days o f t he experiment diSS01 ved o rgan i cs t'ronl t h e p a r t i c l e s were used by f r e e - l i v - i n y bac te r i a . Over t h e next f o u r days t h e r e was r ap i d growth o f t h e b a c t e r i a p o p u l a t i o n at tacned t o the p a r t i c l e s , w i t h subs t r a t e carbon conver ted t o Dacte- r i a l biomass a t a convers ion e f f i c i e n c y o t about 33%. The f o l l o w i n g f o u r days, u n t i 1 y r a z i ng f l a g e l l a t e s appeared, were cha rac te r i zed by a r a p i d dec l i n e i n t n e r a t e o f b a c t e r i a l yrowth, w i t h a d rop i n t h e convers ion e f t i c i e n c y o f approximate-

l y 10-11% as o n l y i p a r t i c u l a t e carbon was u t i l i z e d .

We gene ra l l y know very 1 i t t l e about t h e m i c rob i a1 assemblages c h a r a c t e r i z i ny P a c i f i c Northwest es tua r i ne channels, a l - though Wiebe and L i s t o n (1972) i n c l uded e s t u a r i n e channel sampl es i n t h e i r analy- ses o f ae rob ic , nonexact iny , he te ro t r oph - i c ben th i c b a c t e r i a o f t he Wasninbton and Oreyon qoasts. The h ighes t i n d i v i d u a l counts ( x = 55,925.9 + 23.7 v i a b l e counts b a c t e r i a m l - I o f mud-water s l u r r y ) were documented from t he sandy sediments a t Ha r r i ng ton Po in t i n t h e Columbia K i v e r es tuary b u t were much more v a r i a b l e than those i n sediments beyond t h e i n f l u e n c e o t t h e Columbia K ive r . Uudl i t a t i v e l y , t h r e e groups o f Pseudomonas s t r a i n s , a1 1 nonpi ymented carbohydrate u t i l i zers (Shewan 1963), comprised 85% of t h e bac- t e r i a i s o l a t e s i d e n t i f i e d i n t h e es tuary ; t h e on l y s i y n i f i c a n t non-Pseudomonas s t r a i n found was Achromobacter, a nonpiy- n~ented, nonnlot i le-rod forrn. Ce l l u l ose - d i g e s t i n y b a c t e r i a were re1 a t i v e l y unique t o e s t u a r i n e and c o n t i n e n t a l s h e l f sediments.

4.4 PHYSICAL, CHEMICAL, AND BIOLOGICAL CONDITIUNING

Undoubtedly one o f t h e most c r i t i c a l r a t e - c o n t r o l 1 i ny processes i n t he d e t r i t u s pathway o f an e s t u a r i n e food web i s t h e convers ion o f d e t r i t u s t o p a r t i c l e s o f phys i ca l di lnensi ons and n u t r i t i o n a l char- a c t e r which can be u t i l i z e d by d e t r i t i - vores. Tnl s process, termed " cond i t i on - i ng " o f t h e d e t r i t u s , i n vo l ves phys i ca l , chemical , and b i o l o g i c a l mechanisn~s (F i y. 4.2). Phys ica l and chemical decay a re due p r i m a r i l y t o t he weatheriny o f t h e l a r g e r component o f L P N p a r t i c l e s through leach- i n g and a u t o l y s i s of s o l u b l e o r v o l a t i l e ma te r i a l . Phys ica l c o n d i t i o n i n g a1 so i n c l udes t h e mechanical breakdown o f c e l l w a l l s by wind, wave, and c u r r e n t ac t i on , which inc reases t h e r a t e of chemical de- cay. Th i s i s p a r t i c u l a r l y ev i den t i n exposed, coarse subs t r a t e (e. y., cobb le ) 1 i t t o r a l h a b i t a t s , where con t inued sed i - ment movement a c t s t o break loose macro- phy te m a t e r i a l i n t o p r o y r e s s i v e l y f i n e r p a r t i c l e s ( F i g . 4.3).

Page 56: The ecology of estuarine channels of the Pacific Northwest coast: A

Fig. 4 . 2 . Conceptual i l l u s t r a t i o n of t h e mechanisnls and flows i nvo lved in t h e phys ica l , chemical, and b io logica l cond i t i on ing of d e t r i t u s .

Fig. 4.3. T e r r e s t r i a l (wood c h i p s , t r e e bark, and l eaves ) d e t r i t u s of vary ing p a r t i c l e s i z e s depos i ted on 1 i t t o r a l f l a t s of Duckabush River e s t u a r y , Hood C a n a l , Washington; once degraded i n t o f i n e r p a r t i c u l a t e mat te r by physical Processes , t h e f i n e p a r t i c u l a t e d e t r i t u s i s t ranspor ted i n t o b l i n d O r subs id ia ry channels where f u r t h e r b io log i ca l and chemical degradat ion and, u l t i m a t e l y , u t i l i r a t i on take PI ace (photo by a u t h o r ) .

4 3

Page 57: The ecology of estuarine channels of the Pacific Northwest coast: A

L i t t e r b a y experiments, wherein f r esh ( l i ve) macropnytes a re p l aced i n mesh bays and secured i n l i t t o r a l o r marsh h a b i t a t s f o r temporal mon i t o r i ng o f decomposit ion, have o f t e n been used t o docunient the breakdown o f l a r g e d e t r i t u s . K i s t r i t z and Yesaki (1979) f o l lowed the disappear- ance o f t n e sedge, Carex l ynybye i , i n t he F rase r K i v e r estuary. They found t h a t 40% of t h e asn- f ree d ry weight remained a f t e r approx imate ly n ine months (September-June) and t h a t decay was most p rec i p i t ous dur- i n g February due t o increased phys ica l d e t e r i o r a t i o n and t i d a l removal. Science Apvl i c a t i o n s , Inc. and Woodward-Clyde Consu l tan ts (1981) conducted 1 i t t e r b a y expe r i ~nen t s us ing seven emergent p l a n t suec i es (Carex lvnubvei . p o t e n t i 1 l a u a c i f - i ;a, ~ ~ r i s t i s a n i u s ba l t i cus , ' Sci r- - - pus v a l i d u s , cespi tosa, T r i -

o f t h e m a K i ve r estuary. They found vary- i ny r a t e s o f decomposit ion w i t h p l dnt spe- c i e s , l o ca t i ons i n t h e estuary , and t i d a l e l e v a t i o n s , w i t h r a t e s vary iny from 6% t o 51% over f i v e rnonths. Rates were t y p i c a l - l y h i ghe r i n the r i v e r i n e p o r t i o n o f t he e s t u a r y and succulent marsh p l a n t s yener- a1 l y decomposed lrlore r a p i d l y than d i d yrasses.

As much as 89% o f t h e biomass o f p a r t i c u l a t e k e l p d e t r i t u s incubated i n S t u a r t e t a l . ' s (1981) experiments was l o s t i n 30 days and t h e maximum l oss occur red i n t h e i n i t i a l 14-18 days. This exper iment was conducted i n t he absence o f any herb ivorous o ryan i sms, which by t h e i r own f ragmenta t ion and i n g e s t i o n o f d e t r i t a l p a r t i c l e s acce le ra te t h e decorn- p o s i t i o n by i nc reas i ng t he sur face area a v a i l a b l e f o r m i c r o b i a l co lon iza t ion . Herb ivo res a l s o increase the n u t r i t i o n a l q u a l i t y o f t h e d e t r i t u s pool throuyh t he a d d i t i o n o f n i t r o y e n i n t h e i r feces par- t i c l e s (F ig. 4.2).

Most consumers r equ i r e food sources w i t h an average r a t i o o f carbon t o n i t r o - gen <17 t o a v o i d p r o t e i n de f i c i ency (Rus- se l -Hun te r 1970). The i n i t i a l l y h igh ca r - bon:ni t rogen r a t i o of d e t r i t u s i s lowered t h rough t h e p roduc t ion of p ro te i ns and u t i 1 i zat ion o f carbohydrates by decompos- e r s (Mann 1972) so t h a t the d e t r i t u s

becomes usable by d e t r i t i v o r o u s consum- ers. Thus, the r e c y c l i n g o f POC th rough the decomposer-detri t i vore phase o f an es tuar ine food web (see Chap. 9 ) promotes the avai l a b i 1 i t y , qua1 i t y , and t r a n s f e r o f d e t r i t a l carbon i n t o t he food web.

U i o l o y i c a l c o n d i t i o n i n g o f d e t r i t u s invo lves f ragmentat ion o f LPUC by t h e g raz iny a c t i o n o f dnimals ( H a r r i s o n and Mann 1975) and t h e m i c r o b i a l dey rada t i on of FPUC. Since t he r a t e o f l each iny and r l l icrobi a1 degradat ion inc reases w i t h de- creas iny p a r t i c l e s i ze (Ha r r i son and Mann 1975; Fenchel 1977), b i o l o g i c a l fragnienta- t i o n rnay be an impor tan t r a t e -1 i m i t i n y process t o d e t r i t u s c o n d i t i o n i n y , espe- c i a l l y i n the case o f seagrdss-based d e t r i t u s (Robertson and Mann 1980).

I n o t he r reg ions, ep i ben th i c h e r b i - vorous crustaceans, i n c l ud ing i sopods and garnrnarid amvhipods, have Deen shown t o b e p a r t i c u l a r l y impor tant i n reduc ing d e t r i - t u s p a r t i c l e s i ze , p roduc ing a d d i t i o n a l , smal ler d e t r i t u s p a r t i c l e s i n t he form of feces, and exc re t i ng n i t r o y e n - r i c h rnater i - a l s which enhance m i c r o b i a l decomposi t ion (Fenchel 1970; Lopez e t a l . 1977; H a r r i - son 1977; Robertson and Mann 1980). Al though t he re have n o t been any r e l a t e d i n v e s t i g a t i o n s i n t h i s reg ion , t h e n i g h d e n s i t i e s of ep i ben th i c crustaceans i n P a c i f i c Northwest es tua r i ne channels (see Sec t ion 5.3) would suyyest t h a t t h i s i s a l s o an impor tan t Qrocess i n d e t r i t u s c o n d i t i o n i n g i n these hab i t a t s , G r i f f i t h s and Stenton-Dozey (1981) es t imated t n a t between 60% and 80% o f t h e k e l p d e b r i s deposi ted i n t he 1 i t t o r a l zone o f a South A f r i can beach was consumed by amphi pods and d i p t e r a n l a r vae w i t h i n 14 days o f depos i t i on . The p r o p o r t i o n o f t h i s de- t r i t u s and t h e byproducts o f t h e consumer oryanisms whicn en te red t h e nearshore marine food web as d e t r i t u s fragments, feces, exuviae, and DOC i s unknown; t h e au thors noted, however, t h a t s i y n i f i can t expo r t o f such m a t e r i a l was e v i d e n t du r i ng h i y h sp r i ng t i d e s .

Despi te t he r ecen t focus upon t h e dynamics o f t h e de t r i t u s -m i c robe complex, i t i s r e a d i l y apparent t h a t i n t e r a c t i o n s between d e t r i t a l subs t ra tes , decomposer

Page 58: The ecology of estuarine channels of the Pacific Northwest coast: A

~ n i c r o b e s , and t h e i r consul~lers i n e s t u a r i e s lnayni tude and pdthways o f n u t r i e n t and a r e more co~np lex than r e a l i z e d i n i t i a l l y carbon r e c y c l i n y w i t h i n t h e deco~nposer- ( C h r i s t i a n and Wetzel 1978). AS such, d e t r i t i v o r e phase o f t h e e s t u a r i n e food t h e r e l a t i v e impor tacce o f energy and web must be t u r t h e r d e f i n e d f o r d i f f e r e n t n u t r i e n t requ i remen ts o f i ~ i i c r ~ b e s dnd d e t r i t u s sources as w e l l as w i t h i n t h e consumers, t h e h e t e r o y e n e i t y o f r l j icrobe v d r i o u s e s t u d r i n e l l d b i t d t s such dS c o l o n i z a t i o n i n t i m e and space, and t h e channels.

Page 59: The ecology of estuarine channels of the Pacific Northwest coast: A

INVEKTEBKATE ASStMBLAt iES UF t-:STUUgINE CHANNELS

l n v e r t e o r a t e animals c h a r d c t e r i s t i c o f e s t u a r i n e channel h a b i t a t s a re t y p i c a l - 1s' ca teyo r i zed by size. m i c r o h a b i t a t , and 1 i t e h i s t o r y c h a r a c t e r i s t i c s . Sl ze cate- go r i es i n c lude:

1. Meiofauna; animals 1UU t o SUU p ni, i n - c l u d i n g p r i m a r i l y foramin i terar is, nematodes, k inorhynchs, ost racods, h a r p a c t i c o i d copepods, t u r b e l l a r i a n s , 01 i yocndetes, ha lacar ids , gas t r o t i chs , and cephalocarideans ; and

2. Macro- o r meyafauna; animals l a r g e r t han 500 1~ in, i n c l u d i n g p r i m a r l y po ly - chaetes, ca l anoid and cyc l opo id cope- pods, l e p t o s t racans, mysi ds, cumace- ans, tar la ids, isopods, amphipods, euphausi ids, decapods, gastropods, pelecypods, and echinoderms (Mare 1942; C a r r i k e r 1967).

M i c r o h a b i t a t ca tegor ies inc lude :

1. Ben th ic in fauna ; animals i n h a b i t i n g t h e sediment, e i t h e r beneath o r i n t h e su r face o f the bottom subs t r a t e ;

2. S e s s i l e epi fauna; animals r e l a t i v e l y permanent ly a t tached t o t h e subs t ra te ;

3 . M o t i l e ep i fauna; animals which a c t i v e - l y move about on t h e bottom;

4. Ep i ben th ic zooplankton; semiplankton- i c animals i n h a b i t i n g t h e i n t e r f a c e between t h e subs t r a t e and water co l - umn, e i t h e r pass i ve l y o r a c t i v e l y mov- i n g between t h e very su r face l a y e r o f t h e subs t r a t e and t h e boundary l a y e r o f t h e water column; because o f t he emergence o f many m o t i l e i n f auna l o r - ganisms from t h e benthos, t h e r e o f t e n i s over lap between t h e ben th ic in fauna and ep iben th ic zooplankton assemblages;

5 . Pelag ic zooplankton; p l a n k t o n i c an i - mals i n h a b i t i n g t he water column; and,

6. Neuston; animals d r i f t i n y upon o r im- mediate ly assoc ia ted w i t h t h e su r f ace l a y e r o f t h e water column.

L i f e h i s t o r y ca tegor ies r e f e r p r i m a r - i l y t o p l ank ton i c animals and i n c l u d e :

1. Meroplankton; ternporar i l y p l a n k t o n i c animals, usual l y eggs and l a r v a e of ben th ic and nek ton ic a d u l t s ; and,

2. Holoplankton; permanent ly p l a n k t o n i c animals which l i v e i n t h e water column throughout t h e i r complete 1 i f e c y c l e (Sverdrup e t a1 . 1942).

While t h e f o l l o w i n g d e s c r i p t i o n o f es tuar ine channel i n v e r t e b r a t e assembl ag - es i s organized a long m i c r o h a b i t a t c a t e - gor ies, these o the r d e s c r i p t o r s wi 11 f u r - t h e r ca tegor i ze i n v e r t e b r a t e fauna w i t h i n t h e i r microhabi t a t s . I n c l u s i o n o f charac- t e r i s t i c organisms i n unique m i c rohab i t a t categor ies, fur thermore, i s o f t e n compl i - cated by t h e behav io r o f animals and o f t h e s c i e n t i f i c apparatuses used t o sample them. Therefore, t h e f o l l owi ng desc r i p - t i o n s o f i n v e r t e b r a t e assemblages a r e f unc t i ona l , i n t h a t animals a re i nc l uded - accord ing t o t h e i r occurrence i n t h e r e - po r t ed c o l l e c t i o n s , even though t h e i r microhabi t a t d i s t r i b u t i o n may be p o o r l y represented and cons iderab le ove r l ap i s ev ident .

5 . 1 BENTHIC INFHUNA AND SESSILE EPIFAUNA

Due t o t h e i r permanency w i t h i n o r upon es tua r i ne channel subs t ra tes , b e n t h i c in fauna and s e s s i l e ep i fauna a re t h e as- semblages most s t r u c t u r e d by v a r i a t i o n s

Page 60: The ecology of estuarine channels of the Pacific Northwest coast: A

and y rad i en t s i n phys i ca l and chetliical c h a r a c t e r i s t i c s of t h e b e n t h i c envi r o ~ s of t h e estuary . But, on t h e o the r hand, they e x h i b i t t h e most s t a b l e s t r u c t u r e s over t ime due t o t h e assembla$e's adapta- t i o n t o h i y h l y v a r i a b l e cond i t i ons .

The two f a c t o r s most o f t e n c i t e d as s t r u c t u r i n y t h e d i s t r i b u t i o n o f es tua r i ne ben th ic infauna are s a l i n i t y and sediment s t r u c t u r e (Wieser 1959; t iunter 1961, C a r r i ker 1967 ; Gray 1974), espec ia l l y g i ven t h e i r t y p i c a l l o n y i t u d i na l yrad i en t s t r u c t u r e through most es tua r i es . Associ- a ted phys ica l and chemical f a c t o r s such as sediment s t a b i 1 i ty and o rgan ic content c o n s t i t u t e re1 a ted i n f l uences whi ch cannot necessar i l y be separated from sediment g r a i n s i z e and t e x t u r e (Sanders 1959). The sarne ho lds f o r b i o l o g i c a l f a c t o r s such as compet i t i on , p reda t i on , and l i f e h i s t o r y cyc l es (Peterson 1979). But i n general , and espec ia l l y i n t h e nlore dynamic chan- ne l hab i t a t s , e s t u a r i n e hydro logy i s t h e unde r l y i ng, composite f a c t o r de te r~ i t i n i ny t h e d i s t r i b u t i o n o f ben th i c in fauna through t he s t r u c t u r i n g o f s a l i n i t y , sediment, v e l o c i t y , and o r yan i c mat ter .

The r o l e o f s a l i n i t y i n mainstem channels has n o t o f t e n been c o r r e l a t e d t o t h e d i s t r i b u t i o n o f ben th i c in fauna i n P a c i f i c Northwest es tua r i es . Marr iaye (1954) and B u r t and McAl i s t e r (1958) i l - l u s t r a t e d t h a t t h e gaper clam, 1 f - e ~ ~ ~ capax, and s o f t s h e l l clam, Mya a renar ig , were d i s t r i b u t e d i n sa l i n i ty?nes g rea t - e r than 25°/00 between 20° /00 and O O I ' ~ O ,

r e spec t i ve l y .

Ben th ic i n f a u n a l assemblages o f t he Columbia R ive r es tuary have been sampled ex tens i ve l y (Columbia R i v e r Estuary Data Development Program [CUEDDP] 1980), p a r - t i c u l a r l y i n re fe rence t o t h e e f f ec t s of dredging and dredge-mater i a1 d isposa l w i t h i n and immediately ad jacen t t o t h e estuary (Sanborn 1975; ~ i g l e y e t a l . 1976; Ourk in e t a]. 1979; H ig ley and Hal t o n 1978; Bl ahm 1979). I t was n o t u n t i l t h e i n i t i a t i o n o f t h e CKEODP s tud i es t h a t d e t a i l e d synop t i c and eco- l 0 y i ca l i n v e s t i y a t i o n s of ben th ic i n - faunal assemblages were conducted through- o u t t h e es tuary (Oregon S t a t e U n i v e r s i t y

School of Oceanography 1930a). A t t h e i n i t i a t i o n o t t h e CKEDUP s tud i es , a com- p o s i t e spec ies c h e c k l i s t o f t h e e s t u a r y ' s in fauna i n c l u d e d 212 t a x a ; 23-f whict) were po l ychae te anne l i ds ; 14"/,amnlarid atllphipods; 9% b i v a l v e mo l l uscs ; and 8% eacti, gas t ropod rriol l u s c s and isopods (VTN, unpub l i shed , c i t e d i n Oreyon S t a t e U n i v e r s i t y School o f Ocednography 1980a).

U n f o r t u n a t e l y , on l y a few o f t h e CKEDllP b e n t h i c i nfauna sa~np l i n y s t a t i o n s a re located i n channel h a b i t a t s and i n f o r - I l lat ion from t h e s e s t a t i o n s i s as y e t i n - complete. However, t h e combined s t u d i e s o f t h e Columbia K i v e r e s t u a r y , cu lm ina t i ng w l t h t h e on-go ing CHE[)DP research, s t i 11 present t h e n iost comprehensi ve i 11 u s t r a - t i o n o t b e n t n i c in fauna in e s t u a r i n e chan- ne l h a b i t a t s o f t h e r e g i o n (Fox 1981).

H d i v e r s e , low s t a n d i n g s tock, i n - taunal assenibl aye t y p i f i e s t n e r eg i on a t and immediately w i t h i n t h e mouth o f t h e Columbia K i v e r es tua r y i n a ben th i c en- v i r o n ~ ~ l e n t c h a r a c t e r i z e d by l a rye-y ra ined , uns tab le sand s u b s t r a t e o f low o rgan l c con ten t and h i g h s a l i n i t i e s . Whi le no t r u e channel h a b i t a t s have been sampled, sa~npl i ng i n c l o s e l y ad j acen t sampl i n y s i t e s suggest t h a t nemerteans, nematodes, o l iuochae tes . uo l vchae te anne l ids (Macle- Ion; spp., ~ a ~ i t e i l a c a p i t a t a , ~ d r a o 3 " T a .

p la tysvanch l a, ---. Eteone spp., Nephthys c a l i- - forn iens i s . H a u l o s c o l o ~ ~ o s SDU.. Sv i o 7-7nE; ~ e n i d a e -m, ydt; lmarid-2~z ---- -- phi pods (Phoxocept ial i dae spp., i n c l u d i n g Araphoxus r r i i 1 1 e r i , and P. stenodes, - -- -- --- . - - - Eohaustor ies e s t u a r i u s , E. washington ian- uC-Sj;Ebm d i urn s hoenla k e r i ~ - > i i T f j ~ i e rnol I ;;cs-- b x t n m r e t h e dotni nan t in tauna w ~ T i i i ? i - T n K ' I ~ - t o t a l de r l s i t y o f t he assemblage ranges between 200 t o 1000 i n d i v i d u a l s m-2 ( H i y l e y and Ho l t on 1978; Oregon S t a t e U n i v e r s i t y Sc f~oo l o f Ocean- oyraphy 1980a; K. H o l t o n and D. H iy ley , Oregon S t a t e I l n i v e r s i t y , unpuol i shed CgEUDP da ta ) .

Uen tn ic i n f a u n a i n t h e c e n t r a l re - y i on and p r i n c i p a l m l x i n g zone o f t h e Columbia H i v e r es tuary i 1 l u s t r a t e e x t r e ~ ~ ~ e s p a t i a l and te t r~pora l v a r i a b i l i t y , even w l t h i n d i s t l n y u i s h a b l e h a b i t a t s such as the channels. As desc r i bed i n Chapter 2,

Page 61: The ecology of estuarine channels of the Pacific Northwest coast: A

s a l i n i t i e s a re h i g h l y v a r i a b l e (5"/,,- 25O/,,) and t he sediment (medi um sand) prone t o resuspensi on and d i f f e r e n t i a1 , a c t i v e t ranspor t . Gammarid amphi pods (Corophium salmoni s , Eoyammarus confer - v i cot us, E. e s t u a r i u s ) , 01 i yochaetes, m e t e - a n n e l i d s y c i nde armi gera, Magel ona sacculata, Polydora s;. , Para- one1 1 a p l a tyb ranch i a, Hobsonia f l o r i d a , -- ~ e a n t n e s s p . ) , a n d c u m a ~ ~ e m i l ~ n m o m i n a t e t h e i n f auna l assemblage w i t h i n o r c l o s e l y ad jacent t o channels, and t h e t o t a l assemblage can sus ta i n h i yh d e n s i t i e s (20,000-70,000 m-2; H ig ley e t a l . 1976; K . Hol ton and U. H i y l ey , Uregon S ta te Univ., unpubl ished CREDDP da ta ) .

The ben th ic in fauna assemblage o f t h e subs i d i a r y channel e n t e r i n y the mix- i ng zone reg i on f rom t h e Lewis and C la rk and t h e Youngs R ivers through Youngs Bay bes t i l l u s t r a t e s t h e s y n e r g i s t i c i n f l u - ence o f t he f i n e sediments ( f i n e sand t o coarse s i l t ) and h i gh sediment organics, desp i t e r e l a t i v e l y h i gh cu r ren t v e l o c i t y regimes (Uoley e t a1. 1975). Tube-bui ld- i n y gamrnarid amphi pods (C. salmonis), po lychaete anne l ids ( t i . f l o r i d a , Neanthes l imn i co l a ) , b i v a l v e m s l u m b a l t h i c a , Carb icu la man i l ens i s ) , o l i g o f i a e t e s , and -- c h i ron im id 1 arvae dominated t h e f i n e r sub- s t r a t e s . 01 i gochaetes dominated numeri - c a l l y over Corophium i n t h e very f i ne , h i yhly-organ? c sediments and o t h e r amphi- pods (E. e s t u a r i s, Ani sogammarus marus sp. , x r a p h o x u s sp. ) rep laced Corophium i n t h e coarser, l e s s o rgan ic sediments c l o s e r t o t h e mainstem channel i n the cen- t r a l p o r t i o n o f t h e es tua r y (H ig ley and Ho l t on 1975). To ta l d e n s i t i e s o f ben th ic in fauna i n t h e inner-bay channels exceed- ed 30,000 m-2 b u t were on ly 323 m-2 i n t n e outer-bay p o r t i o n o f t he channel (Hig- l e y and Ho l t on 1975). S p e c i f i c a l l y , C. salmonis occurred i n d e n s i t i e s between -- 19,000 and 29,000 n r 2 - 01 i gochaetes, i n d e n s i t i e s between 5,006 and 33,000 m - 2 - and polychaetes, between 600 and 2,200 m-2 i n t h e f i n e sediment channel bot tom hab i t a t s .

Channels i n t h e upper es tua r i ne and r i v e r i n e regions o f t h e es tuary i n c l u d e bo th t h e mainstem, nav i ga t i on channel and subs i d i a r y channels i n t h e complex i s 1 and-

t i d a l marsh h a b i t a t s where s a l i n i t i e s a re low t o absent and sediments a re t y p i c a l l y coarse (medi um sand). Gammarid amphi pods (C. salinoni s, Monoculodes s p i n ipes , PTioxocepnal i dae spp:), po lychae te anne l ids (N. l i m n i c o l a ) , o l igochaetes, b i v a l v e m o l l u s c s ( C . m a n i l e n s i s ) , and ch i ronomid 1 arvae a re - represen ta t i ve ben th i c oryan- isms i n t h i s region. To ta l d e n s i t i e s t end t o be low, <1,U00 m-2, i n bo th rnainstem and subs id i a ry channels ; amphi pods occur i n d e n s i t i e s < 50 m-2, 01 igochaetes < 20 m-2.

Although s imi l a r i n f o r m a t i o n f rom es tua r i ne channels o f o t h e r coas ta l es tua r i es i s not ava i l ab l e , t h e a v a i l a b l e da ta on t h e Rogue K i v e r ( R a t t i e 1979b3, Coos Bay (Roye 1979), and N e t a r t s (Kreag 1979a) es tua r i es i n d i c a t e s t h a t , w i t h a few except ions, t he Columbia R i v e r estu- a r y ' s in fauna assemblages a re representa- t i v e (Fig. 5.1, Table 5.1). Boyce (1979) found la rge populat ions o f Coro hium spin- i c o r n e and Eo rammarus &arus) con fe r v i co l us _9_7 i n channe h a b i t a t s o f t h e Rogue K i ve r estuary. S tou t (1976) and Gaumer e t a l . (1978) descr ibed t he b i v a l v e mol luscs , Saxidomus y iganteus, Tresus capax, T. n u t t a l lii, Z i r f a e a p i l s b r y i , Pen1 t e l l 2 p e n i ta., and C l i n o c a r d i urn n u t t a l - lii, as be ing d ~ s t r i b u t e d i n t h e s u b s i d i - - ary channels o f Ne ta r t s Bay; S. g igan teus was unique t o t h e marine po r y i on o f t h e channel and C. n u t t a l l i i was un ique t o t h e mid- and <pper-bay p o r t i o n . S l o t t a e t a l . (1973), Parr (1974), J e f f e r t s (1977), and Gaumer (1978) have desc r i bed t h e in fauna o f t h e dredged n a v i g a t i o n channel i n Coos Bay. Gaumer's (1978) d i s - t r i b u t i o n a l surveys o f economica l ly im- p o r t a n t b i v a l ves (maps reproduced i n Roye 1979) i n d i c a t e t ha t , a1 though t h e h i g h e s t d e n s i t i e s occur i n 1 i t t o r a l zones. T. capax, 2. n u t t a l l i i , Macoma spy., and 71 staminea a re a l so common on t h e s lopes of t h e channel i n t h e lower, mar ine p o r t i o n o f Coos 8ay. Pa r r (1974) and ~ e f f e r t s ( 1977) presented evidence t h a t t h e i n f auna assemblage i n t h e downstream channel was more d i ve r se than i n t h e es tuar ine , upper channel. Pa r r a t t r i b u t e d t h i s d i v e r s i t y t o t h e maintenance o f an assemblage o f p ioneer species (such as t h e po lychae te a n n e l i d S t r eb l osp io b e n e d i c t i ) i n t h e

Page 62: The ecology of estuarine channels of the Pacific Northwest coast: A

F ig . 5.1. Represen ta t i ve i l l u s t r a t i o n of common ben th i c in fauna and s e s s i l e ep i f auna assembl ages o f e s t u a r i n e channel h a b i t a t s o f the P a c i f i c Northwest.

f r e q u e n t l y dredyed channels i n t h e up- o r 1971). The po lychae te a n n e l ~ d , Q- stream p o r t i o n o f t h e es tuary . Elsewhere, c inde armiyera, and gaper clam, Tresus channel h a b i t a t s have been s t ud i ed on a capax, were t h e predominant i n f a u n a l more 1 i m i t e d oasis. Mai nstem channels i n macro inver tebra tes i n t h e less-scoured t h e lower, mar ine- in f luenced reg i on o f channel bot tom o t t h e South Slough po r - Coos Bay, Oregon are cha rac te r i zed by t i o n o t Coos Bay (Hancock e t a l . 1977). coarse-y ra i ned, ocean-deri ved sand i n t he bottom sediments and steep, mudstone wa l l s Undoubtedly t h e most complete quan- where a n a v i g a t i o n channel was created. t i t a t i v e c h a r a c t e r i z a t i o n o t ben th i c i n - The unconso l ida ted bot tom sediments are fauna i n dendr i t i c channe I s o f e s t u a r i n e cha rac te r i zed by t h e po lychae te anne l ids s a l t marshes ( t i d a l creeks) i n t h e r e g i o n Ophel ia l im iena , Nephthys spp., and i s t h a t o f S i l e t z and Ne ta r t s Bays, Typosy l l i s f a s c i a t a , w h i l e t he conso l i da t - Oregon by Hi g l ey and Ho l t on (1981). They ed mudstone w a l l s harbor bur row ing pe lecy- found t h a t 01 igochaetes numer ica l l y domi - pods o r p iddocks, Pholadidea ( P e n i t e l l a ) nated t h e macro inver tebra te assemblage, Pen i t a ( J e f f e r t s 1977; Hancock e t a l . account ing f o r approx imate ly 50% and 70% 197f),' Sess i l e organisms on t h e channel i n mature h i y h marsh and sedye marsh w a l l i n c l u d e t h e mussels My t i l u s e d u l i s t i d a l channels, r e s p e c t i v e l y ; po lychae te and Modio lus modio lus; e n c r u s t i n g sponges, anne l ids and amphi pods o f t e n accounted Hal i c l o n a spp. ; bryzoans, Bowerbankia f o r over lo%, and nematodes, d i p t e r a n sp. ; hydro ids , Tubu la r i a marina; and t h e 1 arvae, cumaceans, and h a r p a c t i c o i d anemone, M e t r i d i m ~ . S . ~ . I n t e r i - coyepods were somewhat l e s s abundant.

49

Page 63: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 5.1. I t em iza t i on and c h a r a c t e r i s t i c s of benth ic infauna and s e s s i l e ep i - fauna comnon t o es tua r ine channel hab i ta t s o f the P a c i f i c Northwest.

~ a l iiii t y Sediment Re1 evant L i f< Channel Associ- Associ - H i s to ry Char-

Taxa -- ~ a b i t a t s 1 at ions2 at ions3 a c t e r i s t i cs

POR I F ERA Ha l i c l ona sp.

HYDROIUA Garveia annul a t a Tubu lar ia marina

ANTHOLOA Metr id ium spp.

BRYOZOA Bowerbankia g rac i 1 i s

NEMERTEA K-E

NEMATODA K-E

R-E OLI GUCHAETE ANNELIDS

POLYCHAETE ANNELIDS C a ~ i t e l l a sou. ~ ~ b o s ~ 1 1 i s t a s c i a t a Neanthes 1 imn ico la Nephthys c a l i f o r n i e n s i s Eteone spp. GlyTinde armi gera

SPIONIUAE SYP. B S,B

Spio f i 1 i c o r n i s - M,S M,S S

Magel ona spp. S Ophel ia l im iena M,S Hobsoni a f l o r i d a s,B m a p la tybranch ia M Manayunki a aestuar ina B

GASTROPOD MOLLUSCS Acmaea spp. M

B I VALVE MOLLUSCS M y t i l u s edul i s M

(continued)

M-P M-P E,P E,P P E,P E,P P E,P M-P

E, P

E, P

Page 64: The ecology of estuarine channels of the Pacific Northwest coast: A

Tab1 e 5 .1 Concl u.fetl. -

~ a l i n l t y Sediment Relevant L i f e Ctrannel Associ - A S S O C ~ - Hi s t o r y Char-

Taxa ~ a b i t a t s 1 a t i ons2 a t i ons3 a c t e r i s t i c s -------------

UIVALVE MOLLUSCS - con t 'd. Modio lus modiolus -- Macanla ba l t h i ca - - - . . . . .

Crob i cu l a man i lens is -- Protothaca stanli nea -- Saxidonlus y i yanteus - Tresus capax -- - Phol adidea pen i t a Z i r f a e a T j i s l E T i -

THNAIDS Tanais sp.

GAMMAK ID AMPH I PODS Alnphi thoe spp. Corophiurn spp.

Ani souralrlnlarus su. -- ~ o ~ a m i a r u s c o n f e r v i c o l US -- Eohaustor ius e s t u a r i u s -- ~ o n o c u l o d e s s p i n i pes -

Phoxocephalidae Paraphoxus spp.

M E, P M, S , U t,P s, 6 K-U M,S k,P M,S E,P M,S E,P M,S E,D I4 k ,P S H-E

U M-P

S, U K-P S ,U H-P

S M-P M,S P M, S M-E S U-M

Tube- dwel l e r s

DIPTERAN INSECTS Chi ronomidae U R-P Sc Larvae,

pupae _I_llll__l_______l_____l_l_l____ - I _ - - - - - - I -

1~ = mainstem; S = subs i d i a r y ; U = b l i n d . 2~ = r i v e r i n e ; O = o l i g o h a l i n e ; M = mesohaline; P = po l yha l i ne ; E =

euha l jne . ~ S C = s i l t / c l a y ; S = sand; 6 = y rave l ; C = cobble; B = bou lder ; Cn =

consol idated.

Amony t he arnphipods, Corophlum spp. SIJ~J.) were corrllnon bu t no t abundant i n t h e comprised about YO"/,f t h e t o t a l number nlature h l y h marsh channel. The smal l t e l - i n bo th marshes, w i t h ----- Anisogammarus l i n i d , --- Macoma -- b a l t h i c a , was a l so r e l a t ~ v e - con fe r v i co l us c o n t r i b u t i n g up t o 10% i n l y colllmon I n t he seGe channel but not i n - t h e sedye marsh and t a i i t r i d s and Amphi- t h e mature h igh nlarsh channel. ro ta1 den- thoe spp. a l s o o c c u r r i n g i n t h e mature s i t i e s were a l s o app rec i ab l y h i y h e r 7-

h ~ y h marsh. C a p i t e l l i d s accounted f o r (202,205 W 2 ) i n t he sedye marsh channel most (59%-75%) of t h e numbers of po l y - than i n t h e mature h i g h ~narsh (38,238 chaetes i n b o t h marsh hab i t a t s , hu t Hob- I n e 2 ) , a dens i t y d i s p a r i t y which cou ld be son ia f l o r i d a was a l s o p reva len t (>20"/. p r i m a r i l y a t t r l b u t e d t o a n i n e - t o l d h i ghe r 1 n t he sedye marsh channel, and ampharet- dens i t y o t polychaetes i n t h e sedge marsh i d s , s p i rob ids , and sp i on i ds (S t r eb l osp io channel. While t h e meiofaunal component

5 1

Page 65: The ecology of estuarine channels of the Pacific Northwest coast: A

of these d e n d r i t i c marsh channels has n o t Uu rk i n (1Y73), and K u j a l a (1975) q u a l i t a - been we l l documented, i t would appear t i v e l y descr ibed t h e r i v e r i n e d i s t r i b u t i o n t h a t i n general t h e i n f auna l i n v e r t e b r a t e of t h e c r a y f i s h Paci fas tacus len iuscu lus , assemblages i n these h i gh -e l eva t i on chan- t h e o l i g o h a l ine-euhal i n e d i s t r i b u t i o n o f ne l s are of s i g n i f i c a n t l y lower d i v e r s i t y immature sand shrimp, Crangon f r a n c i s c o r - t h a n they a re i n lower-e l evat ion, subs i d i - - um f ranciscorum, t h e mesohaline-euhal i n e a r y and mainstem channels even though t h e d i s t r i b u t i o n o f Ounyeness crab, Cancer s t and ing stock may not be s i g n i f i c a n t l y magis ter , and t h e euhal i n e d i s t r i b u t i o n d i f f e r e n t . o f t C. f ranc iscorum and C. n i g r i -

cauda. De t2 i l e d bio-1 b a s e n ne s tud- Al tnouyh cons iderable v a r i a b i l i t y i e s by H i g l e y and Ho l t on (1975) and H i g l e y

[nay e x i s t between assemblages c h a r a c t e r - e t a l . (1979) i n t h e Youngs Bay (mesohal- i z i ng coasta l and " i n l and " es tua r y com- i ne -po l yha l i ne) r e y i o n o f t h e es tuary doc- y l exes o t Puget Sound and t he S t r a i t s o f umented t h e seasonal v a r i a t i o n i n t h e Georgia and Juan de Fuca, comprehensive abundance o f C. t ranc iscorum. Mo r e i n t o n n a t i o n on channel in fauna i n t h e d e t a i l e d t empo r4 and s p a t i a l documenta- l a t t e r es tua r i es i s gene ra l l y l a ck i ng . t i o n o f t h e s tanding stock o f C. f r a n c i s - Ben th i c organisms dominat ing sandy sed i - - corum and C. mag is te r has s i n c e been ~ i l en t s o f a b l i n d channel i n a Sc i rpus proauted by -the CKEDDP s t u d i e s ( t ioughton marsh i n Puget Sound inc luded t h e m e t a l . 1980; Fox 1981). chae te Manayunkia aes tuar i na (maximum mean dens i t y % 4 x 10-1 igOchaetes ( ~ 2 x 105 m-2), the gammarid amphi pod Cons01 i da ted , these s t u d i e s repre - Corophiuln salmonis ($1 x 1u5 W 2 ) , t h e sen t a r e l a t i v e l y cohesive p i c t u r e o f t h e t a n a i d ~ana-sp.1 x l o 5 w 2 ) , and t h e co t~ l pos i t i on o f t h e m o t i l e ep i fauna i n t h e b1vdlveMacorna b a l t h i c a ( sp. 2 x 103 me2) Columbia K i v e r es tuary . A l thouyh sampl i n y (J.E. S r n i t l l 9 8 O m e these d e n s i t i e s f o r P. l en i usen lus has been n e i t h e r e f - appear n igher than those r epo r t ed i n t h e f e c t i v e nor extens ive, subs i d i a r y channels o t n e r s tud ies, t h e d i t t e r i n y s i eve mesh i n t h e r i v e r i n e and upper o l i g o h a l i n e r e - s i z e s u t i l i z e d i n these s t ud i es p rec lude g ions o f t h e es tuary appear t o harbor mod- any d i r e c t comparisons. e r a t e d e n s i t i e s o f t h i s c r a y f i s h ; occur -

rences and d e n s i t i e s i n mai nstern channel s 5.2 MOTILE EPIFAUNA and channel s lopes i s low, however, and

suggests t h a t t h e p r i n c i p a l l o c a t i o n o f M o t i l e epifauna, due t o t h e i r con- these popu la t i ons i s i n t h e l i t t o r a l o r

spicuousness o r commercial importance, sha l low sub1 i t t o r a l h a b i t a t s . At t h e t end t o be more ex tens ive ly documented mar ine end o f t h e estuary , j u v e n i l e Dun- t h a n e i t h e r infauna o r zooplankton. A l l geness c r a b and a d u l t C. n i y r i c a u d a and a r e e s s e n t i a l l y macro inver tebrates which - C. a laskaens i s appear 30 be 1 i m i t e d t o have t he a b i l i t y t o c o n t r o l t h e i r move- euha l i ne water masses i n t h e channels, a l - ment along t h e bottom. Some a c t u a l l y en- though Dunyeness crab were r epo r t ed w i t h - t e r t h e water column du r i ng some p e r i o d s i n t h e lower (seaward) p o l y h a l i n e r e y i o n (e.g., a t n i g h t ) and, as such, c o n s t i t u t e d u r i n y summer low-f low per iods. Few t h e macro inver tebrate component o f t h e mature o r g r a v i d Dungeness c rab a re found e s t u a r y ' s nekton assemblages a t these w i t h i n t h e es tuary , suggest ing t h a t t h e s e t imes. m o t i 1 e macro inver tebra tes a r e moving i n t o

t h e es tuary f rom spawning popu la t i ons As i n the case o f ben th i c in fauna, l o ca ted ou t s i de t n e mouth of t h e es tuary .

i n fo rmat ion from t h e Columbia R ive r e s t u - Crangon f ranc iscorum represen ts t h e t r u l y a r y prov ides one of t h e most comprehen- endemic e s t u a r i n e macro inver tebra te , p a r - s i v e p i c t u r e s o f m o t i l e epi fauna i n chan- t i c u l a r l y d u r i n g t h e e a r l y s tanzas of i t s n e l hab i t a t s o f coas ta l e s t u a r i e s l i f e h i s t o r y . Adu l t sand shr imp appear (Columbia River Estuary Data Deve lo~ment t o reproduce i n t h e euhal i n e r e g i o n s Prograrll 1980; Houyhton e t a l , 1980; Fox d u r i n g w i n t e r and depar t t h e es tua r y by 1981). Haertel and Osterbery (1967), m id - sp r i ng. Juveni l e sand shrimp remain

52

Page 66: The ecology of estuarine channels of the Pacific Northwest coast: A

and r e a r w i t h i n t n e es tuary , predominant- l y i n rnudf la t , s a n d f l a t and s lope h a b i t a t s but a l so i n channels. The d i s t r i b u t i o n of these popu la t ions g radua l l y expands up t he es tuary w i t h t he i n t r u s i o n o f nieso- and p o l y h a l i n e waters d u r i n y low f r esh - water f l o w th rough t h e summer months. S i m i l a r d i s t r i b u t i o n s and l i f e h i s t o r y pa t t e rns o f Crangon have been descr ibed f o r o t he r coas ta l e s t u a r i e s i n Ureyon ( K r y y i e r and Hor ton 1975).

I n 1971) t n e mean t o t a l dens i t y and s tand iny crop o f t h e m o t i l e ep i faunal assemblage i n t h e channels o f t h e Colum- b i a R ive r es tuary ranged between 0.03 and 0.26 i n d i v i d u a l s m-2 and 0.03 and 1.21 g m-2, r e s p e c t i v e l y .

Ear l i e r q u a n t i t a t i v e i n v e s t i ya t i ons o f Uungeness c rab i n Humboldt Bay (Got- s n a l l 1978) i n d i c a t e d t h a t d e n s i t i e s of crab i n t h a t l a rge coas ta l estuary a r e s i g n i f i c a n t l y h i ghe r than i n t he Columbia R i ve r o r Grays Harbor, which may be r e l a t - ed t o t h e more euhal i ne -po l yha l i n e cond i - t i o n s i n an es tuary w i t h such low r i v e r - i ne ou t f low. Demersal t r a w l catches i n d i c a t e d maxima as h i gh as 0.5 m-2 i n w in te r , 73% o f which were O t year age r e - c r u i t s ; t h e annual mean averaye c rab dens i t y f rom t r a w l catches was es t imated a t 0.09 m-2 ( a c t u a l d e n s i t y est imates by Armstrong e t a l . 1982). Underwater SCUBA surveys, however, i n d i c a t e d t h a t crabs were a c t u a l l y more dense, averaging 0.11 m-2, i n August and September. Given t h e behavior o f Dungeness crabs t o burrow i n t o sediment (MacKay 1942), seasonal and shor t - te rm v a r i a b i l i t y i n d e n s i t y e s t i - mates based upon n e t catches may be a t - t r i b u t a b l e t o t h e va r ious f a c t o r s i n f l u - enci ng t h e p r o p o r t i o n o f t he popul a t i o n which i s bu r i ed (i.e., mat ing, spawniny, feeding, exposure d u r i n g low t i d e s , low s a l i n i t i e s ) .

Extens ive i n v e s t i g a t i o n s o f Dunge- ness crab and crangonid shr imp i n Grays Harbor have been r e c e n t l y compl e ted (Armstrong e t a l . 1982) and p rov ide t h e most d e t a i l e d i n f o rma t i on a v a i l a b l e on c rab and shr imp abundances, movenients, popu la t i on dynamics and food web r e l a - t i o n s n i p s i n e s t u a r i n e channel h a b i t a t s .

Meyalops l a r v a e of Dunyeness c rab ap- peared t o have en te red Grays Harbor f rom oceanic h a b i t a t s i n s p r i n g and began t o metamorphose and s e t t l e i n ben th i c hab i - t a t s i n t h e ou te r ( euha l i ne -po l yha l i ne ) reg ions of t h e estuary . J u v e n i l e c rabs o f t h e 0+ y e a r age yroup ( r e c r u i t s ) were concentrated i n mudfl a t and ad jacen t channel hab i t a t s . The 1+ y e a r age yroup was more abundant and d i s t r i b u t e d through- o u t t h e estuary . The 2+ y e a r age group were l e s s abundant than t h e 1t year age group bu t more abundant than t h e 0 t yea r age group and were d i s t r i b u t e d predomi- n a n t l y i n t h e o u t e r r eg i on o f t h e estuary . The 3+ year -o ld crabs were r e l a t i v e l y r a r e and occurred on ly a t s t a t i o n s c l ose t o t h e mouth of t h e estuary . Mean c rab d e n s i t y ranged f rom 0.076 c rabs rn-2 t o 0.012 m-2 and general l y decreased w i t h i n c reas i ng d i s t ance up ( u p r i v e r ) t h e es tua r y i n response t o decreas ing bot tom s a l i n i t y . D e n s i t i e s i n t h e o u t e r es tuary (0.051 m-2) were s i g n i f i c a n t l y y r e a t e r than d e n s i t i e s i n t h e upper r eg i on o f t h e es tuary (0.030 m-2) and t h e same was t r u e f o r t h e p e r i o d of March-Auyust (0.048 m-2) compared t o t h e p e r i o d o f September-Febru- a r y (0.021 m-2). Considerable movement between channel and shal lower h a b i t a t s a l s o occurred as a p o s s i b l e r e s u l t o f t i d - a l i nunda t ion and dewater iny o f l i t t o r a l h a b i t a t s and as a r e s u l t o f d i e 1 fo rag ing behavior . The consequence o f these a c t i v - i t y pa t t e rns was t h a t t h e crabs were found r e l a t i v e l y congregated i n channel h a b i t a t s du r i ny day1 i yh t low t i d e per iods . Fu r t he r concen t ra t i on o f crabs i n channel h a b i t a t s was a l s o a t t r i b u t e d t o t h e e f f e c t s of r e - duced s a l i n i t i e s i n t h e sha l lower hab i - t a t s du r i ng pe r i ods o f h i g h r i v e r ou t f low.

Qua1 i t a t i ve summaries o f m o t i l e ep i - fauna i n o t h e r coas ta l e s t u a r i e s (Monroe e t a l . 1974; Percy e t a l . 1974; Kreag 1979a, b, c; R a t t i 1979a, b; Roye 1979; S t a r r 1979a, b ) f u r t h e r i n d i c a t e t h a t Dunyeness c rab u t i 1 i ze e s t u a r i n e channels t o v a r y i ny degrees, p r i n c i p a l l y depending upon t h e volume and s p a t i a l e x t e n t o f euha l i ne and p o l y h a l i n e water masses i n t h e estuary . Whi le most e s t u a r i e s appear t o resemble t h e Columbia R i v e r es tuary i n t h e l i m i t e d d i s t r i b u t i o n o f j u v e n i l e

Page 67: The ecology of estuarine channels of the Pacific Northwest coast: A

c rabs and s c a r s i t y of a d u l t crabs, Coos and T i l lamook Bays, w i t h t h e i r g r e a t e r p r o p o r t i o n a l ex ten t of euhal i n e and po l y - h a l i n e r eg i ons appear t o m a i n t a i n a d u l t p o p u l a t i o n s i n t he lower reaches and have j u v e n i l e crab popu la t ions d i s t r i b u t e d f u r t h e r up t he estuary t han t h e others . S i m i l a r l y , Dungeness c rab popu la t i ons i n t h e "i n l and" es tuar ies o f Puget Sound and t h e S t r a i t s o f Georgia and Juan de Fuca a r e endemic throughout t h e year , a l though t h e moved lower i n t h e e s t u a r y ' s channels d u r i n y s p r i n g and o the r h i g h f reshwate r f l ow per iods .

Three species of c rangon id shrimps, Cranqon f ranciscorum franciscorurn. C. n i g r i cauda , and C. s t y l i r o s t r i s , * were found t o predominate i n Grays Harbor (Armstrong e t a l . 1982). C. f ranc iscorum was p reva len t throughout - t h e es tua r y , w h i l e C. n ig r i cauda and C, s t y l i r o s t r i s were c-on on ly i n o u t e r r e a c h e s o f t h e es tua r y ; t h e d i f f e r e n t i a l d i s t r i b u t i o n o f C . n ig r i cauda and C, s t y l i r o s t r i s was - a t t r i b u t e d t o lower f i l e r a n c e t o low bo t - tom s a l i n i t i e s and some fo rm o f compet i - t i o n w i t h C. franciscorurn. The d e n s i t y d i s t r i b u t i o n o f C. f r a n c i scorum showed s t r ong seasonal pF t te rns , w i t h peak den- s i t i e s as h igh as 5 i n d i v i d u a l s m-2 oc- c u r r i n g t h e @per reaches o f t h e es tua r y i n s p r i n g through summer. Shrimp dens i - t i e s i n t h e ou te r reaches o f t h e es tua r y were s i y n i t i c a n t l y lower (0.3-0.9 rn-2) and t y p i c a l l y i l l u s t r a t e d e a r l i e r season- a l maxima than occurred i n t h e upper es tuary . Observed d i e1 f l u c t u a t i o n s i n shr imp dens i t y i n a l i t t o r a l f l a t h a b i t a t i n t h e o u t e r estuary was i n t e r p r e t e d as a n i g h t - t i m e h a b i t a t i o n o f sha l low h a b i t a t s f o r t h e purpose o f teed ing and movement i n t o channel hab i t a t s d u r i n g day1 i y h t i n o rde r t o decrease v u l ne rab i 1 i t y t o p reda t i on .

I n one o f t h e few s t u d i e s i n c l u d i n g mo t i 1 e macro inver tebrates i n channel habi - t a t s of es tua r i es i n s i d e t h e S t r a i t of Juan de Fuca, Northcote e t a l . (1976) descr ibed the d i s t r i b u t i o n and s t and i ng c rop of Cran90n f ranc iscorum th rough 150 km of t h e m ~ r a s e r R i ve r and i t s es tu - ary. U n l i k e i t s occurrence i n t h e coas t - a l es tua r i es , however, C. f ranc iscorum was -

n o t found beyond t h e po l yha l i n e r eg i on o f t h e es tua r y which i s r e s t r i c t e d t o t h e l owe r 1 0 km o f t h e Nor th and Main Arms Channel s.

A gene ra l i zed i 1 l u s t r a t i o n and char - a c t e r i z a t i o n o f mot i l e ep i fauna common t o e s t u a r i n e channel h a b i t a t s o f t h e P a c i f i c Northwest are presented i n Fig. 5.2 and Table 5.2.

5.3 EP IBENTHIC ZOOPLANKTON

The l e a s t understood component o f e s t u a r i n e communities, p a r t i c u l a r l y w i t h - i n channel hab i t a t s , i s t h a t o f t h e e p i - b e n t h i c zoopl ank te r s which occupy t h e boundary zone between t h e bot tom sub- s t r a t e and t h e water column. Increased a p p r e c i a t i o n o f t h e i r r o l e i n t r a n s f e r - r i n g d e t r i t a l carbon t o h i ghe r t r o p h i c l e v e l s (Kaczynski e t a l . 1973; Chang and Parsons 1975; S i b e r t 1979; Simenstad e t a l . 1979a). however, has r e c e n t l y spon- so red i n v e s t i g a t i o n s focused upon t h e s t r u c t u r e , s tand ing stock, behavior , and food web r e l a t i o n s h i p s o f these assem- b lages o r component taxa.

I n i t i a l l y , s t u d i e s o f ep i ben th i c zoo- p l ank ton tended t o be e i t h e r s p e c i f i c a l l y o r i e n t e d toward prominent macrofaunal t axa such as amphipods and mysids (Chang 1975; Dav i s and Ho l t on 1976; Davis 1978; Lev inys 1980a; Pomeroy and Lev ings 1980) o r , if assembl age-or iented, have by v i r- t u e o f t h e c o l l e c t i n g apparatuses been e f f i c i e n t o n l y w i t h macrofauna (Hae r t e l and Osterberg 1967). Consequently, docu- men ta t i on o f ep i ben th i c meiotauna, espe- c i a l l y f rorn q u a n t i t a t i v e o r assemblage- o r i e n t e d s tud ies , has appeared r e l a t i v e l y r e c e n t l y (Crande l l 1967; H i g l e y and Hol t o n 1975; Kask and S i b e r t 1976; S i b e r t e t a l . 1977b; Simenstad e t a l . 1979a, 1980; Houghton e t a l . 1980; S i b e r t 1981). O f t hese s t ud i es , however, o n l y t h e CREDDP s t u d i e s i n t h e Columbia R i v e r es tuary (Houghton e t a l . 1980) have p rov i ded a h o l i s t i c , q u a n t i t a t i v e d e s c r i p t i o n o f e p i - b e n t h i c meiofauna assemblages i n e s t u a r i n e channel h a b i t a t s . A gene ra l i zed il l u s t r a - t i o n and c h a r a c t e r i z a t i o n o f e p i b e n t h i c zoopl ank ton common t o e s t u a r i n e h a b i t a t s

Page 68: The ecology of estuarine channels of the Pacific Northwest coast: A

-- Pisaster ochraceous

F ig . 5.2. Represen ta t i ve i 11 u s t r a t i o n o f comr;ion m o t i l e ep i fauna assemblages o f es tua- r i n e channels o f t h e P a c i f i c Northwest.

o f t h e P a c i f i c Northwest are presented i n F i g . 5.3 and Table 5.3.

I n con junc t i on w i t h pump sampling o f e p i ben th i c zooplankton a t e leven l i t t o r a l and sha l low s u b l i t t o r a l s i t e s i n t h e Columbia R i ve r es tuary , Houyhton e t a l . (1980) and Simenstad (F ish. Res. Ins t . , Univ . Wash., unpubl. da ta ) documented t h e r e s u l t s o f e p i b e n t h i c s l e d sampl ing i n f o u r channel s i t e s d i s t r i b u t e d w i t h i n t he es tuary between Ap r i 1 1980 a n d February 1981. Over t h a t pe r iod , ep i ben th i c zoo- p l ank ton d e n s i t y es t imates i n t h e channels averaged 6.7 x 104 organisms m-3 (de f ined as 0.5 m over t h e bottom) and ranged be- tween 615 m-3 and 6.7 x 105 m-3; s tand ing c rop averayed 1.02 g b u t ranged as h i g h as 11.5 g m-3. Almost two hundred separate taxonomi c / l i fe h i s t o r y s tage c a t e y o r i e s were i d e n t i f i e d from t h e assem- b l age. The c a l ano id copepod Eurytemora

a f f i n i s and u n d i f f e r e n t i a t e d coyepod naupl i dominated t h e composi t ion based on dens i t y , compr is ing 30.5% and 17.8% o f t h e t o t a l number o f organisms, r espec t i ve - l y . There i s a major quest ion, however, whether e i t h e r Eurytemora o r copepod naupl ii should be cons idered as epiben- t h i c organisms s i nce t hey may occur c l o s e t o t h e bot tom mere ly as a r e s u l t o f en- t ra inment i n t h e deeper, more s a l i n e wa- t e r masses. Of t h e t r u e ep i ben th i c fauna, ec t inosomat id ha rpac t i co i ds (13.7%), and t h e cannel l i d h a r p a c t i c o i d S c o t t o l ana canddens i s (9.5%) predominated n m e r i c a l ~ ly . Eurytemora a1 so dominated (31.9%) t h e stand% crop, f o l l owed by Crangon fran- c iscorum (18.4%); among t h e t r u e epiben- t h i c zoopl ankton, Neomysis mercedis (6.7%), Sco t t o l ana canadensi s (5.- Corophium sal moni s (4.6%) predominated t h e composi t i o n g r a v i m e t r i c a l l y . Standing s tock o f ep i ben th i c organisms as measured

Page 69: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 5.2. I t em iza t i on and c h a r a c t e r i s t i c s o f m o t i l e epifauna common t o estu- a r i n e channel h a b i t a t s of t he P a c i f i c Northwest.

--- Re1 evant

L i f e Sal i n i t y Sediment Hi s t o r y

Channel Associ- Associ- Character- Taxa ~ a b i t a t l a t ions2 a t ions3 i s t i c s 4

ECHI NODEKMS P i saster ochraceous Pycnopodia he1 ianthoides

DECAPODS P a c i f i castacus 1 en i uscul us s,B R SC F-ED Crangon a1 askensi s M P-E s,G 0-MC C . c i scorum - -- M,S,B 0- E S,G 0-MC; only

juveni 1 es extend i n t o 01 i gohal i ne

M E S, ti 0-MC M Cn , B F-ED M,S M-E S,G F-BC ;

Appear p r i n c i p a l 1 y as j uven i l es

C . y roductus - M,S M-E SC ,S F-BC ------- ----

1~ = mainstem; S = subsid iary; B = b l ind . 2~ = r i v e r i n e ; 0 = o l i goha l i ne ; M = mesohaline; P = po lyha l ine ; E =

euhal ine. 3~~ = s i l t l c l a y ; S = sand; ti = grave l ; C = cobble; B = Boulder; Cn =

consol idated. 40- = ob l iga te ; F- = f a c u l t a t i v e ; BC = benth ic carnivore; ED = epiben-

t h i c d e t r i t i v o r e ; MC = meiofauna carnivore.

by the s led i n 1980 general ly increased between Apr i 1 and May, decl ined i n ~une,3 increased again i n Ju ly and August, and decl ined between October and February 1981. Peak mean standing stock t y p i c a l l y occurred i n the estuar ine mixing (mesohal- ine) reg ion of the estuary. This phenome- non cou ld be a t t r i b u t e d t o e i t h e r physical entrainment of the zooplankters w i t h i n the nu1 1 zone o r increased production and d i v e r s i t y of zooplankton assemblages due

3 ~ a m p l i n g immediately f o l lowed the May 18 erupt ion o f Mount St, Helens and the r e s u l t i n g i n f l u x of t u r b i d freshwater i n t o t h e estuary.

t o the accumulation o f d e t r i t a l food re- sources by s e t t l i n g and f l o c c u l a t i o n (see Sect ion 4.2). Houghton e t a1 . (1980) con- cluded t h a t epibenthic zooplankton assem- blages i n t he Columbia R iver estuary could be p a r t i t i o n e d i n t o the th ree basic assem- blages described by Haertel and Osterberg (1967): 1) a r i v e r i n e assemblage which i s p r i m a r i l y a product o f t h e freshwater Columbia River ecosystem above the estu- ary, 2 ) a euryhal ine, mix ing zone assem- b l age o f i n d i genous es tuar ine species, and 3 ) a marine assemblage, much o f which i s cont r ibu ted by the t i d a l i n t r u s i o n o f oceanic water through the mouth o f t he estuary. Some prominent taxa such as t h e

5 6

Page 70: The ecology of estuarine channels of the Pacific Northwest coast: A

HBIBcflnosoma spp

' ' AcanlhMnys~s spp . '

ArChaeOmySlS grebnifakrl '

F ig . 5.3. Represen ta t i ve ill u s t r a t i o n of common ep iben th i c zooplankton assemblages of -.-L ..-.- :-- - L - - - . - _ T L _ L _ . ~ _ ~ - -.E n--:z:- rt,....ch ..,,, +

ect inosomat ids and Sco t to lana canadensis, however, a r e d i s t r i b u t e d u b i q u i t o u s l y throughout t h e es tua r y , even upstream i n t h e r i v e r i n e reg ion .

Crande l l (1967) a l s o employed an e p i - ben th i c s l e d (Cl ark-Bumpus) and descr ibed t h i r t y - t w o taxa o f ep i ben th i c h a r p a c t i c o i d and cyc l opo id copepods i n t h e channel h a b i t a t s o f Yaqui na Bay, Oregon. A1 though t h e s l ed samples were n o t cons idered quan- t i t a t i v e , based s imp ly on occurrence, t h e prominent h a r p a c t i c o i d taxa i nc l uded T i s - be f u r ca ta , M i c r o a r t h r i d i o n 1 i t t o r a l e , x - -. ph iasce l l a &bil i s, Canuel l a (= S c o t s 1 ana : Coul 1 m a n a d e n s i s , para tha les - tris. - sp. and ~ c h i z o p e r a sp., and the cy- c l opo id copepod Ascomyzon latum. Crande l l concluded t h a t t h e ep i ben th i c fauna i n t h e channels d u r i n g t h e w i n t e r were de r i ved p r i m a r i l y f rom mud f l a t assemblages b u t t h a t an endemic channel assemblage domi-

nated by T isbe f u r c a t a had developed by f a1 1 ; t h i s x e - p a t t e r n was r e1 a t - ed t o lower water temperatures i n t h e f a l l and an extended p e r i o d o f r e l a t i v e l y h i g h bottom sa l i n i t i e s which enabled more mar ine forms t o e n t e r t h e bay v i a t h e channel s.

Whi le t h e s t r u c t u r e and s tand ing s tock o f t h e channel assemblages o f e p i - ben th i c zooplankton i n t h e Columbia R i v e r and Yaquina Bay e s t u a r i e s i 1 l u s t r a t e d con- s i d e r a b l e temporal and s p a t i a l v a r i a t i o n , no e f f o r t was expended t o q u a n t i t a t i v e l y e s t a b l i s h t h e r e l a t i v e r o l e o f b i o t i c ( r e - p roduc t ion , rec ru i tment , growth, se l ec - t i v e p reda t i on ) and a b i o t i c ( s a l i n i t y , temperature, c u r r e n t v e l o c i t i e s , sediment s i ze , s t r uc tu re , and o rgan i c con ten t ) f ac - t o r s i n account ing f o r t h e d i r e c t i o n o r magnitude o f t h e v a r i a t i o n . W i l l i ams (1983) step-wise mu1 t i p l e r eg ress i on

Page 71: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 5.3. I t e m i z a t i o n and c h a r a c t e r i s t i c s of e p i b e n t h i c zooplankton common t o e s t u a r i n e channel h a b i t a t s of t h e P a c i f i c Northwest.

Re1 evant Li f e Channel S a l i n i t y Sediment H i s t o r y Char-

Taxa ~ a b i t a t s 1 ~ s s o c i a t i o n s ~ ~ s s o c i a t i ons3 a c t e r i s t i c s

ROTIFEKA Brachionus spp. Asplanchna spp.

CRUSTACEA

CLADOCERA Diaphanosoma brachyururn

?- spp* id%2$%as!ip. Bosmina sp. Evadne nordmanni Podon spp. Alona spp. Chydorus spp. Leydi g ia spp.

OSTRACOUA Limnocythere sp.

COPEPODA

CALANOIDA Eurytemora a f f i n i s D i aotomus soo. - - r r -

A c a r t i a spp.

HARPACTICO IDA Scot to lana canadensi s Ectinosornatidae M i c r o a r t h r i d i o n 1 i t t o r a l e Tachidius spp. Laophont i dae Para leptastacus sp, N i t oc ra SD. ~untemann; a jadens is Bryocamptus sp.

BUI b a m ~ h i z c u s sp. Ha 1 e c t i nosoma s p .

R-0 R-M R R-0 R-0 P-E R-U R-E H-0 R

R-E R-E 0-E

M, S R-E M,S R-E M,S K-E M7S K-E M R-E M E M M-E M 0-E M -E M R-P M,S M-E SYB P-E S 9 B P-E M-B 0-E S M-E S M-E MPS M-E M ,S M-E

(cont inued)

58

SC-G N N

S S SC-S S S S S S S S S-G SC SC SC-S S S S S

Page 72: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 5.3. Concluded. I___--- R e l e v a n t L i f e

Channel S a l i n i t y Sediment H i s t o r y Char- Taxa ~ a b i t a t s l ~ s s o c i a t i o n s ~ ~ s s o ~ i ~ t i o n s 3 a c t e r i s t i c s

CYCLOPOIDA Corycaeus spp. Cyclops spp. Oithona spp. Cycl op i na spp.

M R-E N M R-E N M M- E N M ,S P-E SC

MY S I DACEA Acanthomysis spp. Neomvs i s mercedi s N. i n t e g e r - Archaeomysis g r e b n i t a k i i Holmsie l 1 a anomal a

CUMACEA Lamprops spp. Leucon sp. L e p t o s t y l i s p a c i f i c a Cumel 1 a vu l g a r i s

M-S M-S M- S M-S S

S M-S S 5-B

P-E R -E P-E P-E P-E

SC-G SC-G SC-G SC-G S C

P-E E

P-E SC-S

AMPHIPODA Corophium salmonis M- B 0-P SC-S C. sp i n i co rne M- i3 0-P SC-S Anisogammarus sp. M- B 0-P SC-G

con fe r v i co l us M-B 0-E SC-G - M- S 0- E SC-G Eohaustor ius sp. M-S 0-E S

I SOPODA Gnorimosphaeroma oreyonensi s M- B 0- E S-B Munna spp. S E ------ SC-S

1~ = mainstem; S = s u b s i d i a r y ; B = b l i nd . 2~ = r i v e r i n e ; 0 = o l i g o h a l i n e ; M = mesohaline; P = po l yha l i ne ; E = euha l i ne . ~ S C = s i l t / c l a y ; S = sand; G = g rave l ; C = cobble; B = boulder; Cn = c o n s o l i d a t e d ;

N = no d e f i n i t i v e sediment a s ~ o c i a t i o n .

analyses o f t h e 1980 CKEDUP e p i b e n t h i c o r - gani sms data, however, p rov i ded a p r e l im i - nary i n d i c a t i o n t h a t taxonomic c o r r e l a - t i o n s may be more impor tan t t h a n phys i ca l f ac to r s i n e x p l a i n i n g t he v a r i a t i o n i n organi sin d e n s i t i e s . Neomysis mercedi s d e n s i t i e s were h i g h l y c o r r e l a t e d w i t h Crangon f r a n c i scorum d e n s i t i e s ; Sco t to - W n a d e n s i s w i t h ec t i nosoma t i d harpac- t i c o i d , Eurytemora a f f i n i s , and Cyclops Spp. d e n s i t i e s ; and Cyclops SPp. h i g h l y s i g n i f i c a n t l y carrel ated w i t h Crangon

f ranc i scorum, Neomysis merced i s, and Sco t to lana canadensis. P h y s i c a l f a c t o r s , on the o the r hand, p rov i ded o n l y weak co r - r e l a t i o n s , i .e., Cyclops spp. w i t h t i d a l e l e v a t i o n and s a l i n i t y , S c o t t o l a n a cana- densis w i t h t i d a l e l e v a t i o n and s u z e water temperature, and e c t i n o s o m a t i d har- pac t i co i ds w i t h t i d a l e l e v a t i o n and date. Thus, w h i l e phys ica l f a c t o r s such as s a l - i n i t y apparent ly i n f l u e n c e t h e d i s t r i b u - t i o n o f ep i ben th i c zoop lank ton t axa through t he es tuary , t h e standing s tock

Page 73: The ecology of estuarine channels of the Pacific Northwest coast: A

S t r u c t u r e o t t h e va r i ous assemblages rnay v e l o c i t i e s i nd i ca ted t h a t p o s i t i v e thigmo- be more t h e r e s u l t of t h e d i s t r i b u t i o n of t a x i s , espec i a l l y i n dayt ime under no cur - food resources, t h e o r e t i c a l l y d e t r i t u s , ren t flow, was over1 apped w i t h p o s i t i v e and ca rn i vo res on meiofauna. r heo tax i s under c u r r e n t c o n d i t i o n s such

t h a t behaviora l compensation f o r down- S tud ies o f e p i b e n t h i c zooplankton i n stream d r i f t cou ld occur up t o 5-10 cm

e s t u a r i e s w i t h i n t h e S t r a i t s o f Juan de sec-1 v e l o c i t i e s . This and da ta from sim- Fuca and Georgia and Puget Sound have gen- i l a r s tud ies i n t h e Squamish es tuary e r a l l y focused more upon t h e i r f u n c t i o n a l (Levings 1973) i n d i c a t e d t h a t ep i ben th i c r o l e , p a r t i c u l a r l y as prey of j u v e n i l e amphipods were l i k e l y t o be washed ou t o f salmonids, than upon community s t r u c t u r e the estuary a t h igher c u r r e n t v e l o c i t i e s . w i t h i n t h e es tua r i es . Nor tncote e t a l . (1976) sampled e p i ben th i c macro inver te- b ra tes (>1 mm) i n shal low s u b l i t t o r a l , s lope, and channel h a b i t a t s a l ong 150 km Levings (1980b) f u r t h e r examined t h e o f t h e Fraser R i ve r es tuary and lower v e r t i c a l d i s t r i b u t i o n and abundance o f r i v e r . Maximum d e n s i t y ( '~100 m-2) and epibenthos i n channel h a b i t a t s o f t h e low- s t and ing crop (s5UO my m-2) occurred i n e r Fraser River es tuary and i l l u s t r a t e d t h e No r t h and Main Arms reg ions of t h e t h a t E. con fe r v i co l us was more abundant es tuary . I n most cases, comparisons o t i n the-bottom d r i f t ne t and pump samples, d e n s i t y and s tand ing c rop i n t h e t h r e e where d e n s i t i e s as h i gh as 65 m-3 were deptn h a b i t a t s i 1 l u s t r a t e d sharp decreas- reached. es w i t h i n c reas i ny depth. Average taxa d i v e r s i t y tended t o increase u p r i v e r and t o be l owes t a t depths over 6 rn. Uomi- nan t e p i b e n t h i c zooplankton t axa inc luded Extens ive sampling o f meiofauna i n a rnysids (Neomysis mercedi s, Acanthomysi s subs id ia ry t i d a l channel o f t h e Nanaimo spp.); d i p t e r a n and o the r i n s e c t la rvae ; R ive r estuary has been conducted as p a r t and amphipods ( Eogammarus con fe rv ico lus , o f a j o i n t study o f t h e prey resources o f Corophium spp.). Euryhal i n e species such j u v e n i l e salmon i n t h e es tuary (Kask and as 1. ~ n e r c e d i s and I. con fe r v i co l us ex- S i b e r t 1976; S i be r t e t a l . 1977a; S i b e r t tended 40 km up t h e es tuary w h i l e d i p - 1979; S i be r t 1981). Whi le t h e e a r l i e s t t e r a n and o the r i n s e c t l a r v a e decreased study invo lved ben th i c co re sampl ing o f markedly between t h e lower mainstem and t he meiofauna, 1 a t e r s t u d i e s s p e c i f i c a l l y e s t u a r i n e s t a t i ons . Benth ic o l igochae tes attempted t o sample o n l y e p i b e n t h i c forms and mo t i l e ep i fauna (Cranyon f ranc iscor - more represen ta t i ve o f t h e prey assem- um; see Sec t ion 5.2) -so dominant blage ava i l ab l e t o f o r a g i n g f i sh , e i t h e r - components o f these ep i ben th i c sampl es. u t i l i z i n g an ep i ben th i c s l e d ( S i b e r t e t

a l . 1977a) o r pump ( S i b e r t 1981). Us ing The d i s t r i b u t i o n , abundance, and a d iver-operated s led, Si b e r t e t a l .

behav io r o f ep i ben th i c isopods (Gnorimo- (1977a) descr ibed average e p i b e n t h i c ha r - sphaeroma oreyonensis) and amphipods p a c t i c o i d copepod d e n s i t i e s of 9,240 m-3 w m s p i n i corne, Eoyammarus (Ani so- which, a1 though q u i t e s u b s t a n t i a l , were g ~ ~ c o n f e r v i c o l u s ~ were i n c l u t r e d n s t i 11 o f t e n o rders o f mayni t ude l e s s t han -and Chany's (1977) s t ud i es o f t he d e n s i t i e s measured by comparable c o r e i n f l uence o f cu r ren t ve l oc i t i e s upon t h e sampl es. S t r uc tu re o f t he s l ed-captured benthos o f t h e Fraser R i ver estuary. They ha rpac t i co i d assemblage was n u m e r i c a l l y documented t h a t t h e abundance o f epiben- dominated by ect inosomids, Tach id ius d i s - t h i c crustaceans c o l l e c t e d i n d r i f t bay c ipes, Paras tenhe l ia horne l 1 i , and H z - samplers appeared t o be a f f e c t e d by cu r - emannia jadensis ; Harpac t i cus sp., f-isbe r e n t v e l o c i t i e s , w i t h maximum abundances sp. and Hetero laophonte 1 i t t o r a l i s also o c c u r r i n g i n s ide channels w i t h lower cu r - occurred f r equen t l y i n t h e s l e d samples r e n t v e l o c i t i e s , Associated labora to ry but were no t we l l represented i n t h e c o r e s t ud i es o f t h e a c t i v i t y pa t t e rns o f E. samples, suggest ing t h a t t hese a r e t r u e c o n f e r v i c o l us under d i f f e r e n t cu r re f i t ep i ben th i c forms.

60

Page 74: The ecology of estuarine channels of the Pacific Northwest coast: A

Fu r t he r d e f i n i t i o n o f t h e s t r u c t u r e and d i e 1 f l u c t u a t i o n s of ep i ben th i c zoo- p l ank ton was accomplished u s i n g an ep i - ben tn i c pump w i t h i n t akes l o c a t e d w i t h i n 5 cin and 30 cm of t h e sediment surface. These experiments i 11 u s t r d t e d t ha t , de- s p i t e homogeneous water c h a r a c t e r i s t i c s , s i g n i f i c a n t l y (2x t o 20x) and p e r s i s t e n t - l y h i ghe r d e n s i t i e s occur red 5 cm from t h e bottom t han 30 cm above it. Haroac t i - c o i d ( i .e.., Harpac t i cus Sep ten t r iona l i s ( = H. un i remis ) , M i c r o a r t h r i d i o n lity t o r a r e , - ectinosomi ds , Dac t y l o p S G -- crass ipes , T isbe spp.) , c a l anoid (Eury- - temora h i r undo ides ) , and c y c l opoid cope- W ( 0 i t h o n a sp.) formed t h e major taxa i n t h e assembl aqe. Harpac t i co i d s averaaed between 32 a n i 330 i n t he h i g i e r depth s t r a t a and 370 t o 2,800 m-3 i n t h e lower s t r a t a . Thus, these ep i ben th i c o r "hyperbenthi c " (Beyer 1958; Hesthagen 1973) assemblages c o u l d o r i g i n a t e from bo th upward rl~ovement o f su r face-dwe l l i ng b e n t h i c spec ies ( B e l l and Sherman 1980) and downward movement o f p l ank ton i c species. A1 though t h e comparable r o l e s o f a c t i v e m i g r a t i o n and pass ive d i f f u s i o n a r e unknown, S i b e r t (1981) suggested t h a t hyperbenth ic popu la t i ons o r i g i n a t e from both s i n k i n g p l ank ton and scoured meiofauna which a r e p h y s i c a l l y en t r a i ned i n t h e t u r b u l e n t boundary l a y e r . It was a l s o suggested t h a t such ent ra inment may be advantageous t o t he hyperbenth ic o r yan i sms f rom t h e s t andpo in t o f h i yher concen t ra t i ons o f food p a r t i c l e s t rapped w i t h i n t h e t u r b u l e n t l a ye r . Given t h e phys i ca l parameters de te rm in i ng t he con- d i t i o n s promot ing equ i 1 i b r i um between s i n k i n g and t u r b u l e n t m i x i n g ( f r i c t i o n a l d rag v e l o c i t y , p a r t i c l e d i f f u s i o n c o e f f i - c i en t , and c u r r e n t v e l o c i t y ) , t h e s p a t i a l dimensions o f hyperben th i c popu la t ions w i t h i n va r ious e s t u a r i n e h a b i t a t s and t h e temporal p a t t e r n o f t u r b u l e n t 1 ayer forma- t i o n and pe r s i s t ence over t i d a l cyc les are l i k e l y t o be h i g h l y va r i ab l e . Unfor- t u n a t e l y , such d e t a i 1 ed da ta and analyses a re not ava i 1 able.

Whi le cons iderab le sampl ing of ep i - ben th i c zoopl ankton has been conducted w i t h i n t h e S t r a i t o f Juan de Fuca and Puget Sound (Simenstad e t a1. 1979b; Simenstad e t a l . 198U), ve ry l i t t l e has

occurred i n e s t u a r i n e ~ n a n n e l h a b i t a t s . B lay lock and t i ough ton (1981) u t i l i z e d t h e s a w e q i b e n t h i c p l a n k t o n pump used i n t h e CREDOP s t u d i e s on t h e Columbia R i v e r es tuary ( t ioughton e t a l . 1980) t o sample ep i ben th i c assemblages i n Commencement Bay. A l though c l u s t e r a n a l y s i s o f t h e combined 1 i t t o r a l and sub1 i t t o r a l , es tua r - i n e and inar ine saniples d i d no t i l l u s t r a t e d i s t i n c t e p i b e n t h i c zooplankton assemblag- es assoc ia ted w i t h es tua r i ne channel s i t e s , t h e e p i b e n t h i c assemblages i n t h e b l i n d (wa te rway) channels tended t o be l e s s d i ve r se t h a n t h e more mar ine o r t h e mid-1 i t t o r a l s i tes, While t h e h a r p a c t i - c o i d copepod assemblages were n o t de- sc r ibed taxonoini c a l l y by s i t e , qua1 i t a t i v e assessment o f t h e samples has i n d i c a t e d t h a t T i sbe spp. , Typhlamphiascus i f e r , and H h y n c h o t n a l e s t r i s - spy were dominan t t a x a i n t h e ep lben th ic h a b i t a t s o f t h e channels (J. Cordel 1, Univ. Washington, personal com- municat ion) . Corophium spp. was t h e o n l y p reva len t gammarid amphi pod; Microcalanus sp. and Pa raca lanus sp. were prominent ca lano id c m o r y c a e u s spp. and Cy- c lop ina sp. we re t h e most common c y c E - p o i d copeyods; and Cumella vul a r i s was t h e dominant curnacean i n t e channel assemblages.

+- Simenstad and Co rde l l (1980) a l s o

descr ibed t h e c o m p o s i t i o n and d e n s i t y of ep i ben th i c o rgan i sms co1 l e c t e d a t t h e end o f a b l i n d c h a n n e l ( C i t y Waterway) i n Com- mencement Bay w i t h t h e ep i ben th i c s l e d de- sc r ibed by S i b e r t e t a l . (1977a). Among t h e t r u e ep i b e n t h i c zoopl ank te rs cap tu red by t h e s l e d (as t h e s l e d skimmed t h e su r - face sediments, t h e m a j o r i t y o f t h e organ- isms captured w e r e ben th i c nematodes and polychaete a n n e l i d s ) , a low d i v e r s i t y assemblage of h a r o a c t i c o i d copepods was prominent. ~ u l b a ~ ~ h i a s c u s sp.' and Meso- chcra 1 i 11 j e b o r g i c o n s t i t u t e d t h e s- nant h a r p a c t i c o i d cope~ods and T isbe sp. was abundant a t seve'ral s i t e s . T e r a i l dens i t y of e p i b e n t h i c organisms w i t h i n 10 cm o f t h e b o t t o m was est imated t o average 42,020 m-3 and s t a n d i n y crop 1.1 g n r 3 .

A1 though t h e s e d i v e r s e s t u d i e s o f e p i b e n t h i c z o o p l ank ton were n e i t h e r sys- temat i c nor S y n o p t i c w i t h regard t o es tu -

Page 75: The ecology of estuarine channels of the Pacific Northwest coast: A

a r i n e h a b i t a t s , i t 5 s e v i d e n t t h a t much v a r i a t i o n i n s t r u c t u r e and s tanding crop w i t h i n es tua r i ne channel h a b i t a t s ex i s t s . I n cases such as b l i n d , f i ne sediment channels w i t h o r g a n i c enr ichment, the re i s evidence f o r d r a m a t i c a l l y d i f f e r e n t assembl ayes from m o r e e u r y h a l i ne, coarser sediment channels . 5.4 PELAGIC ZOOPLANKTON AND NEUSTON

Pe lag ic e s t u a r i ne zooplankton and neuston o r i g i n a t e f r om th ree general sources (Cron in et a 1 , 1962; Haertel and Osterberg 1967) : 1) those associated w i t h f reshwater water masses, 2) those assoc ia ted w i t h oceanic wa te r masses, and 3) those endemic t o the e s t u a r y and asso- c i a t e d w i t h e u r y h a l Sne waters , Neustonic organisms, a1 t h o u g h c o n s t f t u t i n y less we1 1 - es tab l i shed a s s e m b l a g e s i n es tuar ies as compared t o f r e s h w a t e r o r f ~ o r d habi - t a t s , where t u r b u l e n c e and mix ing a re not as extreme, may i n c l u d e both d i s t i n c t popu la t ions o f zoopl a n k t e r s as we1 l as t e r r e s t r i a l d r i f t o r g a n i s m s t ranspor ted i n t o t h e estuary .

Freshwater zoop 1 ank t e r s t ranspor ted i n t o t h e upper reaches of es tuar ies can o f t e n c o n s t i t u t e a s i g n i f i c a n t p ropor t ion o f t h e e s t u a r y ' s zoopl a n k t o n assemblage, e s p e c i a l l y i n t h e 1 a r g e coas ta l es tuar ies where t he r i v e r i n e sys tems are la rge enough t o m a i n t a i n s t a b l e zooplankton pop- u l a t i o n s w i t h i n the r lver i t s e l f . This i s p a r t i c u l a r l y t rue f o r t h e Columbia Riv- e r es tua r y and Grays Harbo r , where h i gh d e n s i t i e s of the c l a d o c e r a n s Da hnia -Y-s spp., Bosmina spy. , Cer iodayhn ia gua- rangul a,~hanosoma brachyurum, t he m d copeyod D i a t o m u s spp., and the + cyclopo id copepods yc opS spp., espec ia l - l y C. ve rna l i s , a r e c o m m o n l y found du r i ng sumFer months {tlaerte'l and Osterberg 1967; Simenstad and ~~c.jers 1981 1. Haertel and Osterberg (1967) recorded t h e h ighest den- s i t y ( 2,700 rn-3) of f r e s h w a t e r zooplank- t e r s 37 km from the mouth of the Columbia R ive r es tuary d u r i ny t h e pe r i od o f maxi- mum temperature and l o w e s t t u r b i d i t y The dens i t y t h e r e f e l l t o below 100 m-3 d u r i n g t h e w i n t e r per iod of low temyera- t u r e s and h i g h turbid3tY. Dens i t i es o f pe l ag i c zoop lank ton , i n c l u d i n g many fresh-

water forms, i n a r i v e r i n e channel habi - t a t o f Grays Harbor reached maxima of on l y 30-60 rn-3 through t h e summer months (Simenstad and Egyers 1981).

Oceanic zooplankton inunda te es tua r - i e s v i a the t i d a l i n t r u s i o n o f marine water masses and become most prominent dur ing per iods o f lowest r i v e r i n e d i s- charge. Along t h e P a c i f i c Northwest coast t h e prominent marine zoopl ank te rs t rans - ported i n t o coas ta l e s t u a r i e s i nc l ude t h e c l adocerans Evadne nordmanni and Podon spp., t he ca l anoid copepods Cal anus spp., Pseudocal anus m i nutus, Cent ropayes a b d o m i n m Ep i lab idocera amph i t r i t e s , and Acar t ia spp., and t h e cyc l opo id c o p e p o d s y e a e u s angl i cus and O i thona s i m i l i s ; E i l a b i d o c e r a i s a neuston ic f o r m . C o n s l d e r a b b e seasonal v a r i a t i o n i n dominant zoopl ankters t r anspo r t ed i n t o t he estuary occurs as a r e s u l t o f changes i n nearshore c u r r e n t s and nearshore mar- i n e community s t r uc tu re . M i l l e r (1972) and Frolander e t a l , (1973) i l l u s t r a t e d t h a t nor thern coas ta l o r s u b a r c t i c ocean species, such as t he marine ca l ano id cope- pods Aca r t i a c l a u s i and Pseudocalanus sp., dominated t h e o o p l ankton assembl aye o f Yaquina Bay i n summer, r e f l e c t i n g souther ly su r face cu r ren t s o f f sho re , w h i l e dur ing t he w i n t e r n e r i t i c spec ies charac- t e r i s t i c o f t h e C a l i f o r n i a coas ta l assem- b l aqes such as Paracal anus ~ a r v u s . Cteno- -- calanus vanus, 'Clausoca ~ a n u s a r c u l c o r n i s, -- and the c m u o i a coueood Corvcaeus anul i- ., r - 4 - -. cus were t r a n s u o r t i d ' i n t o t he bay froin - northward-f l ow i ng nearshore c u r r e n i s and became codominant w i t h A. c l a u s i . - -

Prevalent marine zoopl ank te rs i n Grays Harbor a l s o va r i ed over t h e sp r i ny - f a l l pe r i od as documented by Simenstad and Eggers (1981 ). ~ v a d n e - nordmanni , Podon sp., Pseudocalanus spp., Acar t i a long i remis and A. tonsa were c o m m o ~ dur iny summer T h r o u g h m i d - f a 1 1 ; Calanus sp. and M e t r i d i a lucens occur red yredomi - nan t l y i n l a t e w in te r t o e a r l y sp r ing ; and Centropages abdonlinal i s and A c a r t i a - claus i occurred abundant ly from s p r i n g - throuqh e a r l y surnmer. D e n s i t i e s of t h e marine zoop l ink ton assemblage i n t h e Co- lumbia R i ve r es tuary appeared t o peak a t 1.750 m-3 i n t h e f a l l , w i t h average

Page 76: The ecology of estuarine channels of the Pacific Northwest coast: A

d e n s i t i e s of % 500 t h roughou t t he yea r ( ~ a e r t e l and Osterberg 1967 ). Dens i t i e s o f n e r i t i c zooplankton a t t h e ent rance t o Grays Harbor, which was dominated who le ly by mar ine euhal i n e forms, reached an e a r l - y maximum o f %850 m-3 i n A p r i l and a sec- ond, fa1 1 rnaxima of %200 m-3 b u t averaged ~ 2 0 0 m-3 over t h e e n t i r e pe r i od . Mean s tand ing crop i l l u s t r a t e d y r e a t e r f l u c t ua - t i o n s ; es t imates i n t h e s p r i n g t e l l be- tween 200 my m-3 i n A p r i l and 1 y m-3 i n e a r l y June bu t reached a maximum o f o n l y a 1 0 mg m-3 i n t h e f a l l . The average mean s tand ing c rop over t h e e n t i r e p e r i o d was 55 mg 111-3.

Endemic zoopl ankton wh ich sus ta i n popu la t ions w i t h i n P a c i f i c Northwest e s t u a r i n e channels a re dominated by t h e ca l ano id Eurytemora spp.; E. a f f i n i ; p re - domi nates i n t h e C o l u m b i a H i v e r t u a r v -.

(Haer te l and Osterberg 1967; Eng l i sh 2 a l . 1980) w h i l e - E. americana appears t o p r e v a i l i n many o f t h e o t h e r coas ta l e s t u a r i e s such as Grays Harbor (Simenstad and Egyers 1981), Yaquina Bay (Fro lander e t a l . 1973), and t h e Salmon R i ve r es tuary (Johnson 1981). Eurytemora tends t o complete ly dominate t h e zooprankton assemblages i n t h e mesohal ine rey ions o f these e s t u a r i e s and can a t t a i n h i gh popu- l a t i o n s tand ing s tock l e v e l s under ce r - t a i n low r i v e r i n e d ischarge s a l i n i t y r e - gimes. Haer te l and Os te rberg (1967) r e - por ted two peaks i n Eurytemora d e n s i t y i n t h e Columbia R ive r es tuary , one i n A p r i l (108 x 103 m-3) and another i n J u l y (39 x l o 3 mm3). Eurytemora were most p reva len t when sur face s a l i n i t i e s were 0.Z-8°/00, when t h e mean o f t h e top and bot tom s a l i n - i t i e s was 0.2-16°/00, and when t h e bot tom s a l i n i t y was g rea te r than 0.2°/00. x- temora i n Grays Harbor was second (20% of mean t o t a l d e n s i t y ) o n l y t o A c a r t i a c l a ~ s i (22%) and a l s o i l l u s t r a t e d two dens l t y maxima, one i n l a t e A p r i l (408 m-3) and another f rom Auyust t o t h e end of October ( ' ~ 8 0 m-3). I n Yaquina Bay, Johnson (1981) documented t h a t , u n l i k e e c a r t i a c l a u s i which occurs seasona l l y l n t h e -reaches, t h e congener i c 6. c a l i f o f - n i e n s i s was a b l e t o p e r s i s t as an endemlc m i o n i n t h e upper r e g i o n of t h a t estuary .

Maintenance o f e n d e ~ n i c z00p1 ankton popu la t ions i n Paci t i c Nor thwes t es tua r - i n e cnannels can pose a m a j o r problem due t o t h e t y p i c a l l y s h o r t f l u s h i n g t imes, h i gh deyree of t u r b u l e n t m i x i ng , and n e t seaward f l o w common a t a l m o s t a l l depths d u r i n y the s p r i n g and summer. U n l i k e t h e i ndi yenous e s t u a r i n e z o o p l a n k t o n popul a- t i o n s i n o t h e r r e g i o n s , which have evolved r ep roduc t i ve r a t e s and v e r t i c a l m i y r a t i o n t o compensate f o r t h e seaward 1 oss o f zoopl ank te r s , E ury temora popul a- t i o n s i n p a c i f i c N o r t h w e s t coas ta l es tua r - i e s appear t o be more v u l n e r a b l e t o de- p l e t i o n d u r i n y h i g h d i scharge f l u sh i ng . Poss ib le a1 t e r n a t i v e rnecnani sms, such as l a t e r a l m i g r a t i o n o r e n t r a i n m e n t i n low v e l o c i t y water masses s u c h as i n t h e n u l l zone o r ep i ben th i c bounda ry l a y e r , may expl a i n t h e p e r s i s t e n c e o f Eurytemora popul a t i ons i n these systems. Neverthe- less , extreme r i v e r i ne d ischarge and f l ood ing have been r e p o r t e d t o reduce Eurytemora p o p u l a t i o n s i n t h e Columbia R i v e r by t h r e e o r d e r s o f magnitude (Haer te l and Os te rberg 1967).

A c l a s s i c s tudy o f e s t u a r i n e mainten- ance i n a pe l ag i c z o o p l a n k t o n popu la t i on i s Johnson's (1981) r e v e a l i n g ana l ys i s o f A c a r t i a c a l i f o r n i e n s i s i n Yaquina Bay. m r s i s t e n t o c c u r r e n c e of we1 1-def i ned cohor ts i n t h e upper r e g i o n o f t h e es tua r y was concluded t o r e s u l t from s h o r t l i f e expectancy o f a d u l t females, w i t h minor re in forcement from s p r i n y t i d e s . Hssum- i ng pass ive behav io r , t i d a l f l u s h i n g was est imated t o remove a rnaxirnum o f 3.4% t o 8.7% per day, b u t a c t u a l behav io ra l u t i l - i z a t i o n o f t h e l a n d w a r d f l o w i n g coun te r - cu r ren t and r es i dence i n t h e e s t u a r y ' s n u l l zone min imized t i d a l f l u s h i n g loss - es. The abundance of a d u l t s was, howev- er , c o n t r o l l e d by i n t e n s e , s i z e - s e l e c t i v e p reda t ion by z o o p l a n k t i v o r o u s p e l a g i c school i n y f i shes ( s e e S e c t i o n 9.1).

I n a d d i t i o n t o n o r m a l sexual r ep ro - d u c t i o n of o v e r w i n t e r i n g adu l t s , rep len- i shment of endemic z o o p l ankton popu la t i ons a f t e r low abundances d u r i n g un favorab le w i n t e r and Spr ing m o n t h s may a l s o be enhanced by t h e h a t c h i n g o f dormant o r r e s t i n g eyys which h a v e overw in te red i n bottom sediments, as has been documented

Page 77: The ecology of estuarine channels of the Pacific Northwest coast: A

f o r A c a r t i a c a l i f o r n i e n s i s i n Yaquina t3ay a c t e r i z a t i o n o f p e l a g i c zooplankton and (Johnson 1981). neuston commorl t o e s t u a r i n e h a b i t a t s o f

t h e P a c i f i c Northwest a re presented i n A yene ra l i zed i l l u s t r a t i o n and char- F ig . 5.4 and Table 5.4.

CHANNEL SLOPES

TONIC (DRIFT) INSECTS

ONlC CALANOID WASPS

EPU.bMQCara mphitr4ss

MARINE COPEPODS

Evadne nordmMnr

P $ ~ ' m minutus .

colycwus mg*us Cm*, s(M

0x)ronn rm*ls . L(,EA

MEGALOPS FISH EGGS & LARVAE

Fig. 5.4. Representat ive i l l u s t r a t i o n of common pe lag ic zooplankton and neuston assem- b lages of es tua r i ne channels o f t h e Pac i f i c Northwest.

6 4

Page 78: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 5.4. I t e m i z a t i o n and c h a r a c t e r i s t i c s o f p e l a g i c zooplankton and neuston common t o e s t u a r i n e channel h a b i t a t s of t h e P a c i f i c Nor thwest .

Re1 evant Channel Sal i n i ty L i f e H i s t o r y

Taxa ~ a b i t a t s 1 ~ s s o c i a t i o n s 2 C h a r a c t e r i s t i c s

COELENTERATA Cordy l ophora sp.

POLY CHAETA Pol yno i dae Spion idae

GASTROPODA M y t i l u s sp.

VENEROIDA

Macoma sp.

ROTIFERA Brach i onus spp. Asp1 anchna spp.

CLADOCERA Daohnia SDD.

Chydorus spp. Di aphanosoma brachyurum

COPEPODA CALANOIDA

Calanus spp. Paracal anus spp. Pseudocal anus mi nutus M e t r i d i a lucens Centropages abdominal i s D i aptornus spp. Eurytemora spp. Ep i 1 ab idocera amphi tri t e s A c a r t i a spp.

M E,P Larvae M E7P M E, P

M E-M

M7S E-M

M-B E-M

R-M R-M

R-0 R-0 R-0 E-M E-M R-0 R-0 R-0

E-M E-M E-M E-M E-0 R-0 R-E E-0 E-M

Larvae Larvae

Larvae and un- s e t t l e d j u v e n i l e Larvae and un- s e t t l e d j u v e n i l e Larvae and un- s e t t l e d j u v e n i l e

(cont inued)

55

Page 79: The ecology of estuarine channels of the Pacific Northwest coast: A

Tab le 5.4. Continued.

Re1 evant Channel Sal i n i t y L i f e H i s t o r y

Taxa ~ a b i t a t s 1 ~ s s o c i a t ions* C h a r a c t e r i s t i c s

HARPATCICOIDA

CYCLOPOIDA

Paracyclops f i m b r i a t u s O i t hona s im i 1 i s

BALANOMORPHA M- B Cypri s 1 arvae

MYSIDACEA Acanthomysi s spp. Neomysi s spp.

MYS M-B

E-M R-E

CUMACEA Leucon spp. CumelTa spp.

AMPHI PODA Corophi urn spp. R-E P r i n c i pa l 1 y

a d u l t males and j u v e n i l e s P r i n c i p a l l y a d u l t males and j u v e n i l e s Juven i les

Eogammarus c o n f e r v i c o l us M- B

Ani sogammarus spp. MYS

ISOPODA Gnorimosphaeroma oregonensi s M-B

BOPY R I DAE M,S Juveni 1 es

DECAPODA Crangon spp. R-E P r i n c i p a l l y

j u v e n i l e s Larvae Larvae Larvae

Cancer spp. P I NNOTHER IDAE

E-M E-0 E-M Upogebia puge t t ens i s

(cont inued)

G6

Page 80: The ecology of estuarine channels of the Pacific Northwest coast: A

Tab1 e 5.4. Concl uded.

Re1 evant Channel Sal i n i t y L i f e H i s t o r y

Taxa ~ a b i t a t s l ~ssociations2'~haracteristics

TELEOSTE I Engraul i s mordax OSMERIDAE GAD I DAE

M E-M Eggs and l a rvae M E-0 Eggs and l a rvae M E ,P Larvae

Cottus asper GOB I I D A E

M-B R- E Larvae M E-0 Larvae

INSECTA EPHEMER ILLIDAE GERRIDAE PLECOPTERA PERLODIDAE CHIRONOMIDAE

M- B R-E M- B R-E M-B R-E M-B R- E M- B R-E I n c l udi ng 1 arvae

ARACHNIDA HYDRACARINA M- B R- E

1~ = mainstem; S = subsidiary; B = b l ind . ZR = r i v e r i n e ; 0 = o l igoha l ine ; M = mesohaline; P = polyhal ine;

E = euhaline.

Page 81: The ecology of estuarine channels of the Pacific Northwest coast: A

CHAPTER 6

FISH ASSEMBLAGES OF ESTUARINE CHANNELS

According t o tne i r assoc ia t ion with t h e bottom o r w a t e r column, f i shes o f Paci f i c Nor thwest e s t u a r i n e channels can be c a t e y o r i zed r e s p e c t i v e l y as demersal o r pe lay ic . In many instances, however, t h e r e i s c o n s i d e r a b l e over lap i n species occurrences i n t h e two hab i t a t s due t o behav io ra l ( v e r t i c a l m i y ra t i on , s a l i n i t y preterences) o r 1 i f e h i s t o r y (demersal o r p e l a y i c l a r vae , spawning a c t i v i t y ) c h a r a c t e r i s t i c s .

6.1 DEMEHSAL FISHES

Despi te t h e t y p i c a l l y dynamic cnarac- t e r i s t i c s of t he b e n t h i c environs o f estu- a r i n e channel hab i t a t s , d i ve r se assemblay- es of derrlersal f i s h have become adapted t o l i v e and r ep roduce amid the t u rbu l en t n i x i n y , h i g h t u r b i d i t i e s , low l i g h t l e v - e l s , and v a r i a b l e food resources there. Un l i ke t h e sa lmon ids , which have been s t ud i ed e x t e n s i v e l y i n many Paci t i c North- west es tuar ies , d e ~ n e r s a l f i s h assemblayes have been r e l a t i v e l y ignored. Only r e - c e n t l y have comprehensive research pro- yracrls such as t h e CREOOP stud ies on the Columbia River e s t u a r y and those funded i n Grays Harbor by t h e U.S. Army Corps o f Enyineers documented de~nersa l f i sh assem- b lages i n channe I s th roughou t the estuar- ies, Synthesis o f t hese sources (Nat l . Mar. Fish. Serv. 1980, 1981; Simenstad and Eggers 1982; C. Simenstad and D. Ar~nstrony, School F ish. , Univ. Wash.. unpubl ished da ta ) and more 1 imi ted i n f o r - mat ion from t h e Columbia River estuary ( t l ae r te l and O s t e r b e r g 1967; Durkin 1975; Du rk i n e t a l . 1976, 1979, 1981; Hig ley e t a1 . 1976), o t he r c o a s t a l Oregon es tuar ies (Percy e t a l . 1974; Heimers and Baxter 1976; blul len 19771, t h e Fraser River estu- a ry (Nor thcote e t a l . 19791, the Duwarnish R ive r estuary (lufatsuda e t a] . 1968), and Commencement 8ay (We i tcamp and Schadt 1981) i nd i ca te t h a t 43 spec ies (Table 6.1)

o f demersal f i s h occur commonly. Uf these, n i ne species (denoted by * ) gener- a l l y occur i n most e s t u a r i e s (F i g . 6.1). Assembl aye s t r u c t u r e v a r i e s s i gn i f i c a n t l y among these es tuar ies , however. Sources o f t h i s v a r i a t i o n are myr iad but appear t o r e l a t e p r i n c i p a l l y t o t he r e l a t i v e ex ten t o f s a l i n i t y i n t r u s i o n , t h e c h a r a c t e r i s t i c s o f the freshwater watershed, yeoyraphi c reg ion , and es tuar ine microhabi t a t .

The e f f e c t o f sa l i n i t y i n t r u s i o n and f l u s h i n g c h a r a c t e r i s t i c s i n s t r u c t u r i n y t h e assemblage i s most ev i den t when t h e decnersal f i s h assemblages o f the Columbia and Fraser River es tua r i es a re co~npared t o those o f l e ss freshwater-dominated codsta l es tua r i es 1 i k e Coos and Yaquina Bays. Whereds euryhal i ne taxa such as t h e coast- a l surfperches ( the hexagrarn~nids spp.; l i ngcod , commonly i n s i de the 1 a t t e r bays, they se l - dom en te r the Colu~nbia o r F raser R ive r es tua r i es beyond t he narrow euryhal i ne reg i on w i t h i n the f i r s t 2-3 km.

The d i v e r s i t y o f t h e demersal f i s h assemblage w i t h i n a g iven es tuary t y p i c a l - l y va r i es as a f u n c t i o n o f t h e f i shes i sa l i n i t y to lerances and h a b i t a t r equ i r e - ments. The Nat ional Mar ine F i s h e r i e s Ser- v i c e (1981) descr ibed t h e d i v e r s i t y (Shan- non-Weaver Index, H1 ) o f bot tom t r aw l -cap- t u red f i shes i n the Columbia R i v e r es tuary as reaching a maximum mean va lue (H'; = 2.4) between 9 and 23 km upstream from t h e mouth o f the estuary and d e c l i n i n g r a p i d l y when proceeding upstream t o a minimum H'x = 0.8) a t the r i v e r i n e extreme o f t he es- t u a r y (F ig . 6.2a). Th is conforms c l o s e l y t o t he r e s u l t s o f Hae r t e l and Osterberg (1967), who i n d i c a t e d t h a t t h e g rea tes t number o f species and abundances o f f i s h e s occurred c o n s i s t e n t l y w i t h i n t h e

Page 82: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 6.1. I t e m i z a t i o n and c h a r a c t e r i s t i c s o f demersal f i s h e s common t o es tua r i ne chan- ne l s o f the P a c i f i c Northwest. --- ---.------------.-----

T e T ; i ; v d % i ----me

Taxa Channel S a l i n i t y Sediment l i f e h i s t o r y ( cmnon name) --- -- -- - -- - -- ----- h a b i t a t s 1 - associa t ions? assoc ia t ions3 characteristics'! - PETROMYZONTIDAE

+%%%a%;+ L. l r i d e n t a t a T ~ a c i f i c laniprey)

M- S R-E N P

M-S H-E N P

SUUAL lDAE Squalus acanth ias M E N F-€8 TSp%ij-domi

R A J 1 DAE Ra a b i n o c u l a t a

S i t j i S T T - f M E S-G 0-EB

ACIPENSERIOAE Aci enser medi r o s t r i s H M-E N F-EB

breen s t u F e r P- A. transmontanus H R-E SC-B F -E I T ~ h i t e s turgeon)

SALMON I DAE P r o s o e m w i l l iamsoni H R-H N F-El3 m n t a ~ n i Z i T i t X s T

CYPRINIDAE C r i n u s c a r i o * r c i 7 +

*M l o c h e f l u s cau r l nus 7 k i U m -

M-S

M-s

M-S

Rh in ich thys f a l c a t u s M- S Keojard-dace) Richardonius b a l t e a t u s 7ilZEG--STn?-ieS;r----

R-N SC-S 0

R-N SC-G F-El3

F-EM

0-Ell

CATUSTOMI DAE Catostomus macroche i lus M-S R -H N F-El3 rime sucker)

(;AD I OAE

SYNGNATHIDAE S n nathus l e t o r h nchus - h i -

CENTRARCH IDAE Pomoxis a n n u l a r i s - p I i i c r a p p i e ) -

PEHCIOAE Perca f lavescens TvTTTow perch)

M-E

S-C F-EP

SC-G 0-EP; P a r t i c u l a r l y assocfated w t t h ee lgrass and macroal yae

F-EP

F-EP

(cont inued)

69

Page 83: The ecology of estuarine channels of the Pacific Northwest coast: A

Tab1 e 6.1. Cont i nued. -- Relevant

Taxa Channel S a l i n i t y Sediment l i f e h i s t o r y (cornon name h a b i t a t s 1 - assoc ia t i ons2 assoc ia t i ons3 c h a r a c t e r i s t i c s 4 -

EMBIOTOCIDAE Amphis i t i chus rhodoterus m d t a i l sur fperch)

S-C 0-EP; P a r t i c u l a r l y asso- c i a t e d w i t h ee l grass, macroal gae, and s t r u c t u r e s

M-B 0-E SC-B F-EP; P a r t i c u l a r l y asso- c i a t e d w i t h ee l grass, macroal gae, and s t r u c t u r e s

Embiot ica l a t e r a l i s M-S t S t r i p e d s e a p e r c h l

M

H. ana le M T s o o t f i n s u r f ~ e r c h 1 ti ' e l l i t i cum T i i h i r c h ) *

P-E G-Cn F-EP

P-E N F-EP

P-E N F-EB

P-E N F-EB

ST ICHAEIDAE *Lum enus sa i t t t -*r&acx )

M-B 0-E SC-G F-MB; Common t o ee lg rass beds

PHOL IDAE Phol i s o rnata ( S a d d l e ~ u n n e 1 )

AMMOOYT IDAE

HEXAGRAMMI DAE

H. 1 agocephalus TROC~ green1 i ny)

0 h iodon e lonyatus ?&I

COTT IDAE *Cottus asper t m l y s c u l p i n )

*Le t o c o t t u s armatus 7 h . a w c u l p i n) Scor aen ich th s marmoratus 7m:+,

S-B M-E S-G F-EP; P a r t i c u l a r l y asso- c i a t e d w i t h rnacroal yae

M-S

M-S

M-B

M- B

M-6

M

M-E

M-E

M-E

R-M

E

R-E

P-E

S-G

SC-G

S-C

SC-C

S-C

0-EP; Frequent ly b u r i e s i n sand; o the rw ise p e l a y i c

F-EB; P a r t i c u l a r l y asso- c i a t e d w i t h m ic roa l gae; I p e l a g i c l a r v a e and e a r l y j u v e n i l e s F-EB; P a r t i c u l a r l y asso-

I

c i a t e d w i t h mi c r o a l yae; p e l a g i c l a r v a e and e a r l y j uven i l e s 0-EB; P a r t i c u l a r l y asso- I c i a t e d w i t h microalgae; I

p e l a g i c l a r v a e and e a r l y j u v e n i l e s

F-EB

AGNOIDAE S t e l l e r i n a xyosterna M P-E S-C F-EB ( P r i ck lebreast poacher)

CYCLOPTER~OAE M- S M-E S-C F-EP

(con t i nued)

70

Page 84: The ecology of estuarine channels of the Pacific Northwest coast: A

- - Table 6.1. Concluded. - - . . - - .--- *-- ' - ---. -- - -- . - - -RTeeVnttt--'---- - -- Ta xa Channel S a l i n i t y Sed i m n t 1 i f e h i s t o r y

(comnon name) hab i ta t s1 _ _ - - a s s o c i a t i o _ n ~ ~ a s s o ~ i a t i ~ ~ s ~ s ~ ~ 5 h a r a ~ t e r i s t i ~ s 4 -- - - - - - - - -- - L. r u t t e r i M-S P-E S-C F-EP TRi-snai 1 f i s h )

C i t h a r i c h t h s sord idus d d ~ .

M- S M-E S-C F-EP; Pe lag ic l a r v a e

*Fipstiy;eus eck e sanddab)

PLEURONECTIDAE

PLEURONECTIDAE - cont inued

M-S

M-S

M-E F-EP; Pe lag ic l a r v a e

S-C F-EB; Pe lay i c l a r v a e

*Par0 h r s vetu lus v * s r

M-B M-E SC -C F-EP; Pel ag l c 1 a rvae

* P l a t i c h t h s s t e l l a t u s M-B H-E SC-C F-EB; Pe lag ic l a r v a e T s G i + k u r Pse t t i ch thys melanost ic tus M-S M-E S-C F-EB; Pe lag i c l a r v a e I sand so le )

*species p reva len t i n a l l P a c i f i c Northwest es tua r ine channels. = mainstem; S = subs id iary ; B = b l i n d

2~ = r i v e r i n e ; O = o l i g o h a l i n e ; M - mesohaline; P = po l yha l i ne ; E = euha l i ne ~ S C = s i l t l c l a y ; S = sand; G = y rave l ; C cobble; B - boulder; Cn = consol idated; N no

d e f i n i t i v e sediment assoc ia t ion. 4~ = p a r a s i t i c on o the r f i s h ; F- f a c u l t a t i v e , 0- = ob l i ga te ; PP a p e l a g i c p lank t f vo re ; EP =

ep ibenth ic p l a n k t i v o r e ; EB = ep ibenth ic benthivore; MB = meiobenthic benthivore; 0 8 omnfvore.

o l i g o h a l i n e t o mesohal ine reg ions no mat te r where t h i s m i x i ng reg ion was loca ted w i t h i n t h e es tuary due t o va r ia - b i l i t y i n r i v e r d ischarge. Durk in e t a l . (1981) a l s o i n d i c a t e d t h a t abundance of demersal f i s h was h i yhes t i n those chan- ne l ( "scour " ) s i t e s w i t n i n t h e m ix ing o r n u l l zone r eg i on o f t h e estuary , wh i l e d i v e r s i t y dec l i ned un i f o rm l y as d is tance from t h e mouth o f t h e es tuary increased.

The compounded e f f e c t s o f f i s h emi- g ra t i on , immi y r a t i o n , and rec ru i tment of j u ven i l es , and o f r i v e r d ischarge on s a l i n i t y d i s t r i b u t i o n w i t h i n t h e estuary a l s o account f o r seasonal s h i f t s i n d i v e r s i t y o f demersal f i s h assembl ayes. From t h e same 18-month, 22 -s i te bottom t r aw l sampl ing s e r i e s c i t e d above, t he Na t iona l Marine F i she r i es Serv ice (1:81) a lso documented t h a t peak d i v e r s i t y (H, = 2.2) occurred between October , ahd December, and mininium d i v e r s i t y ( H ; = 1.2) occur red between May and Ju l y (F ig . 6.2b). The occurrence and ex ten t of t h e

dens i t y minimum may, however, be unrepre- sen ta t i ve because o f t h e unusual e f f e c t s o f t he drarnat ical l y - i n c reased t u r b i d i t y l e v e l s du r i ng t h i s p e r i o d as a r e s u l t o f t he May 18, 1980 e r u p t i o n o f M t , St. Helens i n the Columbia R i ve r watershed. Among t he p r i n c i p a l demersal f i s h e s i n t he estuary , s t a r r y f lounder , p r i c k l y scu lp in , and P a c i f i c s taghorn s c u l p i n i 1 l u s t r a t e d tew major changes i n nurneri- c a l a v a i l a b i l i t y over the 18-month p e r i - od; a v a i l a b i l i t i e s of sh iner perch, P a c i f - i c sand lance E n y l i s h so le , and b u t t e r so le , on t h e o t h e r hand, f l u c t u a t e d b o t h monthly and seasonal l y ; snake p r i c k 1 e- back, sand so le , and P a c i f i c tomcod a v a i l a b i l i t y v a r i e d i n t e r m e d i a t e l y on a seasonal scale.

6.2 PELAGIC FISHES

Unl i ke demersa I t i s h assemb 1 ages, pe l ay ic f i shes i n e s t u a r i n e channel h a b i t a t s o t t e n occur s p o r a d i c a l l y because

Page 85: The ecology of estuarine channels of the Pacific Northwest coast: A

Fig . 6.1. Representat ive i l l u s t r a t i o n o f common f i s h assemblages o f e s t u a r i n e channels of the Pac i f i c Northwest.

Fig, 6,2. Mean Shannon-Weaver d i v e r s i t y index ( H I K ) of demersal f i s h e s i n t h e Columbia River estuary as a func t ion o f l o c a t i o n a long t h e l o n g i t u d i n a l a x i s of t he es tua r y (A) and aver t h e 18-month sampling pe r i od ( B ) ; f i g u r e f rom Na t l . Mar. F ish . Serv. (1981).

7 2

- :x 2 . r, * $ a W > 8 1 .

- :X 2. I >

5 - W Z 0 1 .

. 0 1 0

1

20 30 40 50 60 FEE MAR AQR M A Y JUNE JULY hUC SEPT CCT NOV M C JAN FEB MAR

MSTANCE FROM MOUTH OF ESTUARY (km) 1900 DATE 1981

Page 86: The ecology of estuarine channels of the Pacific Northwest coast: A

o f t h e i r m o t i l i t y and c h a r a c t e r i s t i c asso- c i a t i o n w i t h d i s c r e t e water masses o r as a f unc t i on o f l i f e h i s t o r y pa t te rns . For ins tance , t h e occurrence and res idence t ime i n t h e es tua r y o f anadromous spec ies i s general l y a f u n c t i o n o f m i y ra to r y behavior. Many spec ies occur s o l e l y as p e l a g i c 1 arvae and j u v e n i 1 es (meropl ank- t o n ) d u r i n g b r i e f pe r i ods i n t h e i r e a r l y l i f e h i s t o r y b u t emig ra te from t he es tu - ary , become demersal , o r move i n t o ad ja - cen t h a b i t a t s as j u v e n i l e s and adu l t s .

S i m i l a r t o t h e i n f o r m a t i o n about demersal f i s h , t h e m a j o r i t y o f t h e com- prehensive s t ud i es o f pe l ag ic f i s h assem- b layes i n e s t u a r i n e channels o f t h e r e g i o n have occur red i n t h e l a r g e r e s t u a r i e s such as t h e Columbia R i v e r (Haer te l and Osterberg 1967; Durk in e t a l . 1979, 1981; Na t iona l Mar ine F i s h e r i e s Serv ice 1980, 1981), Grays Harbor (Simenstad and Eggers 1981), and t h e F rase r R i v e r (Nor thco te e t a1 . 1979) ; some smal l er , coas ta l e s t u a r i e s have been surveyed, however, i n c l ud ing Coos Bay (Cummings and Schwartz 1971), T i 1 lamook Bay (Cummings and Ber ry 1974; Forsberg e t a l . 1975), t h e Umpqua R iver (Mu l len 1977), and Sixes R i ve r (Keimers and Bax te r 1976). I ch thyop l ankton has a l s o been addressed s p e c i f i c a l l y i n t h e Columbia R i ve r es tua r y (Mi s i tan0 1977; Eng l i sh 1980), Yaquina Bay (Pearcy and Myers 1974), and Humbol t Bay (E ld r i dge and Bryan 1972) and i n c i d e n t a l l y i n Grays Harbor (Simenstad and Eggers 1981). Syn- t h e s i s o f these sources i n d i c a t e s t h a t 36 t axa r ep resen t i ng 16 f a m i l i e s a re common f i s h e s i n t h e p e l a g i c assemblages o f Pa- c i f i c Northwest e s t u a r i e s (Table 6.2). Of these, 13 a r e anadromous, 16 appear e x c l u s i v e l y as i ch thyop lank ton , and o n l y t h e remain ing e i g h t comprise taxa which cou ld be cons idered t o ma in ta i n extended res idence i n e s t u a r i n e channel s.

U n l i k e t h e p a t t e r n o f demersal f i s h assembl aye d i v e r s i t y i n t h e Columbia K i ve r es tuary , t h e Na t iona l Marine F ish - e r i e s Serv ise (1981) documented maximum d i v e r s i t y (HT = 1.7) o f p e l a g i c (purse se ine-cauyht ) f i s h e s i n t h e c e n t r a l m i x i ng r eg i on o f t h e es tuary , 20 t o 35 km from t h e mouth, and below average d i v e r s i t y values i n b o t h e u r y h a l i n e and r i v e r i n e

reg ions (F ig . 6.3a). Temporal d i v e r s i t y o f t h e pe l ag i c f i s h assemblage was a l s o d r a m a t i c a l l y d i f f e r e n t f rom t h e demersal assemblage. I n an almost m i r r o r image o f t h e p a t t e r n o f t h e demersal, f i s h assem- blage, maximum d i v e r s i t y (Hz = 2.2) o f p e l a g i c f i s h e s occur red i n tne, s p r i n y and dec l i ned t o a w i n t e r minimum (ti- = 0.5) i n an almost m i r r o r image o f t h e X p a t t e r n o f t h e demersal f i s h assemblage (F ig . 6.3b). As noted e a r l i e r , however, t h e e f f e c t s o f increased t u r b i d i t y from t h e e r u p t i o n o f M t . St. Helens i n May 1980 may b i a s i n t e r p r e t a t i o n s o f t h e May-July 1980 data.

6.2.1 Resident Pe lag i c F ishes

Among t h e common p e l a g i c f i s h e s i n e s t u a r i n e channels, t h e c l u p e i d s ( h e r r - i n g s ) , enyraul i d s (anchovies) , osmerids ( sme l t s ) , a t h e r i n i d s ( s i l v e r s i d e s ) , and ammodytids (sand 1 ances), commonly r e - f e r r e d t o as a group as " b a i t f i s h , " com- p r i se t h e m a j o r i t y o f t h e non-anadromous, r e s i d e n t f i shes ; t h e th ree-sp ine s t i c k 1 e- back comprises t h e o n l y n o n - b a i t f i s h r e s i - dent. P a c i f i c h e r r i n g u t i l i z e P a c i f i c Northwest es tua r i es f o r spawning and r e a r - i n g o f l a r v a e and e a r l y j u v e n i l e stages. Spawning t y p i c a l l y occurs i n s h a l l ow sub- t i d a l h a b i t a t s between January and Ju ly , w i t h cons iderab le v a r i a t i o n among estu- a r i e s . Spawning i n t h e Columbia R i v e r es tua r y occurs between March and J u l y and may i nvol ve severa l ma jo r spawni ngs (Mis i- tan0 1977; Nat l . Mar. Fish. Serv. 1981). In Yaquina Bay h e r r i n g spawn e a r l i e r , between January and March (Pearcy and Myers 1974), and may a1 so undergo as many as f o u r major spawnings ( S t e i n f e l d 1972). Accord ing ly , 1 arvae may occur i n t h e channels over a p r o t r a c t e d p e r i o d o f t ime, between March and August i n t h e Columbia R ive r es tua r y (Mi s i tan0 1977) and between January and May i n Yaquina Bay (Pearcy and Myers 1974). Spawniny may be annua l l y sporadic , however, as bo th Eng l i sh (1980) and Simenstad and Eggers (1981) r epo r t ed low abundances o r no h e r r i n g l a r v a e i n t h e Columbia R i ve r es tua r y and Grays Harbor, r e s p e c t i v e l y , i n 1980. Juven i le he r r i ng , whether o r i g - i n a t i n g w i t h i n o r t r a n s p o r t e d i n t o t h e es tua r y as l a r v a e o r pos t - la rvae , tend t o

Page 87: The ecology of estuarine channels of the Pacific Northwest coast: A

Tab1 e 6.2 I temi r a t i o n and charac ter is t i c s of pelagic f ishes comnon t o estuar ine chan- n e l s o f t he Pac i f i c Northwest. ----.--- ------

Channel S a l i n i t y Re1 evant 1 i f e Taxa - - - hab i ta ts1 associations2 h i s to ry cha rac te r i s t i cs3

CLUPE IDAE Alosa sa idissima ~ i *

0-E 0-PP; Anadromous

0-E 0-PP; Also occurs i n i ch thy- oplankton; spawn i n estuary

ENGHAULIDAE M M-E 0-PP; Occur p r i n c i p a l l y as

larvae and j uven i l es

SALMONIDHE Oncorh nchus gorbuscha -Fix-hG)

M-B K-E F-PP; Anadromous

0. k e t a (chum salmon) U. k i s u t c h (coho salmon) g. 'ner 'kasockeye salmon)

M-B M-B M-S M-S

R-E R -E R-E R -E

0-EP ; Anadromous F-EP; Anadromous 0-PP; Anadrornous F-EP; Anadromous 0 tsfiaw tscha

76 h b n 1 Salmo c l a r k i Tcutth-rou t ) S.t9a; rdner i

ee head t r o u t )

M-B R-E F-PPs ; Anadromous

M-B K-E F-PP; Anadromous

Sa l v e l inus malma' (Do1 l y Varden)

M-S H-E F-PPs; Anadromous

OSMEH I DAE M

M-S

M-S

M-S

M-E

M-E

0-E

0-E

0-PP; Also occurs i n i ch thy- oplankton F-PP; Also occurs i n i ch thy- oplankton F-EP; Anadromous ; a1 so occurs i n ichthyoplankton C-PP; Anadromous ; a1 so occurs i n ichthyoplznkton

H omesus re t iosus f h l h - , S i r i nchus tha le i ch th s

Mic ro adus roximus - m k t o k M-E 0-EP; Occurs on ly i n i ch thy- oplankton; demersal as juve- n i l e and adu l t

0-PP; Anadromous

0-EP

ATHER INIUAE Atner inoys a f f i n i s M-S 0-E

R-E ~ a s t e r o s t e u s aculeatus M-B nhree-sp ined s t i ck1 eback)

(continued)

74

Page 88: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 6.2. Continued. - - --

Channel Sal i n i t y Re1 evant 1 4 fk Taxa -. habi t a t s 1 assoc ia t ions2 h i s t o r y c h a r a c t e r i s t i c s 3 -

PERCICHTHYIDAE Morone s a x a t i l i s - m p m

M R-E F-EP; Anadrofnous

STICHAEIDAE M-S M-E 0-PP; Occurs o n l y i n i c h t h y -

o2lankton; moves t o demersal h a b i t a t s as j u v e n i l e s and a d u l t s

\urnpenus s a g i t t a Snake p r i c k 1 eback)

PHOC I DAE M-E 0-PP- Occurs o n l y i n i c h t h y -

oplenkton; moves t o demersal h a b i t a t s as j u v e n i 1 es and a d u l t s

Phol i s o rna ta w e m u n n e l )

AMMODYTIDAE 0-PP; A lso o c c u r s i n i c h t h y - op lankton

M-E Arnmod t e s hexa t e r u s -&s*

GOBI IDAE M-S 0-PP; Occurs o n l y i n i c h t i i y -

oplankton; moves t o sha l low 1 i t t o r a l h a b i t a t s a s juve- n i l e s and a d u l t s 0-PP; Occurs o n l y i n i c h t h y - o p l a n k t m moves t o sha l low l i t t o r s l h a b i t a t s a s juve- n i l e s and a d u l t s

M-E

M-E C leve land ia i o s (Arrow goby)-

SCORPAENI DAE Sebastes melano s m o d

P-E

M-E

F-PP; A lso o c c u r s i n i c h t h y - opl ankton 0-PP; Occurs o n l y i n i c h t h y - opl ankton

Sebastes spp. - ( = h )

HEXAGRAMMI DAE 0-PP; Occurs o n l y i n i c h t h y - oplankton; moves t o demersal h a b i t a t s as j u v e n i l e and a d u l t 0-PP.. Occurs o n l y i n i c h t h y - oplankton; moves t o demersal h a b i t a t s as j u v e n i 1 e and a d u l t

M-E Hexa rammos spp. *)

M-E 0 hiondon e longa tus -h

C OTT I DAE 0-PP; Occurs o n l y in j c h t hy - oplankton; moves t o demersal h a b i t a t s as j u n e n i 1 e and a d u l t

B-P M-B Cot tus asper v - l y scu l p i n)

(cont inued)

7 5

Page 89: The ecology of estuarine channels of the Pacific Northwest coast: A

Tab1 e 6.2. Concl uded. ---

Channel Sal i n i t y ~ e l e ian t 1 i f e Taxa hab i ta ts1 associations2 h i s to ry charac ter i s t i cs3

Le tocot tus arrnatus M-tc . l d k i E X i g h o r n scul p~ n)

Scor aenichth s marmoratus 7-

M

M-E 0-PP; Occurs on l y i n i ch thy- oplankton; moves t o demersal hab i ta ts as j u v e n i l e and adu l t

M-E

0-PP; Occurs on l y i n ichthy- oplankton; moves t o demersal hab i ta ts as j u v e n i l e and adu l t 0-PP; Occurs on l y i n ichthy- oplankton; moves t o demersal hab i ta ts as j u v e n i l e and adu l t

PLE URONECT I DAE l s o se t ta i s o l e i s -&o+

M M-E 0-PP; Occurs on ly i n i ch thy- oplankton; moves t o demersal hab i ta ts as j u v e n i l e and adu l t

Paro h r s vetulus n + s r M M-E 0-PP; Occurs on ly i n i ch thy- oplankton; moves t o demersal hab i ta ts as j u v e n i l e and adu l t

P l a t i c h t h s s t e l l a t u s 1 4 u r

M 0 -E 0-PP; Occurs on ly i n i ch thy - oplankton; moves t o demersal hab i ta ts as j u v e n i l e and adu l t

Pse t t i ch th s me1 anost ic tus 7-e-

M M-E 0-PP; Occurs on ly i n i ch thy - oplankton; moves t o demersal hab i ta t s as j u v e n i l e and

- - adu l t

1~ ,. mainstem; S = subsidiary; B = b l i n d 211 r l v e r l n e ; 0 = o l igoha l ine ; M mesohaline; P polyhal ine; E = euhal ine 30- ob l iga te ; F- = facu l ta t ive ; PP = pelagic p lankt ivore; EP = ep ibenth ic

p lankt ivore; PPs = pe lay lc p i sc i vo re

rear i n estuarine waters usual ly b 2UQ/,, sal fni ty through summer and l a t e fa1 1. A t l e a s t among the coasta l estuaries, few juven i l e herr ing contlnue to res ide long- e r than 8-10 months. Although Pac i f i c he r r f ny have been reported i n inland estuar ies (Fraser River , Northcote e t a1 . 1979; Squamish River, Levy and Levings 1978; Duwamish River, Matsuda e t al. 1968), most herr ing spawning and rearing appears t o occur i n t h e adjacent bays and f jords of Puget Sound and the S t r a i t s o f G@orgia and Juan de Fuca ( M i l l e r e t al.

1978, 1980; M i l l e r and Borton 1980; Trumble e t a l . 1977; Meyer and Adair 1978; Fresh 1979; Fresh e t a l . 1979; Gonyea e t a l . 1982). Her r ing spawning appears t o be h igh ly co r re la ted w i th the occurrence of substrates s u i t a b l e fo r egg deposit ion, such as eelgrass and macroal- gae, and w i th moderately h igh water f l ush - i n g rates. This may exp la in why h e r r i n g spawning tends t o be more pronounced i n such coastal estuar ies as Yayuina Bay and Coos Bay than i n more freshwater-dominated es tuar ies such as the Columbia R iver estu-

Page 90: The ecology of estuarine channels of the Pacific Northwest coast: A

1 , , , , , , , , I , , , , , . . , . . , , , , . i

0 10 2 0 30 40 50 . 60 FEE MAR IPR MAY JUNE JULY LI.#Q SEPT O C T NOV M C JAN FE8 MAR

DISTANCE FROM MOUTH OF ESTUARY (km) 1680 1981 DATE

F ig . 6.3. Mean Shannon-Weaver d i v e r s i t y index ( H I x ) of pe l ag i c f i s h e s i n t h e Columbia R i ve r es tua r y as a f unc t i on of l o c a t i o n a long t he l o n g i t u d i n a l a x i s o f the e s t u a r y ( A ) and over t h e 18-month sampl ina pe r i od (B) ; f i g u r e from Nat l . Mar. F i s h . Serv. (1991!.

ary , which has no ex tens ive ee ly rass o r ke l p bed hab i t a t s . Keariny o f l a rvae and j u v e n i l e s i n channels appears i n i t i a l l y t o be a f u n c t i o n o f o f f shore -es tuar ine c i r c u l a t i o n and l a t e r , w i t h t h e i r r e c r u i t - ment f rom t h e p l ank ton t o t h e nekton, a f u n c t i o n o f prey ( c a l anoid copepods, i .e. A c a r t i a c l a u s i i , Pseudocalanus sp.) availabi 1 i t n s s e l l 1964; Pearcy and Myers 1974).

Most n o r t h e r n anchovy eggs, larvae, and j u v e n i l e s which occur i n t h e r eg i on ' s e s t u a r i n e channels o r i y i na te from spawn- i n g popu la t ions i n ad jacent coas ta l wa- t e r s , a l though spawning has been repor ted i n bays and passages o f Puget Sound ( M i l l- e r and Bor ton 1980). Kichardson (1973) descr ibed concen t ra t i ons o f anchovy l a r v a e i n near-sur face s t r a t a o f t h e Columbia K ive r plume between June and August and suggested t h a t a spawning s tock o f anchov- i e s was p a r t i c u l a r l y assoc ia ted w i t h t h e plume. Eggs appear t o be commonly t rans - por ted i n t o t h e Columbia R ive r estuary between Ap r i 1 and September. Eng l i sh (1980) descr ibed maximum d e n s i t i e s (-1500 m-2) i n June a t l o c a t i o n s nearest t he mouth o f t h e estuary . Hatch ing of these eggs w i t h i n t h e es tuary and f u r t h e r t rans - p o r t o f l a r v a e i n t o t h e es tuary account f o r increased concen t ra t i ons of 1 arvae and pos t - l a r vae i n t h e euha l ine t o meso-

ha1 i n e reg ions over an e x t e n d e d per iod , January through November ( M i s i t a n 0 1977). Pearcy and Myers (1974) a l s o c o l l e c t e d l a r v a l anchovies (1.6 x 10-3 m - 3 ) from Yaquina Bay i n Ju ly through September a l though d e n s i t i e s were not as h i gh as repor ted i n t h e Columbia R i v e r estuary . Probably due t o a gene ra l 1 ack o f s i g n i f i - cant sampl i n g e f f o r t f o r small , school i n g pe lag ic f ishes i n t hese e s t u a r i e s , j uve- n i 1 e no r t he rn anchovy b e t w e e n p o s t - l a r v a l and t h e 2+-year age c l a s s e s have no t been repor ted extens ive ly . There i s qua1 i t a t i v e evidence, however, t h a t they a r e common w i t h i n es tua r i es ( T . J. D u r k i n , NMFS, Harnmond, OR; pers. conirn. ) - Age 2+ and l a t e r aye c lasses can be sampled by purse seines and a re r e p o r t e d t o occur abundant ly i n t he l o w e r r e a c h e s o f t h e Columbia K ive r es tua r y t h r o u g h much o f t h e year (Nat. Mar. F i s h . Serv. 1980, 1981; Durk in e t a l e 1981 ) - Simenstad and Eggers (1981) es t imated t h a t a d u l t anchov- i e s maintained r es i dence in Grays Harbor f o r up t o 6 weeks d u r i n g two ~ ~ e r i o d s , m id -~une t o e a r l y August and l a t e ~ u g u s t t o e a r l y October, and r e s i d e d longest i n t h e r eg i on j u s t i n s i d e the mouth of t h e estuary . Juven i le a n c h o v y , o n t h e o t h e r hand, susta ined r e s i d e n c e f o r a long as 11 weeks, du r i ng mid-July t o e a r l y October, i n t h e m i x i n g zone f u r t h e r up t h e estuary .

Page 91: The ecology of estuarine channels of the Pacific Northwest coast: A

Whi teba i t and s u r f smel ts comprise t h e non-anadromous osmerids which u t i l i z e t h e r eg i on ' s es tua r i es . Whi le spawning has not been r e p o r t e d i n coas ta l estuar- ies , su r f smelt spawn on po lyha l ine beaches o f Puget Sound and t h e S t r a i t s of Georgia and Juan de Fuca (Hi 1 l e r and Bor- t on 1980) and may spawn w i t h i n t he lower reaches of some o f t h e more mar ine- in f l u- enced coas ta l e s t u a r i e s ( Q u i l l ayute R ive r estuary , Chi twood 1981). Whi tebai t smelt are r a r e i n s i d e t h e S t r a i t o f Juan de Fuca, which i s a t t h e no r t he rn l i m i t o f t h e i r geographic range ( H a r t 1973), and l i t t l e i s known about t h e i r spawning behavior o ther than t h a t they are p re - sumed t o spawn i n coas ta l waters (Ha r t 1973). Osmerid eggs are common through much o f t h e Columbia R i v e r estuary du r i ng A p r i l and May ( E n g l i s h 1980) and t h e l a r vae a r e probably p resen t u n t l l January (Mi s i t an0 1977) ; t h e y were n o t reported, however, du r i ng Pearcy and Myers ' (1974) extens ive survey o f Yaquina Bay i ch thyo- plankton. Both s~ne l t s a r e present as j uven i l es i n t h e Columbia River estuary through most o f t h e yea r and have been repor ted i n r e l a t i v e l y h i yh d e n s i t i e s du r i ng several months, i.e., June-July i n t he case o f s u r f smel t and July-August f o r the w h i t e b a i t sme l t ( N a t l . Mar. Fish. Serv. 1981).

Topsmelt i s t h e l e a s t comnion o f these nonanadronious pe l ag ic f ishes and occurs e x c l u s i v e l y i n coas ta l es tuar ies south o f t h e Columbia R i ve r where spawn- i n g popu la t ions a r e r e p o r t e d i n Coos Bay (Schu l t z 1933) and t h e Umpqua River estu- a r y (Mul len 1977) between l a t e May t o ea r - l y Ju ly . I n b o t h e s t u a r i e s topsmelt cap- t u r e cont inued i n t h e upper reaches o f t ne estuary f rom l a t e August throuyh Sep- tember and may have i n c l u d e d as many as th ree age c lasses ( i f 0-age c lass f i s h are presumed t o remain w i t h i n t h e estuary a f t e r ha tch ing) r e s i d i n g i n the estuary (Schul t z 1933).

P a c i f i c sand l ance a re a school ing, pe lag ic f i s h which i s o f t e n associated wi th t h e bottom i n sandy h a b i t a t s (see Sect ion 6.1) where t h e y p e r i o d i c a l l y bury themselves (Har t 1973), a behavior r e l a t - ed t o photoperiod, food a v a i l a b i l i t y , and

hunger (Kuhlman and Kars t 1967; W i nslade 1974a, b, c ) . Thei r a t tenua ted body form and rap i d swimming speed makes them one of t he hardest species t o capture, much l e s s q u a n t i t a t i v e l y assess t h e i r standing stock, and i t i s quest ionable t h a t t h e i r u t i l i z a t i o n o f P a c i f i c Northwest es tuar - i e s has been documented adequately. Lar- vae has been repor ted i n euhal ine-poly- h a l i n e reg ions o f t he Columbia River estuary i n March-Apri l (Mi s i tan0 1977) and i n Yaquin Ba i n moderate d e n s i t i e s (3.5 x 10-3 m ) from January through March (Pearcy and Nyers 1974). The l a t - t e r study i l l u s t r a t e d t h a t sand lance la rvae were more abundant o f f sho re and probably were t ranspor ted i n t o the estu- a r y v i a t i d a l exchange. I n t h e case o f t n e Columbia River es tuary , sand lance were captured throughout t h e year and were p e r i o d i c a l l y abundant (Nat. Mar. Fish. Serv. 1981). La r va l sand lance have been c o l l e c t e d i n t he mesohaline reg ion o f Grays Harbor, and common, abun- dant occurrences o f j u v e n i l e s have oc- curred i n p o l y h a l i n e reg ions o f t he ou te r estuary (Simenstad and Eggers 1981).

Threespi ne s t i c k l ebacks a r e u b i q u i - t ous f i s h which have been repo r t ed f rom a v a r i e t y o f f reshwate r and mar ine h a b i t a t s (Har t 1973; Wydoski and Whitney 1979). They i n h a b i t a v a r i e t y of es tua r i ne hab i - t a t s and a re common i n t h e su r f ace waters o f b l i n d , subs i d i a r y , and mainstem chan- n e l s b u t a r e a l so found among l i t t o r a l macrophytes. Reproduct ion occurs i n both freshwater and marine h a b i t a t s (Har t 1973), a l though Vrat (1949) has quest ioned t h e e f f ec t i veness o f r ep roduc t i on i n s a l - i n e environments, Most o f t h e comprehen- s i v e s tud ies i n t h e r e y i o n ' s es tua r i es i l l u s t r a t e cons i s t en t occurrences, abun- dances, and s p a t i a l d i s t r i b u t i o n s through- ou t most o f t h e year (Mul len 1977; Nor th- c o t e e t a l . 1979; Nat l . Mar. Fish. Serv. 1980, 1981; Simenstad and Eyyers 1981), a l thougn a few, t y p i c a l l y those o f i n l a n d es tuar ies , r e p o r t fewer and l e s s c o n s i s t - e n t occurrences (Matsuda e t a l . 1968; Levy and Lev inys 1978).

6.2.2 Anadramous Pe lag ic F ishes

Among t h e anadromous p e l a g i c f i s h e s

78

Page 92: The ecology of estuarine channels of the Pacific Northwest coast: A

u t i l i z i n g es tua r i ne channels, over h a l f are salmonids (Tab le 6.2). Because o f t h e i r commercial and r ec rea t i ona l impor t - ance, P a c i f i c salmon and anadromous t r o u t have l ong been t h e focus o f i n t e n s i v e s tud ies i n e s t u a r i e s throughout t h e r e g i o n bo th as j u v e n i l e s m i g r a t i n g from freshwa- t e r t o r ea r i n inar ine h a b i t a t s and as adu l t s r e t u r n i n g t o spawning r i v e r s . A l - though t he re i s no comprehensive synthes i s o f t h i s mass o f knowledge, Iwamoto and Salo ( i n prep.) , Ourk in (1982), Healey (1982), Myers and Horton (1982), and Simenstad e t a1 . (1982b) have i nc l uded much o f t h e e x i s t i n g i n f o rma t i on on es tu - a r i ne u t i l i z a t i o n by salmon and f u r t h e r re ferences can be secured from Levy (1980b) and Columbia R i ve r Estuary Data Development Progra~rt (1980). Wh i 1 e t h e r e has been no coinparable syntheses o f t h e ecology o f anadromous t r o u t s i n t h i s r e - gion, Royal (1972) p rov ides t h e most com- prehensive d i s cuss i on t o date.

Anadromous t r o u t s - - c u t t h r o a t , s t e e l - head, and Do1 l y Varden--are comparat ive ly l e s s abundant than t h e salmon and appear t o u t i l i z e e s t u a r i n e h a b i t a t s spa r i ng l y ; es tua r i ne channels ac t p r i n c i p a l l y as c o r r i d o r s f o r t h e i r seasonal m ig ra t i ons betwen f reshwater spawning h a b i t a t s and marine feed ing hab i t a t s . A f t e r 2 t o 9 years ( t y p i c a l l y 3 yea rs ) i n f reshwater , coas ta l c u t t h r o a t i n i t i a l l y immigrate t o es tua r i ne and marine h a b i t a t s du r i ng t h e sp r i ng and r e s i d e t he re u n t i l l a t e summer and f a l l (Wydoski and Whitney 1479). Of a l l t h e t r o u t s , c u t t h r o a t t r o u t and D o l l y Varden may u t i l i z e e s t u a r i n e channels t h e most, s i nce throughout t h e i r marine pe r i od they appear t o s t a y i n t he v i c i n i t y o f t h e i r home streams and o f t e n r e s i d e perma- nen t l y w i t h i n e s t u a r i e s (Levy and Levings 1978). A1 thouyh sus ta ined es tua r i ne r e s i - dence has seldom been i l l u s t r a t e d , l j i ge r (1972) i nd i ca ted t h a t pre-smolt c u t t h r o a t (up t o 170 mm F L ~ ) which moved i n t o t h e Alsea R i ve r es tuary i n t h e l a t e r p a r t o f t h e s p r i n g em ig ra t i on mainta ined non- m ig ra to ry res idence w i t h i n t h e estuary . Both s t e e l head and Do1 l y Varden immigrate through t h e es tuary f rom f reshwater t o

4~~ = Fork leng th .

t h e ocean i n l a t e w i n t e r and sp r i ng , a l - thouyh t he r a c i a l popu la t ion s t r u c t u r e o f steelhead i s such t h a t some j u v e n i l e steelhead may be found m i g r a t i n g t o sea du r i ng every nlonth o f the yea r (Wydoski and Whi tney 1979). S i m i l a r l y , w h i l e D o l l y Varden appear t o be l i i n i t e d t o sub- sequent emig ra t ion back i n t o f reshwate r i n l a t e summer though e a r l y f a l l , m i y r a t - i n g steelhead may pass through t h e es tuar - i e s throughout t h e year. The p r i n c i p a l per iods when a d u l t steelhead ascend spawn- i n g streams i s from December t o March (termed "w in te r run1' f i s h ) o r between Ju l y and September (I1sumrner run") (Wydoski and Whi tney).

The occurrence and ex ten t o f u t i l - i z a t i o n o f es tua r i ne channel h a b i t a t s by f i v e species o f P a c i f i c salmon a re h i g h l y va r i ab l e because o f t h e i r d i v e r s e l i f e h i s t o r y pa t t e rns (Table 6.3). Extended occupat ion o f es tua r i es beyond t h e normal t ime requ i red f o r d i r e c t m i g r a t i o n t o and from t he ocean i s suggested t o b e n e f i t salmon by p rov i d i ny an environment f o r p roduc t i ve forag ing, p h y s i o l o g i c a l t r a n s i - t i o n , and r e f u y i a from preda to rs (Simen- s tad e t a l . 1982b). Es tuar ine residence, t h e h a b i t a t s occupied, and t h e t o t a l r e s i - dence t ime o f ou tm ig ra t i ng j u v e n i l e s a re determined p r i m a r i l y by the t i m i n g o f and s i z e a t e n t r y i n t o t h e estuary . These, i n tu rn , are corresponding ly i n f l uenced by numerous a b i o t i c and b i o t i c f ac to r s opera t ing i n t he f reshwater system, i.e., t ime o f a d u l t spawning, stream tempera- t u r e s du r i ng and a f t e r egg incuba t ion , f r y s i ze and cond i t i on , popu la t i on dens i - t y i n the strearn, food q u a l i t y and quan- t i t y , stream d ischarge and t u r b i d i t y , phys i o l og i ca l change, t i d a l cyc les , and photoper iod (Iwarnoto and Salo, i n prep. ) .

Juven i l e p i n k and chum salmon t y p i - ca l l y en te r t he es tua r i es a t 30-40 mm FL, and occupy l i t t o r a l and sha l low suh- 1 i t t o r a l h a b i t a t s i n t h e estuary . When they are 45-55 mm FL, they beg in occupy- i n g the pe lag ic su r face o f channels u n t i l they leave t he estuary. S i m i l a r l y , sub- year1 i ng ( o f t e n r e f e r r ed t o as " f r y " ) chinook salmon which en te r t h e es tuary 30-50 mm FL in s i z e a l s o tend t o occupy

Page 93: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 5.3. L i f e history charac te r i s t i cs o f f i v e species of P a c i f i c salmon i n northeastern P a c i f i c Ocean region (modified from Simenstad, i n press).

W d z s m r y Sat w n Spec i CI Ware Pink C * n hho - -- Qcteye Chinmi.

%amins i o c ~ t % o n km ? n w a l l t r tbu ta r ies SQat I n malt t r i a u t d r l e r P t t a d r i i y i n s w l l r i v e r s PribUtdries f5 Ibkes. i n t r l b ~ t 6 r l e s . m s t and Timing and e ~ t ~ a r j n e inter t ida: , amt estuarine rwemida t . am t r fbu tss>es t n ~ sloe ~ s r &iony la re shore- i n w i n r i ve rs . occurs over

m b t ln large CrlDUtdrl65 o s t l n J a r s c r t a i t a r l e s mannels o f Larye r i ve rs , t ine, occurs over ta t o one t o t r o mntns i n f a l l doff = i n r ivers; occurs a m n i i n r l ve rs . ~ c c u r s =Curs over one t o ta f a r r mntns f ros l a t e except to r .spri% cnrnook- ~ v e r o l q ~ o t w ~ ~ s r n o r e r m e m t n f r [ * e d r l ~ p ~ t f r s f r o m l a t e f a l l s ~ r e r t o l d t e f d l l populatrons, wnicn spawn edr l y fd l t . p t i ~ r l l y OQd fa! 1 throvyn ear l1 d n t e r t n r q n early winter over three t o S I X mntn5 l n yeam i n ~ a c l f l c north- spr lny thruuyn ear l y f a l l . west and Sovthearsern s n l l s&aner runs occur i n L I I s L I , even yearr P u e t sound and the Colusl- e l s a h e r e I* h i d ~ k a b ia River and a wlnter run

occurs I n tne Sacrarrnto River

%rat ton of Eyg fnree t o t3ve nsntns Oevelopent

Tnree to I1 we m t n r la to f l n w t b s Three t o f i ve m n t h s Tnree ro f i v e m t n s

I ~ ~ i n g of F r r Bid- t o l a t e u ln te r Emergence

m a - t o 1dLe n n t e r . (nd-wlnter ear l y spr ing

Early t o l a t e winter me-winter t o lace spr iny except for 'spriny chinook" populations, wnich emerge fraa f a l l t h r w g mfd- wtnter

Fresnwater Redring Usually a ig ra te TimIny and Duration ~ t s e o i a t e l y a f t e r

energence

0 ~ ~ 6 1 1 ~ s l y r a t e Thrwyhwt the year. Tnrou* one to tnree i l*.edtately afzer 12-28 months I n stream. years i n lake mergence. one -nth as lonq as three years urlm i n Alaska

Sprsny through suumer, tnree t o f w r m n t h s $0 stream, except f o r "spr lny c h i w o k ' populdtians, wnich tend t o rear for f u l l year i n estuary

Ouration and Timlng Occurs over one w n f n of Cnlgrdtton t o between r id -w in te r t o Estuary ear l y spr iny

Occur5 over one rantn Uccurs orw one t o four Utcurs over one t o t*o m+*(ten r ld-rSntcr ma m o t n s I n l s t e winter t o wncns I n ear l y r 5 l a t e l a t e spr ing earl] : u r S P ~ ~ W

Occurs over one t o two mntns from &a-minter t o l a t e s u n e r except for 'spriny chinookm @pula- trons. wnicn emgrate f raa f e l l r n r o u p winter

b e t o tnree weeks i n s n a l l w habi tats, tn, t o s i x weeks i n n e r i t i c nab1 ta ts . some extended rearlny. e l yn t t o ten reeks or lonyer. In ldrye estuaries and in land seas

Duration and Less tnan one wtek i n L O C ~ ~ ~ M I of s h a l l m habi tats. three Residence l n t o f i ve weeks i n n e r i t l c Estuary and ndot ta ts Nearsnore Marine Envl ronar?nt

b e t o tnrep weeks i n Un t o hm mntns r n Short-tern, one t o t 4 s n a l l w ndbitdts, three n e r i t f c nabt tats: sols weeks i n ner i c i c nabi tats t o l i v e p e t s i n n e r i t t c ertendRd rearing, up t o h a o t t l t s ; S D l e extended S I R mntns. i n in land rearing. up t o s i x seas uontn5. i n 1 n l r M sear

Preferred Prey Calanoia copeyoas. and Oradnlsms I n larvacedns I n n e r i t l c

H d r p a ~ t l ~ ~ i d copepods and - r id ampnlpods i n Juvenile snrinp aod rid ~ h l y o d s i n shal tor s ~ b l l t t o r d l w u h a ~ s l i a s i n n e r l t l c

baamaria anylnipods, cumceans, and emeryent and o r i r t insects i n shallow s u b l ~ t t o r a l nabi tats; d r i f t insects, deCaood larvde and

i n a l lor s u i ~ i t l o r a l nab~tass; decapod larvae nabi tats habi tats; ~ d l d I I 0 i d and wpnaustids I n c o o e ~ a s , d e c a ~ ~ d larvae. n e r i t i c nabi tats and iarvaceans' i n n e r i t i c habi tats

f i s h larvae i n n e r i t i c hdbitdtS

M%yration and Along c w s t i n w l f o f Residence I n Horth Alaska, Easterr, Bering Pac i f i c Sea dnd Aleut ian lslands

for approxiniltely OM

year

&long coast i n Gulf of Alony coast i n Gulf ot Alooy coast and i n Gulf Alaska, Eastern Bering Alaska and Eastern of Alaska for t*it t o Sea and Aleut ian Islands Aleutian Is land for one, tnree years except fo r for tnree t o f l ve years usual ly two years western Alaska

@puIations, which also mature i n & r i n g Sea and Aleut ian Islands

Alony codst i n b u l t ot Alaska, Eastern Bering Sea and AleUtldII ISldnds to r one to f lve. t y p i c a l l y tnree years

Timing of Return Late s u m r t o ear l y f a l l Miyrat lon t o EstuarylNatal St ream -

Edrly f a l l t o ear ly Late sufmner t o m id - fa l l H l d - s u m r to ear ly f a l l winter

F d l l except for "spr lny chinook" ~opu la t ions , wnicn re tu rn i n mid-spr(ny tnrougn ear l> f a l l ---

Page 94: The ecology of estuarine channels of the Pacific Northwest coast: A

1 i t t o r a l and shal low sub1 i t t o r a l habi- t a t s , p a r t i c u l a r l y sal t marshes, mud- fl ats, and foreshore areas be fo re they grow l a r g e r and move i n t o t he pe l ag i c env i rons (Levy and Nor thco te 1981; Congle- t o n e t a1 . 1982). L i t t l e i s known about t he d i s t r i b u t i o n o f chinook ( f r y ) du r ing f l o o d t i d e cyc l es when sa l tmarsh and mud- f l a t h a b i t a t s a re inundated. I t i s o f t e n presumed t h a t t hey move about and feed over t h e l i t t o r a l f l a t s . Healey (1980), however, cap tu red no juven i l e chinook ( f r y ) i n t h i s h a b i t a t of t he Nanaimo R iver es tua r y du r i ng purse se ine sampl ing a t f l o o d t i d e and t he f i s h were found across t h e landward marg in o f t h e f l a t s a long t h e edge of t he saltmarsh. A s i m i l a r d i s t r i b u t i o n a l p a t t e r n was a l s o documented f o r j u v e n i l e chum i n the Nanai- mo R iver es tua r y (Healey 1979). But t h e f i s h a r e a t l e a s t p e r i o d i c a l l y congreyat- ed i n t h e b l i n d and subs i d i a r y channels which t r a n s e c t most l i t t o r a l and shal low s u b l i t t o r a l f l a t h a b i t a t s du r i ng ebb t i d e cyc les , and i t i s here t h a t most b i o l o g i - c a l sampl ing has been concentrated (F ig . 6.4). F inger1 in'g and year1 i n g chinook and coho smol t s emi g r a t e d i r e c t l y i n t o t h e p e l a g i c h a b i t a t s o f es tua r i ne chan- n e l s and, except f o r occas ional forays i n t o shal low sub1 i t t o r a l nabi t a t s , r es i de w i t h i n t h i s h a b i t a t u n t i l they depar t t h e estuary .

Almost a1 1 j u v e n i l e salmon mig ra te i n t o e s t u a r i n e h a b i t a t s between mid-win- t e r t o l a t e summer, w i t h some Species i 1 l u s t r a t i n g concen t ra ted m ig ra t i on p e r i - ods ( p i nk , chum, sockeye) and o thers (coho, ch inook) p r o t r a c t e d m ig ra t i ons as a r e s u l t o f v a r i a b l e popu la t i on ( r a c i a l ) and environmental f ac to r s . Table 6.4 ( Simenstad e t a l . 1982b) summarizes documented spec ies res idence t imes ( t o t a l t ime j u v e n i l e salmon of p a r t i c u l a r species occur i n e s t u a r i n e h a b i t a t s ) fo r Washing- t o n S ta te es tua r i es , and i l l u s t r a t e s t h a t j u v e n i l e p i nks may occur i n some es tuar - i e s over as l i t t l e as f ou r weeks wh i l e j u v e n i l e chinook may occur over as long as 29+ weeks. I n es tua r i es ad jacent t o Puget Sound and t h e S t r a i t s o f Georgia and Juan de Fuca, where r es i den t chinook ("blackmouth") and coho salmon popu la t ions a re sustained, j u v e n i l e and i m a t u r e ch i -

nook and coho may c o n t i n u e t o f requent euhal i n e seglnents of e s t u a r i n e channel s sporadica l l y throughout the Year (Simen- s tad e t a1 . 1982b).

Species res idence t i m e s , however, r e - f l e c t bo th t he v a r i a b l e t u r n o v e r i n t r a n - s i t i o n a l migrants from a d i v e r s e spec t r a o f stocks and v a r i a b l e ~ e r i o d s o f SUS- ta ined res idence o f each c o h o r t group w i t h i n t h e estuary . u n f o r t u n a t e l y , t h e extens ive and expensive method01 ogy has l i m i t e d t h e number of r e 1 i a b l e es t imates of i n d i v i d u a l res idence t i m e s and i d e n t i - f i c a t i o n o f t h e f a c t o r s r e g u l a t i n g estu- a r i n e residence. Simenstad e t a1 . (1982b) have 1 i s t e d est imates o f maximum res idence t ime f o r cnum, coho, and c h i n o o k salmon, i n c l u d i n g several s p e c i f i c t o e s t u a r i n e channel hab i t a t s , i n Washi n g t 0 n e s t u a r i e s (Table 6.4). Both j u v e n i l e chum and c h i - nook ( f r y ) appear t o have s h o r t res idence t imes i n sal tmarsh t i d a l c h a n n e l s , on t h e o rde r o f tou r and s i x days , r e s p e c t i v e l y (Conyelton e t a l . 1982). T h i s i s f u r t h e r supported by Levy and N o r t h c o t e ' s (1981) approximation o f 6 days i n d i v i d u a l r e s i - dence t ime o f j u v e n i l e c h i n o o k i n a Fraser Hi ver estuary b l i nd t i d a l channel. However, because nos t o f these sa l t- narsh/mudf la t t i d a l c h a n n e l s t u d i e s examined residence i n o n l y one channel system and because o c c u p a t i o n o f a s p e c i f i c channel may be b r i e f , o v e r a l l residence throughout t h e b l i nd and subsid- i a r y channels of sa l m a r s h e s and t i d e f l a t s may be s i g n i f i c a n t l y longer . Levy and Northcote (1982) i n d i c a t e d maximum i n d i v i d u a l residence t imes o f 30 days f o r j u v e n i l e chinook ( f r y ) , 11 d a y s f o r chum, and two days f o r p i nk . Levy e t a l . (1979) had a l so i n d i c a t e d t h a t j u v e n i l e chinook ( f r y ) had t h e S t r o n g e s t f i d e l i t y t o p a r t i c u l a r t i d a l c h a n n e l areas, fo l lowed by j u v e n i l e chums, and j u v e n i l e pinks. They suggested s h o r t e s t res idency f o r j u v e n i l e p ink salmon, i n t e rmed ia te residency fo r j u v e n i l e chum, and l onges t res idency f o r chinook ( f ry ) ; t h e va r i a - t i o n i n res idency was p o s s i b l y r e l a t e d t o t h e i r d i s t r i b u t i o n w i t h i n t h e channels and t h e t i m i n g of em ig ra t i on o n ebb ing t i d e s . De ta i l ed mu1 t i v a r i a t e a n a l y s e s of s p a t i a l d i f f e rences i n t i d a l c h a n n e l u t i l i z a t i o n by j u v e n i l e salmonids i n F rase r R i ve r

Page 95: The ecology of estuarine channels of the Pacific Northwest coast: A

F i g . 6.4. T i d a l channel t r a p n e t s e t i n b l i n d channel o f F r a s e r R i v a r e s t u a r y t o sample j u v e n i l e salmon u t i l i z i n g sa l t l na rsh h a b i t a t ; n e t i s set a t f l o o d s l a c k ( A ) , a l l o w e d t o sarrrple thr-ough t h e ebb t i d e (R, C ) , and sarllpl i n g cu l r l l ina ted a t ebb s l a c k (0) when o n l y a snral l d e p t h o f wa te r remains i n t h e channel (photographs c o u r t e s y o f D a v i d Levy. N e s t - w a t e r Research Cent re , U n i v e r s i t y o f B r i t i s h Colurnhia, Canada).

sal tnrarshes has a l s o i n d i c a t e d t h a t j u v e - rille c h ~ n o o k ( f r y ) abundance I S h i g h l y c o r r e l a t e d t o t h e amount o f h a b i t a t a v a ~ l - a b l e t o t h e f r s h , Lower (bank) e l e v a t ~ o n areas t e n d t o suppor t h i g h e r dens ' i t i es o f j u v e n i l e ch inook ( f r y ) (Levy and N o r t h - c o w 1981) . Va r iab les i n c l u d e d t i d a l channel d e s c r i p t o r s s u c h as inouth w l d t h , s t a t i o n w id th , channel l e n g t h , channel o r d e r , sub-channel l e n g t h , mean a n g l e o f cnannel bank, tidal slope, h i g h t i d e

h e i g h t . t i d a l channel a rea , bank e l e v a - t i o n , a rea o f s u b t i d a l r e f u g i a , and num- b e r o f hours o f t i d a l channel subrnergence p r i o r t o sampl ing; (see Appendix 6 ) .

F o l l o w i n g res idence and g rowth i n t h e l i t t o r a l f l a t channels , j u v e n i l e chum and ch inook ( f r y ) move i n t o l a r g e r s u b s i d - i a r y and mai nstern channels (Hea l ey 1979, 1980; Simenstad and Eggers 1981) . T h i s t r a n s i t i o n f r o m 1 i t t o r a l and s h a l l ow sub-

Page 96: The ecology of estuarine channels of the Pacific Northwest coast: A

Tab le 6.4. Spec ies res idence t imes (weeks)' of j u v e n i l e salmon i n ! l ash ina ton S t a t c e s t u a r i e s ; niaxiiliuni i n d i v i d u a l r e s i d z n c e t imes (days) a r e i n d i c a t e d i n pa ren theszs ( f r o n i Si inenstad e t a1 . 1982b).

- - .- - - - - -- .. .- - - P i i i -----CXUmum-Sock ey e C K o o k

- - - . - - -- -- - . - Estuary -- . . - . - .-. - . -- - Source - - - - - -- - - - - - - -. - . - -- - - - --

Northern Puget Sound (nearshore ) 4 6 12 12 6 Mil ler e t a l . 1978

North Sound (Bellingham Bay) 11+ 114 (Bellingham Bay) 7+ 7 ( nearshore) 4 6 6

l l + Tyler 1964 6 + , (-20) S jo l se th 196R 6 Mil ler e t a l . 1978;

Fresh 1919

Skagit BaylPort Susan (Kiket I s l and) 13 13 12 ( s a I tmarsh) 14+, ( 4 )

15, (50) Stober e t a l . 1973b 16+, (6) Longleton e t d l . 19G2

E l l i o t t Bay ( lower Duwamish) ( e s t u a r y ) ( lower Duwami sh)

8 . (42) Bostick 1955 8 Salo 1369

16+ Mcyer e t a l . 1981b

Cornencement Bay ( e s t u a r y ) 16+ B 9

(Hylehos Waterway) 9

9+ Puyallup lndian Nation, unp11bl.

8+ Meyer e t d l . 198la

Nisqually Reach 12 17+ 15, ( -40) 11+ Fresh e t d l . 1979

Hood Canal 18 23, (32) 15, (6) 13 Salo e t a l . 1900

S t r a i t o f Juan de Fuca 14 14 14 16+ Slmenstad, unpuhl.

Qui l l ayu te River es tua ry 5 , (32) 18+ Chi twood 1981

Grays Harbor 10 Wendler e t a l . 1954 l o+ , (-30) 12 29+, ( 4 8 9 ) Simenstad and Eggers 1981

- - - - - - - - --

I - and + i n d i c a t e l e s s than and g rea te r than the values given, r espec t ive ly .

l i t t o r a l channel h a b i t a t s t o u t i l i z a t i o n o f p e l a y i c , mainstem channel h a b i t a t s g e n e r a l l y occu rs when b o t h j u v e n i l e chum and c h i nook ( f r y ) reach 50-60 mm FL (Levy e t a l . 1979; Healey 1980; Levy and Nor th - c o t e 1981, 1982; Keimers 1973; Simenstad and Eggers 1981). A number o f mechanisms a c c o u n t i n g f o r t h i s s h i f t i n h a b i t a t u t i l - i z a t i o n have been proposed, i n c l ud ing s a l - i n i t y and t e m p e r a t u r e p r e f e r e n c e (Dun f o r d 1975; Healey 1980) , b e h a v i o r a l responses as a f u n c t i o n o f d e n s i t y and s i z e (Reimers 1973; Myers and Hor ton 1982), and t h e ava i 1 a b i 1 i t y o f p r e f e r r e d p r e y oryanisms o r o n t o g e n e t i c chanyes i n food h a b i t s (Simenstad and Eggers 1981; Simenstad and Salo 1982).

I n d i v i d u a l r e s i d e n c e t i m e s i n t h e mainstem channe ls va ry as a f u n c t i o n of t h e p e r i o d i n t h e salmon m i y r a t i o n , s i z e o f t h e f i s h , and d e n s i t y o f t h e e s t u a r i n e popul a t i o n . Juven i 1 e p i n k salmon appear t o em ig ra te d i r e c t l y o u t o f t h e e s t u a r y , s i n c e no reco rds o f p e l a g i c res idence a r e

a v a i l a b l e f o r Washington ( l a b l e 6.4) o r o t h e r e s t u a r i e s i n t h e r e g i o n . J u v e n i l e chum may r e s i d e i n p e l a y i c h a b i t a t s o f mainstem channels f o r an a d d i t i o n a l two t o f o u r weeks (Tab le 6.4; Manzer 1956; Mason 1974; Healey 1979) b u t seldom occur i n these e n v i r o n s when l a r g e r t h a n 75-80 mm FL. Healey (1979) a l s o i n d i c a t e d t h a t j u v e n i l e chums f rom t h e e a r l y p o r t i o n o f t h e o u t m i y r a t i n g popul a t i o n r e s i d e d i n t t l e Nanaimo R i v e r e s t u a r y c o n s i d e r a b l y l o n g e r t h a n those which e n t e r e d t h e e s t u a r y l a t e r i n t h e o u t m i g r a t i o n . Sa lo e t a l . (198O), Simenstad and S a l o (1982) and Bax (1982) , however, have documented t h e o p p o s i t e r e - l a t i o n s h i p i n Hood Canal , where m i g r a t i o n r a t e s tended t o be h i g h e r and r e s i d e n c e t i m e s s h o r t e r f o r t h e e a r l i e r o u t m l y r a t - i n g popu la t i on . J u v e n i l e ch inook ( f r y ) may r e s i d e i n e s t u a r i n e channels 1 onger t h a n s i x months, b u t res idence i s q u i t e v a r i a b l e among e s t u a r i e s . Keirners (1973) i d e n t i f i e d f i v e 1 i f e h i s t o r y v a r i a t i o n s i n t h e p o p u l a t i o n o f f a l l chinook i n S ixes R i v e r , Oregon. The prominent t y p e

Page 97: The ecology of estuarine channels of the Pacific Northwest coast: A

res ides i n t h e es tuary a r e l a t i v e l y s h o r t t ime (e i gh t weeks) before em ig ra t i ng t o t h e ocean whereas a second t y p e r e a r s almost tw i ce as l o n g b u t i s measurably l e s s abundant i n t he es tua r y (17% o f t o t a l m ig ran t s ) ; t h e l a t t e r l i f e h i s t o r y type, however, t y p i c a l l y c o n t r i b u t e d over 90% o f t h e r e t u r n i n g adu l t s . The o t h e r t ypes passed r a p i d l y throuyn t h e es tuary e i t h e r as f r y o r as y e a r l i n g smol ts bu t were seldom abundant. A1 though e a r l i e r work (Simms 197U) es t imated b r i e f , i .e., 10-15 days i n sp r i ng and summer and 7-10 days l a t e r i n t h e year, res idence t i rnes f o r j u v e n i l e chinook ( f r y ) i n t h e Colun~bia K i ve r estuary , rnore r ecen t r e s u l t s (Na t l . Mar. Fish. Serv. 1981) t rom on-goiny nark and recapture experiments have i n d i c a t e d extended res idence from Apr i 1 th rouyh October. Residency p a t t e r n s very s im i 1 a r t o those documented i n t h e Sixes K i v e r es tuary have a lso been descr ibed f o r j u ve - n i l e f a l l chinook ( f r y ) i n Grays Harbor (Simenstad and Eggers 1981), t h e Ouwami sh R i ve r estuary (Sa lo 1969), and t h e Q u i l l - ayute River es tuary (Chi twood 1981). Chinook snio I t s (year1 i ng ) p robab l y appear i n es tua r i ne channels on ly t r a n s i t i o n a l l y , as no s i g n i f i c a n t es tua r i ne res idence t imes have been descr ibed f o r t h i s l i f e h i s t o r y type. S i m i l a r t o y e a r l i n g c h i - nook, coho smolts a l so u t i l i z e e s t u a r i n e channels p r i n c i p a l l y as c o r r i d o r s f o r d i - r e c t emig ra t ion t o t he ocean (S jo lSe th 1969; Simms 1970; Chitwood 1961; Nat l . I lar . F ish Serv. 1981), b u t res idence t imes as long as f o u r t o e i g h t weeks have been documented (Grays Harbor, Simenstad and Eggers 1981). No i n f o r m a t i o n on i n d i v i d - u a l residence t imes o f sockeye smolts i s a v a i l a b l e no r i s t h e r e an i n d i c a t i o n t h a t t hey u t i l i z e es tua r i ne channels o t h e r than f o r t h e i r immediate m i g r a t i o n from l a c u s t r i n e r e a r i n g h a b i t a t s t o t h e Nor th P a c i f i c Ocean. In fact , t h e occurrence of j u v e n i l e sockeye i n e s t u a r i n e channels has on ly been documented f o r t h e Columbia R i ve r (ktl, Mar. Fish. Serv. 1980, 1981), Fraser R ive r (Nor thcote e t a l . 1979), and t h e Q u i l l a y u t e R ive r e s t u a r i e s (Chitwood 1981).

Ent ry o f adu l t salmon i n t o e s t u a r i n e channels p r i o r t o t h e i r m i g r a t i o n u p r i v e r occurs e s s e n t i a l l y year-round, a l though

t h e maximum m ig ra t i on pe r i od i s t y p i c a l l y between J u l y and September (Tab le 6.3 and 6.5). Al though t i rn ing o f r e t u r n i s p r i n - c i p a l l y determined uy t h e gene t i c a t t r i - butes o f t h e d i f f e r e n t spec ies and popula- t i o n s , ex te rna l i n f l uences such as ocean- i c temperature and cu r ren t pa t t e rns , prey resources and photoper i od add e l enients o f v a r i a b i l i t y t o t h e temporal d i s t r i b u t i o n o f r e t u r n i n g spawners (Simenstad e t a l . 1982b). Once i n the es tuary , f i s h may aygregate i n s p e c i f i c , " s t a g i n y " areas be fo re i n i t i a t i n g t he f i n a l phase o f t h e i r spawniny II I~ g r a t i o n ; u p r i v e r move- ments are probably s t imu la ted by i nc reas - es i n r i v e r discharge, changes i n water temperature and a i r pressure, and t i d a l cyc les . As a r e s u l t , res idence t ime o f a d u l t s w i t h i n es tuar ine channels, a l thouyh t y p i c a l l y b r i e f , has been es t imated t o range from 1-6 weeks (Simenstad e t a l . 1982b; Table 6.5) and t h e f i s h a r e o f t e n sub jec ted t o in tense corn~nercial and r e c r e a t i o n a l e x p l o i t a t i o n i n these channel s t ay i ng areas d u r i ng t h i s per iod .

Other anadrornous f i s h e s i nc l ude Amer- i can shad, l o n g f i n smelt , eulachon, and s t r i p e d bass. O f these, American shad and s t r i p e d bass a re d i s t r i b u t e d p r i n c i p a l l y i n t h e southern coas ta l es tua r i es o f t h e r eg i on , a1 though s t r i p e d bass have been repo r t ed i n Puyet Sound (Mi 1 l e r and Bor ton 1980) and American shad occur i n apparent spawning popul a t i o n s i n severa l Puget Sound estuar ies--Nooksack, Skagi t, S t i 1 layuamish, and Skykomi sh (Mi 1 l e r and Bor ton 1980). These l a t t e r two spec ies were no t o r i y i n a l l y ind igenous t o t h e west coast and have con t inued t o expand t h e i r d i s t r i b u t i o n from San Franc isco gay where both were in t roduced i n t h e l a t e 180U's o r f rom t h e Columbia K i ve r where shad were in t roduced i n 1885-1886 (Ha r t 1973; Wydoski and Whitney 1979).

American shad are t h e rnore prominent, e s p e c i a l l y i n t h e l a rge coas ta l e s t u a r i e s such as t h e Columbia K i ve r and Grays Harbor. I n t he Columbia R ive r t h e a d u l t m i g r a t i o n through t he es tuary i s u s u a l l y i n i t i a t e d i n May, co i nc i den t w i t h 13-18OC wate r temperatures (Legge t t and Whitney 1972), and peaks i n June and Ju ly . Juve- n i l e (young-of - the-year) shad e n t e r t h e

Page 98: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 6 .5 . General e s t u a r i n e run ti1:iing and es t i l l l a ted i l , d i v idua ] r e s i d e r i c e t i l : les f o r a d u l t P a c i f i c salrilorl i n ' l a s h i n n t o n S t a t e estua,.ies (froln Sil l lenstad c t a1 . 198:'b). -- ---- - _. fimdfgd -i;;divi-d;al-resraence

Run timing 1 -P-- ( t i n e i n d a y s )

Seec i es eik ~-d;;@---- Ka. x.rm- .m----- - - - - - - - - .- - - - - - - -- - - -- - - ____--______._._____--I_"_.-___---------- Kirrcnum -- - Ba t a souic2-

Pink Late July-early Aug. June-Sept. 6 .9 13.7 Barker 1979 (only i n odd years) 8.1 3 2 . 2 Barker 1979

Sockeye July June- Aug. -

Coho Late Oct. Sept.-Nov. 13.0 40 .0 Eames e t d l . 1981; i n p r e s s

9 . 2 14.7 Barker 1979

Chi nook Late Aug.-early Sept. July-Sept. 2 7 . 4 39.6 S t a u f f e r 1970

M i d-0ct . -early Nov. Sept.-Dec. 11.0 4 0 . 0 Eames e t d l . 1981; i n press

3.0 6 . 8 Rarker 1979 13.0 20 .6 Olney 1976

f I*,,:, v d r ' >us Wdr:li l lg toll Depdt ' t : i lef l t o f F i s h e r i e s ( i f a r ves t Yandc]cr?ct~t n i v i s i o n ) d??n sources.

e s t u a r y b e g i n n i n y i n Auyust and r e s i d e the re , r e a c h i n g maxi~rlunl d e n s i t y i n November and December, u n t i 1 en i i g ra t i n g t o the ocean as y e a r l i n y s when t h e youny- o f - t h e - y e a r shad become nurnerous i n Octo- ber (Ha~riniann 1981; Na t l . Mar. t i s h . Serv. 1981). Simenstad and Eyyers (1981) r e - p o r t e d a rnaxi~num s u s t a i n e d res idence of a t l e a s t 10 weeks, b u t t h e i r sampl ing d i d n o t ex tend beyond October.

L o n y f i n smel t and e u l achon a re anad- roriious osmerids t h a t mi y r d t e th rouyh Pa- c i f i c Nor thwest e s t u a r i e s as a d u l t s d u r i n y w i n t e r months, b u t solrie spawn i n g Itlay a c t u - a l l y occur i n t h e more f reshwa te r -domina t - ed systerris such as t h e Columbia K i v e r e s t u a r y (Mi s i t a n o 1977; kt1 . Mar. F i sh . Serv. 1981). Up t o t h r e e d i f f e r e n t age c lasses o f l o n g t i n sme l t , dominated by t h e young-of - t h e - y e a r and yea r1 i n y s , were i d e n t i f i e d i n t h e Colurnbia R i v e r e s t u a r y (Ikt l . Mar. F i sh . Serv. 1981). ~ e s i d e n c e uf young-o f - the -yea r was sus ta ined from June t h r o u y h t h e w i n t e r o f t h e f o l l o w i n g y e a r b u t was confused by t h e i n f l u x o f spawniny a d u l t s i n t h e f a l l . Occurrence of l o n y f i n sme l t documented by s imenstad and Eggers (1981) i n d i c a t e d more ephemer- a l d i s t r i b u t i o n o f j u v e n i l e s i n Grays Harbor, a t l e a s t i n t h e i n n e r reaches of t h e e s t u a r y , where t h r e e major i n f l u x e s

( t h e l onges t r e s i d e n c e l a s t i r ig 3 weeks) were e v i d e n t betweerr March and October . J u v e n i l e l o n g t i n s~rrel t a l s o appear t o u t i 1 i ze e s t u a r i n e channe ls w i t h i n Puyet Sound (Duwa~rii sri, Skyko~ri i sh, S t i 1 1 i yuam- i sh, Skag i t and Nooksack K i v e r e s t u a r i e s ; M i l l e r and Bor ton 1980) and t h e S t r a i t s o f Georyia (F rase r R i v e r e s t u a r y ; N o r t h - c o t e e t a l . 1Y7Y), b u t t hey a r e much more colilmon i n t h e n e r i t ' i c h d b i t " a t s o u t s i d e t n e e s t u a r i e s p r o p e r ( S t u b e r e t d l . 1973a; M i l l e r e t a l . 1978, 1980; Fresh 1979). Colrlpared t o l o n y t i n s m e l t , e u l a - chon are so~r~ewhat 1 ess p r o m i n e n t i n e s t u a r i n e channels , b u t b o t h a d u l t s dnd j u v e n i l e s are comrnon i n e s t u a r i e s o f r i v e r s w i t h spawniny p o p u l a t i o n s , n o t a b l y t h e Colunibia H i v e r (Smi t i 1 and S a a l f i e l d 1955; Haer te l and Os te rbe rg 1967; Nat l . M a r . F ish. Serv. 1981), F r a s e r K i v e r (McHugh 1939, 1940; N o r t n c o t e e t a l . 1979), Squamish K i v e r ( l e v y a n d L e v i nys 1978), Nooksack K i v e r (Mydosk i and Whitney 1979), and Puyal ]UP R i v e r (Commencement Bay, M i l l e r and B 0 r t o n 1980) e s t u a r i e s . A I though e u l achon were r e p o r t e d t o occur i n t i rays Harbor (Smi th e t a1 . 1980), none were cap tu red d u r i n y t h e e x t e n s i v e sampl- i n y i n t h a t e s t u a r y d e s c r i b e d by Simen- s tad and Egyers (1981) . T h e i r o c c u r r e n c e i n t h e Columbia R i v e r e s t u a r y j s concen- t r a t e d between Februa ry and May as a r e -

Page 99: The ecology of estuarine channels of the Pacific Northwest coast: A

s u l t of t h e m i g r a t i o n of adu l t s i n t o t h e where they a r e as abundant as, o r second es tua r y and i t s t r i b u t a r i e s and t h e down- i n abundance t o , t h e predominant P a c i f i c stream d r i f t of t h e yo lk -bear ing l a r v a e h e r r i n g la rvae , b u t t hey a r e r e l a t i v e l y th rough t h e es tuary (M is i tano 1977; ktl. r a r e i n and n o r t h o f t h e Columbia R ive r Mar. F ish. Serv. 1981). Despi te t h i s estuary . b r i e f occurrence, M i s i t a n o (1977) l i s t e d e u l achon as t h e second most abundant (19% Occurrence o f i ch thyop l ankton i n t h e o f t o t a l ) l a r v a l , p o s t - l a r v a l , and juve- r e g i o n ' s e s t u a r i e s i s e s s e n t i a l l y a n i l e f i s h e s i n t h e Columbia R ive r es tu - w i n t e r - s p r i n g phenomenon, b o t h i n terms a r y . Prolonged res idence w i t h i n t h e o f spec ies r i chness (as many as 18 spe- es tua r y appears t o be minimal, however. c i e s per sample) and d e n s i t y (maxima

between 0.4 and 11.0 l a r v a e m-3) i n t h e A l thouyh on ly a r e l a t i v e l y recen t coas ta l es tuar ies . T i da l and die1

a d d i t i o n t o t h e anadromous f i s h e s i n t h e v a r i a t i o n can be cons iderab le and i s reg ion , s t r i p e d bass have become promi- o f t e n assoc ia ted w i t h l o c a t i o n i n t h e n e n t l y es tab l i shed i n Coos Bay (Roye estuary ; f o r example, t i d a l excu rs i on o f 1979) and Umpqua R iver estuary (Mu1 l e n water inasses w i t h p a r t i c u l a r l y h i gh densi- 1972, 1974; R a t t i 1979a). Residence of t i e s o f l a r v a e can r e s u l t i n h i g h catches a d u l t s i n Coos Bay may be cont inuous, dur ing ebb t i d e per iods (Pearcy and a1 though some may emigrate t o t h e ocean, Myers 1974), e s p e c i a l l y i n s i t u a t i o n s and then m ig ra te u p r i v e r t o spawn between where shal low sub1 i t t o r a l and 1 i t t o r a l May and Ju ly . Juven i les spend t h e f i r s t f l a t h a b i t a t s a re sources o f l a rvae . y e a r i n r i ve r i ne h a b i t a t s before immigra- C o n t r i b u t i o n s o f predoini n a n t l y of fshore, t i n g t o t h e es tuary . i.e., marine, species i n t o t h e more

s a l i n e , l ower reaches o f t h e e s t u a r i e s 6.2.3 I ch thyop lank ton a l s o promotes h igher spec ies r i chness i n

these reg ions. Pearcy and Myers (1974) I n a d d i t i o n t o those pe l ag i c f i s h e s i t em i zed 19 taxa o f f i s h l a r v a e i n Yaquina

wh ich a r e found i n es tua r i ne channels Bay which were c h a r a c t e r i s t i c o f o f f s h o r e th roughou t t h e i r development f rom 1 arvae assemblages, as compared t o t e n taxa asso- o r pos t l a r vae t o a t l e a s t j u v e n i l e s tag- c i a t e d wi th bay assemblages, and M i s i t a n o es, approx imate ly 17 species a l s o occur (1977) documented a steady d e c l i n e i n t h e as prominerit i ch thyop lank te r s bu t move number o f species o f l a r v a l , p o s t - l a r v a l , e i t h e r i n t o o t he r microhabi t a t s w i t h i n and j u v e n i l e f i shes c o l l e c t e d a t progress- t h e channels o r i n t o ad jacent es tuar ine , i v e l y more es tua r i ne t o r i v e r i n e l0ca- marine, o r r i v e r i n e h a b i t a t s (Tab le 6.2). t i o n s i n t h e Columbia R i ve r es tuary . Those which undergo ontogenet ic t r anspos i - t i o n f rom pe lag i c t o demersal modes w i t h - Whi le many o f t h e same assemblages i n t he channels i n c l ude P a c i f i c tonlcod, and p a t t e r n s t h a t occur i n t h e c o a s t a l snake p r i ck leback , saddleback gunnel , e s t u a r i e s may cha rac te r i ze i n l a n d es tu - r o c k f i s h e s , y reen l ings and l ingcod, a l l a r i es , t h e r e i s no comparable i n f o r m a t i o n f o u r spec ies o f c o t t i d s and f o u r spec ies on t h e i ch thyop lank ton i n e s t u a r i n e chan- o f p leu ronec t ids . O f these, p r i c k l y , n e l s i n s i d e o f t h e S t r a i t of Juan d e P a c i f i c staghorn, b u f f a l o scul p i ns , and Fuca. B lackburn 's (1973) documentat ion snake p r i c k l eback a re t he more common and o f t h e i ch thyop lank ton assemblages o f f - abundant (E l d r i dge and Bryan 1972; Pearcy shore o f t h e Skag i t R i ve r d e l t a i n d i c a t e and Myers 1974; Mi s i tan0 1977; Simenstad t h a t taxonomic s im i 1 a r i t i e s may e x i s t , and Eggers 1981). b o n g those which w i t h t h e a d d i t i o n of severa l spec ies o f s e t t l e o u t i n ad jacent hab i t a t s , t h e bay gadids ( P a c i f i c cod, Gadus macrocephalus, goby i s t h e most p reva len t as an i ch thyo- and P a c i f i c hake, ~e-cius p roduc tus ) p1 ank te r before i t assumes i t s u l t i m a t e and p l eu ronec t ids ( s l ende r so l e , Lyopset- j u v e n i l e and adu l t res idence i n shal low % . e x i l i s ) , bu t s p a t i a l o r t e m p o r m - sub1 i t t o r a ] and 1 i t t o r a l f 1 a t h a b i t a t s . t r i b u t i on and abundance of 1 arvae w i t h i n Bay goby la rvae a re espec ia l l y abundant t h e e s t u a r y ' s channel h a b i t a t s were n o t i n t h e more southern coas ta l e s t u a r i e s assessed.

86

Page 100: The ecology of estuarine channels of the Pacific Northwest coast: A

CHAPTER 7

BIRD ASSEMBLAGES OF ESTUARINE CHANNELS

Al though some o f t h e r e s i d e n t and m ig ra to r y b i r d spec ies u t i l i z i n g P a c i f i c Northwest e s t u a r i e s do no t f requen t chan- ne l h a b i t a t s , most o f these e s t u a r i e s ' av ian fauna occupy channels a t some t ime f o r f o r a g i n g and r oos t i ng , and some a r e dependent ly bound t o t h e h a b i t a t through c r i t i c a l food web 1 inkages. Several species, no tab l y t h e m i g r a t o r y water fowl , can occur i n such h i g h abundance t h a t they p l a y s i g n i f i c a n t , though o f t e n seasonal, r o l e s i n t h e food-web dynamics o f these es tua r i es .

Adopt ing Peterson and Peterson 's (1979) c l a s s i f i c a t i o n o f 1 i t t o r a l f l a t b i r d s i n t o e c o l o g i c a l assembl ayes o r "gu i lds , " 5 e s t u a r i n e channel b i r d s have been ca tegor i zed i n t o f o u r assemblages p r i m a r i l y as a f unc ton o f t h e i r fo rag ing behavior : 1 ) sha l low-prob ing and sur face- search ing shoreb i rds ; 2 ) waders; 3 ) su r - face and d i v i n g wa te rb i r ds ; and 4 ) a e r i a l - search i ny b i rds.

H a b i t a t - s p e c i f i c i n v e n t o r i e s and de- s c r i p t i o n s o f b i r d s o f P a c i f i c Northwest es tua r i es a r e r a r e and t y p i c a l l y inade- quate i n t h e scope and r e s o l u t i o n o f t h e documentat ion o f b i r d d i s t r i bu t ion , abun- dance, behav io r o r ecology. Jones and Stokes Associates, Inc. ( i n prep.) i s t h e most complete i n terms o f temporal (sea- sonal ) and s p a t i a1 ( h a b i t a t , a rea l ) docu- mentat ion o f b i r d s o c c u r r i n y i n any one es tuary (e.y., t h e Columbia R i v e r ) . 0 th -

5~ w i l l r e f r a i n , however, from us ing the term " g u i l d " because o f t h e assumption o f common e x p l o i t a t i o n o f an i nves t i ga to r ; de f ined resource (Root 1967; Jaks i c 1981), o p t i n g i ns tead f o r "assemblage," which i s more b road l y d e f i n e d as a group of s yn top i c r e l a t e d taxa.

e r es tuary -o r ien ted accounts i n c l u d e Yocum and K e l l e r (1961), I ves and S a l t z - man (197O), Smith and Mudd (1976a), Sea- man (1977), Crawford and Edwards (1978), Pe te r e t a l . (1978), and Edwards (1979). More taxa-speci f i c documentat ion i nc l udes Wetmore (1924) on grebes, Henny and Beth- e r s (1971) and Bayer (1978) on g rea t b l u e herons, Ersk ine (1971) on b u f f 1 eheads, Couch (1964) on sandpipers, Pen1 and (1976) on te rns , and Vermeer and Lev inys (1977) on ducks. General re fe rences d e s c r i b i ny species o f e s t u a r i n e b i r d s and some o f t h e i r h a b i t s i n P a c i f i c Northwest es tua r - i e s i n c l ude Gabr ie lson and Jewet t (1940), Jewett e t a l . (1953), Eaton (1975), Salo (1975), Manuwal (1977), and Simenstad e t a1 . (1979a). The most a u t h o r i t a t i v e , q u a n t i t a t i v e i n f o rma t i on , t h a t i n c l uded i n Wahl e t a1. (1981), encompassed no r t he rn Puyet Sound and t h e S t r a i t s of Georgia and Juan de Fuca bu t seldom cov- e red o r d i t f e r e n t i a t e d b i r d assemblages i n t r u e e s t u a r i n e channels.

Synthesis o f these re fe rences and of p e r t i n e n t coas ta l i n v e n t o r i e s (U. S. Dep. I n t e r i o r 1971; Monroe e t a l . 1974; Kreag 1979a, b, c; R a t t i 1979a, b; Roye 1979; S t a r r 1979a, b; P roc to r e t 31. 1980; Bec- c a s i o e t a l , 1981) i n d i c a t e t h a t 59 spe- c i e s o f b i r d s a r e common t o t h e r e g i o n ' s es tua r i ne channel hab i t a t s , 23 o f which cou ld be considered p reva len t (abundant) (Table 7.1; Fig. 7.1, 7.2).

7.1 SHALLOW-PROBING AND SURFACE-SEAKCHING SHOREBIRDS

C h a r a c t e r i s t i c o f t h e i r f o rag i ng on o r w i t h i n sediment su r face l aye r s , b i r d s o f t h i s assemblage occupy shore1 i ne env i - rons c o n s t i t u t i n g t h e boundaries between channel and o the r es tua r i ne h a b i t a t s . Compris ing s l i g h t l y more t han 25% of t h e

Page 101: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 7.1. Itemization and characteristics of birds c o m o n to estuarine channels of the Pacific Northwest, organized by assemblage.

TaK- -- - - - - - - -I - - 3-ann T----- SaTTnny T e T i ; a X me- '-

(conmon name) - - - %blage- - - - - - - habi t a t s 1 associ at ions2 h i s t o r y cha rac te r i s t i cs3 ---- - -- -- Shal low-problng and Haernato us bachmnl M E 0 -8 surface-search1 ng o d b ~ a c k oystercatcher) shorebirds

Waders

* ~ h a r a d r t u s alexandrt nus M-B ( 5 n o w y o T e r l -

0-B; Seasonal t r ans ien t

C. seml alrnatus ~se* o rc r )

M-B R -E 0-B; Seasonal t r ans ien t

P luv ia l i s s uataro l a ma-1 & - p ~ r )

L scolo aceus ~ i o ~ & 3 o w l t c h e r l

A h r l z a v l r a te ~&*ifaP--- -

Arenarla i n t e r res ~ ~ ~ U Z Y O ~

*cat l d r l s a1 ba TSiinnGFfl ngl-

M-B

M-B

M-B

M-B

M-B

n,s

M,S

M-B

M-B

M-B

R-E

R -E

R-E

R-E

R-E

M-E

0-E

R -E

R-E

*c. maurl M-B R -E (~6s~e%-sandplper)

C. m i n u t l l l a M-B R-E R e T s X n i i per )

Ph;;arop;s 1 oba tus M M-E -nec ed phalarope)

* ~ r i n ~ a wl anoleuca H-0 R -E 'IT;rc?atci;~T&wTeigs

*~rdea herodias M-B R-E Tr;F6StTiTGTTiiron)

Bubulcus I bls TFa'FKTeeFet)

Casnerodius a1 bus TGreat e g r e t r -

r e t t a thul a nowy eg- S9-

M-B

M-B

(continued!

R-E

R-E

0-B; Seasonal t r ans ien t

0-B

0-B; Seasonal t r ans ien t

0-B

0-B

0-8; Seasonal t r ans ien t

0-B; Seasonal t r ans ien t

0-8; Seasonal t r ans ien t

0; Seasonal t r ans ien t

0

0

0-8

0,F-PK; Seasonal t r ans ien t

F-0; Seasonal t r ans ien t

0-PS

F-PS

0-PS

0-PS

Page 102: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 7.1. Continued. - Taxa - - - T l i % i n i - -TaTfnTQ-- - - e e v a n t l f f e

Assemblage ( comno n name) habitats1 associations2 h l s t O ~ 1 c h a r a c t e r i ~ t i ~ ~ 3 ' - --- Surface and d iv ing *~echmophorus Occidental i waterbirds mes te rn grebe) R -E 0-PS

;;dfceis aur i tus orne gG&'l--

F-ps; seasona l t rans ien t

ke%&%?grebe) M,S R-E 0-PS; seasona l t rans ien t

P. n i g r i c o l l i s E a r e d grebe)

R-E 0-PK; Seasonal t rans ien t

hala lac roc or ax aur i tus M s S R-E 0-PS 7Doubl e-crested0Pm)rant)

* b e ~ m r a n t ) M.S M-E F-PS

ergus us mer anser M-B R-E 0-PS K G i E n me:ganser)

M. serrator M-8 R-E F-PS; Seasonal t rans ien t TRea-breasted merganser)

M M-E 0-PS; Seasonal t rans ien t

Cepphus columba M M-E F-PS (Pigeon @71Ekt)

Cerorhinca monocerata (Rhinocerosauklet)

M-E

Brach rarn hus mannoratus M H-E F-PS m e r

Branta bernicl a s.6 R-E 0-H; Seasonal t r a n s i e n t -m)- * ~ n a s platyrhynchos M-8 R-H 0, F-H; Seasonal t ran- maTlard) s ien t ; p r i m a r i l y roost ing

i n habi t a t

A. acuta M-0 R -M 0. F-H; P r i m a r i l y roost - T ~ o Z l i F n p i n t a i l ) Ing i n h a b i t a t

A. crecca M-B R -M 0, F-H; Seasonal t ran - TGrGGXnged tea l ) s ien t ; P r i m a r i l y roost ing

i n h a b i t a t

*A. a~nericana T h e r i c a n wigeon)

Aythya va l i s ine r ia (Canvasback 1

M-B

M-B R-M

0. F-H; Seasonal t ran - s ien t ; P r i m a r i l y roost ing i n h a b i t a t

0, F-H; Seasonal t ran- s ien t ; P r i m a r i l y roost ing i n habi t a t

M-S R -E F-8; Seasonal t r a n s i e n t A. mari la TGrFZiF"-scdup )

(continued)

89

Page 103: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 7.1. Concluded. -'-Tar- ------.- niT--' T i n T f y - - - ' - - - - - Pe leva t t 1 i f e ---'-

(common name) habl tats1 associatfons2 I s e : g e - - - - - - ~ - . - - - - - - - ~ - - _ - - - - _ - - - - - - - - - - - - --. hlsto!y characte?2st~c?

S u r f a c ~ dnd drv iny 'A, a f f f n l s wd t e rb t rds - cnnt 'd. ResrCerf?ICaup)

M-S R-E 0. F-B; Seasonal t ran- s i en t . P r imar i l y roost ing i n hab i t a t

Bucephela c lanpule M-R R-E B - 0 ; Seasonal t rans ient KooibniijaTiicriG~P7

0. a lbeola rnurtl e ~ ~ i d )

M-I3 R-E F - 0

'Relanl t t a fusce M-§ R -E F-B; Seasonal t r ans ien t 7Zlh'fT e- iTn33ddS~ o t er)

'M. p e r r p f c l l l a t a M-S R -E F - B TSurT scotE-i.T--'

Acr ta l -search ing b i rds Crr 1. a l c on d - t r j & t s h r r )

' lsrur 91 rucescrnr M-H R -E F -0 ~aucou"s=%Tnghd 9111 1 )

L. occ fdenta l is M-8 R-E TLer t'i;riT g u n T '

I . c a l f forn$cus 4l-R R-E F-B; Seasonal t rans ient lGaT irofifL-giu711

1. dr lawarens i t M-R R -E F - 0 ; Sesronal t rans ient mi ng-bTT7ad g u l l

1. LeecCrl"p~t~i M-5 R-E F - B , Learonal t r a n ~ i c n t T i i c c ~ r a n n T . ~ u \ I )

'L. phftabelphta n-5 M-E F -PY IBanipYif$ s girl 1 )

* s . caspta FCaspidn te rn )

M,S W-E 5-PS; 5casonal t rans ient

M,5 M-E F - P \ ; k a s o n a l t rans ient

Pel ~c .%nus occ1denf.d~ 1 \ M P-E 5-PS; 5easonal t rans ient pF;i,,-T6"l F i n i - -- . - Stercorar lus paras!_tljfu~ H-B R-E F - P S , K . Searondl

--. t rans ien t - . - - - - > * - -- -?h+a<%:cja@li4?7-- - -- - -_. - - " - "- " " - - . " ----- - - - - - - - * Specter preva lent i n a i l Pac t f i c Northwest es tuar ine channels.

t~ = tb lns tea; S = Subsidiary; 8 Bl lnd 2~ = River ine, O = Ol igohal lne; M = Hesohdllne; P = Polyhal ine; t = Luha l lne 30- - ob l fga te ; F- = f acu l t a t i ve ; 8 : benthtvore; PS = p isc ivore , PK = p lankt ivore , i4 = herbrvore, 1 = l n rec t i vo re ; 0 = omnlvorc; K = t l e p t o p a r a f f t e

Page 104: The ecology of estuarine channels of the Pacific Northwest coast: A

Anab plalyrhyn~hns

A dmBrh^Bnd

LITTORAL FLATS

BLlNCJ CHANNELS SUBSIMARY CHANNELS

Fig. 7.1. Represen ta t i ve i 11 u s t r a i i on o f common b i r d assemblages o f c s t ua r i ne channels of t he P a c i f i c Nor thwest .

common spec ies and f i v e o f t h e p reva len t species ( t h r e e f a m i l i e s i n t he order Charadri i formes; Haematopodidae, Charadri - idae, and Scol opacidae) , these shorebi rds are t y p i c a l l y seen a c t i v e l y feeding i n the subs t r a t e along the shore l ine, p a r t i c - u l a r l y a t h i g h t i d e when l i t t o r a l f l a t hab i t a t s , t h e p r e f e r r e d f o rag i ny h a b i t a t of most, are inundated. Due t o t he yener- a1 lack o f d a y l i g h t minus t i d e s between September and February, much o f t he f a l l - w i n t e r fo rag ing b y t h i s assemblage i s conceri t rated c l o s e r t o and about channel shore1 ines. Some ( k e r i c a n b l ack oys te r - catcher , snowy p l ove r , w h i m b r ~ l , both dowitchers, d u n l i n , knot, sander l i ng ) appear s i n g l y o r i n smal l , l o o s e l y associated groups wh i l e o t he r s (sand- p ipers , s u r f b i r d , ruddy tu rns tone) occur i n dense, t i g h t l y assoc ia ted f locks.

Considerable h a b i t a t p a r t i t i o n i n y r e s u l t s as a f u n c t i o n o f t h e he te rogene i - t y of s h o r e l i n e subst ra tes. Thus, c u r - r e n t and wave exposure which i n f l u e n c e s sediment c h a r a c t e r i s t i c s o f channel shore l i nes deternlines, t o a 1 arye ex ten t , t h e species composi t ion o f t h i s assem- b l aye. For example, b lack oys te r ca t che rs a re t y p i c a l l y found along rocky c l i f f s , headlands, and j e t t i e s i n t he euha l ine r e g i o n o f those es tua r i es which possess t h i s h a b i t a t (predominant ly i n Oregon) ; dun1 i ns . western sandpi yers, sander1 i ngs , and knots appear commonly on exposed sand beaches i n the lower reaches o f t h e es tu - a r i e s ; and whimbrels and dowi tchers char- a c t e r i z e t he more p ro tec ted , i n n e r bays and f l a t s . T i da l f l u c t u a t i o n s a f f e c t i n g t h e a v a i l a b i l i t y o f p r e f e r r e d f o rag i ng h a b i t a t s and microhabi t a t s , however,

Page 105: The ecology of estuarine channels of the Pacific Northwest coast: A

... . t - l q . 7 . 7 . Representative avifauna of estuarine channel habitats i n the Pacific North- w e s t : A ) feeding dowitchers; 6 ) s p r i n ~ flock of western sandpipers, dunlins, and shor t - bi.1 led dowi t c h c r s ; C) feeding nmle northern pinta i 1s ; D) adult CGlIlrlion loon (Gavi?. i1111ner) i r winter !;lui!iage; E ) fll1 +lock of California and tieernlann's gu l l s ; and, F ) adul t aona- p a r t e ' ; g i l l1 in winter p l~i i~~age. Ail photographs courtesy of Dr. Dennis Pau!son, LJniver- siiy of Washington.

Page 106: The ecology of estuarine channels of the Pacific Northwest coast: A

i n d u c e c o n s i d e r a b l e ~lioveinent about t h e e s t u a r y and many spec ies p e r i o d i c a l l y f r e q u e n t a d i v e r s i t y o f h a b i t a t s . As such, c o n s i d e r a b l e s p a t i a l o v e r l a p i n f o r a y i n g space i s imposed upon these s h o r e b i r d s , wh ich may be r e s p o n s i b l e f o r t h e e v o l u t i o n o f d i v e r s e f e e d i n g behav- i o r s and b i 11 morpho log ies (Kecher 1966).

D i s t r i b u t i o n o f t h e assemblaye t h r o u y h o u t t h e r e g i o n i s r e l a t i v e l y u n i fo rn i wi t h some e x c e p t i o n s (Beccas io e t a l . 1981). For example, snowy p l o v e r s a r e c o n c e n t r a t e d a l o n g t h e mar ine marg ins o f t h e sou the rn e s t u a r i e s and dun1 i n s ap- pear more i n t h e c e n t r a l c o a s t a l e s t u a r - i e s ( 1 . . T i l l amook Bay, W i l l a p a Bay, Grays H a r b o r ) , and, i n g e n e r a l , t h e m ig ra - t o r y spec ies a r e more commonly encountered i n abundance a l o n g t h e c o a s t a l e s t u a r i e s than i n t h e i n l a n d e s t u a r i e s , wh ich a r e inore re~i ioved f rom t h e mainstream o f t h e P a c i t i c Flyway.

Approx i i na te l y a t h i r d o f t h e assem- b laye a r e m i g r a n t s and t h e i r abundances t y p i c a l l y reach maxima i n s p r i n g ( A p r i 1 - May) and f a 1 1 (September-November) , when they a r e m i g r a t i n g t h r o u g h t h e P a c i f i c Northwest. I n t e r m e d i a t e 1 eve1 s o f abun- dance i n t h e w i n t e r a r e a s s o c i a t e d w i t h o v e r w i n t e r i n y o f soine spec ies i n t h e estu- a r i e s . T h i s v a r i a t i o n i s i l l u s t r a t e d by t h e c o r r e c t e d a e r i a l e s t i n l a t e s o f t o t a l s h o r e b i r d abundances i n Grays Harbor between September 1974 and October 1975 which f l u c t u a t e d between averages o f 65,833 i n s p r i n y , 19,700 i n summer, 52,500 i n f a l l and 21,533 i n w i n t e r (Smi th and Mudd 1976a). S i m i l a r l y , Jones and Stokes Assoc ia tes , I n c . ' s ( i n prep.) summary o f t h e i r 1980-1981 CKEDDP s t u d i e s o f t h e a v i f a u n a i n t h e Columbia R i v e r e s t u a r y i n d i c a t e d d e n s i t i e s o f "peeps" ( c o n f i n e d t o t h e "key " spec ies o f d u n l i n , sander- l i n g , a d wes te rn sandp ipe r ) as h i g h as 9 378 km- i n s p r i n g , 766 ~ J - I - ~ i n f a1 1 , and 961 kin-2 i n w i n t e r , b u t peeps a r e v i r t u a l l y absen t i n t h e summer. D i s t r i b u - t i o n o f t h e assemblage was a l s o b roades t , e s s e n t i a l l y c o v e r i n g t h e whole e s t u a r y but c o n c e n t r a t i n g on m id -es tua ry , i n t h e s p r i n y and was more r e s t r i c t e d i n t h e fa1 1. S i g n i f i c a n t o v e r w i n t e r i n g was ob- served o n l y a t one s i t e i n t h e upper e s t u -

a r y , a l t hough "peep" d e n s i t y a l o n g a l i n e a r t r a n s e c t was e s t i n l d t e d a t 337 km- I d u r i n y t h a t p e r i o d .

7.2 WADERS

Th i s assernbl age, c o n f i n e d t o b i rds t h a t wade t h r o u y h sha l low-water p o r t i o n s o f t h e channel i n search o f i n v e r t e b r a t e and f i s h prey , i s composed o f two yroups which a r e q u i t e d i f f e r e n t i n d i s t r i b u t i o n and eco l oyy. Grea te r ye1 1 owl egs (Fami l y Sco lopac idae) f o r a g e a1 ony channel shores and sha l l ows i n wa te r 5 t o 10 cm deep and t h u s a r e found w i t h i n channel h a o i t a t s o n l y when b l i n d channels a r e t i d a l l y de- watered. L i k e inany o f t h e o t h e r shore- b i r d s , t hey a r e seasonal t r a n s i e n t s who a r e most abundant i n t h e r e y i o n ' s e s t u a r - i e s d u r i n g s p r i n g and f a l l n i i y r a t o r y p e r i o d s .

Great b l u e herons and e y r e t s ( t a m l l y A rde idae ) a r e e s t u a r i n e r e s i d e n t s t h a t n e s t i n we t land and a d j d c e n t up land, and f o r a g e i n marshes, l i t t o r a l f l a t , and channel h a b i t a t s i n wa te rs 41 m deep. I n channels , t h i s i n c l u d e s shore1 i n e and s l o p e areas o f i i ra insten~ channels and s h a l - l o w s u b s i d i a r y and b l i n d channe ls t h r o u g h - o u t t h e e s t u a r i e s . Great b l u e herons a r e d i s t r i b u t e d u b i q u i t o u s l y t h r o u y h o u t t h e r e g i o n w h i l e e y r e t s a r e l o c d t e d p r i n c i p a l - l y i n t h e c o a s t a l e s t u a r i e s o f n o r t h e r n C a l i f o r n i a and sou the rn Oregon (Beccas io e t a l . 1981). The d e n s i t y o f herons i n t h e Columbia K i v e r e s t u a r y peaked a t a lmos t 3 km-1 o f l i n e a r t r a n s e c t surveyed d u r i n g t h e summer months due t o r e c r u i t - ment o f young, b u t averaged between 1 and 2 km-1 d u r i n g o t h e r seasons. A l though d i s t r i b u t e d t h r o u g h a l l e s t u d r i n e r e g i o n s , herons tended t o be c o n c e n t r a t e d I n t h e c e n t r a l ( i e . , 01 i g o h a l i n e - p o l y h a l i n e ) r e g i o n o t t h a t e s t u a r y . P a r t o f t h i s h e t e r o g e n e i t y was due t o t h e p r o x i m i t y t o he ron n e s t i n y c o l o n i e s i n t h e v i c i n i t y o t Younys Bay, K a r l s o n I s l a n d , Ryan I s l a n d , and 8 rown 's I s l a n d (Jones and Stokes Assoc ia tes , Inc. , i n prep. ) . Much h i g h e r d e n s i t i e s have been observed on t h e b a s i s o f l i n e a r s h o r e l i n e ; as many as 30 t o 50 immature herons have been observed pe r l i n e a r km o f s h o r e l i n e i n Grays Harbor d u r i n g t h e summer (Dr. Dennis Paulson,

Page 107: The ecology of estuarine channels of the Pacific Northwest coast: A

Burke Mus., Univ. Wash. Sea t t le , WA; pers. comcn. ) . 7.3 SURFACE AND DIV ING WATERBIRDS

Another gredorninant bi r d assemblage found i n e s t u a r i n e channel hahi t a t s i s t h a t o f the sur face and d i v i n g waterb i rds, which c o n s t i t u t e over 40% o f bo th the t o t a l comnon and p reva len t species (Table 7.1) and inc lude members of f o u r farni l i es (Podic ipedidae, grebes; Phal acrocoracidae, corntorants; Anatidae, waterfowl; and Alcidae, a l c i d s ) . U n l i k e b i r d s of the o t h e r assembl ages , they u t i l i ze the chan- n e l water d i r e c t l y f o r ho th r oos t i ng and forag ing. A1 though a1 1 r o o s t on open water, du r ing Feeding some are conf ined t o c e r t a i n channel microhabi t a t s by the con- s t r a i n t s o f t h e i r f o ray i ng behavjor and prey preferences. Ben th ic herbEvorez ( b ran t , ma l la rd , no r t he rn p i n t a i l , green- winged tea l , canvasback) and carn ivores (doubl e-cres t ed curr~ iorant , horned and red-necked grebes, q r e a t e r and l esse r scdup, contrliori goldeneye, buf t 1 enedd, whi te-winged and sur f scaters , p iyeon g u l l lernot) teed i n shal low, ctldnnel slope d r rds where y l ant and anillla1 taud resourc- er d r e w r t h l n t h e i r r e s y ~ c t f v e d l v l n g ranges, whi l e pet d g i c p i s c i v o r ~ s ( pe l ag i c COnlloraRt, conlnon and red-breasted IrrPryan- ser, Bonaparte's g u l l ) and p l ank t tvores (eared grebe) tend t o congreyate d 1 ong t i d a l f r o n t s whlch congregate t h e l r prey.

Same species, yd r t r c u l a r i y tne y i s c i - vorous s p c l e s , a re t u r r n e r r e s t r i c t e d t o cr laf lnr l s 1 n the euna l inr-mesoha1 i n r e - glans o t t h e estuary . S m i t h and Mudd ( 1 9 f b i 3 ) il l u s t r a t e d t t w a rea l d l s t r i b u - t r a r l u t seab i rds ( i n c i u d l n g r l l lnoceros d u k l e t ~ , coti\i\ion ttiurres, warnlcid rtlurre- l ~ t s , plyeon yu i 1 I e~ t l o t s ) 1 0 (;rays Harbor t o be con l lncd t o r t ldnnel hdb t t d t l i 1 t l l ~ ou te r castudry wllere water ciepth was q rea t - e r than O t r i r e l a t l v e t o MLLW ( E l y , 7 . 3 ) . U l ~ t r l b u t l o n ~ o f pe l ay t c cormorant anr! s u r t scoter were sirni 1 a r ly concentrdted i n lower dnd mid-estuary reg ions o t t h e C~ lun l i r ta R i ve r estuary , wh i l e o ther spec les (ma1 1 drd , Anterican wlyearl, and caarri<rn nreryanser) tended t o occur I n t ne c e n t r a l and upper reg ions o f t h a t es tuary (Jones dnd Stokes Associates, Inc., I n

prep.). I n t he case of h igh d e n s l t l e s o f western yrebes dnd hyb r l d ( s laucous- wingedlwestern) g u l l s i n t h e c e n t r a l po r - t i o n of the estuary du r l ny the w in te r , seasonal aygregat ions not re1 atei; t o m iy ra t lons i n t o o r out o t the estudry have a lso been c o r r e l a t r d t o i d 1 g rd to ry concentrat ions o f p re fe r r ed prey sbcrl as l o n y f i n smelt.

As over two- th i rds of t he spec1tas I n t h l s d iverse ds~embl age are \t%(ist~na l n~ lq ran t s , t h e l r dens1 t l u s drld t h t * O V P ~ J ~ l dssernblage s t r uc tu re changes drdmat lca l i y over the year. Most o t t h e S / J ~ ( l t l s 1111-

g ra te out o f o r through the estuary dur - ltry rp r rny and re tu r r l i n the t d l l . promot- i ng dens i t y mdxlna dur ir ty thece per i c~ i l s . Hut, despr t e yenerdl ly lower s p e l l c s r l c n - nvss, tt ie nutr~er ical d ~ v e r s r t y (3ndnr1on- Weaver 11' ) ot t he asseniblaye c a n t)e n l yn I n the sullwrler due to t he Inore e v ~ n d l s t r l - bu t t on of i n d i v i d u a l s du r l ng nes t i ng of res iden ts , a$ hds twen docurnented i n t h e C01~111bla Htver drld other coas ta l e ' r tudr- l e s (Edwards 1479; Crdwtord and Ilorsey 1980; Jones and Stokes Assoclate5, Inc . , i n prey.). Sn~l t t l and Mudd ( l q l b d ) e s t i - niated waterfowl dens i ty d lony t ne two tndjor channels I n inner brays Harbor t o reach rnaxlma o f 426 individuals k m - 1 ( l l n - edr t ransec t ) i n A p r i l and 130-13U km-1 i n September-Novet~lber. A t the same time, taxon r ichness rdnyed troilt 10 I n .Iarruary t o 1 6 I n d y r l l , was between 1 and 5 f r c l a i May throuyn August, and i rlcreased t rorlt 4 1 n September t o 10 I n Uecen~ber. The 1980-1981 CHEUDP studies i n the Colurilbi a Kl ver estuary aescr i bed t o t a 1 dens1 t i t a s ot t h l s assernbidye i n open water h a b i t a t s t o range between 0 1 5 km-2 i n Spring, 6 3 7 k m - 2 ~n surlmtar, a 4 2 krn-7 i n f d t 1 , and 16u kar-2 i n w ln te r , wh i l e mean nunierlcal (11-

v e r s i t y (Shannon-waver H ' ) and eventjess (H1 /H ' niax) r r s p e c t i v e l y ranyed r ro r i 1.U6 dnd 0.60 l n sp r inq , 1 .73 and 0.77 I n sum- mer, 1.97 and 0.76 i n f a l l , t a 1 - 6 1 and 0.67 I n w in te r (Jones and Stokes Assocl- a c e s , Inc., i n prep. ) . Itle s @ r i n y d a t d , however, consisted o f o n l y one, l a t e census wblch d i d not survey any l a r y e t l o cks o t n l ly rants and may t h e r e f o r e be unrepresentat ive o f t h l s season.

Page 108: The ecology of estuarine channels of the Pacific Northwest coast: A

Fig. 7.3. Seab i rd ( p r i m a r i l y rh inoceros auk l e t s , common murres, marbled mu r re l e t s , and pigeon g u i l l e m o t s ) d i s t r i b u t i o n i n Grays Harbor, Washington, October 1974 t o September 1975; s t i p p l e d area i n d i c a t e s l i t t o r a l sand o r mud f l a t h a b i t a t and hatched area i n d i - cates seab i r d occurrence ( f i g u r e from Smith and Mudd 1976a).

7.4 AERIAL-SEARCHING BIRDS

Ae r i a l - sea rch i ng b i r d s i n c l u d e bo th t e r r e s t r i a l (be1 t e d k i n g f i s h e r , swallows, osprey, b a l d eay le ) and wate rb i rds ( gu l l s , te rns , and brown p e l i c a n ) which f l y over and a long channels whi l e f o r a y i n g f o r prey over , on, o r j u s t w i t h i n t h e water surface. Wate rb i rds a l s o r o o s t on t he surface.

Be1 t e d k i n g f i s h e r s , ospreys, and ba l d eagles a l l r e q u i r e perches i n t h e prox i in i ty o f t h e i r common f o rag i ng habi- t a t and t hus a re l e s s p reva len t o r absent over channels i n l a r g e expanses o f open water such as occur i n t h e lower reg ions o f many es tua r i es . I n t h e Columbia R i ve r estuary , f o r example, t h e d i s t r i b u t i o n and abundance o f b a l d eagles i s centered i n t he c e n t r a l r e g i o n o f t h e es tua r y

through most o f t h e year (Jones and Stokes Associates, Inc., i n prep.) . The proxim- i t y o f f o rag i ng h a b i t a t s t o nes t i ng s i t e s may a l so r e s t r i c t t h e e f f e c t i v e d i s t r i b u - t i o n o f these b i r d s a long t h e estuary .

Gu l l s and t e rns , however, a re much more wide ly d i s t r i b u t e d through t n e es tu - a r i e s as theJ r a ~ i d l ~ cover broad expans- es o f open water du r i ng t h e i r feed ing f o r - ays away f rom e s t u a r i n e breeding co lon ies . Much o f t n i s wide a e r i a l d i s t r i b u t i o n i s due t o t h e r e l a t i v e l y dynamic na tu re o f t h e i r prey resources, such as macrozoo- p lankton and smal l , schoo l ing f i shes which occur s p o r a d i c a l l y w i t h s h i f t i n y cu r ren t s and t i d a l f r o n t s throughout t h e es tuary ; t i d a l i nunda t i on and exposure o f ben th ic and s e s s i l e organisms a lony chan- ne l shores a l so c o n t r i b u t e s t o movement o f g u l l s which prey upon these organisms.

Page 109: The ecology of estuarine channels of the Pacific Northwest coast: A

While t h e t e r r e s t r i a l - a s s o c i a t e d b i r d s o f t h e assemblage a r e es tua r y r e s i - dents, both mew g u l l s and the two t e r n s are seasonal t r a n s i e n t s , a1 though i n oppos i te pa t te rns . Mew g u l l s , l i k e most of t h e waterfowl, m ig ra te ou t o f t h e r e - g i o n ' s es tua r i es d u r i n g t h e summer. The maximum abundances recorded i n Grays Har- bor between October 1974 and September 1975 occurred i n December though A p r i l (maximum o f 1.4 km-1 a l ong a channel t r ansec t i n upper es tua r y i n March) and t h e g u l l s were absent f ro in May t h rouyh Ju l y (Smith and Mudd 1976a). Jones and Stokes Associates, Inc. ( i n prep. ) repor ted maximum mew g u l l d e n s i t i e s o f 193 km-2 i n f a l l 1980 and 400 km-2 i n w i n t e r 1980-1981 i n t h e Columbia R i v e r estuary . Common and Caspian t e r n s a r e summer immigrants i n t o t h e l a r g e c o a s t a l es tua r i es and Caspian t e r n s breed i n l a r g e es tua r i ne co l on i es throughout t h e r e g i o n (Beccasio e t a l . 1981). High d e n s i t i e s o f common t e r n s occur i n Grays Harbor i n

May (2.6 km-1 a l ong channel t r a n s e c t i n upper es tuary ) and e q u a l l y so i n Sep- tember. Caspian t e rns , which breed on Whitconib I s l a n d i n t he l o w e r es tua r y from May t o October (Penland 1976), a r e most abundant (18 km-1) i n channel h a b i t a t s d u r i n y J u l y when food requi rements for f l e d g l i n g s a re a t a maximum (Smith and Mudd 1976a). The d e n s i t y o f Caspian t e r n s i n t h e Columbia R ive r es tuary reached %93 km-2 d u r i n g summer 1980 censuses by Jones and Stokes, Associates, Inc. ( i n prep.).

As t h e "Cal i f o r n i a " subspecies, t h e brown p e l i c a n i s an endangered species which occurs i n smal l aggregat ions o f iirimatures as t a r n o r t h as Grays Harbor and i s a f a1 1 (Auyust-September) occupant o f t h e euha l i ne r eg i ons o f a number o f t h e c o a s t a l e s t u a r i e s t o t h e south ( W i l l a - pa Bay, Columbia R ive r , Coqu i l l e , Chetco and Humbolt Bay) (Beccas io e t a l . 1981).

Page 110: The ecology of estuarine channels of the Pacific Northwest coast: A

CHAPTEK 8

MAMMALS UF ESTUAK I N € CHANNELS

T e r r e s t r i a l , aqua t i c , and marine mam- mals u t i l i z e es tua r i ne channel h a b i t a t s t o va ry ing ex ten t s and f o r va r ious purpos- es. A1 though rrrembers o f ad jacent w e t l a n d o r upland communities, t e r r e s t r i a l mam- mal s p e r i o d i c a l ly forage a long the shore- l i n e boundaries w i t h channel hab i ta ts . Aquat ic marnrnals a c t u a l l y u t i 1 i ze channels f o r much o f t h e i r p r i n c i p a l foray ing. Compared t o t e r r e s t r i a l and aqua t i c mam- mal s, marine marnrnals occupy channels ex- t ens i ve l y , some e x c l u s i v e l y , fo r forag- i ng , movement, m i g r a t i o n , r e s t i n y , and

reproduct ion. Other than rnan, t h e y con- s t i t u t e the predominant ~ r o p o r t i o n of t h e t e r t i a r y consumer l e v e l (see Chap. 9).

One t e r r e s t r i a l ( p r o c y o n i d ) , four aquat ic (one each c a s t o r i d , c r i c e t i d , cap- romyid, and mus te l i d ) , and f o u r marine ( a l l p innipeds) mammals are common t o channel h a b i t a t s i n P a c i f i c No r t hwes t es- t u a r i e s ( f i g 8.1; Table 8.1). In a d d i t i o n t o these, o t he r marine mmmals such as orca o r k i l l e r whale (Orc inus E) , har -

I i

F ig . 6.1. Represen ta t i ve i l l u s t r a t i o n o f common mammal assemblages of e s t u a r i n e than- ne ls o f t h e P a c i f i c Northwest.

Page 111: The ecology of estuarine channels of the Pacific Northwest coast: A

Table 8.1. I t e m i z a t i o n and c h a r a c t e r i s t i c s o f t e r r e s t r i a l , aqua t i c , and mar ine mammals common t o es tuar i r ' e channel h a b i t a t s i n t h e P a c i f i c Northwest.

- -- Re 1 evant I

Channel S a l i n i t y 1 i f e h i s t o r y Taxa hab i t a t s1 assoc ia t ions2 --- c h a r a c t e r i s t i c s 3

T e r r e s t r i a l : I Procyon 1 o t o r m n r

K-E

Aquat ic : I Castor canadensi s (American beaver )- Ondatra z i b e t h i c a piizzt)- Myocastor coypus --r-) L u t r a canadensi s m d i a n r i v e r o t t e r )

s , B R-0

S,B R-M

S,B R-M

M-B R-E

0-H

O-H

0-H

0-EC

Marine: I Eumetopias j uba ta M,S K-E F-PC (Nor thern sea 1 i o n ) Zalophus c a l i f o r n i anus M, S R-E F-PC ( C a l i f o r n i a sea l i o n ) ~ h o c a v i t u l i n a r i c h a r d i (Harb0FTzJ-J-

K-E F-EC

Mirounga a n y u s t i r o s t r l s M P-E F-PC (Northern e lephan t s e a l )

= Mainstem; S = Subs id ia ry ; B = t31 i n d . 2~ = R i ve r i ne ; 0 = O l i goha l i ne ; M = Mesohaline; P = Po lyha l ine ; E =

Euhal ine. 30- = o b l i g a t e ; F- = f a c u l t a t i v e ; EC = ep i ben th i c ca rn ivo re ; PC = p e l a y i c

ca rn i vo re ; H = he rb ivo re .

b o r porpo ise (Phocoena p h o c c y a ) , g ray whale ( E x c h r i c h t i us robus tus and minke whale ( ~ a l a e n o p t e r a a c u t o r o s t r a t a ) have been repo r t ed sporad ica l l y i n t he r eg i on ' s e s t u a r i e s . As w i t h t h e av i an assemblages, comprehensive documentat ion o f mammal as- semblages i n t h e r e g i o n ' s e s t u a r i e s i s r e l a t i v e l y r e c e n t and l i m i t e d t o t h e coas ta l e s t u a r i e s i n t h e v i c i n i t y o f t he Columbia R i ve r , e.g., Grays Harbor, W i l - l apa Bay, Columbia R i v e r es tuary , T i l l a - mook Bay, and N e t a r t s Bay (Smith and Mudd 1976b; Howerton e t a1 . 1980; Dunn e t a1.

1981; Beach e t a l . 1981) and i n the l e s s - es tua r i ne env i rons o f no r t he rn Puqet Sound and the S t r a i t o f Juan de Fuca ( E v e r i t t 1980; E v e r i t t e t a1 . 1980). Q u a n t i t a t i v e (popu la t ion s i zes and dynamics) s t u d i e s o f t e r r e s t r i a l and aqua t i c mammals i n P a c i f i c Nor thwest es tua r i es a re r a r e o r nonex i st- ent . Assemblage accounts of d i s t r i b u t i o n s and popu la t i on assessments o f ma r i ne mam- mal s, however, have been a v a i l a b l e s ince t h e 1940's (Sche f f e r and S l i p p 1944, 1948; Manzer and Cowan 1956; Cowan and G u i g u e t 1965; B i g g 1969; P ike and MacHskie 1969).

Page 112: The ecology of estuarine channels of the Pacific Northwest coast: A

Extens ive popu la t i on b i o l ogy and ecoloyy s t u d i e s o t p inn ipeds i n es tua r i ne habi - t a t s have occurred du r i ny t h e past two decades (Pearson 1969; Pearson and Ver ts 1970; Mate 1975; brow^ and Mate 1979; Calanlbokidis e t a l . 1978, 1979; Brown 1980; t3owl by 1981; Ko f f e 1981). i3ecassio e t a l . (1981) i n c l uded these common inarnmal species i n t h e i r colnprenensive eco log i ca l i n ven to r y o f t h e P a c i f i c Coast.

8.1 TEKKESTKIAL MAMMALS

Raccoons a re one o f the few t e r r e s - t r i a l mammals which t requen ts channel h a b i t a t s i n con junc t i on w i t h t h e i r p r i n c i - p a l use o f ad jacent l i t t o r a l t l a t , s a l t and f reshwate r marsh, and r i p a r i a n swamp h a b i t a t s . U t i l i z a t i o n o f t h e channel i s alniost e x c l u s i v e l y con t ined t o f o rag i ny f o r shal low-water fauna. Feeding per iod- i c i t y and i n t e n s i t y i s p r i n c i p a l l y a func- t i o n o f t i d a l cyc les . A1 though raccoons have been observed feeding du r i ng both day- and n igh t t ime, they appear t o p r e f e r n i g h t t i m e low t i d e per iods when they can s a f e l y fo raye across l i t t o r a l f l a t s (Smith and Mudd 1976b; Dunn e t a l . 1981). Thus feeding a c t i v i t y tends t o be seasonal i n nature, i.e., more i n t e n s i v e i n f a l l and l owes t dur ing spr ing. Raccoons i n the Columbia K i ver es tuary have been observed th rough a l l e s t ua r i ne reg ions, from the euha l i ne reg ion o f t he I lwaco Channel t o t h e marsh channels o f Puyet I s land , a l - though peak observat ions occurred i n t h e complex system o f i s l ands and channels i n Cath l amet Bay (Dunn e t a1 . 1981).

8.2 AUUATIC MAMMALS

American beaver a r e common on ly i n smal l subs i d i a r y and b l i n d channels which i n t e r s e c t f reshwate r marsh and r i p a r i a n h a b i t a t s , p a r t i c u l a r l y s i t ka w i l l o w (Sal i x s i t chens i s) , creek dogwood (Cornus s t o l o - n i f e r a o r s i m i l a r h a b i t a t s i n r i v e r i n e - -1 ' mesohal ine marshes such as t h e Cathlamet Bay area o f t he Colunbia R i v e r es tuary (Wash. Dep. Game 1981). Extremely small channels may be dammed and permanently occupied (denning and r e s t i n g ) by beaver i n some instances.

Muskrat have a broader spectrum o f h a b i t a t u t i l i z a t i o n t han beaver, be ing more common i n the sedge (Carex spp.), ho r se ta i 1 (Equi setum spp. ) , and bu l rush (Sc i rpus sp-and f reshwater habi - t a t s i n a d d i t i o n t o t h e r i p a r i a n h a b i t a t s occupied by beaver (Smi th and Mudd 1976b; Wash. Dep. Ga!ne 1931). Denning and r e s t - ing, however, a1 so occur i n c lose associa- t i o n w i t t i steep-sided es tuar ine ( p r i n c i - pal l y subs i d i a r y and b1 i n d ) channel s adjacent t o o r i n these h a b i t a t s and, as such, c o r ~ s t i t u t e c r i t i c a l h a b i t a t s f o r t h i s species (Dunn e t a1 . 1981). Feeding and o ther a c t i v i t i e s almost always occur l e s s than 60 n i . from t h e channel den and p r i n c i p a l l y d u r i n g h i gh t i d e and noc tu rna l hours, perhaps t o f a c i l i t a t e access t o feeding areas along t h e channel banks and t o min i in ize v u l ne rab i l i t y t o p reda to rs .

Nu t r i a h a b i t a t s over lap somewhat w i t h those o f American beaver i n t h e i r occupat ion o f marsh and r i p a r i a n swamp hab i ta ts . I n t ne Columbia R ive r es tuary t he most common fea tu res o f n u t r i a h a b i t a t a re compl ex steep-sided t i d a l channel sys- tems w i t h i n ex tens ive h igh marshes ( p r i n- c i p a l l y reed canarygrass, Pha la r i s arun- d i n a c e a / c a t t a i l , Typha sp.), wherer p r i n c i p a l fo rage p l a n t s (see Sec t ion 9.1) are r e a d i l y a v a i l a b l e (Dunn e t a1 . 1981). Un l i ke muskrat, n u t r i a appear t o ma in ta i n ex tens ive home ranges (%U. 4 km2) con ta i n - i n y several h a b i t a t s and t o have no sea- sonal o r d i e1 p e r i o d i c i t y t o t h e i r a c t i v - i t y p a t t e r n s ,

Among t h e t e r r e s t r i a l and aqua t i c mammals t h e Canadian r i v e r o t t e r undoubt- ed l y ma in ta ins t h e h ighes t u t i l i z a t i o n o f es tua r i ne channels and i s t h e o n l y spec ies which comrnonly occupies mainstem channels. A1 though most observat ions o f r i v e r o t t e r i n t h e Columbia R ive r es tuary were c o r r e - l a t e d w i t h s i t k a spruce (P icea s i t chens i s ) and/or s i t k a w i 11 ow-domi nated f o r e s t , o t - t e r were t y p i c a l l y assoc ia ted w i t h complex channel networks o f t i d a l creeks and sloughs ( subs i d i a r y and b l i n d channel s ) which o f f e r e d e a s i l y access ib le , concen- t r a t e d prey resources ( c l arns, c r a y f i s h , and dernersal f i s h e s ) du r i ng p e r i o d i c t i d a l dewater ing (Dunn e t a l . 1981). I n Grays Harbor, r i v e r o t t e r have been

Page 113: The ecology of estuarine channels of the Pacific Northwest coast: A

observed o n l y i n t r i b u t a r y r i v e r s and streams, although it i s assunled t h a t they u t i l i z e t n e open waters o f t h e estuary (mainstem channel s ) t o t r ave l between t r i b u t d r i e s (Smith and Mudd 1Y76b). O t - t e r s a l so are r e l a t i v e l y adaptable t o tne presence o f man as lony as c r i t i c a l hab i - t a t and food resources are maintained; Cowan and tiui guet (1965) considered thein the most numerous aquat ic mammal i n Vancouver (U.C., Canada) Harbor.

8.3 MARINE MAMMALS

Harbor seals and Ca l i t o r n i a and nor thern sea l i o n s are both common and abundant i n P a c i t i c Northwest es tuar ies a1 thauyh d e n s i t i e s f l u c t ua te seasonal l y as a f unc t i on o f feed ing and breeding ~ n i - g ra t ions (Mate 1975). Northern elephant seals are less abundant i n the reg ion and n r r more concentrated seasonally i n t he southern extrane o f t h e region. While a l l four species occur f requent ly i n codstd l es tuar ies , nor thern elephant seals dnd C a l i t o r n i a sea l i ons tend t o be less abundant i n t h e i n l and estuar ies o f Puget Sound.

Nor thern sea l ions are most abundant i n t h e r e y i o n du r i ng t he non-breeding sea- son between l a t e f a l l and ea r l y sp r iny and, except f o r a snlall populat ion along ttre ou te r coast d u r i n g t h e summer ( E v e r i t t and J e f f r i e s 1979), a r e usua l l y absent from the reg ion frorn Mdy through Ju l y . Total counts o f no r t he rn sea l i o n s i n Washinyton i n 1976 and 1978 peaked a t 'L450 i n February-March and a t 2600 i n Sel~tewber-October ( E v e r i t t e t a1 . 1980). Hgt Beach e t a l . (1981) ind ica ted t h a t nor thern sea l i o n populat ions i n 1981 vdr ied cons iderably among th ree haul out s l t e s i n t h e v i c i n i t y of the Columbia River es tuary ; whi 1 e occupat ion of t he south j e t t y s i t e a t t h e mouth o f t he r i v e r was concentrated between January and May, maximurn abundance a t Til lamook Head, Oreyon, occurred i n May and June and d i d no t occur a t Three Arch Kocks u n t i l October-November. Much o f t h i s variation appears t o be associated w i t h s h i f t s i n p r e t e r r e d fo rag ing h a b i t a t and l o c a t i o n alony t h e coast dur iny the sum- mer and a p o t e n t i a l movernent o f sea l i o n s

i n t o i n s i d e waters du r i ng the winter months ( t v e r i t t e t a l . 1980). Occupdtion o f coas ta l es tua r i es o f t e n co inc ides wi th p red i c t ab l y h i gh concen t ra t ions o f prey, sucn as eul acrion and sp r i ng chinook sal- mon spawni ng mic j ra t i ons through the Colum- b i a River es tuary i n w i n t e r and spr ing (Beach e t a l . 1981). Movement i n and out o f t h e estuary must be r e l a t i v e l y dynamic du r i ny t h i s pe r i od , ds no haulout areas a re repor ted t o occur w i t h i n the estuary.

C a l i f o r n i a sea l i o n s a l s o occur i n P a c i f i c Northwest e s t u a r i e s dur ing the non-breediny season between Uctober and May, when they move nor thward from oreed- i n y s i t e s a t and south of San Miyue1 Is land , C a l i f o r n i a . They f o l l o w the same yeneral auundance d i s t r i b u t i o n pa t t e rn as t h e no r t he rn sea 1 i o n bu t a re genera l ly more abundant i n coas ta l es tua r i es and l e s s abundant i n i n l a n d waters ( E v e r i t t e t a l . 1980; Beach e t a l . 1981). E v e r i t t e t a1 . (1980), however, repor ted extended haul i n y out of C a l i f o r n i a sea l i o n s a t hau lou t areas i n t ne P o r t t iardner area o f Puyet Sound, a s i g n i f i c a n t expansion o f t h e i r u t i l i r a t i o n and abundance i n i n s i de waters.

I n the Columbia K i v e r estuary foray- i n g C a l i t o r n i a sea l i o n s a re numerous througnout t h e estuary du r i ng the spr ing f i s h m ig ra t ions , o c c u r r i n g as f a r up r i ve r as Uonnevi 1 l e Dam, a1 though no hdulout s i t e s have been documented t o occur w i th - i n t he conf ines o f t he estuary , This sea 1 i on i s c red i t ed w i t h some f i s h and f i s h - ing gear damage i r t the fa1 1 and i s consid- ered t o be t he rnajor cause of year danage i n the lower r i v e r and es tuary dur ing the 1981 w in te r season (Beach e t a1 . 1981).

O f a1 1 marine mammals, t he P a c i f i c harbor seal i s t h e most ub iqu i tous and abundant and i s t h e o n l y breeding p i n n i - ped i n t he r e g i o n (Sche f f e r and Slipp 1944; E v e r i t t e t a l . 1980). The S ta te of Washinyton i s est imated t o p rov ide refuye t o over 7,000 harbor seals (Everi tt e t a \ . 1980). Beach e t a1 . (1981) est imated 5,000-6,000 harbor seal s present i n t h e i r s tudy area between Grays Harbor and Netar ts Bay, i n c l u d i n g a t l e a s t 55 hau lou t s i t e s i n t h e f i v e ma jo r es tuar ies

Page 114: The ecology of estuarine channels of the Pacific Northwest coast: A

( F i g . 8.2). Beccas io e t a l . ( 1981 ) ill us- tratt!d s i m i l a r l y u n i f o r : . ~ d i s t r i b u t i o n s o u t f i t o Hurrboldt Bay.

O f a1 1 t h e p i n n i p e d s , h a r b o r s e a l s a r e t h e 111ost e s t u a r i n e - o r i e n t e d , even i n t n e c o n f i n e d w a t e r s o f Puget Sound where t h e y can be oDserved nioving up t h e s m a l l - e s t o f e s t u a r i n e channe l s d u r i n g t l ood t i d e . Loca l movement, however, i s common a s a r e s u l t o f f o r a g i n g and r e p r o d u c t i o n demands (Brown and Mate 1979; E v e r i t t e t a l . 1981). iPiovement i n t o t h e Colunlbia K i v e r e s t u a r y , f o r exarrrple, occurs f rom a d j o i n i n g c o a s t a l e s t u a r i e s d u r i n g l a t e w i n t e r c o i n c i d e n t w i t h t h e eu lachon w i -

and i:laximun sea l abundance , 5 0 0 ) i s s u s t a i n e d t h r o u g h t h e s p r i n g . Seal s a p p a r e n t l y f o l l o w t h e eu lachon as f a r u s r i v e r a s Longview, Wash- i n g t o n , b u t abandon t h e u p r i v e r h a u l o u t s i t e s and fade back i n t o t h e e s t u a r y u n t i l

1 a t e s p r i n g (3each e t n l . 1381). r l u r i ng t h e pupp iny season froin A p r i l t o Jthy t h e popu!at ion d i f f u s e s o u t o f t i13 Co lunb ia R i v e r e s t u a r y i n t o p r i p h e r a l a reas o f W i l l a p a Bay, Grays Harbor, and T i l l a m o o k Bay ( F i g . 8.3).

N o r t h e r n e lephan t s e a l s a r e t h e l e a s t common p i n n i p e d f r e q u e n t i n g e s t u a r i n e cnanne l s and u s u a l l y c o n s t i t u t e so l i t a r y i n d i v i d u a l s wnich ranye n o r t h o f t h e i r b r e e d i n y l o c a t i o n s ( F a r a l l o n I s1 ands, C a l i f o r n i a south t o Ba ja , Mexico) f r om s p r i n g th rouyn f a 1 1 b u t wh ich may occur i n t h e P a c i f i c No r thwes t t n rougnou t t h e y e a r ( t v e r i t t e t a l . 1980). A1 l obser- v a t i o n s o f 1 i v e e l e p h a n t s e a l s have been a t t h e mouths o f c o a s t a l e s t u a r i e s o r i n i n l a n d mar ine waters , and o n l y one h a u l o u t a rea ( T r i n i d a d Rock, C a l i f o r n i a ) has been i d e n t i f i e d i n t n e r e g i o n (8eccas io e t a l . 1981).

F i g . 8.2. P a c i f i c h a r b o r s e a l h a u l o u t s i t e a l o n g channe l i n W i l l a p a Bay, Washington, June 1980 ( p h o t o c o u r t e s y o f S teven J e f f e r i e s , WSDG).

101

Page 115: The ecology of estuarine channels of the Pacific Northwest coast: A

COLUMBIA RIVER ESTUARY

3000 i WILLAPA BAY

3000 - GRAYS HARBOR

2000 -

1000 -

0 J ' F ' M ~ A ' M ' J ' J ' A ' S ' O ' N ' D '

MONTH

Fig. 8.3. Maximum t o t a l abundance ( a e r i a l counts) o f Pac i f i c harbor seals a t haulout s i t e s i n three o f Wash- ing ton 's coastal estuaries i n 1980 (open symbols) and i n 1981 (closed symbols) ( f igure redrawn frm data of Beach e t a l . 1981).

Page 116: The ecology of estuarine channels of the Pacific Northwest coast: A
Page 117: The ecology of estuarine channels of the Pacific Northwest coast: A

t h e 1 a t t e r o f which i nc l ude carn ivo rous t axa such as Nephthys and Eteone. Whi le some organi s rns ( ' i . e , ,Acmaem -- gas t ro - pods) a r e assumed to graze d i s c r i r n i n a t e l y upon m i c roa l yae, i t has com~nonly been assumed t n a t most cap tu re and i n y e s t food p a r t i c l e s s imply on t h e b a s i s o f s i ze as a f u n c t i o n o f f i l t e r i n g o r o t he r feediny morphologies. It has become r e a d i l y ap- parent , however, t h a t s e l e c t i v e i n g e s t i o n of food p a r t i c l e s occurs, perhaps on t h e bas i s o f che~ni c a l and/or phys i ca l composi - t i o n ( 1 . . T i e t j e n and Lee 1977 f o r nematodes; Fauchald and J u ~ i ~ a r s 1979 f o r ?o lychaetes) , and t h a t "food" can be composed o t a combinat ion o f ben th ic microa lyae, d e t r i t u s , pe l ag i c phytop lank- ton, and meiotauna. More r ecen t s t ud i es have i n d i c a t e d t h a t observed p a r t i c l e s e l e c t i o n pa t t e rns a r e more t h e r e s u l t o f t h e mechanics o f p a r t i c l e hand l i ng than o f behav io ra l responses t o p a r t i c l e char- a c t e r i s t i c s (Junlars e t a l . 1982; Tayhon 1982). DOC, as we1 1 , may be ass imi 1 a ted i n t he feed iny process o r many depos i t feeders (Stephen 1967; Steward 1979; Lev in ton 1980). The r e s u l t i n g f i n i t e p a r t i t i o n i n g o f food resources exp la i ns , w i t h i n t h e c o n s t r a i n t s o f temperature and s a l i n i t y to le rances , much o f t h e d i spa r - a t e s t r u c t u r i n g o f ben th ic in fauna assem- b layes and s tand iny stock (see Sec t ion 5.1) as a f u n c t i o n o f sediment g r a i n s i ze , s t a b i l i t y , and o rgan i c con ten t (Sanders 1959).

M o t i l e ep i tauna a r e p r i n c i p a l l y ben th ic ca rn i vo res p rey i ng upon ben th ic in fauna o r s e s s i l e e p i fauna. Of t he n i n e r ep resen ta t i ve spec ies (Tab le 5.2), twa as te r i ods are ob l i g a t e feeders on s e s s i l e b i va l ves , yast royods, barnac les, and sea u r ch i ns ; two crabs a r e t acu l t a t i v e c a r n i - vores on eve ry th i ng from ben th i c infauna, i n c l u d i n g rneiofauna, t o f i s h ; and t h r e e shrimp species a re o b l i g a t e meiofauna carn ivo res . Only two species, t h e c ray - f i s h Pac i f i cas tacus l en i uscu lus , and he rm i t c rabs (Payurus spp.), are, by t h e i r - d e t r i t i vory, prlrnary consulners.

A1 though t h e r e i s very 1 i t t l e spec i f - i c prey composi t ion o r f eed ing behav io r i n f o rma t i on on these consumers i n es tuar - i n e channels h a b i t a t s , t h e d i e t s o f cran-

gon id shrimps and canc r i d crabs, t h e p r i n - c i pa l i n v e r t e b r a t e secondary consumers i n t h e community , have been exami ned f rom severa l coas ta l es tua r i es . P re l i m i n a r y analyses o f t he stomach con ten ts o f Crangon f ranc iscorum c o l l e c t e d f rom d i f f e r e n t l o c a t i o n s o f t h e Columbia R i v e r es tuary i n June 1481 (C. Simenstad, F i sn . Kes. Ins t . , unpubl. da ta ) i n d i c a t e t h a t a t t h a t t ime C. f ranciscorum was p rey i ng p r i - mar i l y on i n f a u n a and ep i fauna, i n c l u d i n g oo l vchaete annel i d s . Coroohium s ~ o . amuhi - pods, and t he h a r p a c t i c o i d copepod s c o t t o - lana canadensi s. There was l i t t l e d i f f e r - ence i n d i e t amons t h e f o u r l o c a t i o n s f r o m which shrimp werQ examined. Three c r a n - yonids from Grays Harbor were a l s o c a r n i - vorous on ben th ic i n f auna (Armstrony e t a l . 1982). C. f ranc iscorum was found t o feed principa-lly on po lychaete annel i d s (15.4% trequency o f occurrence) and u n i - d e n t i f i e d crustaceans (14.5%)) w h i l e C. n i y r i cauda and C. s t y l i r o s t r i s had p r e y 3 upon c r u s t a c e a n r (12.7% and 11.5%. respec- t ' i v e l y ) and smal l ' b i v a l v e mol lusds (19.0% dnd 7.72, r e s p e c t i v e l y ) . A 1 though n o t ev iden t i n these data, C. f r a n c i s c o r u m may a l so be a major p r e d i t o r on rnys ids ( i .e. , N. mercedis) , as has been r e p o r t e d i n t h e Sacramento-San Joaquin R i v e r s es tuary (S ieyf r i e d 1982).

Prey composi t ion o f Dungeness C r a b s i n Grays Harbor va r i ed accord ing t o preda- t o r s ize, d i e 1 and seasonal c yc l es , a n d l o c a t i o n i n t h e estuary . I n genera l , how- ever, c rabs (60 mm carapace w i d t h p r e y e d p r i n l a r i 1 Y upon b i v a l v e m o l l uscs ( T e l l ina - . spp., & arenar ia , Cryptomya c a l i f o r n - i ca . Macoma suu.. Ca rd i i dae l and s m a l l - - , . , crustaceans (amphi pods, h a r p a t t i c o i d cope- pods, tanai d ~ ) . In te rmed i a t e - s i zed c r a b s between 61 and 100 mm carapace width preyed equal l y upon smal l c rus taceans , f i s h (1 ingcod, P a c i f i c sanddab, P a c i f i c sand lance, P a c i f i c h e r r i n g , P a c i f i c tom- cod, sand sole, sh i ne r perch, l o n g f i n smelt , P a c i f i c s taghorn scu l p i n ) , and 1 a rge r crustaceans (Crangon spp. ; mud shrimp, Ca l l ianassa ca l i f o r n i e n s i s ; Dun- geness crab), and 1 ess so on b i v a l ve mol - lusks . Large crabs >I00 mrn carapace width preyed predominant ly upon f i sh , l e s s on smal l crustaceans, and measurably l ess on l a r g e crustaceans and b i va l ves .

Page 118: The ecology of estuarine channels of the Pacific Northwest coast: A

A1 thouyh t h e r e i s cons iderab le v a r i - a t i o n i n o p i n i o n about food preferences (Coul 1 1973), epi ben th i c zoopl ankton can probably be c h a r a c t e r i r e d as d e t r i t i v o r e s , as i s o f t e n i l l u s t r a t e d by t h e i r promi- nence i n d e t r i t u s a ~ ~ ~ m ~ l a t i ~ n areas such as t he n u l l zone (see Sec t ion 2.5.1). As such, they may p l a y a c r i t i c a l r o l e i n t h e i n i t i a l b i o l o g i c a l ( f ragmentat ion) c o n d i t i o n i n g of d e t r i t u s (see Sect ion 4.4) Ha rpac t i co i d copepods, i n p a r t i c - u l a r , have been found t o r e l y heav i l y upon h e t e r o t r o p h i c a l ly -produced carbon i n t h e fomi o f b a c t e r i a assoc ia ted w i t h d e t r i t u s ( P r o v a s o l i e t a l . 1959; Brown and S i b e r t 1977; S i b e r t e t a l . 1977b; Kieper 1978; Vanden Berghe and Berymans 1981 amony inany). Considerable species- s p e c i f i c v a r i ab i 1 i t y i n food preferences may e x i s t , p o s s i b l y r e f l e c t i n g d ivergent f u n c t i o n a l ( i e . , mandible) morphology and behav io r (Marco t te 1977 and pers. coam,; Vanden Berghe and Bergmans 1981).

Th is c h a r a c t e r i z a t i o n as s p e c i a l i s t s , i n terms o f n u t r i t i o n a l preferences and requirements and t h e a b i l i t y t o u t i l i z e s p e c i f i c foods, may e x p l a i n t h e o f t e n ex- treme f l u c t u a t i o n s i n e p i ben th i c zoopl ank- t o n assemblaye s t r u c t u r e observed i n very dynamic e s t u a r i e s such as t h e Columbia River (Houghton e t a l . 1980). Some promi- nent taxa, p a r t i c u l a r l y Eurytemora a t f i n - i s , can e f f e c t i v e l y feed on bo th d e t r i t u s - and phy top lank ton , and i t has a lso been suggested f u r t h e r t h a t a l g a l c e l l s may ac- t u a l l y c o n t r i b u t e some t r a c e metabo l i te necessary t o r normal egy product ion (He in le e t a l . 1977). The presence of protozoa i n a s s o c i a t i o n w i t h t h e d e t r i t u s may a l s o fo rm a c r i t i c a l l i n k between t he d e t r i t a l POC and assimi 1 a t i o n pathways of ep iben th ic copepods. Mysids such as Neomysis merced is may, i n a d d i t i o n t o be ing d e m e s and phytoplankton grazers, be ca rn ivo res . A1 though they are r epo r t ed t o consume p r i m a r i l y diatoms i n t h e Sacramento-San Joaqui n estuary (Kost and Kn igh t 19751, Houyhton e t a l . (1980) i l l u s t r a t e d t h a t N. mercedis i n t he Columbia R i ve r e s t u a r y f e v t u n - i s t i c a l l y upon meiofauna and zooplankton (cladocerans, cyc lopo id , ha rpac t i co id , and c a l ano id Copepods ; r o t i f e r s ) which were numer ica l 1 y prominent w i t h i n t h e

ep i ben th i c region. Thi s f e e d i n g mode was a l so v e r i f i e d by ~ i e g f r i e d and Kopache (1980), who found t h a t , a l t h o u y h no t a p a r t i c u l a r l y a c t i v e p r e d a t o r , N. mercedis i n t h e Sacra~r~ento K i v e r e s t u a r y de r i ved >80X of i t s energy v i a c a r n i v o r y on r o t i f e r s and copepods ; d i r e c t he rb i vo r y appeared, i n fac t , t o be o f importance on ly du r i ng t h e s p r i n g d ia tom bloom. Wilson (1951) descr ibed N. rnercedis i n t h e Nicomekl and s e r p e n t i n e R ive rs Estu- a r i e s as feediny on b o t h v l an t (diatoms, d i no f l age l l a t es , b l ue -g reen alyae, vascu- l a r p l a n t d e t r i t u s ) and animal ma t t e r (copepods and mysids), Johnson (1981) a l so descr ibes t he t r o p h i c r o l e of N. mercedis i n t3ri t i s h C o l urnbia eS tua r i 6? channe lhab i t a t s .

Estuar ine pe l a y i c zoop lank ton and neuston, ~ e r h a p s r e f 1 e c t i ny t h e lower ternporal and s p a t i a l d i v e r s i t y o f avai 1- ab le food resources i n t h e water column as compared t o b e n t n i c and ep iben th i c environs, i 1 l u s t r a t e mo re 1 i m i t e d feed ing s t r a t eg ies. Most a r e suspens ion feeders (Davis 1949; Poulet 1973; Kichman e t a l . 1977; Lonsdale e t a l . 1979), a l though some omnivorous and c a r n i v o r o u s taxa a re a l s o prominent (Anraku a n d Omori 1963; Gaul d 1966; Mu1 l e n 197 7 ) . In t h e case o f t h e P a c i f i c Northwest e s t u a r i e s , vredomi - nant zoopl ankters i n c l ude b o t h herb ivo res ( i e . , Eurytemora spp., Pseudocalanus spp., and Corycaeus a n g l i c u s ) and omni- vores (Aca r t i a spp. ) , w h i c h thernsel ves mav be t r o v h i c a l l y l i n k e d (Hodqkin and

Next t o t h e av ian assemblages, demer- sa l f ishes i l l u s t r a t e t h e rr~ost d i v e r s e spectrum o f Food web l i n k a g e s and t r o p h i c l e v e l s i n the hab i t a t . T h i s i n c l udes a few pr imary consumers (i .e., comnion ca rp feed cons iderably upon a l g a e and o t h e r p l a n t ma te r i a l as we11 as d e t r i t u s ; Wydoski and Whitney 1979 ) , many secondary consumers and some s p e c i e s (i .e., doy- f i s h , l i n y c o d ) which c o u l d be cons idered t e r t i a r y COnSUmerS a l t h o u g h they are, i n t u rn , suscep t ib le t o p r e d a t i o n by o t h e r t e r t i a r y Consumers such a s mar ine mammal s and, of course, man. Some species may, throughout t h e o n t o y e n e t i c chanyes i n

Page 119: The ecology of estuarine channels of the Pacific Northwest coast: A

feeding behavior , encompass severa l t r o p h - g rea te r s e l e c t i v i t y upon predominant ly f e - i c l e v e l s and prey assemblages; w h i t e male A. c a l i f o r n i e n s i s and bo th sexes o f sturgeon, f o r ins tance, a re r epo r t ed t o A. c l G s i . Consider ing t h e o v e r a l l d i e t s - - consume eve ry th i ny from ep iben th i c zoo- of these t h ree p l ank t i vo res , a d u l t femal e p lankton as j u v e n i l e s t o salnion and house A. c a l i f o r n i e n s i s composed 34.1% o f t h e - c a t s ( a pr ime i l l u s t r a t i o n o f i n t e r h a b i - t o t a l number and 53.6% o f t h e A. ca l i f o r n - - t a t 1 inkages! ) as adu l t s . Ainong t h e i e n s i s f r a c t i o n . r ep r cse r l t a t i ve species (Tab1 e 6.1) facu l t a t i ve e p i ben th ic ben th ivo res (17 species; 40%) and f a c u l t a t i v e ep i ben th i c The f i v e species o f j u v e n i l e salmon, p l ank t i vo res (12; 28%) predominate, f o l - whose food h a b i t s have been s tud ied ex ten- lowed by o b l i g a t e ep i ben th i c ben th ivo res s i v e l y (summarized i n p a r t by Levy and (5: 12%) , o b l i g a t e ep iben th ic p l a n k t i - Lev ings 1978; Levy e t a l . 1979; Nor thco te vores ( 4 ; 9%), omnivores and p a r a s i t e s e t a l . 1979; Levy and Nor thco te 1981; (2; 5 % ) , and f a c u l t a t i v e me ioben th ic Durk in 1982; Healey 1982; and Simenstad benth ivoes (1; 2%). Th is compos i t i on e t d l . 1982b), a l s o i l l u s t r a t e the v a r i e d chanyes, of course, w i t h seasonal changes p rey resource u t i 1 i z a t i o n pa t t e rns which i n assembl age s t r u c t u r e and w i t h growth have evolved among congener ic taxa, Juve- and development o f r es i den t species. n i l e p i n k salmon occupy sha l low s u b l i t t o r -

a1 h a b i t a t s f o r very s h o r t pe r iods (days) R e f l e c t i n g the re1 a t i v e simp1 i c i t y be fo re moving r a p i d l y t o p e l a g i c channel

o f t h e i r p rey resources, p e l a y i c f i s h e s o r n e r i t i c h a b i t a t s , feed ing predominant- a l s o i 11 u s t r a t e l e s s d i ve r se feeding l y upon ca l anoid copepods and larvaceans. s t r a t e y i e s tnan the deinersal assemblage. Con t ras t i ng l y , j u v e n i l e chum salmon t y p i - Of the r ep resen ta t i ve species (Tabl e G . 2 ) , c a l l y occupy shal low sub l i t t o r a l h a b i - a l l bu t two a r e p r i m a r i l y p l ank t i vo rous , t a t s , e s ( ~ e c i a l l 1 sand-eel grass, f o r w i t h o n l j c u t t h r o a t t r o u t and D o l l y Var- severa l weeks feeding upon e p i b e n t h i c den e x p l o i t i n g o the r f ishes. Two t h i r d s zooplankton, p a r t i c u l a r l y h a r p a c t i c o i d ( 2 4 ) o f t h e species are o b l i g a t e p e l a g i c copepods and gammarid emphipods; upon p l ank t i vo res , i nclud iny two - t h i r d s o f growing t o 50-60 mm FL, t n e j u v e n i 1 e these (16) which occur on ly as p e l a g i c chums a l s o s h i f t t o pelagic channel o r la rvae . Four each (11%) a re f a c u l t a t i v e n e r i t i c h a b i t a t s where they feed upon pe lay i c p l ank t i vo res o r ep iben th ic p l ank- c a l a n o i d copepods, decapod 1 arvae, and t i v o r e s and two each (6%) are o b l i y a t e 1 arvaceans. Juven i l e coho salmon feed ep i ben th i c p l ank t i vo res o r f a c u l t a t i v e p r i n c i p a l l y upon gamrnarid amphi pods du r - pe l ag i c p i sc ivores. While t he dominant i ng t h e i r r e l a t i v e l y b r i e f occupa t ion o f zooplankton t axa comprise t h e p r i n c i p a l sha l low subl i t t o r a l h a b i t a t s , p a r t i c u l a r - prey resources o f t h e p l ank t i vo res , con- l y exposed y rave l beaches, and upon deca- s l d e r a b l e s i ze - o r t axa - se l ec t i ve preda- pod l a r v a e and euphausi ids a f t e r moving t i o n cha rac te r i zes i n d i v i d u a l spec ies and i n t o e p l a y i c o r n e r i t i c h a b i t a t s . Sur- 1 i f e h i s t o r y stayes. p r i s i n g l y l i t t l e i s known about t he es tu -

a r i n e f o r a y i n g behavior o r p rey composi- Th is was e f f e c t i v e l y i l l u s t r a t e d by t i o n o f j u v e n i l e sockeye salmon due t o

Johnson's (1981) d e t a i l e d examinat ion o f t h e i r r a p i d emmi y r a t i o n th rouyh e s t u a r i n e t h e d i e t s of th ree prominent pe l a g i c and nearshore mar ine h a b i t a t s . J u v e n i l e p l a n k t i vores i n Yaquina Bay-- j u v e n i l e shr imp and euphausi i d s have been r e p o r t e d nor thern anchovy, topsinel t, and surf as t he prey o f j u v e n i l e sockeye m i y r a t i n y s m e l t - - r e l a t i v e t o p reda t i on r a t e s upon o u t o f Puget Sound. Small j u v e n i l e c h i - Aca r t i a c a l i f o r n i e n s i s . When f o ray i ng i n nook salmon tend t o u t i l i z e sha l low sub- t h e water column, j u v e n i l e anchovy were l i t t o r a l , s a l t marsh, o r mudf la t h a b i t a t s h i g h l y s e l e c t i v e toward t h e l a r g e r female e a r l y i n t h e i r e s t u a r i n e res idence, and A. c a l i f o r n i e n s i s and A. c l a u s i , Eury- feed upon yarnmarid emphi pods, cumaceans, - ternora a f f i n i s , and t h e clad-n podon; and emergent and d r i f t i n sec t s . Upon grow- s u r f s m e m e c t e d s i m i l a r feeding =- i n y l a r g e r o r upon e n t e r i n y t h e es tua r y t i v i t y w h i l e topsmel t r e f l e c t e d even a t a 1 a rger s i z e as sm01tS (60-70 mm EL),

106

Page 120: The ecology of estuarine channels of the Pacific Northwest coast: A

t hey move i n t o p e l a y i c o r n e r i t i c hab i - t a t s b u t c o n t i n u e t o feed upon d r i f t i n - sec ts , as w e l l as decapod and t i s h l a rvae . Ext remely S e l e c t i v e f o r a y i n y i s a l s o o f - t e n e v i d e n t w i t h i n these broad prey cate- go r ies . Fo r example, i n sha l l ow s u b l i t - t o r a l h a b i t a t s j u v e n i l e chum salmon tend t o feed on a nar row spectrum o f h a r p a c t i - c o i d s >75 pm i n l e n g t h and, a t l e a s t w i tn - i n Puyet Sound, p a r t i c u l a r l y t h e spec ies Harpac t i cus u n i remi s. When i n t h e pe lay- i c h a b i t a t s , t h e y appear t o s e l e c t re1 a- t i v e l y r a r e b u t very l a r g e ( > 2 mlil i n l e n g t h ) c a l a n o i d copepods such as Calanus spp. and E p i l a b i d o c e r a spp. i n s t e a d o f o t h e r , more n u m e r o u s b u t smal l e r c a l ano id ( i e . , ~ e u d o c a ' l a n u s sp.) and c y c l o p o i d ( i .e. , Corycaeus spp. ) copepods (Simen- s tad e t a l . 1980). Several o f t h e o t h e r spec ies o f j u v e n i l e salmon show s i m i l a r l y

s e l e c t i v e f o r a y i n g i n e s t u a r i ne ~ h d n ~ e l S

(Tab le 9.1).

Food h a b i t s da ta a d d r e s s i n 9 the re- g i o n ' s b i r d fauna w h i c h s p e c i f i c a l l y oc- Curs I n e s t u a r i n e channe l h a b i t a t s i s a l - most non -ex i s ten t and e s s e n t i a f l y l i m i t e d t o semi -qua1 i t a t i v e d a t a f r o m Grays Harbor (Sa lo 1975; S m i t h and Mudd 1976a). Food web re1 a t j o n s h i ps o f m o r e mar ine / coas ta l b i r d dssell lblayes have been Sum- marized by Sirnenstad e t a l . ( 1 9 7 % ) i n t h e i r syn thes i s o f n e a r s h o r e and n e r i t i c h a b i t a t s o f t h e n o r t h e r n Puye t Sound and S t r a i t o f Juan de Fuca e c o s y s t e m . Of t h e four syn top i c spec ies o f m a r i n e d i v i n g b i r d s examined by S c o t t (1973) i n t h e v i - c i n i t y o f Yaquina Uay, t w o (common mur re and Brandt ' s co rmoran t ) may have acqu i r e d

Table 9.1. P r i n c i p a l p r e f e r r e d p rey taxa o f j u v e n i l e salmon i n P a c i f i c N o r t h w e s t e s t u - a r i e s based on 1 i t e r a t u r e and o t h e r stomach con ten ts da ta sources.

J u v e n i l e S ize salmon c l a s s spec ies (mm,FL) P r e f e r r e d prey t a x a

Oncorhynchus gorbuscha Pink salmon

0. ke ta , chum salmon - -

40-60 Calanoid copepods, Pseudocalanus spp. Larvaceans O i kop leu ra sp.

35-55 Harpac t i co id copepods H a r p a c t i c u s uni r e m i s Gamri~arid amphipod Corophium syp. Cumacean Cumel 1 a vu l g a r i s

0. k i s u t c h , coho salmon - >55 Calanoid copepods Galanus Spp., E y i l a b i d o c e r a Gammardi amphi pods Eoyanln~arus spp.

!orophi urn spp. Ca anoid copepods Eurytemora sp. , Cal anus sp.

U. nerka, sockeye salmon - - 45-91 Adu l t i n s e c t s D ip terans, H o ~ n o p t e r a Euphausi ids Thysanoessa spp.

0. tshawytscha, ch inook - 35-75 Chironomid l a r v a e and pupae salmon Gammarid amphi pods Eoyammarus spp . ,

Corophiurn spp., An iso amnarus spp. ~umaceans - cumel l a V*

Isopods Gnorimosphaeromd o r e g o n e n s j s > 75 A d u l t i n s e c t s D ip te ra , Homoptera

Page 121: The ecology of estuarine channels of the Pacific Northwest coast: A

a p o r t i o n o f t h e i r d i e t f rom w i t h i n estu- a r i n e h a b i t a t s ; co i nc i den ta l l y , i t was these same two species which Wiens and Scot t (1975) ca lcu la ted t o c y c l e t h e y rea tes t annual f l ow o f t r o p n i c eneryy.

The f o u r representat i ve b i r d assem- b layes i l l u s t r a t e a d fve rse spectrum o f feeding t ypes (Tab1 e 7.1). Shal low-prob- i n y and sur face searching-shorebi rds, as t h e assemblage irnpl ies, a re p r f n c i p a l ly (71%) o b l i g a t e benth ivores which teed on benth ic i n t a u n a and ep iben th ic zooplank- t o n a long t h e channel margin; t o e o t h e r species a re on~nivores whose d i e t i n c l udes V ~ S C U I a r p l a n t mat te r ( i n c l u d i n g seeds) froill ad jacen t marsh o r t e r r e s t r i a l hab i - t a t s . Waders are e i t h e r f unc t i ona l ben- t h i v o r e s who prey on s im i l a r , though some- what deeper, ben th ic organisms as t h e f i r s t assemblage o r dre carn ivorous ( ob l i- gate o r f unc t i ona l p i s c i vo res ) on f i shes and m o t i l e e p i faunal i nver tebra tes which venture i n t o shal low sub1 i t t o r a l areas o f t t ie h a b i t a t . Surface and d i v i n y water- b i r d s , t h e 1 arges t assemblage, i n c l udes seven f eed iny types, over a t h i r d o f which a r e f u n c t i o n a l benthivores. U b l i - gate and f u n c t i o n a l p i s c i vo res and omni- vores each conrprise 19% o f t he t o t a l num- ber of spec ies i n t he assemblage a l thouyh omnivores u s u a l l y u t i l i z e es tua r i ne chan- n e l s on l y f o r r oos t i ny , Ob l iga te h e r b i - vores and o b l i y a t e and funct ion1 p l ankt i- vores were represented by one species each. Amony the n ine r ep resen ta t i ve d e r i a l -search i ny b l rds, two- th i r ds a re h i yhe r l e v e l carn ivores, e i t h e r p i s c i - vores o r av ivo res , wh i l e two are o b l i y a t e i n s e c t i v o r e s and one i s an o b l i g a t e y l ank t i vo re .

Recent s t u d i e s I n t he Columbia R i v e r and ad jacent e s t u a r i e s have prov ided t h e f i r s t da td d i r e c t l y focused upon estua- r i n e u t i l i z a t i o n by aquat ic (Dunn e t a1 . 1981) and mar ine mammals (Howerton e t a l . 1980; Beach e t a l . 1981) which inc ludes channel - s p e c i f i c food habl t s i n f o rma t i on ; p rev ious i n v e s t i ya t ions tended t o be e i t h e r semi - quan t i t a t 1 ve and no t channel- s p e c i f i c (Smi th and Mudd 1976b) o r were o r i e n t e d toward marine and n e r i t i c hab i - t a t s (summarized by Simenstad e t a l ,

1979a and subsequent ly by E v e r i t t and J e f f r i e s 1973; E v e r i t t e t a l . 1980).

Among t h e f i v e r ep resen ta t i ve t e r r e s - t r i a l and aqua t i c mammals (Table 8.1), t h ree are o b l i g a t e herb ivo res which ob ta i n t h e i r p l a n t foods i n adjacent t e r r e s t r i a l and wet land h a b i t a t s w h i l e two a re ep i ben th i c ca rn ivo res which venture i n t o channel h a b i t a t s t o feed. Beaver feed ing a c t i v i t y i n t h e Columbia R i ve r occurred p r i n c i p a l l y i n Si t k a spruce h a b i t a t du r i ng a1 1 seasons except w in te r , when a c t i v i t y i n t h e S i t k a w i l low h a b i t a t was h igher (Dunn e t d l . 1981). Muskrat and n u t r i a , on t h e o ther hand, forage p r i n c i p a l l y i n h i g h marsh h a b i t a t s (Sec t ion 8.2), where muskrat p r e f e r e n t i a l - l y eat water parsn ip (- suave), Lyng- bye's sedge (Carex l y n q b e y i n n d s o f t - s tgn bu l r?lSh (Sci rpus va l i dus ) ; and n u t r i a feed on a broader spectrum o f p lants , i n -

sedge, t u f t e d s i t o s a ) , 7h water parsn ip , and s o m m b u i r u s h (Howerton e t a l , 1980; Dunn e t a l . 1981). Whi le muskrat i l l u s t r a t e d no major seasonal v a r i a t i o n i n t h e i r fo rag- i n g behavior, n u t r i a feeding (no. f eed ing s i t e s hectare-1) appeared t o reach a maximum i n t h e f a l l and minimum i n t h e sulnner: The reed canarygrasslca t t a i l h a b i t a t was t h e most common fo rag ing h a b i - t a t i n the sp r i ng and summer, Lyngby's sedye/horsetai 1 i n t he f a1 1, and co l on i z - i ng soft-stem bu l rush du r i ng the w in te r . Raccoon, the on ly t r u l y t e r r e s t r i a l mam- mal u t i l i z i n g es tua r i ne channels f o r food resources, prey p r i n c i p a l l y upon mol luscs (e.g., clams such as Corb icu la mani l e n s i s and Anodonta sp. ) , mo t i l e ep i ben th i c crustaceans (e.y., c r a y f i s h and crabs) , and f i s h e s (e.g., eulachon, s c u l p i n s such as Cot tus sp., carp, and s t a r r y f l ounder ) w i t h secondary i n p u t f rom b i r d s ( p a r t i c u l a r l y waterfowl ) and p l ant (rosaceae) seeds and f r u l t s (Dunn e t a l . 1981). River o t t e r i n the Colum- b i a R ive r estuary gene ra l l y over lapped wi th raccoon i n t h e i r prey cornposit ion ( p r i n c i p a l l y c r a y f i s h , carp, Cottus sp., scu l pins, and s t a r r y flounder), e c t e d

Page 122: The ecology of estuarine channels of the Pacific Northwest coast: A

a d i e t g e n e r a l l y s i :n i l a r t o t h a t repor ted by H i r s c n i (1978).

A1 1 f o u r r e p r e s e r ~ t a t i ve marine mam- mals are f a c u l t a t i v e ca rn ivo res , t h ree focus iny t n e i r t o rag i ng p r i n c i p a l l y upon pe lag i c prey assemblages and one on e p i - ben th i c assemblages (Tab le 8.1). North- e rn sea l i o n s f o l l o w b a i t f i s h (e.y., euldcnon) and salmon ( e . ~ . , sp r iny c h i - nook) i n t o es tua r i es such as t he Columbia (Beach e t a l . 1981), feeding p r i n c i p a l l y a t n i g h t and probably a1 so corisu~ning o t h e r schoo l ing o r l a r g e pe l ag i c f i s h e s i n channel h a b i t a t s (Simenstad e t a1 . 1979a). As w i t h t h e n o r t h e r n sea l i o n , no q u a n t i t a t i v e da ta on es tua r i ne prey o f C a l i f o r n i a sea l i o n s i s a v a i l a b l e f o r t h i s reg ion, b u t i t would be reasonable t o assuae t h d t o t h e r pe l ag i c school ing f i s h e s (e.y., P a c i f i c he r r i ng , no r thern anchovy, P a c i f i c sand lance) and l a rge demersal spec ies ( P a c i f i c tomcod, s t a r r y f l ounde r ) a1 so c o n s t i t u t e p o t e n t i a l prey i n e s t u a r i n e channels.

I n a d d i t i o n t o t h e focused, in tens- i v e f o r a y i n g on eulachon i n t he Columbia R ive r , harbor sea ls t h e r e and i n o ther es tua r i es o f t he r e g i o n prey upon o the r pel a y i c school i n y and dernersal t i s h assem- u l ages and mot i 1 e nlacroi nver tebrates o f channel and l i t t o r a l f l a t habi t a t s (Sche f fe r and Sperry 1931; Scheffer and S l i p p 1944; F i she r 1952; Simenstad e t a t . 1979a; brown 1980; E v e r i t t e t a l . 1980; Beach e t a l . 1981; Sow1 by 1981). Accord- i n y l y , p r i n c i p a l p rey species w i l l i n - c lude eul achon, no r t he rn anchovy, whi te- b a i t smelt, P a c i f i c sand lance, l o n y f i n smelt , and P a c i f i c h e r r i n g amony t h e schoo l iny p e l a y i c f i s h e s ; P a c i f i c torncod, P a c i f i c staghorn scu l p i n , snake p r i c k l e - back, Enyl i s h so le , s t a r r y f lounder , sh i ne r perch, 1 inycod, and bay yoby amony t he demersal f i s h assemblage ; and cranyon- i d shrimp and Dungeness c rab among t h e mot i 1 e macroi nver tebra tes . Other prey whicn have been repo r t ed as prominent i n harbor seal d i e t spect ra , i n c l u d i n g Paci fit hake (Mer l ucc ius productus) , wa l l - eye po l l o ck (Theragra chalcogramma) , P a c i f i c cod (Gadus n~acrocephalus) , v a r i - ous spec ies o f r o c k f i s h (Sebastes spp.), r ex (G ly i~ tocepha lus - z a c h m p e t r a l e

(Eopsetta j o rdan i ) , and Dover so les (Microstomus p a c i f i c u s ) , a r e probably captured i n non-estuarne h a b i t a t s o r i n t h e ou te r liarg gin o t t h e e s t u a r i e s ' euhal- i n e regions. Considerable i n t e r - es tua r y and seasonal v a r i a t i o n i n d i e t c o a ~ o s i - t i o n a lso p e r s i s t s . Beach e t a l . ' s (1981) ana lys is o f ha rbor seal scat c o l - l e c t e d between June 1980 and A p r i l 1981 i n the th ree major coas ta l es tua r i es o f Washington i nd i ca tes s i g n i f i c a n t rank im- portance (based on frequency o f occur- rence) d i f fe rences . For example, Paci f i c cod ( 2 0 X ) , un iden t i t i e d crustaceans ( l a%, probably crangonid shr imp and Dunyeness c rab ) , P a c i f i c s tayhorn s c u l p i n (16%). l o n y f i n smelt (15%), no r t he rn anchovy (14%), eulachon (13%), and snake p r i c k l e - back (lC)%) were impor tan t i n t h e Columbia H i ver estuary ; n o r t h e r n anchovy (21%), P a c i f i c stayhorn s c u l ~ i n (19X), u n i d e n t i - f i e d crustaceans (15%), sh iner perch (13%), Dunyeness c r a b (12%), and s t a r r y f lounder (1UX) domindted t he prey spec- t rum i n Wi l lapa Bay; and no r t he rn anchovy (49%), P a c i f i c staghorn s c u l p i n (34%), Engl ish so le ( 2 3 % ) , P a c i f i c tomcod ( 1 7 % ) , Dunyeness crab (15%), and s t a r r y f l ounder (11%) predominated i n Grays Harbor. Unequal monthly and t o t a l sample s i zes and the inheren t b i ases o f frequency of occurrence data should be taken i n t o account i n eva l ua t i ng these d i f f e r e n c e s bu t t he s t r u c t u r a l v a r i a b i l i t y , as w e l l as the commonality, i n food web l i n kayes between harbor sea ls and t h e v a r i a b l e secondary consumer l e v e l s i n t h e t h r e e es tua r i es i s apparent.

Seasonal d i e t v a r i a b i l i t y i s a l s o obvious. 8each e t a l . (1981) a lso de- sc r ibed seal f o r a y i n y i n t h e Columbia R ive r estuary as s h i f t i n g markedly from eulachon i n t he w in te r , t o lampreys ( c l ass Aynatha, p r i n c i p a l l y Lampetra spp.) i n e a r l y sp r ing , mo t i l e macrolnver- t eb ra tes (c rus tacea) i n l a t e sp r iny , and a d iverse, o p p o r t u n i s t i c s e l e c t i o n of f i shes trom summer t o w in te r months. Seasonal s h i f t s i n Wi l l apa Bay harbor sea l d i e t s were r e 1 a t i v e l y d i t f e r e n t , f rom crustaceans i n w i n t e r , t o nor thern anchovy from sp r i ny through l a t e summer, and a broader spectrum o f t i s h species ( l e d by P a c i f i c s tagnorn s c u l ~ i n and

Page 123: The ecology of estuarine channels of the Pacific Northwest coast: A

nor thern ancnovy) t rom sumer through fa1 1 . Likewise, Grays Harbor seals main- ta ined a r e l a t i v e l y d i f f e r e n t seasonal d l c t pa t te rn : frm Pacf ic staghorn scu lp lns, p leuronect ids, Pac i f i c romcod, and crangonrd shrimp i n the w in te r , t o a d i ve rse a r ray of t i s r l anu Uunyeness crab tn t he summer, t o an emphasis upon nor th - ern ancnovy I n l a t e sunmer, t o Pacific staynorn scu lp tn and Enyl is t i soie i n the f a l l .

I n add t t i on t o these na tu ra l prey items, harbor seals, i n con junc t ion w i t h C a l l t o r n f a sea l fons , are a l so considered t o ue the p r i n c i p a l cause o f nlcsrfne mam- mal darndye t o f i s h i n g year b u t appear t o be ~ l n t o s t ~ * o \ e t y responsib le f o r damage trt n c ? t - ~ b p t ~ r e d Zfsh, which accounts t o r aa h i gh as 7% of the sdmpled catch (Beach ct 4 1 . 1PliS1).

Rltnuugh t n c re are n o t data on tl,+rtrasr scat d i e t s p e c i f i c t o estuarine chnfit~thl h d b t t a t ~ w l t h l n the S t r s i t s of ,lurli? clc l t ~ f a irnd t inuryfe and lbuyet Sound, Interrtnatdon documented traca t h i s reg ion (St.ttc?ltcr atra Spcrry 19331; F isher 1952; Catdmb~kidtb et a l . 1978; Sirnenstad e t 61 . tQ79a; Everltl c t &I. 1980) i nd i ca tes ctst~slclerable over lap i n prey taxa, i n d i - c a t l ng t h a t t t ~ t u a r i n e channel tauna con- k t t t u t e & w j o r element of RarbOr seal Fcrurl rurource tn fn land waters. an ly trbytt \et~tb~+y ditta f s a v a i l a b l e on t n e i r toatf R b O l t s and l l t t l e o r i g i na tes tronr t n t s rciyion; prey a m assumed t o be yr - tnc lpa l l y dmc rs i l l f i s h , and pe lag ic f t $ t i and C P ~ R ~ ~ O C J O C I S (Stmenstad e t a t , 191Ya; Antunel 1s snd Flscus 1980; E v e r i t t e t a ! . l!&B.l).

f r r ter~r t ta ion ot these tood web r e l a - t ronbnrps r ~ s u i t s i n a coml~osi te food web tor P$EUI~~IICP channel comun t t i e s ( f i g . G . 1 ) which i s a t leas t q u a t f t a t i v e l y artentea more toward a e t r l t u s u t i l l z a l i o n and h e t e r ~ t r 0 y f i t t p r ~ d u c t i o n than toward pelaylc auCutrayntr product ion. I f Stand- Iny stock of d e t f l t l v a r e s and t n e i r yreda- tars r?; l nd ied t l ve , the food webs are qua1 't t a t i v e l y dmrnatett by d e t r i t a l ca r - %ran, As idenertrea ~?y de Sylva (1975). Udm! and M a a ~ l d (197s). and Nor thcote e t a t . (23731, insst Gtstuartne rood webs f a l l

i n t o two ca teyor les : 1) relatively c lear , deep systerns where organic caraon i s de r i ved p r lma r l l y frorrl phytoplanhton product ion, and 2 ) compdrdt lvely t u r b l d , snal low es tuar ies wnere t he cdrbon o r i g i n a t e s trom a cornbinatton o f macrophyf l c p roduc t ion (bo th exoyenOuS and endogenous), wn i C h I s degrdded t o d e t r i t u s and u t l l l r e d by m l c r o f t o r d , ana pe r i pny te product lon. Very tew es tudr tes i n t he P a c l f i c Northwest f a l l I n t o tne f i r s t cateyory, espec ia l l y t f we lnc lude those estuarres which, a l thougn seldom t u r b i d , may nave tood webs based upon dynamic, shor t - tenn recyc l 1 ny o t endoyen- ous carbon exuded ay any 1 ospernts, Inac r o - algae, and ep lynytes (Wlssrl~ar an0 Slfnen- stad, Fish. Kes. Inst . , Uniw. Wash., unpubl. aa ta ; see Sect lon 4.1). Thus, d i r e c t (pelagic) au to t r ovn i c p roduc t lun I s on ly ma ry i na l \ y supportive of es tuar - i n e tood WDS I n tne r e y l o n dnd i s yrner- a l l y restricted t o tne l a r y e cods ta l e s t u a r l e ~ wnere treshwa t e r dnd estur l n e phy top lank t r rs are en t ra ined i n a con- f 1 ned euvhot I c zone.

A~nony these yeneral i zed food wea 1 inkayes $re several d l s t 1 nct modules (Palf le 1980) which t y p i t y e s t u a r ~ n e cndn- ne l co~rmuni t ies , not on ly i n s t r u c t u r e bu t o f te r i I n cotirnon consunrer taxa. 'fhr soorrest , least-conlpartmented food web ( i t i s s t i l l a "web" due t o conSlderabie predator -prey i n t e r a c t i o n w i t h i n d coqa r tm@nt such as tot! ben th i c lntduna) i s t ha t Nor thcote e t a ] . (1979) descr lbea BS :

d e t r f t ~ s ~ b e n t h o s ~ b e n t t t o ~ n d y o u s f t snes

when t e r t i a r y Consumers inc luded, t h e archetyptcal food webs i n t h i s cdrrgury would rnc lude bo th "c fe t r i tus :benthrc 1nfauna:obl i y a t e ~ e n t n l v o r e : t u n c t r o n d ep iben tn ic cd rn ivo re" iirodules ds wel 1 as " a r t r i tus :@piben th ic zoop t ankton: tune- t i ~ n a l ey i ben th l c p l a r r k t ~ v o r e s : t unc t l on t~1 ep ra rn tn l c ca rn ivo re" modules such as:

More con~ylexr t y i s ev iden t i n d e t r l tus- based, ey i ben th i c ntodules which i n v o l v e

Page 124: The ecology of estuarine channels of the Pacific Northwest coast: A

PRODUCER

F ig . 9.1. Represen ta t i ve food web o f es tua r i ne channel h a b i t a t s of the P a c i f i c Nor th- west; s i zes o f l i n kage arrows i l l u s t r a t e r e l a t i v e biomass t r a n s f e r .

meiofauna ca rn i vo res such as Crangon spp. o r ben th i c ca rn i vo res such as Cancer spp., r esu l t i n y i n " d e t r i t u s : d e t r i t i v o r o u s eyi benth ic zooplankton: b e n t h i c l e p i benth ic ca rn i vo re (2') : f a c u l t a t i v e ep ibenth ic ca rn i vo re ( 3 " ) " modules such as:

P lank ton ic food webs are charac te r i s - t i c a l l y sho r t e r , as represented by the phytop l ankton: herb ivo rous pe lag ic zoo- p lankton: obl i g a t e p l a n k t i v o r e : ob l i ga te p i s c i v o r e module, a1 though they can be compl icated by t h e i n c l u s i o n o f carn ivo- rous zooplankton such as Aca r t i a spp., where:

The u l t irnate compl ex i t y i s represented by modules i nc l ud i ng species ~ h i c h a re e i t h e r ext re~l ie ly p l a s t i c ( facu l t a t i v e ) i n the feediny behavior o r i n co rpo ra te o r grow through several feeding s t r a t e g i e s over the per iod o f residence i n t h e estuary. Th is i s p a r t i c u l a r l y ev iden t i n t h e case o f j u ven i l e salmonids, vrhich u t i l i z e both endogenous and exogenous ( t o t h e h a b i t a t and, o f ten the estuary) d e t r i t i v o r e s and herbivores. The r e s u l t i n g modules can be ambi yuously descr ibed as d e t r i tus /phyto- plankton: d e t r i t i v o r o u s ep i ben th i c zoo- plankton/ herbivorous pe l ay i c zoopl ank- ton:epibenthic carn ivore: f a c u l t a t i v e ep i - ben th ic lpe lag ic p1ank t i vo re :ob l iga te p i s c i vo re such as shown on t h e f o l lollring page. O f course, t h i s comp lex i t y seldom e x i s t s to t h i s ex ten t w i t h i n any channel c lass, order, o r con f i gu ra t i on , o r any s i ze class of consumer (e.g., j u v e n i l e salmonid) a t any one time, bu t va r ies uniquely as a func t ion of a l l these v a r i - abl es.

Page 125: The ecology of estuarine channels of the Pacific Northwest coast: A

Classical ly , the d i v e r s i t y (i.e., nul-iber o f connecttons a r "connectence" ) and strength of these in te rac t ions have been corre lated wllth the s t a b i l i t y ( i . e . , i t s inherent susceptlbf 1 t ty t o col lapse t o a JJfferent, usua l l y less d lverse st ruc- ture when perturbed by removal of 1 f nkages o r nodes); t h i s poses the question o f dhekher food webs are "st ructured" o r "unstructured" (MacArthur 1955; Watt 1964; Paine 1966, 1969; Sardner and Ashby 1370; lsadcr; 1972, 1973; May 1972, 1973; De Ancjelis 1975), Thc imp1 ica t fons o f mutat- i r r ic r r l a l f onsh ips have a lso been recent- ly i t l c l r rpor~ ted i n t o these models (Vance 19183. Onfartunately, the functional r.;ri l ience o f these mdules, t h e l r l i n k - ages, and t h e l r dependence upon external events; has seldom been tnvesttgated f r m the s ta t~dpoint a f the processes genera t i ny t i l e i r st ructure and, u n t i l tha t resolut ton uf rvrearch i s appl led t o estuar ine chan- trrl eun~rtuni t i cs , the ques t l o n of food web s tdbi l "ry w J l l re inah unresolved, We can, hoii~ever, set ec t f vlely examine ercempl ars of pratnJnent predator-prey o r competit ion intersct fons far clues t o the strength of I inkages w i th in representat ive mcxiules or 00 the potent ia l s tab i? i t y of the slrnpler isvdul es & &I&,

41.2 ROLES OF PREDATION RNO COMPETI- IIW lNTEri4CTlONS If4 SPRUCTURIK COM- MVOUNITIES AhtD PO00 MfDS

There are, among the modules de- ncrtbed I n the prev fous section, i 1 lustra- t jons of strong predator-prey and cwnpeti- t l v n interact lcrns wherein the d is t r lbu tqon and slbundance of estuarine channel orga- nlsrzlr, and thus the s t ruc ture o f the cornauni ty, a* canetagant upon the pres- ence and myna tude of these 1 inkages.

A1 though fw o f these examples o r i g ina te fratn Pac i f i c Horthwes t estuaries, they are s u f f i c i e n t l y close analogues tha t reasan- able inferences to the region's estuarine channel c a w u n i t i e s might be inade.

One of the strongest l inkages sug- gested i s that between the cdlanoid & t i a spp. which could represent an impor- - t a n t predator upon the larvae of the dominant estuarine calanoid i n the region,

and Rippingale's of Cronin e t a l .

and J e f f r l e s (1967) accounts o f zooplankton i n North A e r i c a n estuaries indicated that Acartia, by i t s carnivory upon c r f t f c a l l h i s t o r ~ stages o f the cs t ua r i es' Eur te~nora populat ions, may prevent r i g a 4 ~ r e c r u i tment t o the adu l t population, Cocnparable AcartiaJ E l r temora data sets also e x i s t m a - &a Bay (Frolander e t a l . 1913). the Columbia River estuary (Haerte l and 0s te r - bery 1967). Netarts Bay (Ziminerman 1972), and Grays Harbor (Simenstad and Eggers 1981). Further tes t ing and v e r i f i c a t i o n of t h i s hypothesis m s t depend upon fur- ther deta i led analysis of these datasets.

The potent ia l f o r predation s t ruc tur - ing of e p i k n t h i c harpact icoid copepad dssefnblages 4n shal low sub1 i t t o r a l habt- t a t s o f Hood Canal by juven i le chum salmon was suggested by Simenstad e t a l . (1980) and Sitenstad and Salo (1982). Given the intensive, select ive foraging pressure t h a t juveni I e saltwnids exe r t upon epi- benthic harpacticoid copepod (e.g Nar-

gamnarid anphlpod 'it?=, M A j * and cumacean (e.g.. Cumella) & t i s h igh ly probable tha t p-d foraging upon these epibenthic prey resources by h igh deqsi t i e s of j uven i l e saltnon could resul t i n dratna t i c res t ruc- t u r l ny o f that assetnblage. This i s even more probable gfven the h igh density, pulse releases o f j uven i l e salmon from hatcheries which may r e s u l t i n mf 11 ions of f i sh enter ing estuaries a t one time.

A1 though there has been no comprehen- sive, estuary-r ide exdrnfnatian of such a re lat ianship, the same s i t u a t i o n may e x i s t in the pelagic environs uf those estuar ies which experience high dens i t ies o f l a r va l

Page 126: The ecology of estuarine channels of the Pacific Northwest coast: A

and j u v e n i l e p l a n k t i vorous f i s h . Yaquina Bay, the Columbia R i v e r estuary, and Grays Harbor have we1 1-documented concentrat ions o f Paci f i c he r r i ng , no r t he rn anchovy, and smelts ( p a r t i c u l a r l y s u r f and l o n g f i n ) which a re bo th tempora l l y and s p a t i a l l y abundant d u r i ng c e r t a i n seasons (see Sec- t i o n 6.2). But Johnson's (1981) ana lys is of the A c a r t i a c a l i f o r n i e n s i s populat ion i n Yaquina Bay ( see Sec t ion 5.4) provides ample 'ev i den& t h a t such s e l e c t i ve preda- t i o n can e f f e c t i v e l y c o n t r o l abundance cycles, and u l t i i n a t e l y product ion, o f the prorilinent members o f these zoopl ankton assemblages. Under such in tense and s e l e c t i v e f o r a g i n g pressure on pe lag ic zooplankton, predominant ly these ca lanoid copepod taxa, these obl i g a t e p l ankt ivores may we1 1 s t r u c t u r e t h e composit ion, d i ve r - s i ty, and s tand ing s tock o f the estuar ine channel zooplankton assemblage.

S i t t s and Kn igh t (1979) and others (C . Simenstad, F ish. Res. Inst . , Univ, Wash., unpubl. da ta ) have produced ev i - dence t h a t t h e crangonid shrimp Cran on f ranc i scorum o f t en feeds extens ive I-- y upon the mysid Neoniysis mercedis. S i t t s and Knight i n f a c t , est imated t h a t C. f r anc i s - coruni removed between 0.1% and 5 . 0 m e N. mercedis biomass d a i l y from the Sacra- - mento-San Joaquin R i v e r estuary, and tha t , by prey ing s e l e c t i v e l y upon in te rmed ia te s ized (4 -7 mm) mysids, the shrimp are s i g n i f i c a n t l y a f f e c t i n g t h e mysid popula- t i o n s t r u c t u r e . The pers is tence o f such a Crangon-Neomysi s i n t e r a c t i o n i n t he Paci f- i c Northwest, p a r t i c u l a r l y i n the l a rge coasta l es tua r i es which ma in ta in l a rge populat ions o f bo th taxa, i s h i g h l y proba- b l e and f u r t h e r il l u s t r a t e s the importance o f the de t r i t u s -based module i n v o l v i n g the e ~ i ben th ic zoopl ankton p rey o f inysids (l. i e r c e d i s) and ' shr imp (c.- f r a n c i scorum~, and the ~ r o m i n e n t p reda to rs on t h e shrimp ( s t a r r y ' f lounder and harbor sea l ) . The r e l a t i v e importance of t h i s p a r t i c u l a r module may be eva lua ted i n f i n a l synthesis of the CREDDP s t u d i e s (Col. Riv. Est. Study Team, pers . comm.), which included q u a t t i t a t i v e assessment o f these taxa i n t he Colurnbia R i v e r es tuary i n 1980-1981.

9.3 ESTUARINE CHANNELS AS CRITICAL REPRO- DUCT1 VE, NURSERY , FORAGING, AND REFU- G I A HABITATS

Establ ishment of u t i 1 i z a t i o n pa t t e rns and food web \nodules i n v o l v i n g es tua r i ne organisms ca r r i es iinp1 i c i t assumptions of dependence upon these r e 1 a t i o n s h i p s most of which, however, a r e c o ~ n p l e t e l y unve r i - f i ab l e . Uhether t he l o s s o r major d i s rup - t i o n o f a food web l i n k a g e or mic rohab i t a t would ac tua l l y r e s u l t i n t h e subsequent decl i ne i n the p o p u l a t i o n remains con- j e c t u re unless c o n t r o l 1 ed rnanipul a t i o n experiinents can he conduc ted . Out, u n l i k e those which have been s u c c e s s f u l l y con- ducted i n marine r ocky 1 i t t o r a l (see Paine 1977, a~nany rnany) and sha l low sub1 i t t o r a l sand- o r mudfl a t habi t a t s ( V i r n s t e i n 1977; and Aoodin 1951; among n o t so many; h u t see Hurlberg and 01 i v e r 1980 f o r d iscus- s ion o f i n t e r p r e t i v e 1 i r n i t a t i o n s ) , e f f ec - t i v e manipulat ions w i t h i n t h e dynamic estuar ine channel h a b i t a t s have seldom been attempted and would be even inore d i f f i c u l t t o i n t e r p r e t due t o extreme v a r i a t i o n i n u n c o n t r o l l a b l e physiochernical condi t ions. The f o l lowi ng il l u s t r a t i o n s o f p o t e n t i a l l y " c r i t i c a l " h a b i t a t associa- t i ons are, therefore, only d e s c r i p t i v e hypotheses which relnai n t o be e f f e c t i v e l y tested.

Compared w i ttl o t h e r h a b i t a t s , estu- a r i ne channels appear t o be l i m i t e d i n prov id ing optimum cond i t i ons f o r reproduc- t i o n of most fauna. E x c e p t i n the case o f b l i n d (e.g., t i d a l ) c h a n n e l s , h i gh water v e l o c i t i e s and uns t a b 1 e bo t t om sediments i n most channel h a b i t a t s i n h i b i t many inver tebra tes and v e r t e b r a t e s from estab- l i s h i n g nes t ing s i t e s ; e v e n t h e s u i t a b i l - i t y o f the t i d a l c h a n n e l s i s o f t en l i m i t - ed by t i d a l dewater ing, Fauna which do spawn i n channels t y p i cal ly depos i t adhes- i v e eggs (gastropods, 1 i ngcod) , bury t h e i r eggs (salmon), o r c a r r y and brood t he eggs and 1 arvae/ juven i l e s (gammari d amphipods, i . e . , Eogammarus spp. ; Dungeness crab). But , excep t f o r t h e spawniny immigrat ion of salmon ( t y p i c a l l y chum and p ink salmon) i n t o t h e channels of es tuar ies ' upper r e a c h e s , most repra- duc t i ve a c t i v i t i e s a r e con f i ned t o r e s i - dent fauna which undergo t h e i r e n t i r e l i f e

Page 127: The ecology of estuarine channels of the Pacific Northwest coast: A

cycle w i th in the estuary. Many estuarine residents, however, mi g r a t e from channel t o other hab i ta t s t o reproduce. Estuar- i n e b i rds, of course, a r e the extreme case, as none ac tua l l y nes t w i t h i n the hab i ta t . But res ident f i shes such as sturgeons, smet ts , gobies, stickelbacks, and many sculplns move t o e i t h e r channel boundaries o r other e s t u r f ne habi tats (e.y., shat low s u b l i t t o r a l o r l i t t o r a l sand- o r mudflats; saltmarshes) t o spawn.

whether from res ident o r exoyenous populations, both f nvertebrate and verte- b ra te larvae and juveni 1 es can reside w i t h i n estuar ine channels f o r extended periods o f time, e s s e n t i a l l y u t i l f z ing the hab i ta t as a "nursery" u n t i l s e t t l iny out i n t o benthic, epibenthfc, o r demersal assemblages a r moving out o f the habi tat . The net outlfow c i r c u l a t i o n pat te rn of the estuaries, however, represents a ma- j o r i n h i b i t o r t o prolonged entrainment of y ldnktonic larvae. Assuming neutral buoy- ancy and passive behavior, the minimum r a t e o f reproduction reqt l i red f o r an en- dm1 c zooplankton popul a t I o n t o maintain i t s e l f i n an estuary i s detern~ined by the r a t e o t c i r cu la t i on , such t h a t reproduc- t i o n must be h igher than the t i d a l ex- change toss r a t e (Ketchurn 1951, 1954). But the organisms' behavior i s not pas- s ive and y a r t j c u l a r l i t e h i s t o r y patterns and behaviors o f such organisms have evolved t o oyt imfze t h e l r estuar ine r e s i - dence tfrne. Car r iker (1951). Bousfield ( 1955). Pearcy (1962)" Wood and Haryis (1971), Graham (1972), de Woiff (1974), Sandlfer (1915) , Wheeler and Epifanlo (1978). Cronin and Forward (1979) , and Cronin (1982) have a1 1 described behav- i o r a l re ten t i on mechani smS exh ib i ted by 1 arvae i n two- l ayered es tuar ies havjny net landward flow along t h e bottom during periods when larvae arc? abundant, Their studles i 1 l u s t r a t e d t h a t l a r vae can pro- long t h e i r resjdence i n the estuary by act1 vely nr igrat ing i n t o t h e landward-f low- i ng surtace water on f l o o d Cfdes. Slmi lar re ten t ion mechani sins have a1 so been postu- l a ted to account fo r the maintenance of res ident mop1 ankton (e.9.. 1 populations i n es tuar jes (KO , Hurl ber t 1957; Wooldridge and Erasmus 1980). Carri ker (1959) , Sandifer (1975) ,

and Johnson and Gonor ( 1982) , however, have i 1 lus t ra ted s i t ua t i ons where s m estuar ine larvae are flushed out o f the estuary o f o r i g i n , on ly t o be transported back i n t o other , adjacent estuar ies as l a t e r larvae, post- larvae, o r juven i les* Johnson and Gonor (1982), i n fact , e s t i - mated tha t 88% o f the t o t a l abundance of Ca l l ianassa ca l i f o r n i e n s i s stage I zoea were c a r r i e d out o f the Salmon River estu- ary on the ebbing t ide; t h i s would r e s u l t i n a "leap-frog" t ransport and metamorpho- s i s of larvae i n and out of estuar ies along the coast u n t i l they s e t t l e d out i n the benthic form. Johnson and Gonor (1982) suggested tha t the concentrat ion o f Cal l i - anassa larvae i n the coasta l n m c -- waters and successful recru i tment t o coasta l estuar ies was enhanced by the a l t e r n a t i o n o f ac t i ve upwel l ing and re lax- a t i o n periods which Huyer (1976) described of f Oregon. Thus, the ex tent and impor- tance of estuar ine re ten t ion o f larvae may depend upon both the p o s i t i o n of the re - praducing populat ion, since maximum reten- t i o n w i l l occur w i t h populat ions i n the upper reaches of the estuary (Dayton and O l i v e r 1980), as wel l as the evolved be- havf o r a l repe r ta l re and seasonal per iod ic - I t y o f the reproductive and ea r l y l i f e h i s t o r y events.

Pearcy and Myers (1974) provide one of the few comprehensive assessments of the value of a Pac i f i c Northwest estuary as a nursery hab i ta t f o r l a r v a l f ishes, excludiny McHuyh's (19b7) suggestion t h a t P a c t f f c coast estuaries are less import- ant than eastern seaboard estuaries. They establ ished that, indeed, larvae of most species were Inore common o f f shore than w l t h i n the estuary and tha t Pac i f i c h e r r i n g larvae were the only commercially- important species t o u t i l i z e the estuary as a nursery habitat. Other, less netar ious species whlch were also i d e n t i - f i e d t o u t i l i z e Yaqulna Bay were bay goby, p r i c k l y sculpfn, b u f f a l o sculpin, and P a c i f i c staynorn scu lp in (see Table 6.21; other studies a lso suqqested t h a t pos i i a rva l and j uven i l e embiotocids ( P . furcatus, R, vacca, and E, I a t e r a l i T ) n o - G $ p r % m i n i ( 8 e a r d s l @ 1969; Wares IYtlf . Later studies of the zoo- and ich- thyoplankton of the Columbia River and

Page 128: The ecology of estuarine channels of the Pacific Northwest coast: A

Grays Harbor es tuar ies suggest t h a t l a r - val and j uven i l e nor thern anchovy, su r f and l ong f i n smelt, and eulachon should also be considered as nursery residents i n the coastal es tuar ies (see Sections 6.2.1-6.2.3.).

Although t h e i r la rvae are not of ten documented as abundant components o f the ichthyopl ankton, j u v e n i l e pleuronectids (prominently s t a r r y f lounder, Engl ish sole, and speckled and P a c i f i c sanddab) are abundant i n demersal f i sh assemblages, p a r t i c u l a r l y those which occupy shallow subl i t t o r a l regions o f estuar ine channel and adjacent t i d e f l a t hab i ta t s (Westrheim 1955; Beardsley 1969; 01sen and P ra t t 1973; as we l l as those c i t e d i n Section 6.1). These species o f ten i 1 l u s t r a t e increasingly deeper depth d i s t r i bu t ions r e l a t i v e t o increas ing f i s h size, such tha t they appear t o move o f f the t i d e f l a t s and f u r t h e r i n t o the channels as they grow larger . This depth-size re la t i onsh ip has not been well-documented, nor have the causal mechani s~ns been evaluated, a1 though both predator avoidance and foraying on optimal prey resources could expla in t h i s t rans i t i on .

Juven i le salmonids i l l u s t r a t e one of the be t te r example o f a c t i v e re ten t ion i n estuarine channels over a c r i t i c a l period i n t h e i r e a r l y l i f e h is to ry . The f i v e species show vary ing durat ions o f estuar- ine residence (Table 6.3), w i th marked i n t r a s p e c i f i c v a r i a t i o n r e s u l t i n g from respect ively va r i ab le times and sizes a t entry i n t o the estuary. With in t he estu- ary are a d iverse array o f prey resourc- es, o f ten i n extremely high density (e.9, , harpact ico id copepods, Coro hium

-7 amphi pods, chi ronomi d 1 arvae, decapod an f i s h la rvae) , which a l low the j uven i l e salmon t o sus ta in h igh growth rates (as high as 6% body weight per day) whi le occupying a r e l a t i v e re fug ia from preda- t i o n (Simenstad e t a l . 1982b); whether through school ing i n shal low subl i t t o r a l , eelgrass hab i ta t s ( i e . , j uven i l e chum salmon) o r t u r b i d pe lag ic waters (i.e., chinook smolts), these systems may be narrowi ng the " w i ndow o f vul nerabi 1 i t y " t o predat ion outs ide t h e estuary by "grow- ing out" o f i t wh i l e i n the estudry.

This re la t ionsh ip between es tuar ine residence time and foraging success, and the impl icat ions t o the t o t a l marine survival rate, suggests t h a t t he d is - t r i b u t i o n and dbundancu o f the p r i nc ipa l preferred prey (Table 9.1) u l t ima te l y determine the production o f the salmon populations migrat ing through the system (Northcote e t al. 1979; Simenstad and Sal o 1982; Simenstad e t a1 . 1982a, b).

9.4 INTEKKELATIONSHIPS AMONG ESTUARINE CHANNEL HABlTATS AND RIVEKINE, WET- LAND, OCEANIC, AND OTHER ESTUARINE HABITATS

Food web and other ecological i n t e r - act ions among channel and other estuar ine habi tats as we l l as w i th hab i ta t s outs ide the estuary are manifold. They range froin simple t ransport o f pe lag ic phyto- plankton and zooplankton i n t o and out o f t h e channel community from and t o r i v e r - i n e and oceanic sources, t o the complex exchange and entrainment o f exogenous det r i tus . These, l i k e t h e t ransport o f l a r va l f i s h and inver tebrates i n t o the habi tat , are r e l a t i v e l y passive act ions which resu l t from physical (e.g., t i d a l ) influences. Other t rans fers , such as the migrat ions of anadromous f i shes and bi rds, can occur on a seasonal scale, whereas the movement o f f ishes from the shallow s u b l i t t o r a l f l a t hab i ta ts i n t o the chan- ne l habi tats w i t h t i d a l dewatering occur approximately every s i x hours, invo l ve ac t ive movements of organisms but may be equally predictable.

A t the base of the estuar ine channel food web, d e t r i t u s const i tu tes the most c r i t i c a l mater ia l o r i g i n a t i n g from out- s ide the community. A l t e r a t i o n of t he d e t r i t u s resource-- i ts supply, t iming, o r character--to estuarine channels poses d i r e c t impacts upon the s t ruc tu re and standing stock o f a l l consumer organisms i n those food web modules based upon det r i t i vores . Whether o r i g i n a t i n g from r i v e r i n e sources completely outside the estuary (e.9.. DOC; Naiman and S iber t 1978) or from w i t h i n adjacent hab i ta ts (vascular sal tmarsh p lan ts ; K i s t r i t z and Yesaki 1979), the accumulation and reten- t i o n o f d e t r i t u s i s dependent upon t h e

Page 129: The ecology of estuarine channels of the Pacific Northwest coast: A

compl ex f a c t o r s e f f e c t i n g c i r c u l a t i o n and s a l i n i ty i n t r u s i o n . The endogenous sourc- es of t r o p h i c ene rgy , au to t r oph i c produc- e r s such as p h y t o p l a n k t o n and algae, do not , on t h e o t h e r hand, p rov ide an equiva- l e n t p r o p o r t i o n o f the t o t a l carbon bud- g e t c y c l i n g t h r o u g h t h e community.

Pr imary consumers are t y p i c a l l y en- demi c popu la t i ons . Benth ic 1 n f auna and sess i l e ep i fauna a r e 0 b v i 0 u ~ l y r es i den t assemblayes b u t t h e organisms r e c r u i t i n y t o these p o p u l a t i o n s o r i y i n a t e f rom p a r - e n t assemblayes o u t s i d e t h a t p a r t i c u l a r estuary , perhaps even from o the r , ad ja- cen t e s t u a r i e s (see Sec t ion 9.3). Ex- t reme examples o f p r ima ry consumers ( o r p rey resources o f secondary consumers such as j u v e n i l e sa lmon ids ) which o r i g i - n a t e f rom o u t s i d e t h e community are t h e t e r r e s t r i a l i n s e c t s which a re t r anspo r t ed i n t o t h e neus ton assemblage from t h e watershed u p r i v e r o r are blown i n frorn wet1 and and up1 and h a b i t a t s bo rde r i ng t h e estuary.

More m o t i l e secondary and t e r t i a r y consumers i n c l u d e p r o g r e s s i v e l y more non-

endemi c popul a t i ons, which e i t h e r der ive t h e i r rec ru i tment from o u t s i d e t h e com- muni t y (e.g., P a c i f i c he r r i ng , northern anchovy) o r i n t e r m i t t e n t l y occupy the h a b i t a t f o r impor tan t f unc t i ons (e.g., f o r a g i n g by harbor seals ; r o o s t i n g by m i - g r a t o r y seabirds ). Accord ing ly , many of these immigrants a r e c r i t i c a l components o f prominent food web modules and through these r o l e s are l a r g e l y respons ib le f o r t h e s t r u c t u r e o f t h e i r prey assemblages.

The community a1 so expor ts consider- ab l e biomass, bo th pass ive ly through the ne t f l ow out of t h e system, c a r r y i n g vary- i ng p ropor t i ons o f t he pe l agi c phytop l ank- t o n and zooplankton t o oceanic hab i ta ts , and a c t i v e l y through t h e emmigration o f secondary and t e r t i a r y consumers. The end r e s u l t o f t h e nursery process i nvo l v - i n g l a r v a l and j u v e n i l e f i s h e s discussed e a r l i e r prov ides t h e best example o f t h i s expor t : almost a1 1 b a i t f i sn--herr ing, smelts, anchovies, eul achon--whi ch res ide i n es tua r i ne channels du r i ng t h e i r ea r l y 1 i f e h i s t o r y eventual l y mi g r a t e o u t o f t h e estuary a f t e r consuming a l a r g e por- t i o n o f severa l y e a r ' s p e l a g i c zooplank- t o n product ion.

Page 130: The ecology of estuarine channels of the Pacific Northwest coast: A

CHAPTER 10

SUMMARY - THE ROLE OF CHANNEL HABITATS I N ESTUARINE ECOSYSTEMS AND MANAGEMENT IMPLICATIONS

I n essence, t h e r o l e o f channel habi- t a t s can metaphor ica l l y be equated t o t h a t o f any 1 i v i ng organi sm' s c i r c u l a t o r y sys- tem i n t h a t t r anspo r t o f energy, n u t r i - ents, wastes, and the l i v i n g products o f an es tuar ine ecosystem f low w i t h i n these passages. S i m i l a r l y , as the l o s s o f per ipheral appendages o r organs may n o t necessar i ly a f f e c t the u l t ima te func t i on o f c i r c u l a t i o n , l oss of adjacent es tuar ine hab i ta t s may not depreciate t h i s t ranspo r t r o l e o f channels ; however, the c a r r y i n g capaci ty and product ion o f the ove ra l l system ( i .e., i t ' s q u a l i t y ) w i l l undoubt- edly decl ine. On the other hand, s i g n i f i - cant i n h i b i t i o n of channel h a b i t a t s ' capa- c i t i e s t o funct ion, 1 i ke a r te r i osc le ros i s , w i l l u l t i m a t e l y r e s u l t i n d e t e r i o r a t i o n o f the whole estuary as a healthy, produc- t i v e ecosystem. It i s d i f f i c u l t t o under- stand, then, why channels have t y p i c a l l y been some o f t h e most h i g h l y impacted hab i ta ts bu t t y p i c a l l y the most ignored estua~i ,ne envi rons when management goals and p r i o r i t i e s a re set. Presumably, t h e dynamics o f continuous r i v e r i n e and mar- ine i n f u s i o n of h igh q u a l i t y water and organisms are assumed t o n a t u r a l l y mediate the i n s u l t s occur r ing w i t h i n the estuary i t s e l f o r those i n t e r j e c t e d i n t o the sys- tem from u p r i v e r o r from the ocean. But, as a r e s u l t , several es tuar ies i n t h e Pac i f i c Northwest have become burdened w i t h supposedly innocuous modi f icat ions t o the p o i n t o f d i s func t i on .

Of a1 1 es tua r ine habi tats, channels have undoubtedly been diminished quanti t a - t i v e l y the leas t . Bort leson e t al. (1980) have i l l u s t r a t e d some of t he dramatic losses o f subaeri a1 wet1 and hab i ta t (100% i n Puyallup River , 99.2% i n Duwamish K i v - er, and 96.4% i n Samish R iver es tuar ies) bu t ind ica ted no losses i n channel habi-

t a t . Thomas' (1982) exhaustive ana lys is o f h a b i t a t changes i n the Columbia R ive r estuary2since 1868 provided an est imate o f 10.4 km o f deep water (>6 m below MLLW) h a b i t a t l o s t since t h a t time. Over t he e n t i r e estuary, t h i s i s a change o f only 7.3%, as compared t o losses as h igh as 76.8% f o r o ther hab i ta t s ( e . , t i d a l swamps). This r e l a t i v e l y minor loss o f h a b i t a t appl ies, however, only t o mai nstem and subsid iary channels. Losses o f b l i n d o r t i d a l channel h a b i t a t a re much more ex- tens ive but un for tunate ly unestimated. T h y a s (1982) est imated a 43.2% l o s s (28.3 km ) o f t i d a l marshes i n t he Columbia Riv- e r * estuary and Levy (1980a) a 39% (0.23 km ) l oss o f estuar ine marshes i n t h e Fraser R iver estuary, but i t i s impossible t o est imate what po r t i on o f these losses invo lved channel habi tats.

Qua1 i t a t i ve changes i n es tuar ine channels, however, have been rampant s ince " c i v i l i z e d " man a r r i ved i n the re- gion. Some o f these are the, r e s u l t o f accre t ion and erosion unrelated t o man's inf luence, bu t are symptomatic o f the na tu ra l "aging" processes i n t he evolu- t i o n o f an estuary. I n the more than 100 years s ince the Columbia R iver estuary was f i r s t mapped i n e n t i r e t y , t h i s r e l a t i v e l y undeveloped estuary has undergone some dramatic changes i n channel con f i gu ra t i on (Fig. 10.1). Cer ta in ly changes over t he l a s t f o r t y years can be a t t r i b u t e d par- t i a l l y t o anthropogenetic a1 te ra t i ons such as dredging and dredge spo i l disposal w i t h i n t he estuary and hydroe lec t r i c power dam const ruc t ion (and r e s u l t i n g r i v e r d i s- charge a1 t e r a t i o n ) ou ts ide t h e estuary. But i t must be remembered t h a t these proc- esses are c h a r a c t e r i s t i c o f t h e normal physical dynamics o f an estuary and, a l - though they can be modi f ied by man's

Page 131: The ecology of estuarine channels of the Pacific Northwest coast: A

Fig. 10.1. Configuration of channel hab i t a t s (>6 m below MLLW) in the Columbia River estuary i n 1868-1875 (A ) and recent time (6) ; maps modified from Columbia River Estuary Study Taskforce (unpubl . ) maps prepared f o r Thomas (1982).

118

Page 132: The ecology of estuarine channels of the Pacific Northwest coast: A

s t r u c t u r e s and o t h e r man ipu la t ions a re seldom e l im ina ted . For example, d u r i n g t h e l a s t 100 yea rs t h e volume o f t h e Mer- sey R i ve r , England, es tua r y has dec l i ned abou8 10% d e s p i t e dredging o f over 500 x 106m o f m a t e r i a l ( P r i c e and Kendr ick 1963).

Physiochemi ca1 a t t r i b u t e s such as s a l i n i t y and t h e i r i n f l u e n c e upon t h e e s t u a r y ' s communities have a l s o been a l - t e red over t ime as a r e s u l t o f t h e e f f e c t o f bathemetry upon e s t u a r i n e m i x i ng and s a l i n i t y i n t r u s i o n . Thomas (1982) t heo r - i zed t h a t more extreme f l ow f l u c t u a t i o n s , ex tens i ve shoa l ing , and a measurably d i f f e r e n t geomorphology o f t h e ent rance t o t h e Columbia R i ve r es tuary f o rme r l y produced more temporal l y and s p a t i a1 l y extreme s a l i n i t y regimes t han now e x i s t . The r e s u l t was p robab ly an e s s e n t i a l l y f reshwate r system a t a l l stages o f t i d e du r i ng l a r g e s p r i n g f r e s h e t s and increased s a l i n i t y i n t r u s i o n d u r i n g per iods o f low discharge; t h i s may have been subs tan t i a t - ed by t h e r e p o r t s o f s i g n i f i c a n t l y brack- i s h water near Gray 's P o i n t i n 1805 (Thwaites 1959) ; see F i g . 10.1.

Q u a l i t a t i v e change i n es tua r i ne chan- ne l morphology has a l s o changed t he demog- raphy o f man's e x p l o i t a t i o n of e s t u a r i n e f i s h fauna. Th is i s bes t i l l u s t r a t e d by t he changes i n commercial salmon f i s h i n g s t r a t e g i e s i n t h e Columbia and Fraser R ive rs e s t u a r i e s , wherein dredged nav i - ga t i on channels can now be f i s h e d much more e f f e c t i v e l y by c e r t a i n ne t ( d r i f t g i 1 l n e t , purse s e i n e ) f i s h e r i e s .

So man's i n f l u e n c e i s superimposed upon a n a t u r a l l y evo lv ing , dynamic system. The d i f f e r e n c e i s i n t h e short- term, i n t e n s e pe r t u rba t i ons man cont inues t o impose upon es tuar ies .

10.1 SOURCES AND MECHANISMS OF IMPACT

A s u i t e of impacts r e s u l t f rom man's development o f e s t u a r i e s and t h e i r con- t r i b u t i n g watersheds. Among t he major p e r t u r b a t i o n s o c c u r r i n g w i t h i n t he channel which can produce d e l e t e r i o u s impacts t o the e s t u a r i n e ecosystem are:

1) Dredgi ng and dredge-spoi 1 d isposa l ; 2) F i l l i n g and o t h e r so - ca l l ed l a n d

rec lamat ion; 3) J e t t y , t r a i n i n g w a l l , and o t h e r

cons t r uc t i on ; 4 ) Urban and i n d u s t r i a l e f f l u e n t

discharge; 5 ) Log dumping and s torage; 6 ) Commercial o r r e c r e a t i o n a l e x p l o i -

t a t i o n o f fauna and i t s a r t i f i c i a l enhancement; and

7 ) Upstream water d i v e r s i o n s and s to rage rese r vo i rs .

I n a d d i t i o n t o these, a l t e r a t i o n s t o ad ja - cen t es tua r i ne o r exogenous r i v e r i n e o r up1 and h a b i t a t s which i n d i r e c t l y i n s u l t es tua r i ne channels i n c l ude:

1) Logging; 2 ) Hyd roe lec t r i c power development; 3) A g r i c u l t u r e ; and 4) Mining.

Only t h e endogenous impacts wi 11 be d i s - cussed i n t h i s synthes is .

Dredging and dredge-spoi 1 d i sposa l has been probably t h e most extens ive, and o f t en t h e most b l a t a n t , m o d i f i c a t i o n im- posed upon channel h a b i t a t s (Fig. 10.2). J u s t t h e magnitude o f sediment removal i s astoundiny. I n t h e Columbia R i ve r es tuary alone, i n c l u d i n g t h e mouth and bar, over 4.6 x 106m3 o f bottom sediment i s dredged annua l l y (based on most r ecen t 5-year data, L. Smith, U.S. Army Corps o f Engin- eers , Por t land, OR, pers. comm.) o r over 25% o f t h e es t imated annual d e p o s i t i o n (Gross 1972). Elsewhere a long t h e coast, 1.6 x 106m3 i s dredged annua l l y i n Oregon es tuar ies , p r i n c i p a l l y i n Coos Bay, t h e Umpqua R iver estuary , Yaquina Bay, and Sui slaw R i ve r e t u a r y (Smith, pers . comm.) ; 2 about 2.3 x 10 m3 i s dredged a n n u a l l y i n Washinyton State, over h a l f o f t h a t i n Grays Harbor (Simenstad e t a1 . 1982b) ; and 0.4 x 106m3 i s dredged annua l l y a long t h e no r t he rn coast o f C a l i f o r n i a , almost en- t i r e l y i n Humboldt Bay (B. Dixon, U.S. Army Corps Enyineers, San Francisco, CA, pers. comm. ).

Genera1 1 i t e r a t u r e on env i ronmental e f f ec t s o f d redg ing i s ex tens ive (see

Page 133: The ecology of estuarine channels of the Pacific Northwest coast: A

T i q . 10.7. L a t e I t 3 i i O ' < , rlr~c3ilqirry of Duwdnlish R i v e r channe ls and 1 i t,tora'l Tl/its -in E l 1 i o t t I iay, Sr".it t l e , W d ~ i ~ ~ n y t o n (photo by A:,hel C u r t i s ; k*cproduct io r i i o u r t c s y o f I l r i i v c r l ; ~ l y of Wac,hlnqtorr l i i ~ , t o r i c i r l Photoqrltphy C o l l e c t i o n ) .

N d t l . iech. I n t o . b r r v . lYHld, b, and c f o r r e c e n t c i t a t i o n s ) , b u t tvirpi r r c a 1 rn fo r rna t i o r r f rurlr chnr~r te l t l d t ~ i t a t s i n Pac i t r c Nor thwes t p s t i l d r l e s i s very I r r n i t c d (O'Nedl and 5 r c v a 19!1; b l o t t a e t a l . 1973; Jtannc) and Plnr 10;'). Krenke'l e t a l . 1976; M~Caul ry ~t 'il. 19i6; J.i-, Slrlith e t 5 7 . 1976; ll.fil. S ~ i i ~ t h i't d l . 1976; 3 l a z e v i c t i e t d l . 1 9 J i ; MrCauley tit a7 . 1977; Oregon S t a t e Un iv . 197:; Stephens c t a1 . 1977; Be1 la and id i I ? I atlibor? 1979-1980). Due t o the c o ~ i ~ p l e x r ra tu rc o i d redg ing and i t s i r l f i u e n c e s upon cc, tuar i r ie env i rons , a comprehens i ve d i scuss i o n of dredq inq e f f e c t s i s beyond t h e scopc o' t h i s syn- t h e s i s a l t h o u g h t h e r e I S d ; i t -d~ ia t ic need f o r such a docwnent.

I n genera l , d e l e t e r r o u s e f f e c t 5 o f dr t tdy ing d C t 1 ~ l t l e ~ r e s u l t troll1 a variety ot d l r e c t and i n d l r e c t li lechani ssls. k u t e r e d u c t i o n s t n or 'yani 5111 o r co~rinrurii t y s t a n d - i n g s tock can occu r t t ~ r o u g h : 1) i i to r td l i t y induced by uptake t h r o u g h t h e dredge; 2 ) reir~i)val o t b e n t h i c h a b l t d t ; 3 ) b u r i a l by dredge s p o l l s o r t h r o u g h r e s e t t l?t:ler,t o f suspended sed~rrrents a d j a c e n t t o d r e d g i n g s l t e ; 4 ) r e l e a s e o t t o x i c substances f r o i n d r r d j e d sed~rnents i n t o pel ay ' lc o r b e n t h a c h d b l t a t s ; and 5) organic e n r i i h l ~ l e n t Laus - I n y excessive b ~ o l o g i c a l oxyyerl demand- 11npacts w l l l n o t n e c e s s d r l l y be l o ~ y - t e r m i f cessation o r removal of t hese p e r t u r ~ a - t l o n s 1s prompt and thorough. i n d i r e c t e t f e c t s can a l s o r e s u l t i n e v e n t u a l d e g r a -

Page 134: The ecology of estuarine channels of the Pacific Northwest coast: A

da t i on o f t h e b i o l o g i c a l community, a l - thouyh they are u s u a l l y manifested over longer t ime pe r i ods and are Inore e f f e c t i v e upon communi t y s t r u c t u r e due t o species- s p e c i f i c i n t e r a c t i o n s . These e f f e c t s i n - c lude: 1) sub le tha l d e c l i n e i n water qual i t y (e. g., d i s s o l v e d oxyyen, t u r b i d - i t y , n u t r i e n t s , heavy meta ls , pes t i c i des ) o r sediment qual i t y (e.y., p a r t i c l e s i ze d i s t r i b u t i o n , % v o l a t i l e s o l i d s , depth d i s t r i b u t i o n and magnitude o f redox poten- t i a l , heavy me ta l s ) ; and 2 ) mod i f i ca t ion of cu r ren t p a t t e r n s and sa l i n i ty i n t r u s i o n as a r e s u l t o f changes i n estuar ine bathymet ry.

Eva lua t i on o f behav io ra l responses o f aqua t i c organisms t o d redg ing and the imp1 i c a t i o n s t o t h e i r u l t i m a t e su r v i va l has seldom been attempted, however. Even i n t h e absence o f any sub le tha l e f f e c t s t o dredge-suspended sediment (i.e., Kehoe 1982), o rgan i scns such as j u v e n i l e P a c i f i c salmon, which depend upon channel habi - t a t s as m i g r a t i o n c o r r i d o r s , may a c t i v e l y avoid c e r t a i n t u r b i d i t y l e v e l s (Bisson and B i l b y 1982) t o t h e de t r iment o f t h e i r a b i l i t y t o feed e f f e c t i v e l y o r t o avoid predators.

F i 11 i n g and d i k i n g have obvious d i - r e c t e f f e c t s by removal o f b l i n d ( t i d a l ) channels which c h a r a c t e r i z e t i d a l marsh and swamp h a b i t a t s . Th is has been a pervas ive m o d i f i c a t i o n of many P a c i f i c Northwest e s t u a r i e s (F i g . 10.3) and, given the apparent dependence upon these shal- low channel systems by c e r t a i n j u ven i l e salmonids (see Sect i o n 6.2; Levy e t d l . 1979; Anderson e t a l . 1981; Levy and Northcote 1981; Congleton e t al . 1982; Levy and Nor thco te 1982; Levy e t a l . 1982), t h e removal o f such opt imal habi- t a t s may be a ma jo r c o n t r i b u t o r t o the dec l i ne o f many n a t i v e salmon runs throughout t h e reg ion.

I n a d d i t i o n t o t h e d i r e c t e l imina- t i o n of channel h a b i t a t , t h e cons t ruc t ion of s t r u c t u r e s such as d ikes , j e t t i e s , and t r a i n i n g w a l l s i n o r ad jacen t t o channels o f ten impose f a r - r each iny e f f e c t s upon es tuar ine c i r c u l a t i o n . Cur ren t ve l oc i - t i e s and s a l i n i t y i n t r u s i o n a re commonly a l t e r e d as a r e s u l t o f f low c o n s t r i c t i o n

O r i n h i b i t i o n , r e s u l t i n g i n d i r e c t m o d i f i - ca t i on o f the behavior of o r g a n i s ~ n s and communities l i r n i ted t o s p e c i f i c c u r r e n t v e l o c i t y and sa l i n i t y regisles o r i n d i r e c t impact by loss o f food resources o r re fug- i a . Levinys and Chang (1977) compared Current v e l o c i t i e s i n a "back c h a n n e l " (Wi 1 liamson slough; 60 cat S~C-I), w i t h i n in f luence o f a winy darn ( S t e v e s t o n I s 1 and; 75 cm sec- I ) , i n mid-channel (Ladner Reach; YO cm sec- I ) , and a d j a c e n t t o a t r a i n i n g wa l l (Woodward; 104 cm s e c - 1 ) i n the Fraser R ive r estuary dnd f o u n d s i g n i f - i c a n t d i f f e rences due t o the i n f l u e n c e of t h e t r a i n i n g w a l l a l thouyh n o t o f t h e wing dam. I n t e r p r e t a t i o n of B r e t t ' s (1970) and B r e t t and Glass' (1973) response s u r f a c e s f o r c r i t i c a l swimming speed o f j u v e n i l e sockeye salmon would suggest t h a t f e e d i n g a c t i v i t i e s under temperatures e x p e c t e d dur ing es tuar ine outmi g r a t i o n i n v o l ve sus- ta ined swimming speeds o f u n d e r t h r e e lengths sec-1. Ex t r apo la t i ng t h e i r r e l a - t i onsh ips t o the expected l e n g t h s o f o t h e r outrni y r a t i n y salmon species, i t wou ld appear t h a t normal feeding b e h a v i o r wou ld be d isrupted a t water v e l o c i t i e s y r e a t e r than 40 cm sec-1. Lev inys and Chang (1977) a l so suggested t h a t i m p o r t a n t p rey o f j uven i le salmon. such as t h e qamrnarid

c o n f e r v i c o f us, wou ld remain inq on t h e b o t -

tom o r at tach& t o algae a t c i r r e n t ve l oc - i t i e s g red tz r than 10 crn sec-1; L e v i n g s (1973) found t h a t much h igher , s u s t a i n e d v e l o c i t i e s (a250 cm sec- I ) woul d a c t u a l l y f l u sh A. con fe r i v i co l us out o f t h e i n n e r squamiTh River estuary. This il l u s t r a t e s what may be an element of t h e f u n c t i o n a l r e l a t i onsh ips between water v e l o c i t i e s , prey avai 1 abi 1 i t y , and f o r a g i n g b e h a v i o r of j u ven i l e salmon. The f a c t t h a t j u ve - n i l e salmon do, indeed, feed p redorn inan t - l y i n subs id iary and b l i n d c h a n n e l s where t h e h ighest s tanding Stock o f b e n t h i c , ep ibenth ic , and d r i f t prey a r e found , i l- l u s t r a t e s the p o t e n t i a l d e l e t e r i o u s e f feet of increas ing channel water v e l o c i t i e s i n these habi ta ts .

~ o d i f i c a t i o n of c u r r e n t v e l o c i t i e s along t he bottom and the r e s u l t i n g r e - s t r u c t u r i n g o f bottom sediments c a n a l s o lead t o s h i f t s i n t r o p h i c a s s o c i a t i o n s of benth ic infauna. M i l d i s h (1977) and

Page 135: The ecology of estuarine channels of the Pacific Northwest coast: A

Fig . 10.3. E x a m p l e o f w h e r e d i k i n g a n d f i l l i n g have removed ( b l i n d o r t i d a l ) channel h a b i t a t i n Fraser R iver estuary; ( A ) i l l u s t r a t e s d i k i n g of subs id ia ry ( e n t e r i n g from lower r i g h t ) channel and b l i n d channels i n saltmarsh, and (8 ) shows h i s t o r i c a l channel pa t te rns s t i l l ev ident i n e x i s t i n g f i e l d s (photos courtesy of David Levy, Westwater Research Centre, Univers i t y o f B r i t i s h Columbia, ~ a n a d a ) .

Page 136: The ecology of estuarine channels of the Pacific Northwest coast: A

W i l d i s h and Krist iqanson (1979) hypothe- s i zed t h a t t h e magnitude o f t u r b u l e n t l iass t r a n s f e r fro111 t h e water co1u:nn t o t h e sediment su r f ace determines t h e p r o p o r t i o n o f f i l t e r feeders t o d e p o s i t feeders. They suggest t h a t , a t l e a s t under food 1 i m i t e d s i t u a t i o n s , depos i t feeders p re - dominate i n low c u r r e n t speeds and f i l t e r feeders a re b e n e f i t e d by moderate t o h i y h cu r ren t s and bot tom roughness. Such i n - duced changes i n water v e l o c i t i e s and s a l i n i t y i n t r u s i o n p robab ly a l s o a f f e c t t h e r a t e and d i s t r i b u t i o n o f d e t r i t u s accumulat ion o r processing. The end re - s u l t o f t h i s p e r t u r b a t i o n would be d isp laced, i f n o t reduced, sources o f food f o r d e t r i t i v o r o u s organisms i n t h e channel h a b i t a t .

Es tua r i ne channels have t r a d i t i o n a l - l y been looked upon as opportune recep ta - c l e s f o r urban and i n d u s t r i a l wastes due t o t h e i r u s u a l l y c l ose p r o x i m i t y t o e f f l u - ent sources and r a p i d m i x i ng p o t e n t i a l . A1 though t h e r e i s some consequent i a1 urban and r u r a l dra inage i n t o subs i d i a r y and b l i n d channels, most o f t h e massive waste d ischarges occur i n mainstem chan- nels. But even these dynamic h a b i t a t s have a t h r e s h o l d t o t h e amount o f wastes which can be accommodated w i t h o u t changes t o b i o l o g i c a l s t r u c t u r e . Two ca tegor ies o f comnon wastes--organic and t o x i c a n t - - r e f 1 e c t t h e mechani sms o f impact upon channel h a b i t a t s and assoc ia ted b i o t a . Organic po l l u t i o n i s man i fes ted p r i m a r i l y through inc reased chemical o r b i o l o g i c.31 oxygen demand w i t h i n t h e water column and, w i t h se t t l emen t o f o rgan i c p a r t i - c les , on and w i t h i n bot tom sediments. Since d i s so l ved oxygen i s a c r i t i c a l r e q u i s i t e f o r e s t u a r i n e oryanisms' (ex- c l ud i ng some mi c r o f l o r a ) rnetabol i sm (see Vernberg and Vernberg 1972 f o r rev iew) , even minor sho r t - t e rm depress ions can a1 t e r animal behav io r and major, 1 ong-term dec l ines can r e s u l t i n ma jo r community s h i f t s toward a reduced number of more t o l e r a n t species. A t s u f f i c i e n t concen- t r a t i o n s , t o x i c a n t s such as pet ro leum hydrocarbons, heavy metal s, r a d i o a c t i v e isotopes, p e s t i c i d e s , ac ids , and o the r chemicals have t h e p o t e n t i a l t o d i r e c t l y k i 11 aqua t i c organisms (i e . , acu te l y t o x i c ) ; b u t more o f t e n t h a n no t they a re

p resen t i n ch ron i c sub1 e t h a l concentra- t i o n s which s t i l l i n f l u e n c e t h e d i s t r i b u - t i o n and abundance o f organisms through degrada t ion o f l o n g e v i t y , reproduc t ion , growth, metabol ism, and behavior.

Fur ther , more d e t a i l e d examinat ions o f p o l l u t a n t e f f e c t s upon aqua t i c organ- isms and communities can be found i n reviews such as Bryan (1971) and Warren (1971). F e l i c e (1959) a l s o descr ibed a c l a s s i c case o f t he i n f l uence o f domestic and i n d u s t r i a l wastes upon t h e ben th i c community o f San Franc isco Bay, an es tu - a r y w i t h many para1 l e l fea tu res t o P a c i f - i c Northwest es tua r i es . Anderson e t a1 . I s (1981) examinat ion o f t h e env i ronmental e f f e c t s o f ha rbor cons t r uc t i on a t Steves- ton, H r i t i s h Columbia, a l so i n d i c a t e s t h e s y n e r g i s t i c i n f l u e n c e s o f normal env i ron- mental pe r t u rba t i on , o rgan ic p o l l u t i o n , and dredging and j e t t y c o n s t r u c t i o n on endemic channel communities.

Log t r a n s p o r t a t i o n ("booming"), dump- i n g , and s to rage has been a t r a d i t i o n a l use o f e s t u a r i e s i n t h i s reg ion. For example, l ogs from a l l a long t h e B r i t i s h Columbia coast a re t ranspor ted t o t h e Fraser R i ve r estuary , where almost 5 km2 o f es tua r i ne h a b i t a t , most o f i t s shal low reaches o f mainstem channels, a r e devel - oped as "booming grounds" t o h o l d a s i x - week supply o f logs f o r t h e l o c a l saw and p u l m i l l s (Levy e t a l . 1982). Approxi- mate ly 1.2 km2 o f the Columbia R i ve r es tuary i s p r e s e n t l y u t i l i z e d f o r l o g s to rage (Pac. NW Riv. Basins. Comm. 1980).

Many s t ud i es o f t h e env i ronmental e f f e c t s o f l o g hand l ing and s to raye i n e s t u a r i e s have been conducted w i t h i n t h e r eg i on (Schaumberg 1973; Schuytema and Shankland 1976; Smith 1977; Conlan and E l l i s 1979; S i b e r t and Harpham 1979; Zegers 1979; Levy e t a l . 1982) and i n Alaskan es tua r i es ( E l l i s 1970; Pease 1974; Buchanan e t a l . 1976; Schu l t z and Berg 1976), w h i l e many o f t h e nega t i ve impacts documented were p a r t i c u l a r l y assoc ia ted w i t h 1 i t t o r a l h a b i t a t s , where d i r e c t ben th i c d is tu rbance was caused by grounding logs, l o g dumping, r a f t i n g , and s to rage i n subs i d i a r y and sha l low reg ions

Page 137: The ecology of estuarine channels of the Pacific Northwest coast: A

of mainstem channels can a lso produce s ig - t a i n l y played a r o l e i n most cases. Given n i f i c a r i t irnpacts if water exchange from the important r o l e which these consumer r i v e r and t i d a l cur ren ts was low. These organisms ( t y p i c a l l y upper t r o p h i c l e v e l were p r i m a r i l y due t o t he accumulation o f carn ivores) have upon the s t ruc tu re o f bark and l o g debr is on the bottom, caus- channel communities, i t may be v a l i d t o i n g smothering of benth ic organisms and assume t h a t ecol ogical accommodation has measurable increases i n biochemical oxy- resu l ted i n somewhat d i f f e r e n t producer gen demand i n t h e water ove r l y i ng the and primary consumer assemblages than debris. Leachates from stored logs and occurred h i s t o r i c a l l y . P a c i f i c salmon, bark deposi ts may also l o c a l l y degrade northern anchovy, P a c i f i c her r ing , and water qual i t y through e i t h e r d i r e c t Dungeness crab are examples o f e x p l o i t e d t o x i c i t y o r v i a b i o l o g i c a l and chemical species which are suspected t o s t r u c t u r e oxygen demand (Pease 1974; Buchanan e t t h e i r prey assemblages (see Secfion 9.2); a l . 1976; Peters e t a l . 1976), fac tors and i t must a lso be concluded t h a t asso- which may be i n t e n s i f i e d by in te rmedia te c i a t e d pelagic, epibenthic, and benth ic s a l i n i t i e s (Pease 1974). assembl ayes have a1 so responded i n d i r e c t -

1y t o man's e x p l o i t a t i o n o f these preda- Prolonged impacts upon benth ic com- to rs . The consequence o f t h e recent en-

mun i t ies r e s u l t i n g from loy r a f t i n g i s hancement e f f o r t s upon some o f these spe- o f ten manifested i n reduced standing crop cies, i.e., P a c i f i c salmon, o r the p ro tec - and d i v e r s i t y and tends t o be r e s t r i c t e d t i o n o f other, previously-harvested preda- t o benth ic infauna ra ther than ep ibenth ic tors, i.e., seals and sea 1 ions can a l s o organisms except under extreme s i t ua t i ons . be pred ic ted t o induce measurable changes For example, Smith (1977) i l l u s t r a t e d i n the community because o f increased pre- t h a t t h e abundances o f three polychaete dat ion upon t h e i r p re fer red food organ- anne l id species (Mana unkia aestuarina, isms. This has been suggested f o r hatch- Pseudoam h i c t e i s Ca i t e l l a ery releases o f j u v e n i l e salmon i n Hood &ubiferous a m p h i p o h Canal (Sinenstad e t a l . 1980) and n i g h t 7ie- p ium salmonis), and ol igochaetes were a l so be app l ied t o increased seal and sea r e d u c e d i n r a f t areas of t he Snohomish l i o n predat ion upon crabs and f i shes i n River estuary, but the epibenthic amphi- the Columbia R iver estuary (Beach e t a l . pod Eoyammarus confervicolus was unaffect- 1981). Such h o l i s t i c food web i n t e r a c - ed. Levy e t al. (1982) i nd i ca ted tha t t i o n s must be equa l ly considered syner- epibenthic qysids (Neom s i s mercedis) and g i s t i c w i t h man's other impacts i n es tua r - -5- amphipods (E . confervlco us and Corophium i n e channels and, u l t i m a t e l y , w i t h i n h i s sp. ) were e r the r more o r equal l y abundant management s t ra teg ies f o r t h e maintenance and isopods (Gnorimosphaeroma o r e onensi s ) o r r e s t o r a t i on o f a speci f i c e s t u a r i n e less abundant i n t h e Point G r e h - channel community. age area as compared t o t he Musqueam Marsa cont ro l area; environmental cond i t ions , 10.2 UTILIZATION OF AND DEPENDENCE ON t~owever, were responsible f o r some o f CHANNELS BY ECONOMICALLY - AND ECO- these d i f ferences, and no s i gni f i cant con- LOGICALLY-IMPORTANT SPECIES t r a s t s i n growth o f chinook salmon f r y were evident between the two study areas A s i l l u s t r a t e d throughout t h i s syn- despi te qual i t a t i ve dif ferences i n the thes i s , many organisms o f economic impor t - f i shes ' d ie t s . ance t o man o r o f eco log ica l importance

t o t h e es tuar ine ecosystem can be found A f i n a l , seldom-considered and even u t i l i z i n g channel habi tats. But i n t h e

1 ess-evaluated impact upon channel commun- contex t o f es tuar ine management, the c r i t- i t i e s i s t h a t o f extensive e x p l o i t a t i o n i c a l quest ion i s dependence upon channels o f economical iy- important species. Whi l e t o sus ta in popul a t i ons o f these organisms h a b i t a t reduct ion o r a l t e r a t i o n has cer- by p r o v i d i n g ample food resources, o p t i - t a i n l y cont r ibu ted t o the dec l ine of many mum cond i t ions f o r growth and/or reproduc- o f our cornnmercial o r sport f i s h and i n - t i on , and r e f u g i a from predation. Such a ver tebra te stocks, overharvest ing has cer- d e f i n i t i o n o f u t i 1 i z a t i o n i n terms of

124

Page 138: The ecology of estuarine channels of the Pacific Northwest coast: A

e s t u a r i n e channels as " c r i t i c a l " h a b i t a t s r e q u i r e s more knowledge o f t h e f u n c t i o n a l r e l a t i o n s h i p s r e g u l a t i n g popu la t ions t han i s u s u a l l y ava i l ab l e .

U t i l i z a t i o n o f es tua r i ne channel s i s obvious f o r many econmical l y - and ecol o g i - c a l l y - i m p o r t a n t spec ies o f f i shes . But, among these, o n l y a few can be i l l u s t r a t - ed t o be p o t e n t i a l l y l i m i t e d by t h e a v a i l - a b i l i t y o r q u a l i t y o f e s t u a r i n e channel h a b i t a t . J u v e n i l e salmon such as chinook and chum may p r o v i d e t h e bes t example o f such a p o s i t i v e f u n c t i o n a l r e l a t i o n s h i p between e s t u a r i n e res idence and popul a- t i o n p roduc t i on (see Sec t i on 6.2.2). Th i s may a lso be t h e case f o r P a c i f i c h e r r i n g (Pearcy and Myers 1974), American shad, and s t r i p e d bass. 8 u t t h e r e i s some e v i - dence t h a t many spec ies " u t i l i z e " o f f - shore env i rons t o a y r e a t e r ex ten t t han e s t u a r i e s and, as such, occurrence i n es tua r i ne channel s i s mere ly a p roduc t o f c u r r e n t t r a n s p o r t o f p l a n k t o n i c l a r v a e f rom a l a r g e o f f s h o r e popu la t i on i n t o t h e es tuary ; t h i s may be t r u e o f no r t he rn anchovy, s u r f perch, P a c i f i c sand lance, l i ngcod , E n g l i s h so le , b u t t e r so le , and sand s o l e (Pearcy and Myers 1974). And, w h i l e t h e e c o l o g i c a l l y - impo r t an t Crangon spp. shrimps may be h i g h l y dependent upon e s t u a r i n e channel h a b i t a t s , t h e r e i s no evidence i 1 l u s t r a t i n g t h a t channels p ro - v i d e c r i t i c a l h a b i t a t s f o r economical l y - impor tan t Dungeness crab as j uven i 1 es, which may be e q u a l l y o r more abundant o f f shore .

A number o f e c o l o g i c a l l y - i m p o r t a n t t op ca rn ivo res such as seals , sea l i o n s , and many o f t h e su r f ace and d i v i n g water- b i r d s a re seasonal m ig ran ts which behav- i o r a l 1y immigra te t o es tua r i ne channel s f o r s p e c i f i c pe r i ods o f t h e year. S ince t h e r e i s good ev idence t h a t t h i s i s asso- c i a t e d w i t h optimum f o r a g i n g and/or r ep ro - duc t i on cond i t i ons , t h e i r popu la t i on l e v - e l s may a l s o depend upon t h i s u t i l i z a t i o n pa t te rn .

10.3 RATES AND PATHWAYS OF RECOVERY FROM SHORT-TERM IMPACTS

A1 though some man ipu la t ions o f chan- n e l s such as ex tens ive dredging can be d ramat i c i n t h e i r i n i t i a l impact, if sus- t a i n e d f o r o n l y a s h o r t i n t e r v a l , b i o l o g - i c a l recovery may a l s o i n v o l v e o n l y a r e l - a t i v e l y s h o r t t ime per iod . A l though un- v e r i f i e d , i t may be assumed t h a t , due t o r a p i d m i x i ng and immigrat ion o f pe l ag i c organisms, impact t o water column assem- blages w i l l be r e l a t i v e l y shor t -1 ived. Ben th ic and ep iben th i c assemblages, on t h e o t h e r hand, w i 11 r e q u i r e longer r e - covery t imes and may pass throuyh a num- ber o f successional stages be fo re a t t a i n - i n y pre- impact s ta tus. McCauley e t a l . (1977) documented a readjustment i n ben- t h i c in fauna w i t h i n a dredged area of Coos Bay, Oregon, a f t e r 28 days and w i t h - i n impacted, ad jacent areas a f t e r 14 days; s i m i l a r l y , i n fauna a t t h e s i t e o f dredye spoi 1 d isposa l had a1 so recovered from d e p l e t i o n w i t h i n 14 days. Anderson e t a l . (1981) descr ibed recovery o f t h e ben th i c community i n Steveston Harbor i n t h e F raser R i v e r es tuary w i t h i n one month a f t e r dredging. McCauley e t a l . (1976) a l s o f o l l owed t h e r e c o l o n i z a t i o n pa t t e rns o f f o u r species o f polychaete anne l ids i n Coos Bay, Oregon, f o r e i g h t weeks a f t e r maintenance d redy i ng. They found t h a t Capi t e l l a capi t a t a -domi nate-d t h e assem- b laqe i n r ecen t l y d e ~ o s i t e d sediments bu t n o t - under s i t u i t i o n ; o f r a p i d sediment tu rnover ; Polydora l i y n i , on t h e o t h e r hand, pervaded where sediments were over- t u rned f r equen t l y and where sawdust and wood deb r i s occ i r red . S teb losp io bene- d i c t i and Pseudoool vdora kemoi are common . "

under e i t h e r recen t s e d i m e a o n o r sed i - ment over tu rn ing , perhaps because bo th can r e a d i l y vacate t h e i r tubes t o r e b u i l d new ones qu i ck l y . Thus, t h e r a t e and pa t - t e r n o f r e c o l o n i z a t i o n w i l l proceed as a f u n c t i o n o f t h e r a t e o f sediment resuspen- s i o n o r sedimentat ion as we l l as t h e o r - ganic con ten t (Be1 l a and W i 11 iamson 1979- 1980; see a l s o Sec t ion 2.5.2). Pequegnat (1975) suggested t h a t mei ofaunal c o n s t i t u - e n t s o f t h e benthos may be even more sen- s i t i v e t o sediment d i s r u p t i o n , as e v i - denced by changes i n genera t ion t ime, s t and ing stock, and d i v e r s i t y . A1 though

Page 139: The ecology of estuarine channels of the Pacific Northwest coast: A

they may be the f i r s t colonizers, t h e i r i ntirnate re1 at iot iships w i th sediment prop- e r t i e s and i n t r i n s i c short populat ion cyc les would d i c t a t e tha t succession of meiofauna assemblages would be prolonged as long as abnormal sedimentation (o r removal ) persisted.

Unfor tunate ly, such successional pa t te rns have not been we l l documented i n dredgi ng-impact s tudies i n t h i s region. O l i v e r e t a l . (1977), however, provided an exce l len t i l l u s t r a t i o n o f benthic succession i n a soft-bottom assemblage of small crustaceans and polychaete annelids i n Monterey Bay, Ca l i fo rn ia . Two phases were evidenced a f t e r dredging ceased. The f i r s t involved immediate immigrat ion o f peracar id crustaceans and settlement o f la rvae o f oppor tun is t i c polychaete species, i.e., r e l a t i v e l y small-sized taxa w i t h shor t generation times, low fecund i ty , and h igh l a rva l avai l a b i l i t y . The l a t e r phase included gradual reestab- 1 ishment by less mo t i l e crustacenas and l ess oppor tun is t i c polychaete species.

One important t h ing t o remember i n consider f ng succession rates and pat terns i n t h e temperature waters o f the P a c i f i c Northwest i s the h igh l y seasonal reproduc- t i v e schedules o f most fauna. As a re- s u l t , succession i s going t o be h igh l y mediated by the seasonal a v a i l a b i l i t y of propagules of these oppor tun is t i c and l a - t e r successional stage taxa. I n addi t ion, benth ic asse~nblages i n centra l regions of l a r g e estuar ies l i k e the Columbia and Fra- ser Rivers may never n a t u r a l l y progress beyond the oppor tun is t i c species succes- s iona l stage. Due t o the frequent .and o f t e n extreme f l uc tua t i ons i n s a l i n i t y regimes, these benthic assemblages are typically l i m i t e d t o species which are to1 erant of such random environmental per tu rbat ions and p e r s i s t by being small, capable of wide dispersal and r a p i d reproduction, and extremely euryhal ine.

10.4 METHODS OF CHANNEL RESTORATION AND REHABILITATION

Un l i ke the recent support f o r estuar- i n e marsh res to ra t i on (Josselyn 1982; but see Race and C h r i s t i e 1982 f o r caveats),

r es to ra t i on and rehabi l i t a t i o n o f channels i s seldom considered among ava i l ab le op- t i o n s i n estuar ine h a b i t a t management. Dorcey e t al . ' s ( i n press) analys is o f the h i s to ry , s tatus, and management opt ions o f estuar ine sloughs, spec i f i c - a l l y T i l b u r y Slough i n t he Fraser River estuary, presents one o f t he few discus- sions of res to ra t i on and enhancement s t ra teg ies appl icable t o such estuar ine channel and associated hab i ta t s (e.g., marshes). Among the rehabi 1 i t a t i o n options s p e c i f i c t o t h e area's channels were: 1) breaching o f remnant dykes t o increase f lush ing and passage o f j uven i l e salmon; 2) dredging o f the mouth and chan- nel t o a r res t i n f i l l i n g and mainta in c i r - cu la t ion ; 3 ) dredging o f s ide ( b l i n d ) channels t o increase j u v e n i l e salmon u t i l - i z a t i o n ; and, 4 ) s t a b i l i z a t i o n o f water leve ls through f low con t ro l s t ruc tures and selected channel creat ion.

I n add i t ion t o these means o f res tor - ing t h e hab i ta t t o a v iab le , product ive envi ronment , management must i nvol ve re- moval o r mediation o f the sources o f deg- radat ion and p ro tec t i on o f t h e s e l f - cleansing mechanisms. I n the case of T i lbury Slough, as i n many s i m i l a r l y - developed estuarine channels i n the Pac i f i c Northwest, exogenous in f luences such as po l l u tan t sources e l i m i n a t e some o f t he more v iab le opt ions ( i .e., opening up f low from the former, u p r i v e r end of the channel), I n a l l cases, however, re- s to ra t i on must be accompanied by changes - i n those uses which l ed o r con t r i bu ted t o the channel's de te r i o ra t i on . Po l l u tan t sources must be e l iminated o r d iver ted. Structures (i.e., docks, t r a i n i n g wal ls , wharves) and pract ices ( i .e. , log dumping and storage) which promote abnormal sedi - mentation and scouring must be discouraged.

There are present ly a c t i v e manage- ment p o l i c i e s promoting o r p r a c t i c i n g m i t i g a t i o n as a means o f compatibly i n - corporat ing necessary es tuar ine develop- ment i n t o the natural environment wi thout precluding such a c t i v i t y (Ashe 1982). As such, m i t i ga t i on can take on two goals: 1) the creation, res tora t ion , o r enhance- ment o f an estuar ine area t o main ta in t he

Page 140: The ecology of estuarine channels of the Pacific Northwest coast: A

f u n c t i o n a l c h a r a c t e r i s t i c s and processes o f t h e es tuary ; and, 2 ) t h e c r e a t i o n o r r e s t o r a t i o n o f another area o f s i m i l a r b i o l o g i c a l p o t e n t i a l t o ensure t h a t t h e i n t e g r i t y o f t h e e s t u a r i n e ecosystem i s maintained. Whi le t h e f i r s t goal i s compat ib le w i t h maintenance o f a v i a b l y - f u n c t i o n i n g e s t u a r i n e channel community , t h e second yoal should be approached j u d i c i o u s l y . D e s t r u c t i o n o r debi 1 i t a t i v e m o d i f i c a t i o n o f any n a t u r a l h a b i t a t , p a r t i c u l a r l y channels so i n t e g r a l t o an e s t u a r y ' s c i r c u l a t i o n , by c r e a t i o n o f a supposedly e q u i v a l e n t h a b i t a t cannot be j u s t i f i e d w i t h t h e e x i s t i n g technology. Th is approach t o mi t i g a t i o n o r i g i n a t e d from r e l a t i v e l y successfu l s a l t marsh r e s t o r a t i o n p r o j e c t s i n east coas t es tuar - ies , b u t man-made marshes i n west coast es tua r i es have y e t t o be proven comparable replacements f o r n a t u r a l marshes (Race and C h r i s t i e 1982). A1 though r e s t o r a t i o n o f d i ked , f i l l e d , o r mod i f i ed channels i s a wo r t hwh i l e o b j e c t i v e o f contemporary es tua r i ne manayement, deva lu ing e x i s t i n g channels i n exchange f o r t h e unp red i c t ab l e r e s u l t s o f these p r o j e c t s i s s t i l l a dubious s t r a t egy .

10.5 RESEARCH GAPS AND PRIORITIES

Desp i t e t h e p r o f u s i o n o f knowledge o f e s t u a r i n e channels i n t h e P a c i f i c Northwest, i 1 l u s t r a t e d by t h e bu lk o f t h e L i t e r a t u r e C i t e d sec t i on , we f i n d ou r un- ders tanding o f t h e r o l e o f these h a b i t a t s i n the e s t u a r i n e ecosystem t o be l i m i t e d . I n most cases t h i s i s because t h i s vast accumulat ion o f da ta i s predominant ly de- s c r i p t i v e and qua1 i t a t i v e . That which i s q u a n t i t a t i v e i s t y p i c a l 1 y o r i e n t e d toward a p a r t i c u l a r t axa and seldom o f a scope encompassing o t h e r organisms o f t h e com- munity, env i ronmenta l cond i t i ons , o r func- t i o n a l re1 a t i o n s h i ps among them. Fu tu re research must address t h i s l a c k o f h o l i s - t i c approaches, p a r t i c u l a r l y when evalu- a t i n g t h e dependence o f impor tan t b i o t a upon key f u n c t i o n a l processes. Desp i te t he i n t e n t o f t h i s syn thes is t o i d e n t i f y t h e r o l e o f e s t u a r i n e c i r c u l a t i on , sa l i n - i t y g rad i en t s , n u t r i e n t and m a t e r i a l f l u x - es, and sediment s t r u c t u r e i n determi n i ng t h e composit ion, d i s t r i b u t i o n , and stand- i n g s tock o f e s t u a r i n e b i o t a (Sec t i on

1.1), few such f u n c t i o n a l r e l a t i o n s h i p s have been v e r i f i e d though many have been hypothesized. The f o l 1 owing research p ro - posals a re designed t o e l uc i da te , t e s t , and q u a n t i f y these "conceptual hypothes is models" i n terms o f t h e f u n c t i o n i n g o f e s t u a r i n e channel systems, t h e i r r e l a t i o n - s h i p t o o v e r a l l e s t ua r i ne processes, and t h e imp1 i ca t i ons o f e s t u a r i ne manayement op t ions .

1. Prepare comprehensive ana l ys i s o f h i s t o r i c a l t r ends i n channel h a b i t a t demography ( ex ten t and morphology) f o r a l l ma jo r P a c i f i c Northwest es- t u a r i e s where da ta e x i s t s ; i n t e r p r e t documented changes re1 a t i ve t o n a t u r a l and anthropogeni c processes.

V e r t i c a l 1 ~ - s t r a t i f i ed , three-dimen- s i o n a l mathematical model ing o f c i r- c u l a t i o n i n a prominent, representa- t i v e P a c i f i c Northwest es tuary should be conducted w i t h cons iderab le f i e l d c a l i b r a t i o n i n o rde r t o b e t t e r under- s tand t he e f f e c t o f r i v e r d ischarge and estuary bathymetry upon s a l i n i t y i n t r u s i o n and sedimentat ion. Various development scenar ios a f f e c t i n g para- meters such as r i v e r i n e d ischarge (i.e., dams), bathemetry (i.e. , dredging) , o r geomorphology ( i .e. , j e t t y c o n s t r u c t i o n ) cou ld be simul a t - ed f o r optimum assessment o f e f f e c t s upon c i r c u l a t i o n .

3. Conduct i n t e n s i v e , v e r t i c a l l y - s t r a t i - f i e d sampling o f pe l ag i c and epiben- t h i c zooplankton over d i e l pe r iods a t r ep resen ta t i ve channel 1 oca t ions through t h e es tua r i ne grad ient . I f performed concu r ren t l y w i t h f i e l d c a l i b r a t i o n o f t h e three-d imensional c i r c u l a t i o n model (#2 above), t h e r e - s u l t i n g documentation o f d i e l p a t - t e r n s i n zooplankton d i s t r i b u t i o n and s tand ing s tock cou ld be c o r r e l a t e d w i t h cyc les i n t i d a l and c u r r e n t ve- l o c i t y , s a l i n i t y d i s t r i b u t i o n s , and mi x i ng processes.

4. As i n Healey 's (1982) es t ima t i on of t h e u l t i m a t e ( i .e., t o a d u l t r e t u r n ) s u r v i v o r s h i p o f chum salmon u t i 1 i z - i n g t h e Nanaimo R i ve r estuary , t h e

Page 141: The ecology of estuarine channels of the Pacific Northwest coast: A

re1 a t i ve importance o f e s t u a r i n e channel a t t r i b u t e s must be evaluated i n terms o f the t o t a l cost t o t h e salmon populat ion. S i m i l a r l y , d i f - f e ren t pa t t e rns of channel u t i 1 i z a - t i o n by j u v e n i l e salmon (e,g., ex- tended residence, inshore /o f f shore movements) must be examined r e l a t i v e t o these a t t r i b u t e s . A1 though t he re i s o f t e n oppo r t un i t y f o r "na tu ra l 'I experiments, the lack o f con t r o l over dependent va r i ab l es o f t e n i n h i b i t s i n t e r p r e t a t i o n . For t h i s reason, man ipu la t ion experiments should be undertaken t o i s o l a t e independent va r i ab l es a f f e c t i n g pa t t e rns o f chan- n e l u t i l i z a t i o n . Examples i nc l ude equal re leases o f marked groups o f f i s h a t d i f f e r e n t p o i n t s a long t h e es tua r i ne g rad ien t o r d i f f e r e n t dens i t y o r f i s h - s i z e re leases j u s t upstream o f t h e es tuary and recap- t u r e o f the marked F i sh a t t h e mouth o r j u s t ou ts ide t h e estuary.

U e s p i ti? s t r ony evidence t h a t food webs of es tuar ine channel comtnunities a re based yredomi n a n t l y upon d e t r i - tus , t he re i s 1 i t t l e da ta subs tan t i - a t i n y t h i s hypothes is (see Sec t ion 9.1). Techniques such as s t ab l e ca r - bon i so tope ana l ys i s should be ap- p l i e d t o p r imary producers, i n p u t s o f d i s so l ved and p a r t i c u l a t e o rgan ic and d l ssol ved i no rgan i c carbon from exogenous sources, d e t r i t u s accumula- t ions, and dominant consumer organ- isms i n es tua r i ne channels i n o rder t o eva lua te t he sources and pathways of o rgan ic carbon l ead ing t o t h e endemic food web.

Siini l a r t o de te rmin ing causal mechan- is111~ o f u t i l i z a t i o n of e s t u a r i n e channels by j u v e n i l e salmon ( # 4 above), t h e f a c t o r s i n f l u e n c i n g s t r u c t u r e , d i s t r i b u t i o n , and stand- i ng stock o f ben th ic and ep iben th ic assernbl ages cannot be e a s i l y e l u c i - dated from h i g h l y v a r i a b l e f i e l d measurements ; separa t ion o f confound- i n g e f f e c t s of n a t u r a l phys ica l and cnerni ca l i n f l uences f rom those o f pol l u t i o n a re a l s o u s u a l l y i n t r a c t - able. Funct ional r e l a t i o n s h i p s be-

tween physiocherni c a l v a r i a b l e s and l a r v a l set t lement , feed ing and o ther c r i t i c a l behavior, rep roduc t ion , and s u r v i v a l can be r eso l ved o n l y through experimental means. Organisms such as po lychaete annel ids, h a r p a c t i c o i d copepods, gammarid amphi pods, mysids, and crangonid shrimps should be t e s t - ed under c o n t r o l l e d rep1 i c a t a b l e con- d i t i o n s i n d i c a t i v e o f e s t u a r i n e chan- ne l ben th ic env i rons, bo th as i n d i - v idua l species and 1 i f e h i s t o r y stages as w e l l as c h a r a c t e r i s t i c mixed-taxa assemblages. Th i s ap- proach achieves i t s u l t i m a t e appl i- c a b i l i t y i n t h e form o f ecosystem ~~ i i c rocosms which, dl though s u b j e c t t o a nunber o f s h o r t c w i n g s (Ha r t e e t a l . 1980; Sil ierlstad e t a l . 1982) can be a very e f f e c t i v e method o f env i - ronmentdl i lnpdct assessnent and eco- l o g i c a l e l u c i d a t i o n (T.P. Smith 1980).

7. The importance o f t h e n u l l zone i n t he concen t ra t ion o f d e t r i t u s has been suggested by s t u d i e s of wa te r column pr imary p roduc t i on and bo th pe lag ic and e p i ben th i c zoopl ankton (see Chap. 5). But t h e processes account ing f o r d e t r i t u s en t ra inment and process ing i n t h e nu1 1 zone o f the reg ion 's e s t u a r i e s a r e l i t t l e understood. Both v e r t i c a l and h o r i - zonta l d i s t r i b u t i o n s o f d e t r i t u s p a r - t i c l e s and assoc ia ted water chemis t ry c h a r a c t e r i s t i c s (i .e., DOC, DON, ATP) should be sampled seasona l l y i n r e l a - t i o n t o c i r c u l a t i o n parameters i n an estuary w i t h a we1 1 -de f ined nu1 1 zone. As i n documenting zooplankton d i s t r i b u t i o n processes (#3 above), coup1 i n g w i t h t h e three-d imensional c i r c u l a t i o n model ( #2 above) would a l so expand t h e p o t e n t i a l o f s i m i - l a r l y e x p l a i n i n g d e t r i t u s c y c l i n g and u t i l i z a t i o n by phys i ca l c i r c u l a - t i o n processes.

Appendix D p rov ides a l i s t o f r e - search groups/organi z a t i ons c u r r e n t l y conduct ing research i n e s t u a r i n e channel h a b i t a t s i n t h e P a c i f i c Northwest.

Page 142: The ecology of estuarine channels of the Pacific Northwest coast: A

10.6 SUMMARY

Al though they a re c l a s s i c a l l y avo id- ed i n most research, due t o t he comp lex i t y and dynamic na tu re o f t h e physiochemi c a l environment, channel h a b i t a t s i n P a c i f i c Northwest e s t u a r i e s obv i ous l y suppor t un ique popu la t i ons o f economical l y - and e c o l o g i c a l l y - i m p o r t a n t b i o t a . Th i s bond- i n g takes fo rm as r ou tes f o r organism movement and m ig ra t i on , condu i t s o f m a t e r i a l t r a n s p o r t , and sources o f rep1 en i shment f o r sediments, n u t r i e n t s , food p a r t i c l e s , and organism r e c r u i t s . A1 1 e s t u a r i n e h a b i t a t s a re i n t e g r a t e d through t h e e s t u a r y ' s a r t i c u l a t e d system o f mainstem, subs i d i a r y , and b l i n d chan- ne l s , and t h e p r i n c i p a l l i n kages w i t h t e r r e s t r i a l and mar ine ecosystems occur through t h e mainstem channels. I n a d d i t i o n t o t h i s c r i t i c a l r o l e as t h e es tua r y ' s c i r c u l a t o r y system, channels a c t as c r i t i c a l nursery h a b i t a t s f o r organisms such as j u v e n i l e P a c i f i c salmon and P a c i f i c h e r r i n g ; as opportune f6rag- i n g and r e s t i n g h a b i t a t s f o r migrant b i r d s and mar ine mammals; and as t h e foca l p o i n t o f d e t r i t u s e n t r a i nment, accumulat ion, and process ing i n t h e estuary .

Management o f any e s t u a r i n e resource o r exogenous resources which d e r i v e b e n e f i t f rom a we1 1 - f unc t i on i ng estuary cannot occur w i t h o u t cons i de ra t i on and management o f e s t u a r i n e channels. But t h e s t a t e o f ou r knowledge o f es tua r i ne channel communities and processes and of

t h e i r management i s l a g g i n g f a r behind t h a t o f t h e o t h e r major e s t u a r i n e hab i - t a t s . Th is document descr ibes what Dorcey ahd H a l l (1981) would d e f i n e as t h e " d e s c r i p t i v e knowl edge" necessary f o r i n p u t i n t o management dec is ions. Un fo r tu - na te l y , t h e r e i s a l so a second ca tegory o f r e q u i s i t e i n f o rma t i on , t h a t o f t h e " f u n c t i o n a l knowledge" o f how t h e chan- n e l ' s b i o t i c and a b i o t i c processes oper- a t e and i n t e r a c t , which we have b a r e l y begun t o develop. E s s e n t i a l l y a l l t h e s t ud i es descr ibed h e r e i n have been d e r i v e d f rom i n v e n t o r y i n g o r mon i t o r i ng t ypes o f i n v e s t i g a t i v e a c t i v i t i e s . Any i n t e r p r e t a t i o n o f system processes has merely been t h e r e s u l t o f deduc t i ve analy- ses. Genuine f u n c t i o n a l knowl edye r e - q u i r e s a d i f f e r e n t approach, t h a t o f gen- e r a t i ng t e s t a b l e hypotheses and expe r i - rnents. Such experimental research o f f e r s our on ly view o f causal mechanisms, and t h e process o f sequen t ia l l y t e s t i n g a1 t e r - n a t i v e hypotheses i s ou r o n l y means o f ' exp lo r ing t h e complex i n t e r r e l a t i o n s h i p s a f f e c t i n g channel communities. E f f e c t i v e management dec i s i ons r e q u i r e t h i s func- t i o n a l knowledge and, as advocated by Dorcey and Hal 1 , experimental management and research are t h e o n l y source o f func- t i o n a l knowledge. I t i s hoped. t h a t , i n a d d i t i o n t o syn thes iz ing our d e s c r i p t i v e knowl edge of es tua r i ne channel communities i n t h e P a c i f i c Northwest, t h i s ' community p r o f i l e m i g h t p rov i de t h e impetus f o r t h e necessary s teps t o t he experi lnents which a re u l t i m a t e l y necessary f o r e f f ec - t i v e management o f our r e g i o n ' s es tuar ies .

Page 143: The ecology of estuarine channels of the Pacific Northwest coast: A

LITERATURE CITED

Ages, A. 1979. The sal i n i t y i n t rus ion i n the Fraser River : sal in1 ty, ter~perature and current observations, 1966, 1977. Pac, I lar . S c i . Rep. 79-14, Inst. Ocean Sci., P a t r i c i a Bay, Sfdncy, B.C., Canada, 193 pp.

Ayes, A,, and A. Woollard. 1976, The t ides i n the Fraser estuary. Pac. tlar. Sci. Rep. 76-5, Inst. k e a n S c i , , Pat r i - c i a Bay, Vfctor ia, B.C., Canada. 108 pp*

A 1 banese, J.R, 1979. A s l~nu la t i on siodel for coas tit1 zoobenthic ecosystems. Ccnt. Ecal . tbde l , Rep, 6. Rensselser Polytechnic Inst. , Troy, N.Y. 46 pp.

Prnerlcdi~ Eeol og i c a l f n s t l tute. 1976. l ~ l c t l o n a r y of geoloq4cal terns, Rev. od, Anchor Press, Garden City, N.Y. 472 pp.

Mi Test, Enc. 1981. Chantcal tes t ing o f sedttaents .in Grctys Harbor, Mashing tan, Rep, t o Sea t t l e D i s t r i c t , tJ,S. Army Corps of Eny),, Environ. Res., Seatt le, Wash, 112 pp.

AnQe eon, E . P . , I . U, B J r twel 1 , S. C, flyers, A,V, ilincks, and G.W. O'Connell. 19C1. Envl rormentdl ef fects o f harbor con- s t ruc t i on a c r f v f t i e s a t Steveston, B r i t - isti Columb9d. Parts 1 t o 3. Can. Tech. Rep. Fish. Aquat. Sci. 1072, Dep. Fish, kesns, West Vancouver, B.C., Canada. 4 1 PP.

Anderson, G.C. 1972, Aspects o f marine phytoplankton studies near the Go-1 ruabia River, w l t k specidl reference to a sub- surface chl orophyl 1 maximum. Pages 219-240 A.T, Pruter and D.L. Alver- son, eds, The Colmbfa River estuary

and adjacent ocean waters : hioenvi- ronnental studies. Univ. Wash. Press, Seatt le.

Anlta, N.J., C.D. t f c A l l i s t e r , T.R. Parsons, K. Stephens, and J.D.H. St r i ck - land. 1963. Further measurements on prfnary production using a large-vof une p l a s t i c sphere. Limnol. Xeanogr. 8: 166-183.

finraku, N., and ?4, h o r i . 1963. Prcl ini- nary survey of the re1 a t ionship between the feeding hab i t and the s t ruc tu re o f the mouth-parts o f marine copepods. Lfmnol. Oceanogr. 8:116-126.

Antonel i s , G.4., and C.H. Fiscus. 1980. The pinnfpeds o f the Cal i f o r n i a Current. Cal if. Coop, Oceanic Fish. Invest., CALCQFI Rep. 21: 68- 78,

Anstrong, D., 0. Stevens, an4 J. Hoeman. 1982. D l s t r i b u t i on and abundance o f hngeness crab and Crangon shrimp, and dredging-re1 ated mortal i t y o f inver te- brates and f i s h I n Grays Harbor, Wash- ington. F inal Rep. Sea t t l e Dist. , U.S. Amy Corps of Eng. and Wash. Oep. Fish. 349 pp.

Arthur, J.F., and M.Q. Rat 1 . 1979. Fac- t o rs in f luencing the entrapment o f sus- pended mater ia l i n the San Francisco Bay-Del t a estuary. Pages 143- 174 .in- T.J. Conmos, ed, San Francisco Ray: the urbanized estuary. Cal if. Acad, Sci., San Francisco.

Ashe, D.M. 1982. Fish and wild1 i f e mi t i- gation: descr ip t ion and analys is o f estuar ine appl icat ions. Y.S. Thesis. Ins t . %re Stud., Univ. Wash., Seat t le . 123 pp.

Page 144: The ecology of estuarine channels of the Pacific Northwest coast: A

Avnimelech, Y., 8.W. Troeger, and L.W. Reed. 1982. tklutual f l o c c u l a t i o n of a l - gae and c l a y : evidence and impl i ca - t i ons . Science 216:63-65.

Barber, R.T. 1966. I n t e r a c t i o n of bub- b les and b a c t e r i a i n t h e format ion o f o rgan ic aggregates i n sea ~ t a t e r . Nature 211:257-258.

Bax, N.J. 1982. Seasonal and annual va r - i a t i o n s i n t h e lnovement o f j u v e n i l e chum salmon through Hood Canal, Washington. Pages 208-218 i n E.L. Brannon and E.O. Salo, eds. proceedings salmon and t r o u t !ni g ra to r y behav io r symposium, June 3-5, 1981. School Fish., Univ. Wash., Sea t t le .

Bayer, R.D. 1978. Aspects o f ah estua- r i n e g rea t b l u e heron popu la t ion . Pages 213-217 A. Sprunt, I V , e t a l . , ods. Wading b i r d s . Res. Rep. 7, Na t l . Audu- bon Soc.

Baylor, E.R., artd W . H . S u t c l i f f e , Jr. 1963. D isso lved o rgan i c m a t t e r i n sea- water as a source o f p a r t i c u l a t e food. Limnol . Oceanoy r . 8: 359-381.

Beach, R.J., A.C. Geiger, S.J. J e f f r i e s , and S.D. Treacy. 1981. Mar ine manmal- f i s h e r y i n t e r a c t i o n s on t he Columbia River and ad jacen t waters, 1981. Second Annu. Rep., Nov. 1, 1980-Nov. 1, 1951. Wash. Dep. Game, W i l d l . Manaye. Div., Olympia, Wash. 186 pp.

Beardsley, A.J. 1969. Movement and an- g l e r use o f f o u r food f i shes i n Yaquina Bay, Oregon. Ph.D. Thesis. Oreg. S ta te Univ., C o r v a l l i s . 185 pp.

Beccasio, A.D., J.S. Isakson, A.E. Redf ie ld , N.M. B1 aylock, f-1.C. Finney, R.L. Frew, D.C. Lees, D. Pe t r u l a , and R.E. rf idwin. 1981. P a c i f i c coast eco- l o g i c a l i n v e n t o r y - -user i s gu ide and i n f o rma t i on base. U.S. F i s h Wi ld l . Serv. B i o l . Serv. Program FWS/OBS-81/30, Washington, D.C. 159 pp. + maps.

Be l l a , D.A., and K.J. Wil l iamson. 1979-1980. Diagnosis of ch ron i c impacts o f es tua r i ne dredging. ,I. Envi ron. Syst. 9(4):289-311.

Ceyer, F. 1958. A new, ho t to rn - l i v inq trachyrnedusa from t h e Oslo f j o r d . N y t t Mag. Zoo7 . 6: 121-143.

Bigg, M.A. 1969. The harbor seal i n B r i t i s h Columbia. Fish. Ses. Board Can. B u l l . 172.

Bisson, P.A., and R.E. R i l by. 1982. Avoidance of suspended sediment Sy juve- n i l e coho salmon. N. Am. J. Fish. Manage. 4: 371-374.

Blackburn, J.E. 1973. A survey o f t he abundance, d i s t r i b u t i o n and f a c t o r s a f - f e c t i n g d i ' s t r i b u t i o n o f i c h t h y o ~ l a n k t o n i n Skag i t Bay. M.S. Thesis. Univ, Wash., Sea t t le . 136 pp.

Blahm, T.Y. 1979. E f f ec t o f a g i t a t i o n dredging on ben th i c communities, water q u a l i t y , and t u r b i d i t y a t Chinook Chan- n e l . I n P r o p e l l e r wash a g i t a t i o n dredq- ing , (5Tiinook Channel, Washington. Nav. Div. Res. Eva1 . Rep. 2-79. U.S. Army Corps Eng., Por t land, Oreg. 19 pp.

B lay lock, W.M., and 3.P. Houghton. 1981. Commencement Bay s tud ies , t echn i ca l re- po r t . Vol. 4: Inver tebra tes . Rep. t o U.S. Army Corps Eng., Seat t le , D is t r . , Dames and Moore, Sea t t le , Wash. 58 pp.

l 3 l azevich, J.V., A.R. Gahler, G.J. Vascon- ce los, R.H. Bieck, and S.V.W. Pope. 1977. Mon i t o r i ng o f t r ace c o n s t i t u e n t s du r i ng PCB recovery dredging operat ions: Duwamish waterway. Rep. EPA/910/9-77/ 039. U.S. EPA, Su rve i l . Analy. n i v . , Sea t t l e , Wash. 156 pp.

Boggs, S., and C.A. Jones. 1975. Seasonal r eve r sa l o f f l o o d - t i d e dominant sediment t r a n s p o r t i n a smal l Oregon es- tua ry . B u l l . Geol. Soc. Am. 878:419-426.

B e l l , S.S., and K.H. Sherman. 1980. A Boley, S.L., R.Z. Conrow, R.T. Hudspeth, f i e l d i n v e s t i g a t i o n o f meiofaunal d i s - S.P. K le in , H.L. P i t t ock , L.S. S l o t t a , pe rsa l : t i d a l resuspension and imp1 i c a - and K.J. W i l l iamson. 1975. Phvs ica l t i ons . Mar. Ecol. Prog. Ser. 3:245-249. c h a r a c t e r i s t i c s o f t h e Youngs Bay estu-

131

Page 145: The ecology of estuarine channels of the Pacific Northwest coast: A

a r i n e env i rons . School o f Engineering, Ocean Engineering Progs., Oreg. S t a t e Univ., Co rva l l i s .

Gort leson, G.C., l4.J. Chrzastowaski, and R.K. He1 gerson. 1980. H i s t o r i c a l chariges o f shore1 i n e and wet1 and a t e l e- ven ma jo r de l tas i n t he Puget Sound region, Washington. Hydrologic Inves t . A t las HA-612, U,S. Geol. Surv., Denver, Colo.

Rost ick, W.E. 1955. Duwanish R i ve r se in - ing s tud ies . Pages 5-6 in Puget Sound stream s tud fes . Wash. nep. Fish., Olym- p i a *

Buusf ie ld , E.I.. 1955. Ecological cot r t ro l o f the occurrence o f barnacles i n t h e t.llrd!\richi estuary, B u l l . kt. Ifus, Can, 173. 70 pp.

tiowden, K.F. 1967. C i r c u l a t i o n and d i f - fus ion, Pages 15-36 In G.F. Lauf f , ed. f:stuarirs. A~I , Assoc. Adv. Sci . Publ. 83 , Washington, D.C. 757 pp.

Ifowlby, C.E. 19131. Feeding behavior o f p inn ipeds i n the Klemath River, no r t he rn Cat i f o r n i a . M.S. Thesjs. tbmboldt S t d t ~ Univ., Arcata, C a l i f . 74 pp.

Uoyec, R. 1979. The seasonal abundance of Arrisu emrlarus spp,, and Cora h i u n r p p . ~ h t o d i rcharqe an a f r a n- i t y i n t h e Rouge ~ i i e r es tuary 1976-1977. Unpubl . D r a f t Rcp. , Oreg. Uep. F i s h W f l d l . 10 pp.

Uoyle, E., R. C o l l i e r , A.T. Bengler, J.M. Edraond, A.C. rb, and R.F, S t a l l a r d . 1974, On t he chemical nass-balance i n cs t u a r i es. Geochim. Cosnochin. Acta. 38: 1719-1728.

l i r e t t , J,R. 1970. F ish - - the energy cos t o f 1 i v ing . Pages 32-52 in N.J. McNejl ed. I l a r i ne aquacul ture. Oreg. S ta te Uni v. Press, Corval 1 i S.

i i r c t t , J,R,, and N.R. Glass. 1973, Meta- b o l i c r a t e s and c r i t i c a l swimrning speeds o f sockeye salnon (Oncorhynchus nerka) i n r e l a t i o n t o s i ze and t a n p e r a t u r n . Fish. Res. Board Can, 30:379-337.

Rrown, R. F. 1980. Abundance, novmen ts and feedinq h a b i t s o f t he harbor seal. Phoc: v i t u i i n a , a t Eletarts Bay, Oregon:

e Oreq. S ta te Univ., Co rva l l i s . 69 pp.

Brown, R.F., and B.R. Mate. 1379. Wve- ments of tagged harbor seals, Phoca v i t - u l ina, between two adjacent Oregon es tu - - a r i e s (Ne ta r ts and T i l lamook Bays). (Abstr .) Page 4 .in- Proc. t h i r d conf . b i o l , mar. mamm. Oct. 7-11, 1979, Seat t le , Wash.

Brown, T.J., and J.R. S ibe r t . 1977. Food of some ben th ic harpac t i c o i d copepods. J . , F i s h . Res, Board Can. 31:1028-1031.

Bryan, C.W. 1971. The e f f e c t s o f heavy inetals (o ther than nercury ) on n a r i n e and es tuar ine organisms. Proc. R. Soc. Lond. R, 177:389-410.

Ruchanan, D.V., P.S. Tate, and J.R. Fbr- ing. 1976. Acute t o x i c i t i e s of spruce and hemlock bark e x t r a c t s t o some estu- a r i n e organisms i n southeas t e r n A1 aska. J. Fish. Res. Board Can. 33:1188-1192.

Burney, C.P!., and JJ1. Sicbur th . 1977. D l ssol ved carbohydrates i n seawater. I I . A spectrophotornetr ic procedure f o r t o t a l carbohydrate ana l ys i s and po ly - saccharide est imat ion. Mar. Chem. 5: 15-28.

Bur t , W.V., and W.B. McAl i s t e r . 1958. Recent s tud ies i n t he hydrogrdphy o f Oregon es tuar ies , June 1956 t o Seotember 1958. O f f i c e o f Nav. Res. Ref. 58-6, School o f Sci., Oreg. S ta te Col leqe, Corval 1 i s .

Burton, J.D., and P.S. L i s s . 1976. Estu- a r i n e chemistry. Academic Press, London. 229 pp.

Ca lmbok id i s , J., K. Boman, S. Car te r , 3. Cubbage, P. Dawson, T. F le ischner , J. Schuett-Hames, J. Skidnore, and 6. Taylor. 1978. Ch lo r ina ted hydrocarbon concentrat ions and t h e ccot ogy and behavior o f harbor seals i n Washington S ta te waters. Evergreen S ta te Co1 I . , Olympia, Wash. 121 pp.

Page 146: The ecology of estuarine channels of the Pacific Northwest coast: A

Calambokidis, J., R. E v e r i t t , J. Cubbage, Chang, B.D., and T.R. Parsons. 1975. and S. Carter. 1979. Harbor seal cen- Metabol i c s tudies on the anphi pod Aniso- sus f o r the in1 and waters o f Washington, ammarus pugettensis i n r e l a t i o n t o i t s 1977-1978. Murrel e t 60: 110-113. !rophic pos i t i on i n the food web o f

young salmonids. J. Fish. Res. Board Callaway, R.J. 1965. Flushing r a t e of Can. 32:243-247.

Grays Harbor and oxygen l eve l s . Short Pap. t o W.W. Towne, D i r . Col. River Chapman, P.M. 1981. Seasonal changes i n Basin Proj . t he depth d i s t r i b u t i o n s o f i n t e r s t i t i a l

s a l i n i t i e s i n the Fraser R ive r estuary, Cal l away, R. J. 1971. Appl i c a t i o n s o f B r i t i s h Columbia. Estuar ies 4:226-228.

some numerical models t o P a c i f i c k r t h - west estuar ies. Pages 29-97 2 Proc. Chitwood, S.A. 1981. \dater qua1 i t y , sal- 1971 tech. conf. es tuar ies P a c i f i c monid f i s h , smelt, crab and subt ida l Northwest. Circ. 42. Oregon State studies a t the Q u i l l a y u t e R ive r Pro jec t . Univ. Sea Grant, Eng. Exp. Stn., Oreg. Rep. t o Sea t t l e Dist., U.S. Amy Corps State Univ., Corval l i s . Eng., Qu i l eu te F i sh Dep., Q u i l e u t e

Indian Tribe, LaPush, Wash. 92 pp. Cameron, W.E1., and D.W. P r i tchard. 1963.

Estuaries. Pages 306-324 M.N. H i l l , Chr is t ian, R.R., and R.L. Wetzel. 1978. ed. The sea. Vol . 2. Intersc ience, New In te rac t i on between substrate, n icrobes, York. 757 pp. and consumer o f Spar t in ia d e t r i t u s i n

estuaries. Pages 93-113 & M.L. Wiley, Cannon, G.A., ed. 1978. C i r c u l a t i o n i n ed. Estuarine i n te rac t i ons . Academic

the S t r a i t o f Juan de Fuca--some recent Press, New York. oceanographic observations. NOAA Tech. Rep. ERL 399-Pt4EL 29. Pac. Mar. CH M-HiT1 . 1981. Bacter io l og i c a l survey Environ. Lab., Seat t le , Wash. 49 pp. 6 f Wil lapa Bay. Rep. f o r Wash. State

Dep. Ecol . , Re1 1 evue. 79 pp. Carr iker, M.R. 1951. Ecological observa-

t i ons on the d i s t r i b u t i o n o f oys ter l a r - Cloern, J.E. 1979. Phytoplankton ecology vae i n New Jersey estuar ies. Ecol . o f the San Francisco Bay system: the Monogr. 21:19-38. s tatus o f our cu r ren t understanding.

Pages 409-426 in T.J. Conomos, ed. San Carr iker , M.R. 1959. The r o l e o f physi- Francisco Bay: t he urbanized estuary.

ca1 and b i o l o g i c a l f ac to rs i n Crassos- Cal i f. Acad. Sci., San Francisco. t r ed and Mercenaria i n a s a m - pond. Ecol . Monog r. 29 : 2 19-266. Col l ias, E.E., and J.H. L incoln. 1377. A

study o f the n u t r i e n t s i n t h e main basin Carr iker , M.R. 1967. Ecology o f estu- o f Puget Sound. M77-2, F ina l Rep. t o

a r ine benth ic inver tebra tes : A perspcc- t4unicipal i t y Fletropol i tan S e a t t l e, Dep. t i ve . Pages 442-487 jn- G.H. Lauff, ed. Ocean., Univ. Wash., Seat t le . 151 pp. Estuaries. Am. Assoc. Adv. Sci., Publ. 83, Washington, D.C. Coleman, J.M., and L.D. Wright. 1975.

t4odern r i v e r del tas: v a r i a b i l i t y o f Caspers, H. 1967. Estuaries: ana lys is o f processes and sand bodies. Pages 99-149

d e f i n i t i o n s and b i o l o g i c a l considera- - i n J.P. Morgan, ed. Deltas, models f o r t ions. Pages 6-8 G.H. Lauff, ed. explorat ion. Houston Geol. Soc., Tex. Estuaries. An. Assoc. Adv. Sci., Publ. 83, Washington, D.C. Col umbia River Estuary Data Devel opment

Program. 1980. A 1 i t e r a t u r e survey o f Chang, B.D. 1975. %Some fac to rs a f f e c t i n g t h e Columbia River estuary. Pac. I\kl

d i s t r i b u t i o n and p r o d u c t i v i t y i n t he R iver Basins Comm., Vancouver, Wash. es tuar ine amphipod Anisoqrammarus puget- 427 pp. tensis. M.S. Thesis. Univ. B r i t i s h Columbia, Vancouver.

133

Page 147: The ecology of estuarine channels of the Pacific Northwest coast: A

Congleton, J.L., S.K. Davis, and S.R. Fo l ey, 1982. D i s t r i b u t i o n abundance, and o u t m i g r a t i o n t im ing o f chum and ch i - nook salmon fry i n t he S k a g i t s a l t narsh, Pages 153-163 E.L. Brannon and E.O. Sale, eds. Proc. sallaon and t r o u t m i g r a t o r y behav io r symposium, June 3-5, 1931. School Fish., UnIv. Wash., Sea t t l e .

Conlan, K.E., and D.V. E l l i s , 1979. E f f e c t s of wood waste on sand-bed ben- thos. Mar. Pol l u t . B u l l . 10:262-267.

C o r r e l l , D.L. 1378. Es tua r i ne p roduc t i v - i t y . BioScience 28:646-650.

Crawford, J.A., and G.L. Dorsey. 1980. An eva lua t i on o f av ian comnuni t i e s on dredged ma te r i a l s and und is tu rbed i s 1 and hab i t a t s . F i n a l Rep., U.S. Amy Corps Eng., Por t land D i s t . , b e g . 154 pp.

Crawford, J.A., and D.K. Edwards. 1978. Hab i t a t development f i e 1 d i n v e s t i g a t i o n , t l i l l e r Sands na r sh and upland develop- ment s i t e , Columbia River , Oregon. Appendix F: pos t propagat ion assessment o f w i l d1 i f e resources on dredged mate r i - a l , U.S. Amy Corps Eng., Waterways Exp. Stn., Dredge t l a t e r i a l Res. Prog. Tech. Rep. 0-78-38. Vicksburg, Miss. 67 PP*

Couch, A.B. 1964. Feeding eco logy of Cronin, L.E., J.C. Daiber, and E.M. Ht l - f o u r spec ies o f sandpipers i n western ber t . 1962. Q u a n t i t a t i v e seasonal as- Washington. M , S . Thesis. Univ. Wash., pects o f zooplankton i n t h e Delaware Sea t t l e . 57 pp, River estuary. Chesapeake Sc i . 3:63-93.

Cou l l , B.C. 1972. Scott01 and canadensis Cronin, T.W. 1902. Es tuar ine r e t e n t i on f Haryac t i co ida , ~ ' s r c d e s c r i b e d o f l a r vae o f t h e crab R h i t h r o ano eus f rom t h e U n i t e d S ta tes eas t coast. h a r r i s i i , Es tuar ine Coastal She f c i Crustaceana 2213) :209-214. 15:2(17-220.

+ Coull, L C , 1973, Es tua r i ne melofauna: CronIn, T.W., and R.B. Forward. 1979.

a revfew; t r o p h i c r e1 a t i onsh ips and m i - T ida l v e r t i c a l m ig ra t i on : an endogenous c r o b i a1 i n t e r a c t ions. Pages 499-512 In rhythm i n es tua r i ne c rab l a r vae . Sc i - L.H. Stevensen and R.R. Co lwe l l , eds. ence 205: 1020-1022. Es tua r i ne m i c r o b i a l ecology. Unlv. S.C. Press, Col u~nb i a . Crookshank, N. 1971, A one-dimensional

model of t h e l owe r F raser R ive r . Bat. Cowan, I,M,, and C.3, Guiguet, 1965. The Resour. Council Can. LTR-HY- 14. Ottawa,

mammals o f B r i t f s h Columbia. 8 .C . Prav. Canada. Mus., Handbook 11 (3 rd ed.), V i c t o r i a , B.C., Canada. 414 pp. Cummings, E., and R.L. Berry . 1974. Some

observat ions on f i s h d i s t r i b u t i o n i n Cowardin, L.M., Y. Carter, F.C. Galet , and Ti l lamook Bay, Oregon, w i t h notes on

E.T. LaRoe, 1979, C t a s s i f + c a t i o n o f she1 1 f i sh , temperature, and phys ica l wet lands and deepwater h a b i t a t s o f the c h a r a c t e r i s t i c s . F ish. Comn. Dreg. Un i t ed States. U.S. Fish Wildl. Serv. Coastal R i v e r Invest. , I n f o . Rep. 74-1. B io l . Sew. Program. FWS/DRS- 19/31. 29 PP* 183 pp.

Cumnings, E., and E. Schwartz. 1971. Craqie, J.S., and J. Mciachlan, 1964, F ish i n Coos Bay, Oregon, w i t h comqents

E x c r e t i o n o f c o l oured ul t r a v i a l e t an d i s t r i b u t i o n , temperature, and sal i n - absorb ing substances by mar ine algae. i t y of t he estuary . Fish. Comm. Oreg. Can. J. Bot, 42:23-33. Coastal R i v e r Inves t . I n f o . Rep. 70-11.

22 PP* Crandel l , G,F. 1967. Seasonal and spa-

t i a l d i s t r i b u t i o n o f h a r p a c t i c a i d cope- Dahm, C.N., S.V. Gregory, and P.K. Park. pods in r e l a t t o n t o s a l l n i t y and temper- 1381. Organic carbon t r a n s p o r t i n t he a t u r e i n Yaquina Bay, Oregon. Ph,D. Columbia R ive r . Es tuar ine Coastal She1 f D i s s e r t a t i o n , Oreg. Sta te Univ . , Car- Sc i . 13:645-658. val l i s , 134

Page 148: The ecology of estuarine channels of the Pacific Northwest coast: A

Darnel 1, R.M. 1951. T roph ic spectrum o f an e s t u a r i n e co~ninuni ty based on s t ud i es o f Lake Pon t cha r t r a i n , Louis iana. Ecol- ogy 43~553-568.

Darne l l , R.M. 1967. Organic d e t r i t u s i n re1 a t i o n t o t h e es tua r i ne ecosystem. Pages 376-382 i n G.H. Lauff , ed. Estu- a r i es . Publ . 83, Am. Assoc. Adv. Sci., Washington, D.C.

Davis, C.C. 1949. The p e l a g i c Copepoda o f t h e no r t heas te rn Paci f i c Ocean. Univ. Wash. Publ. R io l . 14:l-117.

Davis, J.S. 1978. D i e l a c t i v i t y of ben- t h i c crustaceans i n t h e Colurnbia R ive r estuary . M.S. Thesis. Oreg. S ta te Univ., Co rva l l i s . 170 pp.

Davis, J.S., and R.L. Hol ton. 1976. D ie l a c t i v i t y e f two amphipods i n t h e Colum- b i a 2 i ver es tuary . Pages 13-15 i n Proc. 5 t h tech. conf . e s t u a r i e s P K . NW. Ci rc . 51, Eng. Exper. Stn., Oreg. S ta te Univ., C o r v a l l i s .

Day, J.W., J r . , L.I.B. Smith, P. Wagner, and W. Stone. 1973. Community s t r u c t u r e and carbon budget i n a s a l t marsh and shal low bay e s t u a r i n e system i n L o u i s i - ana. Center f o r Wetland Reso?crces, La. S ta te Univ., Yaton Rouge. Publ. No. LSU-SG-72-04. 79 pp.

Dayton, P.K., and J.S. 01 i v e r . 1980. An e v a l u a t i o n o f exper imenta l analyses o f popu la t i on and cornmuni ty p a t t e r n s i n ben th i c rnari ne env i ronrnents. Pages 93-120 i n K.R. Tenor and B.C. Couf l , eds., ~ a T n e ben th i c dynamics. E leventh B e l l e 1J. Baruch sywp. mar. sci., Univ. S.C. Press, Columbia.

DeAngel i s , D.L. 1975. S t a b i l i t y and con- nectance i n food web model s. Ecology 56: 238-243.

carbon i so topes i n animals. Geoch-in. Cos~noch i~ . Acta. 42: 495-506.

de Sylva, D.P. 1975. qek ton i c food webs i n es tuar ies . Pages 420-447 i n I..E. Cronin, ed. Es tua r i ne r e s e a r c t i 7 Vol. 1. Academic Press, New York.

de l idolff, P. 1974. On the r e t e n t i o n o f mar ine l a r v a e i n es tua r i es . Thal a s s i a Jugosl . 10: 415-424.

Dobbins, L4.E. 1964. BOD and oxygen r e l a - t i o n s h i p i n streams. J. San i t . Eng. Div. Proc. ASCE 90:53-78.

Dorcey, 4.H.J., and K.H. Ha l l . 1981. S e t t i n g eco log i ca l research p r i o r i t i e s f o r management: t h e a r t o f the impossi- b l e i n t h e Fraser R i v e r estuary . West- wat. Res. Cent., Univ. B r i t . Col . , Van- couver, R.C., Canada. 78 pp.

Dorcey, A.H.J., K.J. H a l l , D.A. Levy, and I. Yesaki. I n press. Es tuar ine h a b i t a t management: a prospectus f o r T i 1 b u r y Slough. Westwat. Res, Cent., Univ. B r i t . Col., Vancouver, R.C., Canada. 53 PP

Dunford, U.E. 1975. Space and food u t i l - i z a t i o n by salmonids i n marsh h a b i t a t s o f the Fraser R i v e r estuary. M.S. Thesis. Univ. R r i t. Col . , Vancouver, B.C., Canada. SO p p .

Dunn, J., G. Hock~nan, 3. Howerton, and J. Tabor. 1981. F i n a l Report - W i l d l i f e Work U n i t A-2.12, September 1951, t o Col. Riv. Est. Data Dev. Prog. Wash. Dep. Game, 91 ynp i a.

i

Durkin, J.T. 1973. A l i s t o f crustacean she1 1 f i s h o f t h e 1 ower Col umhi a R i v e r between t h e moutb and r i v e r m i l e 108, June t o October 1973. U.S. Na t l . Mar. F ish. Serv., Sea t t l e , Wash.

Delucca, R., arid M.0. McCracken. 1977. Durk in , 3.T. 1975. An i n v e s t i g a t i o n o f Observat ions on i n t e r a c t i o n s between f i s h and decapod s h e l l f i s h found a t n a t u r a l l y - c o l l e c t e d b a c t e r i a and severa l f o t i r dredge m a t e r i a l d isposal s i t e s and species o f a1 gae. Hyd rob io l og i a 55: two dredge s i t e s ad jacen t t o t h e mouth 71-75. o f the Colutnbia R i ve r . Rep. P o r t l a n d

Dist . , U.S. Army Corps Eng. and U.S. 3eNir0, M.J., and S. Epste in . 1978. Na t l . Mar. F ish. Serv., Coluabia R i v e r

I n f l uence o f d i e t on t h e d i s t r i b u t i o n o f Program O f f . 29 pp.

135

Page 149: The ecology of estuarine channels of the Pacific Northwest coast: A

Durkin, J .T. 1982, Migra t ion character- i s t i c s o f coho salmon (hcorhynchus k isu tch) srnol t s i n the Columbia River and i t s estuary. Pages 365-366 in V.S. Kennedy, fxl. Estuarine comparr sons. Acadanic Press, New York.

Durkin, J.T., S.J. Lipovsky, G.R. Snyder, and J.M. Shelton. 1976. Changes i n epibenthic estuarine f i s h and inverte- brates from prope l le r a g i t a t i o n dredg- ing. Section I & Impact o f a g i t a t i o n dredging a t Chinook Channel, Rep. t o N. Pac. Div, , U.S. Army Corps Eng., U.S. Natl, flar. Fish. Serv., Hammond, Oreg. 57 PP.

Ourkin, J.T., S.J. Lipovsky, and R.J. McConnel 1 . 1979. Bio logical impact o f flow1 ane disposal p ro jec t near P i l l a r Rock i n t he Columbia River estuary. fbtl. Ocean. Atmos. Admin., U.S, k t 1 . Mar, Fish. Serv., NJ Alaska Fish. Cent., Seatt le, Wash, 92 pp,

Durkin, J.T., T.C. Coley, K. Verner, and R.L. Fmmett. 1981, An aquatlc species eval ua t ion a t four sel f scouring s i t e s i n the Colur.nbid River estuary, U.S. Natl. Mar. Fish. Serv., Seatt le, Wash. 96 PP.

Ouxbury, A.C. 1979. Upwell ing and estu- ary f lushing. Limn01 . Qcean. 241627-633.

Dyer, K.R. 1373, Estuaries: a physical in t roduct ion. John Wiley and Sons, New Yo rk,

Eaton, R . L . , ed. 1975. Marine shorfl ine fauna of Washf ngton. Wash, State Rep. Game, Wash. Dep, Ecol., Coastdl Zone Environ. Stud, Rep. 2. 594 pp.

Edwards, D.K. 1970. An analys is o f avian cmrnunitfes on a dredged mater ia l island. M.S. Thesis. Oreg. StateUniv. , Corval l is . 48 pp.

Eldridge, tl,B., and C.F. Bryan. 1972. Larval f i s h survey o f Humbol t Bay, Ca l i - fornia, U.S. Dep. Commer., NOAA Tech. Rep. FPOFS SSRF-665. 8 pp,

El 1 i o t t , T. 1978a. Del tas. Pages 97-1/12 i n H.G. Reading, ed. Sedimentary envi- - rornonts and fac ies. E lsev ier , New York.

El 1 i o t t , T. 1978b. C l a s t i c shore1 ines. Pages 143-177 in H.G. Reading , ed. Sedi- rnentary envi romen ts and facies. Elsevier, New York.

E l 1 i s , R.J. 1970. Prel iminary b io log i ca l survey o f l o g - r a f t i n g and dumping areas i n southeastern Alaska. Mar. Fish. Rev. 35(5-6) : 19-22.

Engl i sh, T.S. 1980. Zoopl ankton and 1 ar- val f ishes. Annu. Data Rep., F i r s t Year t o Pac. FW Rivers Basins Corn., CREDDP Task A-2.5. Dep. Ocean., Univ. Wash., Seattle. 115 pp.

Envi rorment Canada, 1981, Surface water data, B r i t i s h Columbia. In1 and Waters Directorate, Idat. Res. Rr . , Wat. Surv. Canada, Ottawa. 324 pp.

Erskine, A.J. 1971. Buff1 eheads. Can. Wi ld l . Serv, tlonogr. Ser. 4. 240 pp.

Estep, M.F., and H. Dabrowski. 1980. Tracing food webs w i t h hydrogen isotopes , Science 209: 1537- 1538.

Ever i t t , R.D. 1980. Populat ions of har- bor seals and other marine mammals: Northern Puget Sound. M.S. Thesis. Univ. Wash., Seatt le. 283 pp.

Eve r i t t , R.O., and S , J . J e f f r i e s . 1979. Marine mammal inves t iga t ions i n Washing- ton State. Page 18 2 Abstracts o f t h i r d b iennia l conf. b i o l . mar. nanm., Oct. 7-11, 1979. Seat t le , Wash.

Eve r i t t , R.D., C.H. Fiscus, and R.L. DeLong. 1980. Northern Puget Sound ma- r i ne mammal s. DOCIEPA Interagency EnergylEnvi ron. R&D Prog . Rep. EPA-600/ 7-80-139. Environ. Protect . Agency, Washington, D.C. 134 pp.

Fauchald, K., and P.A. Junars. 1979. The d i e t of worms: a study of polychaete feeding gui lds. Annu. Rev. Oceanogr. B io l . 17: 193-284.

Page 150: The ecology of estuarine channels of the Pacific Northwest coast: A

Fel ice, F.P. 1959. The e f f e c t o f wastes on t he d i s t r i b u t i o n o f bottom i nve r t e - b ra tes i n t h e San Franc isco Bay estuary. Wasmann J. B i o l . 17:l-17.

Fenchel , T. 1970. Stud ies on the decom- p o s i t i o n o f o rgan i c d e t r i t u s der i ved from t h e t u r t l e grass Tha lass ia t e s t u d i - num. Lirnnol. Oceanogr. 15:14-20. -

Fenchel, T. 1977. Aspects o f the decom- p o s i t i o n o f seagrasses . Pages 123-145 i n C.P. McRoy and C. H e l f f e r i c h , eds. - Seayrass ecosystems: a s c i e n t i f i c per- spec t i ve . Marcel Dekker, Inc., k v ~ York.

Fenchel, T., and B.B. J4rgensen. 1977. D e t r i t u s food chains o f aqua t i c ecosys- tems: The r o l e of bac te r i a . Pages 1-58 i n 1.1. Alexander, ed., Advances i n m ic ro - - b i a l ecology, Vol . 1. Plenum Press, New York.

F isher , H.D. 1952. The s t a t us o f the harbor seal i n B r i t i s h Columbia, w i t h p a r t i c u l a r re ference t o t he Skeena River, F ish. Res. Board Can. B u l l . 93. 58 PP.

F isher , S.G., and G.E. Likens. 1973. Energy f l o w i n Bear Brook, New Hampshire: an i n t e g r a t i v e approach t o stream ecosystem metabol ism. Ecol . Monogr. 43:421-439.

The Columbia R i ve r es tuary and ad jacen t ocean waters : b i oenv i ronmental s tud ies . Univ. Wash. Press, Sea t t l e.

Fox, D.S. 1981. A rev iew o f recen t sci - e n t i f i c 1 i t e r a t u r e on t he Colunbia R i v e r estuary, emphasizing aspects impo r t an t t o resource managers. D r a f t Rep., Col umbia R i ve r Estuary Study Team, As to r ia , Oreg. 146 pp.

Fresh, K.L. 1979. D i s t r i b u t i o n and abun- dance o f f ishes occu r r i ng i n t h e near- shore su r face waters o f no r t he rn Puget Sound, Washington. P1.S. Thesis. Univ. Wash., Sea t t le . 120 pp.

Fresh, K.L., O. Rabin, C. Simenstad, E.O. Salo, K. Garr ison, and L. !lathesen. . 1979. F i s h ecology s tud ies i n the Nisqual l y Reach area o f southern Puget Sound, Washington. F i na l Rep., FRI-UW-7904. Fish. Res. Ins t . , Univ. Wash., Sea t t le . 229 pp.

Frolander, H.F., C.B. M i l l e r , M.J. Flynn, S.C. Yyers, and S.T. Zimmerman. 1973. Seasonal cyc les of abundance i n zoo- p l ankton popul a t ions o f Yaqui na Bay, Oregon. Mar. B i o l . 21: 277-288.

Fry, B. 1981. Natural s t a b l e carbon i so - tope tag t r a c e s Texas shr imp mig ra t ions . U.S. ktl. Flar. Fish. Serv. Fish. Ru l l . 79:387-345.

Foyg, G.E. 1966. The e x t r a c e l l u l a r prod- Gabrielson, I. ti., and S.G. Jewett. 1940. u c t s o f algae. Pages 195-212 in t i . B i r d s o f Oregon. Oreg. S ta te Univ., Barnes, ed. Oceanogr. t lar. B i o l . Annu. C o r v a l l i s . 650 pp. Rev., George A l l e n and Unwin, Ltd. , London. Vo1 . 4. Gardner, M.R., and W.R. Ashby. 1970.

Connectance o f 1 a g e dynarni ca l (cyber- Fogg, G.E. 1977. Exc re t i on o f organic n e t i c ) systems: c r i t i c a l values o f s ta -

ma t t e r by phytop lankton. Limn01 . b i l i t y . Nature 228:784. Oceanogr. 22:576-577.

Gardner, W.S., and D.W. Menzel . 1974. Forsbery, B.P., J.A. Johnson, and S.M. Phenol ic aldehydes as i n d i c a t o r s o f t e r -

Klug. 1975. I d e n t i f i c a t i o n , d i s t r i b u - r e s t r i a l de r i ved o rgan ic m a t t e r i n t he t i on , and notes on food h a b i t s o f f i s h sea. Geochim. Cosmochim. Acta. 38: and s h e l l f i s h i n T i l la rnook Bay, Oregon. 81 3-822. Fish. Comm. Oreg., Con t rac t Rep. 85 pp.

Gauld, D.T. 1966. The swimming and feed- Forster , W.O. 1972. Radionuc l ide d i s t r i - i n g o f p l ank ton i c copepods. Pages

b u t i o n i n Columbia R i ve r and ad jacen t 313-334 - i n H. Barnes, ed. Some contem- P a c i f i c she1 f sediments. Pages 701-735 pora ry s t ud i es i n mar ine science. i n A.T. P r u t e r and D.L. A1 verson eds., - George A l l e n and Unwin Ltd., London.

137

Page 151: The ecology of estuarine channels of the Pacific Northwest coast: A

Gauner, T.F. 1978. Clan resources I n a proposed Char1 es t o n boat has i n expansion s i t e . Oreg. Dep, F i sh Wi ld l . I n f o . Rep. 78-1. l a p p .

Gaumcr, T.F., G.P. Roberts, and A. Geiger. 1978. Oregon Bay clarn d i s t r i b u t f o n , abundance, pl ant fng s i t e s and e f f ec t s o f harvest . Annu, Rep, Oct, 1, 1977 t o Sept. 30, 1978. Oreg. Dep, F i s h Wi ld l , 6 5 PP.

t i ibbs, R.J. 1970, Mechanisms con t ro l 1 ing wor ld water chemistry. Science 170: 108% 1090.

Gigcr, R.D. 1972. Ecology and management of coasta l c u t t h r o a t t r o d t i n Oregon. Fish. Res. Rep. 6, Res. D iy . , k e g . Sta te Game Comm,

Goering, J.J., and 0, Wal len, 1967. The v e r t i c a l d l s t r i b u t l o n o f phosphate and n i t r a t e i n the upper one-ha1 f meter o f thc southedst P d c i f i c Ocean. Deep-sea Rcs. 14:29-33.

Gonyea, G . , S, Burton, and 0, P e n t t l l a , 19132. Swmnary o f 1981 he r r i ng r e c r u i t - rnent s tud los 1 Puget Sound. S ta te Wash, Dep. FSsh., Prog, Rep. 157, Olym- p ia . 29 pp.

Gray, J.S. 1974. Animal-sediment re la - t ionships. Annu. Rev. Oceanogr. [tar. B i o l . 12:223-251.

G r i f f i t h s , C.L., and J. Stenton-Dozey. 1981, The fauna and r a t e o f degradat ion of stranded kelp. Es tuar ine Coastal She1 f Sci . 12:645-653.

Gross, M.G. 1972. Sedinent -assoc ia ted rad ionuc l ides from t h e Col u~nbia River . Pages 736-754 A.T. Pru te r and D.L. Alverson, eds. The Columbia R ive r estu- a r y and adjacent ocean waters. I ln iv . Wash. Press, Seat t le .

Gunnerson, G 1966. Opt imiz ing sam- p l i n g i n t e r v a l s i n t i d a l es tuar ies . J. Sanl t . Eng. Div. Proc. ASCE 92:103-125.

Gunnerson, G.G. 1967. Hydro1 og i c a l data c o l l e c t i o n 'In t i d a l es tuar ies . Wat. Resour. Res. 3:491-504.

Gunter, G, 1961. Some r e l a t i o n s o f estu- a r f n e o r g a n i s m t o sa l i n i t y . L i nno l . Oceanogr. 6: 182- 190.

Haer te l , L., and C. Osterberg. 1967. Ecology o f zoopl ankton, benthos and Fishes t n the Columbia R i ve r estuary . Ecology 43:459-472.

Goodwin, C.R . , E.W. Gnmett, and 8. Glenne. Hacr te l , L , S . , C . Osterberg, H, Curl , Jr. , 1970, T ida l study of th ree Oregon estu- and D.K. Park. 1969. P lankton and d r ies . hll. 45 , Eng. Exp. Stn., Oreg, n u t r i e n t ecology o f t h e Columbia R i v e r State Univ., Corva l l i s , 39 pp. estuary. Ecology 50:962-978.

Gossel ink, J.G., C.L. Cordes, and J . W . Haines, E . B . , and C.L. Montague, 1979. Parsons. 1979. An ecologfca l charac- Food sources of e s l u a r i ne i n v e r t e b r a t e s ter. it; l t ion study o f the Chenier P l a i n analyzed us ing ' 3 ~ / 1 2 ~ r a t i o s . Ecology coastd l ecosystem of Louis iand and 60:48-56. Texas, 3 vo ls . U.S. F i sh W i l d l . Serv,, Of f . U i a \ , Serv, FWSIQBS-ISIS) through Ha~nmann, M.6. 1981. U t i l i z a t i o n of the 7 f l / l l . Columbia R ive r estuary by American shad,

a losa sa i d i s s ima (Wilson), Es tuar ies Cotrhdl I , D.U. 1970. Re la t i ve abundance (*

studies o f Dunyeness crabs, Cancer maqr i s t e r , i n nor thern Cal i f o r n i a . Cal if. Hancock, D.R., J,E. McCaul ey, 3.M. m ~ a t t i e 64(1):24-37. Stander, and P.T. Tester. 1979. Dis-

t r i b u t i o n o f ben th ic in fauna i n Coos Graham, J.J. 1972. Retent ion o f l a r v a l Bay. I n Environmental impacts o f dredg-

he r r i ng w i t h i n t h e Sheepscot estuary o f i ng in estuar ies . F i na l Rep. t o Maine. U.S. ktl. Mar. Fish. S e n . NSF-RANN, Grant No. ENV71-01908-A03. Fish. B u l l . 70:299-305. Schools o f Eng. and Oceanogr., Oreg.

S t a t e Univ, , Cor r va l l i s . 138

Page 152: The ecology of estuarine channels of the Pacific Northwest coast: A

Hancock, D.R., P . O . Nelson, C.K. S o l l i t t , and K.H. W i l l iamson. 1980. Coos Bay o f f s h o r e d isposa l s i t e i n v e s t i g a t i o n . I n t e r i m Rep., Phase I . U.S. Army, Corps Eng. C o r ~ t r a c t No. DACW57-79-C0040. Oreg. S t a t e Univ., Co rva l l i s . 177 pp.

Hansen, D.V. 1965. Currents and m i x i ng i n t he Colu~nbid R i v e r estuary. Con t r ih . No. 357, Dep. Ocean., Univ. IJashington, Sea t t l e .

Hansen, I).\., and M. Rat t ray, Jr . 1966. Nevi dimensions i n es tuary c l a s s i f i ca - t i on . Lii:inol . Qceanogr. 1 l ( 3 ) :319-326.

Harr ison, P.G. 1377. Decornposi t i o n o f niacrophyte d e t r i t u s i n seawater: e f f e c t s o f g raz ing by amphipods. Oikos 28: 165-170.

Harr ison, P.G., and B. J. Yarr ison. 1980. I n t e r a c t i o n s o f bac te r i a , i ~ ~ i c r o a l gae, arid copepods i n a d e t r i t u s microcosm: through a f l a s k da r k l y . Pages 373-385 i n K.R. Tenore and R.C. Cou l l , eds. - Marine b e n t h i c dynamics. B e l l e W. Baruch L i b r a r y i n Mar. Sc i . qo. 11, Univ. S. C. Press, Columbia.

Harr ison, P.G., and K.H. Vann. 1975. O e t r i t u s fo rmat ion froin e e l qrass (20s t e r a mar ina) : t h e r e l a t i v e efFects o f f raamentat ion. l each inu and decay.

t iart , J.L. 1973. P a c i f i c f i s h e s o f Canada. Fish. Res. Board Can. Ru l l . 1980. Ottawa. 740 pp.

t iar te, J., D. Levy, J. Rees, and E. Saege- bar th . 1980. Making rnicrocosins an e f - f e c t i v e assessment t o o l . Pages 195-137 i n J.P. Giesy, Jr., ed. in ;4icrocosrns i n - eco log i ca l research. DOE Sympos., Nov. 8-10, 1978. August, Ga. Tech. I n f o . Cent., U.S. Dep. Energy. 1110 pp.

Harvey, G.W. 1966. i 4 i c ro l aye r c o l l e c t i o n f rom the sea sur face: a new method and i n i t i a l r e s u l t s . Limnol. Oceanogr. 11: 608-614.

Haushi ld, W.L., R.W. Perkins, H.H. Stevens, G.R. Demster, and J.L. Glenn.

19GG. Radionucl i de t r a n s p o r t i n t h e Pasco t o Vancouver, Hashi ny ton, reach o f t h e Columbia R i v? r , J u l y 1962 t o Septem- ber 19G3. Prog. Rep., U.S. Geol. Surv., P o r t 1 and, Oreg .

Healey, M.C. 1979. O e t r i t u s and . juven i le salmon p roduc t i on i n t h e Flanairno estu- a r y : I. Produc t ion and feeding r a t es of j u veni 1 e chum salmon ( Oncorhynchus ke ta ) . J. F ish. Res. ~ o a r d - c a n . 36: - 433-496.

i iealev, h!.C. 1930. U t i l i z a t i o n o f t h e ana air no R i ve r es tud r y by j u v e n i l e c h i - nook salmon, Oncoahnchus tshawvtscha. -- ---A-

U.S. Na t l . Mar. Fish. Serv. Fish. B u l l .

Yea1 ey, Y.C. 1982. Juven i l e P a c i f i c s a l - mon i n e s t u a r i e s : t h e l i f e supoor t sys- tern. Pages 315-341 V. Kennedy, ed. i s t u a r i n e comparisons. Academic Press, New York.

Hedges? J.I., and D.C. btanrl. 1979. The l i g n i n geocheinistry o f mar ine sediments f rom t he sou thern Washington coast. Geochiln. Cosmochim. Acta 43: 1809-1818.

He in le , D.R., R.P. Ha r r i s , J.F. Ustach, and D.A. Flemer. 1977. D e t r i t u s as food f o r e s t u a r i n e copepods. Mar. B i o l . 49: 341-353.

He1 l ebus t , J.A. 1965. Exc re t i on o f sane o rgan i c compounds by mar ine phytop lank- ton. Limnol . Oceanogr. 10: 182-206.

He1 1 ebust, J.A. 1974. Ex t r ace l l u l a r p ro - ducts. Pages 338-863 i n W.9.P. Steward, ed. 41 gal p h y s i o l o g y a n d b iochemist ry . Univ. Cal i f . Press, Rerkelev.

Henny, C.J., and M.R. Bethers. 1971. Popu la t i on eco logy o f t h e g rea t b l u e heron w i t h s p e c i a l r e f e rence t o western Oregon. Can. F ie ld-Nat . 85:?05-299.

Hermen, R.R. 1975. Continuous f l o w b i o - assay s t ud i es i n upper Grays Yarbor, 1974. Pages 14-92 i n Wash. Den. Ecol . , Grays Harbor t o x i c i t y s t u d i e s . Olyapia, Wash.

Page 153: The ecology of estuarine channels of the Pacific Northwest coast: A

Hes thagen, I . 1973. O iu rna l and seasonal t r a t e d by t h e R i v e r F y r i s . l l n i v . Upsala v a r i a t i o n s i n the near-bottorii fauna -- Seol . Iqs t. Sul I. 25: 221-527. the hyperbenti ios - - i n one of t h e deeper channels of the K i l e r Bucht (idestern tiodgkin, E.P., and I?..]. Ripp inga le . 1971. Bal t i c ) . Y i e l e r r leeresforsch 29: 116- I n t e r spec i es c o n f l i c t i n e s t u a r i n e cope- 140. pods. Liinnol . Oceanogr. 15:573-575.

H ig ley , D.L., and 9.L. Hol ton. 1975. B i o l o j i c a l base l i ne data, Youngs Bay, Oreyon. 1974 i i n a l 4ep. t o Alumax Pac i - f i c Aluininu~n C o r ~ . , School o f Qceav., Oreg . S ta te Univ., C o r v a l l i s .

H ig ley, D.L., and R.L. 1101 tm. 1975. A ,grab-sa:~ple s tudy .>f the ben th i c i n v e r - teb ra tes o f tile Colu l i~b ia R i v e r estuary . Suppl. Data 2ep. For Ref. 7G-3. 9reg. S t a t e Uni v., School gcedn., Corval 1 i s , 27 PP.

t-ligley, U.L., and R.L.. Hol ton. 1981. A study o f t hz i v e r t e b r s t e s drid f i s h e s o f s d l t indrshes i n two Oregon es tua r i es . Misc. Rep. 81-5. 1.1.5. Amy Corps Eng., Coastal Eng. Res. Center, For t 3 e l v o i r , Va. 132 pp.

i t i g l ey, 0 .L. , R. I.. Hol tan, and P.O. Komar. 1976. Ana lys is of ben th i c in fauna con)- r t iuni t ies and sedit , ientat ion pa t t e rns o f a pro i~osed f i l l s i t e and nearby r eg i ons i n t h e Colulnbid R i v e r estuary. F i n a l Rep. t o P o r t ~f As to r ia , As to r ia , 3re3. 1 '40~. 1975-29Feb. 1976. School o f Ocean. Ref. 76-3., Oreg. S t a t e Univ., C o r v a l l i s . 78 pp.

H ig ley , D L . , J . B . yoryan, and R.I.. i i o l ton. 1979. B i o l o g i c a l base1 i n e and f l o u r i d e e f f z c t s da ta f o r Youngs Bay, Oreyon, 1974-1975. Suppl. F i n a l Rep. t o Alumax P a c i f i c Aluminum Corp., 1 Nov. 1973-30 tilay 1975. Schoal Ocean. Ref. 77-3. Oreg, S ta te Univ. , Co rva l l i s .

Hopkinson, C.S., and J.Y. Day, J r . 1977. A model o f the S a r ? t a r i a Bay s a l t lnarsh ecosystern, Pager 235-255 - i n C.A.5. Hal f and J.11. Day, Jr., eds., i cosys tem model ing i n t heo ry and p r a c t i c e . John Wi ley and Sons, New York.

Houghton, J., C, Timenstad, r). Eqqers, >I . Kinney, J. Cordel 1, G. W i l l ialns, H. Buechner, A. Kost, and 4 Z e l l i n g e r . 1980. Ep iben th ic i n v e r t e b r a t e s o f t h e Colulnbia 9 i v e r estuary . Annu. 7ata Rep., F i r s t Year, t o Pac. NW R i v e r Basins, Comm. , CREDnP ;ask A-?. 7. Darnes and Moore, Sea t t l e , Wash.

How$rton, (I., P. M i l l e r , J. rlunri, and 6 . Hochman. 1980. Annual Data r e p o r t - Wild1 i f e Work U n i t 4-2.12, t o Col. 9 i v e r Est. Data Deve. Prog., Wash. Dep. Galne, Olympia.

Hubhel, O.W., 2nd J.C. Glenn. 1973. Q i s - t r i b u t i o n o f r ad i onuc l i des i n bo t tom sediments o f the Columbia 2 i v e r estuary. Ceol. Soc. Am., Prof . Pap. 4 3 3 4 . U.S. Gov. P r i n t . O f f . , Irlashington, D.C.

\4ughes, F.W. 1960. Sal t f l u x and rn ix inq processes i n t h e Columbia R i v e r e s t u a r y du r i ng h i g h discharge. Y.S. Thesis. Univ. Washingtort, 5 e a t t l e . 63 pp.

Hughes, F.U., and M. Ra t t ray . 1980. Sal t f l u x and tn ix iny i n t h e Columbia R i v e r estuary. Es tua r i es Coasta l Flar. Sci . 10:479-493.

i i i r s c h i , R. 1978. l i es te rn Washington Hulberg, l,.W.., and J.S. 01 i v e r . 1980. r i v e r ~ t t e r s . Unpubl. rep., I lash. Dep. Caging m a n i p ~ l l a t i o n s i n rnar ine so f t - Game, Olyiilpia. 12 pp. bottom cn~nmuni t i e s : impor tance o f an i -

ma1 i n t e r a c t i o n s o f sedimentary h a h i t a t Hi tchcock, C.C., and A. Cronquist . 1973. mod i f i ca t i ons . Can. (1. F ish. Aquat.

F l o rd O F t h e P a c i f i c i4orthwest. Univ. Sci . 37: 1130-1139. Washingtorl Press, Sea t t l e . 730pp .

H u r l b e r t , E.M. 1957. The d i s t r i b u t i o n o f Hjulstrorn, F. 1935. Stud ies of t h e Inor- Neomysis americana i n t h e es tua r y o f t h e

pho log ica l a c t i v i t y o f r i v e r s as i l l u s - Delaware River . Limnol . Oceanogr. 2: 1-11.

15.9

Page 154: The ecology of estuarine channels of the Pacific Northwest coast: A

huyer, A. 1976. 4 cornparison o f ~ ~ p w e l l - i n g events i n two l o c a t i o n s : 9regon and nor thwes t A f r i ca . 1. Mar. 9es. 33: 531-546.

Isaacs, J .D. 1972. Unst ructured i - iar ine food webs and "pol 1 u t a n t analogues. I' U.S. ktl. plar. F i s h Serv. Fish. Bu l l . 70: 1053-1059.

Isaacs, J .D. 1973. Po ten t i a l t r o p h i c bionasses and trace-substance concentra- t i o n s i n uns t r uc tu red marine food webs. Plar.. B i o l . 22:97-104.

Ives, F., and W . Sal tzman. 1970. The f i s h and w i l d 1 i f e resources o f t he l owe r Columbid R i v e r area: a spec ia l r e p o r t t o t h e S ta te Department o f Transporta- t i on . Oreg. Gacie Dep. 17 pp.

Iwamoto, R.N., and E.O. Salo. I n prepara- t i on . Es tua r i ne s u r v i v a l o f j u v e n i l e salmonids: a rev iew o f t he 1 i t e r a t u r e . Rep. t o Wash. S ta te Dep. Fish., Contr. No. 807. Fish. Res. Inst . , Co l l . Fish., Univ. Wash., Sea t t le . 64 pp.

Jaks ic , F.N. 1981. Abuse and misuse o f t h e tenn " g u i l d " i n eco log ica l s tud ies. Oikos 37:397-400.

Jay, D. 1981. Recent advances i n Colun- b i a Ki ver phys ica l oceanography. Unpub- l i s h e d r e p o r t . l i lathematical Sciences tM, Bel levue, Wash. 23 pp.

Jay, D., and J.W. Good. 1977. Columbia R i ve r es tuary : sediment and sediment t r anspo r t . Pages 208-1 t o 208-45 in M.H. Seaman ed. Columbia R ive r estuary : i n v e n t o r y o f phys ica l , b i o l o g i c a l and cu l t u r a l c h a r a c t e r i s t i c s . Col . Riv. Est. Study Team, As to r ia , Oreg.

,Jeanne, G.S., 111, and R.E. Pine. 1975. Env i ronmental e f f e c t s o f dredging and s p o i l d i sposa l . J. Wat. P o l l u t . Cont. Fed. 47(3) :553-561.

J e f f r i e s , H.P. 1967. Sa tu ra t i on of estu- a r i n e zooplankton b y congeneric associ- a tes. Pages 500-508 in G. Lauff, ed. Es tuar ies . h. Assoc. Adv. Sci., Publ. 83, Washington, D.C.

Je f f e r t s , K. 1377. The v e r t i c a l d i s t r i - b u t i o n of i nfauna: c01:ipari son of dredged and undredyed areas i n Coos 3ay, Oregon. p2.S. Thesis. Orec~. '5tate Univ., C o r v a l l i s , (hego

Jewett, S . G . , W.P. Tay lo r , W.T. ?haw, and J.W. i \ l d r i c h . 1953. 8 i r d s of Washing- ton State. I l n i v . ?*lash. Press, Sea t t le , Mash. 767 p p -

Johnson, G . E . , and J.J. Gonor. 1982. The t i d a l exchange of Call ianassa ca l i f o r - n i ens i s ( C r u s tacea , ~ e 6 a p o d a ) a r v a e be- -- tween t h e o c e a n and t h e Salraon R iver estuary, Oregon. Es tuar ine Coastal She1 f Sci . 14: 501-516.

Johnson, J.K. 1981. Popul a t i o n dynamics and c o h o r t p e r s i s t e n c e o f A c a r t i a ca l i- f o r n i e n s i s (Copepoda: Cal a n o i d a ) i n -- Yaquina Bay, Oregon. Ph.D. D isser ta - t ion. Orcg. S t a t e Llniv., Corva11 i s , Oreg. 305 pp.

Johnston, I. 1981. L i f e h i s t o r y va r i a - t i o n i n Neoyrnsis -- mercedis. H.S. Thesis. Univ. Rri t i s h Columbia, Vancouver. 172 PP

Jones, J.A. 1968. Pr imary p r o d u c t i v i t y by t he t r o p i c a l mar ine t u r t l e arass. f h a l ass i a kes tud i num Konig, a n i i t i e a i ~ h y t e s . Ph.D. Disse r t a t i on . Univ. . . - I l iami, C o r a l Gables, F1a. 1% pp .

Jones and S t o k e s Associates, Inc. I n pre- parat ion. P rog ram f i n a l r e p o r t - av i - fauna, f i s c a l y e a r 1981. Cot. Riv. Est. Data Dev. Prog., Sept. 1981 d r a f t . Jones & Stokes, Inc., Sacramento, C a l i f . 95 PP*

Josseyl n, I!. , ed. 1982. Wet1 and res to ra - t i o n and enhancement i n Cal i f o r n i a . Ca l i f . Sea G r a n t Progra~n and T iburon Cent. Env i ron. Stud., San Francisco S ta te Univ., T-CSGCP-007.

Jumars, P.A., a n d K. Fauchal r f . 1977. Be- tween-COmmuni ty c o n t r a s t s i n scccessful po lychaete f e e d i n g s t r a t eg i es . Pages 1-20 2 8 . C. C o u l l , ed. Ecol ogy of 17a- r i n e ben thos . B e l l e W. Baruch. L ib . Har. Sci. 6, Univ. S.C. Press, Columbia.

Page 155: The ecology of estuarine channels of the Pacific Northwest coast: A

J u ~ i ~ a r ~ , P.A., I . Sel f , and A.R.Y. I 1382, @lechanics of p a r t i c l e set ec t i on by tentacul ate deposi t- Feeders. J . Exp. Mar. Rio l . Ecol. 64: 4 7-70.

hdcrynskl. V . W . , R.J. Fe l l e r , 3. Clayton, drld R . d . berke. 1973. Trophic analys is o f juven i le pink and chua sdlnon ( ~ o r h y n c h u s orbuscha and 2. m) i n Puget Sound. %m Res. Board Can.

rqento-San Joaquin estuary. Cal i f . F i s h Gane 61 : 35-46.

Kreag, R.A. 1979a. Natural resources of l e t a r t s estuary. Estuary Inventory Rep. 2(1 ) . Res. Dev. S e c . , Oreg. Dep. F i s h W i l dl., Por t l and. 45 pp.

Kreaq, R.A. 1Q7ab. Natural resources o f Sand Lake estuary. Estuary Inventory Rep. Z ( 2 ) . Res. Oev. Sec,, Oreg. k p . Fish Wildl . , Por t l and. 22 pp,

kerontz, D., and C.0, McInt ire, 1977. Kreag, R.A. 197%. k t u r a l resources of U i s t r i b u t i o n o f diatoms - the plankton Coquil l e estuary. Estuary Inventory o f Yaqu-fna estuary, Oregon. J. Phycol, Rep. Z(7). Res. nev. Scc,, Ore. pep. 13 379- 368. Fish Wlldl., Portland. 48 pp.

#ask, H.A., and J, Siber t , 1976. Prel im- ir lary observations on the tneiofauna o f the Nanaiao estuary. Fish. Har. Serv., Yae, Biol. Stn., knaimo, B.C. Data Rec- ord 14. 191 pp.

Kehao, D,M, 1982, The e f fec t s o f Grays iirrrttor estuary sed i~ ien t on the osmoregu- l a t o r y &bil i t y o f coho salmon smol ts , Uncorh nchus kfsut,ch. Greys Harbor Nav. p~; rYa, i 5 i ~ t . . U.S. ~ n n y Corps Eng. , Seat t le Dtst,, Seattle, Mash, 27 PP*

Kelly, R.A. 1971, Conceptual ecological nodel o f the Delaware estuary. Pages 3-46 Jn %,C, Pattan, ed. Systan analy- s t s and $ifnulat ion ecology. Vol. 4. Acadeaic Press, New York.

Kremer, J . N . , and S.W. Nixon. 1978. A coastal marine ecosystem: s i w l a t i o n and analysis. Ecol . Stud. 24. Springer-Verlag, Ber l in . 217 pp.

Krenkel, P.A., J. Harrison, and J.C. Burdick 111, eds. 1976. Proceedings o f special conference on dredging and i t s envl romental e f fec ts . Jan. 26-28, 15176, t lobi le, Ala. ASCE, New York.

Krone, R.B, 1978, Aggregation o f sus- pended p a r t i c l e s i n estuar ies. Pages 177-190 fn 8. Kjerfve, ed. Estuartne transport processes. Univ. S.C. Press, Columbia.

Krygier, E.E., and H.F. Horton. 1975. D i s t r i b u t i o n reproduction, and growth o f Cranqon nfqricauda and rango on- f rancts-

Ketchum, 8.H. 1951. The exchange o f corm fn Yaquina Bay, Oregon. Northwest fresh and sat t waters Jn t i da l estu- r 4 ' 3 ( 4 ) :216-240. arics. J. tlar, Res. 19:lI3-38.

Kuhlman, O.H.H., and H. Karst. 1967. Ketchwq, B.H. 1954. Relat ion between Open water observations on the behavior

~ J r c u l e t f o n and planktonic populat ions of sand eel schools ( h o d y t i d a e ) i n the in er toraries. Ecology 35: 191-200. western B a l t i c . Transl. Flar. Lab. 1392,

Aberdecn, Scotl and, Kistritz, R.U., and i , Ycsakf, 1979.

P'riltiary production, d e t r i t u s f lux, and Kujala, N, 1975. Columbia R iver f i s h and n u t r l c n t cyc l ing i n a sedge marsh, invertebrates, Col . River Est. Study Fraser River estuary, Tech, Rep, 17, Task FWCC, Unpubl. Rep., Astor ia, Oreg, W e s t ~ ~ t e r Res. Cent,, Univ, B r i t i s h Columbid, Vaneaver, Canada. 53 pp, Kuln, L.I),, and J.V. Byrne. 1967. Sedi-

ments of Yaquina Bay, Oregon. Pages Kust, W.L.B,, and A.U. Knight, 1375. The 226-238 & G.N. Lauff, ed. Estuaries,

food of Neornysis mercedis i n the Sacra- Pm. Rssoc. Mv. Sci., Publ. 83, Washing- ton, D.C. 757 pp.

I42

Page 156: The ecology of estuarine channels of the Pacific Northwest coast: A

Langbein, W.B., and K.T. I s e r i . 1960. General i n t r o d u c t i o n and hydro1 og ic d e f i n i t i o n s manual o f hydrology. Pa r t I. General sur face-water techniques. U.S. Geol. Surv. Water Supply Pap. 1541-A. 29 pp.

Legge t t , W.C., and R.R. k lhi tney. 1972. Water temperature and the migrations o f kne r i can s$ad. 11.5. Fish. Wi ld l . Serv. F ish. B u l l . 79:659-G70.

Lenarz, W.H. 1969. Analyses aqd evalua- t i o n o f data ob ta ined fro*^ automatic wa te r qua1 i t y 1;1oni t o r i n g s t a t i o n s or1 the Duwarnish estuary . Ph.D. ~i sse r t a t i on . Univ. Washington, Sea t t le . 189 pp.

Levings, C,D. 1973. I n t e r t i d a l benthos o f t he Squamish estuary. Fish. Res. Board Can. l4S. 2ep. 1218. GO pp.

Levings, C.D. 1980d. The b i o l o q y and e n z r g e t i cs o f Eogarnlnarus con f e r v i c o l us ( S t i i n ~ s o n ) (Arll~hi~oda,liisosalnina%dx a t t he ~ ~ u a m i ' s h ' ~ i v e r est;ary, 8.c; Can. J. Zoo1 . 58: 1652-1563.

Levy, D. 198Ob. Rib1 iograp' iy o f source l i t e r a t u r e on juven i 1~ l i f e h i s t ~ r y of P a c i f i c salnion. blestwat. Res. Cent., Univ. B r i t . Col., Canada. Unpubl. Rep. 15.7 p p .

Levy, 7.4., and C.n. Levinqs. 1978. P d e b z r i p t i u n of t h e f i sh cornrnu~i t y * ~ f the Squamish r i i ve r estuary, R r i t i s h C o l ~ ~ n - b i d : r e l a t i ve abundance, seasonal changes, and feeding h a b i t s o f salln- onids. Fish. rlar. Serv., :IS. Rep. 1475. Dep. F ish. Env i rm . , Pao. Environ. Ir ist., Liest Vanco~iver, R.C., Canada. G3 ? P

l e vy , D.A. , and T.G. YortAcote. 1981. The d i s t r i b s t i o n and abundance o f juve- n i l e salmon i n inarsh h a b i t a t s o f t h e Fraser R ive r estuary . Tech. Rep. 25. Westwat. 9es. Cent., I ln iv . B r i t i s h Col uriibia, Vancouver, Canada, 117 po.

Levy, D.A., and T.G. plorthcote. 195?. Juven i l e salmon res idence i n a .narsh area o f the Fraser q v e r estuary . Can. J. Fish. Aquat. Sci. 39:270-276.

Levings, C.D. 1930b. V e r t i c a l d i s t r i b u - Levy, 7.A., T.G. f lo r thcoto, and G . J . t i o n and abundance of epibenthos and B i rch . 1979. Juven i le salmon u t i l i z a - macrozoopl ankton i n t h e 1 ower Fraser t i o n o f t i d a l channels i n the Fraser R i v e r estuary . Canadian Data Rep. Fish. R i ve r estuary , 3ri t i s h Col umhia. Tech. Aquat. Sc i . 241. Vest Vancouver Lab., Rep. 23 . Yestwat. Res. Cent., IJn iv . Dep. Fish. Ocean., West Vancouver, l3.C. B r i t i s h Columbia, Vancouver, Canada. 70 59 PP* PP-

Lev ings, C.D., aqd 3.D. Cbang. 1977. 4 Levy, D.A., T.G. Worthcote, and R.Y. Barr . p r e l i m i n a r y s tudy o f t h e i n f l u e n c e o f 1982. E f f e c t s o f e s t i ~ a r i n ~ l og s to rage c u r r e n t v e l o c i t i e s on es tua l - ine benthos, on j u v e n i l e salmon. Idestwat. Pes. Cent. espec ia l 1y Ani soqammarus c o n f e r v i c o l us, Tech. Rep. 25, Univ. B r i t . Col., i n t h e F rase r R i v e r es tuary (South ~ r f i . Vancouver, B.C., Canada. lfll pn. Fish. Res. 8oard Can., YS. Rep. Ser. 1424. Pac. Envi ron. Ins t . , West Vancou- L i v i nystone, D.A. 1963. Chemical colnpo- ver, B.C. 50 pp. s i t i o n o f r i v e r s and lakes. Prof . Pan.

U.S. Geol. Surv. 440-5. 63 pn. Levinton, J.S. 1980. P a r t i c l e feeding by

depos i t - feeders : inodels, data, and a Loehr, L.C., and E.E. C o l l i a s . 1951. 4 prospectus. Pages 423-439 i n K.R. rev iew of water c h a r a c t e r i s t i c s o f Grays Tenore and 8.C. Cou11, eds., !!3r%e ben- i4arbor 1938-1979 and an eva lua t i on o f t h i c dynamics. B e l l e W. Baruch L ib . poss i b l e e f f e c t s o f the wideni nq and Nar. Sci . 11, Univ. S.C. Press, Colurn- deepening p r o j e c t upon present water b i a . 451 pp. c h a r a c t e r i s t i c s . Rep. t o S e a t t l e %st . ,

U.S. Army Corps Eng., Contrc, >lo. DACW67- Levy, 3. 1980a. Salmon and t h e Fraser. 80-C-0009. Dep. Dcea~., Yniv. Wash.,

Canada and t h e sea. Assoc. Can. Stud. Sea t t l e . 97 pp. 3(1) :43-47.

143

Page 157: The ecology of estuarine channels of the Pacific Northwest coast: A

Lonsddle, r) .~] . , D.9. Veinle, and C. 5 ieq- 1 i . 1942. A s t udy of a ryar ine f r i e d . 1973. Carrt ivorous fe?d ing ben th i c co~nmuni t y w i ti) spec id l re fe rence behav io r of t'le ad111 t, cd lano id copenod t u t h e ~nicroorganisms. J. Flar. B i o l . A c a r t i a tofisa dana. J. Elcp. '4ar. B i o l . ---- --- Assoc. U.K. 25:517-554. Ecol . 36: 235-245.

Lope:, G.R., J.S. Lev in ton, and L.R. Slobodkin. 1977. The e f f e c t of q raz ina by the d e t r i t i v o r e Orchest ra f i l l u s 06 - Spar t i na l i t t e r and i t s assoc ia ted m i c r o b i a l colrlrnunity. Oecologia 30: 111-1%.

I;lacArthu r, R. H. 1955. . ~l uctua , t ions of animal popu la t ions , and a raeasure o f conmuni t y s t a b i l i t y . Ecology 36: 533-536.

NacCubbin, R.E., and R.E. Hodson. 1980. t ~ l i c r o b i a l degrdda t i o n of d e t r i t a l ? igno- ce l l u l oser by sa l t marsh s c d i r ~ e n t m ic ro - f l o r a . App. Environ. l l i c r o b i o l . 40: 735-740.

Marr iage, L.D. 1954. The bay clams of Oregon, t h e i r economic importance, r e1 a- t i ve abundance, and genera? d i s t r i b u - t i on . Oreg. F ish. Conm., Contr . 20. 47

. PP.

tlasdn, .J .C. 1974. Qehavi r o a l eco logy of chum salmon f r y (Oncorhynchus k e t a ) i n a s:na17 estuary . , J. Fish. Res. Board Can. 31:83-92.

Mate, B.R. 1975. Annual n i g r a t i o n s of t he sea . 1 ions Eu~netopias juba tus and - Zalophus c a l i f o r n i a n u s a1 ong the Oregon coast. Rapp. P.-V. Reun. Cow. I n t . Expl o r . ?ler 169:455-501.

Matsurla, 1 . G.W. . I s a a c , and R . O *

ErlacKay, D.C.G. 1942. The P a c i f i c e d i b l e Dal seg. 1968. F ishes o f - t h e Green-

crab, Cancer !actyi_sts. Bu l l . Fish. Res. Duwamish River . * Munic ip . METRO,

Bord Can. 62: l -32. Sea t t l e , Wat. Qua1 . Ser. 4. Sea t t l e , Wash. 38pp .

Clann, K.H. 1972. t lacrophyte p roduc t i on and d e t r i t u s food chains i n coas ta l Platthes, G. 1947. ! lacroturbu l ence i n

waters. Pages 353-383 i n Proc, na tu ra l streams. Trans. Am. Geophys.

IUP-UNESCO sumo, on d e t r i t u s a n d i t s Union. 28(2) :255-261.

ecol og i c a l Go1 e i n aqua t i c ecosystems I,lefn. 1 s t - I t a l e I d r o b i o l 29 (SUPPI 1. Flay, R.M. 1972. What i s t he chance t h a t

a l a r g e co~nplex system w i l l be stab1 e? Manuwal , D.A. 1977. Marine b i r d popul a- Nature 237:413-414.

t i o n i n Washington State. F i n a l Rep. ~f htl. ~ i l d l . Fed., !.Jashington, D - C - 116 a , I . 1973. C t a b i l i t y and comp lex i t y PP i n illode1 ecosysteqs. Yonogr. Pop. B i o l .

G. Pr i nce ton Univ. Press, N.J. 235 pp. Manzer, J. I. 1956. D i s t r i b u t i o n and

move~nent o f youny P a c i f i c salmon du r i ng rlccauley, J.E., D.E. Hancock, and R.A. e a r l y ocedn res idence. J. Fish. Res. Parr. 1976. Maintenance dredging and Board Can., Pac. Progr. Rep. 106:24-28. Four po lychaete rvorns. Pages 673-683 i n

P.A. Krenkel, J. Harr ison, and J.E Manzer, J.L., and I. NcT, Cowan. 1956. Burd ick I I I , eds. Proc. spec. con f .

Ebr thern f u r sea1 i n t h e i n s i d e coas ta l dredging and i t s env i ron. ef f . , Jan waters o f B r i t i s h Columbia. J. flamnal 26-28, 1976, t l ob i le , Ala. ASCE, New 37 : 83-86. York.

i l a r co t t e , B. 1977. An i n t r o d u c t i o n t o t h e a r c h i t e c t u r e and k inemat ics o f McCauley, J.E., R.A. Parr, and D.R. Han- h a r p a c t i c o i d (Copepoda) feeding: T isbe cock. 1977. Ben th ic in fauna and main- f u r c a t a ( B a i r d 1837). bl ikrofauna tenance dredging: a case study. Water fleeresboden 61: 183-136. Res. 11(2) : 233-242.

144

Page 158: The ecology of estuarine channels of the Pacific Northwest coast: A

~lcfgnnaughey, T., and C - P - t j c R o ~ g 1971. :lcby, c,p., and C. i.tf,,illa?. 1977. Pro- C l a b e l i d e n t i f i e s eel grass (Zostera ductiorl ec;,loyy *llys 101 ogy o f sea-

marina) carbon i n an Alaskan es tuar ine grasses, 53-37 m C. P. McRoy and food web. Mar. B i o l . 53:263-269. ,-

L. He1 f fe r i ch . eds. Seagrass

>.lcConnell, R.J., G.R. Snyder, J.T. Ourkin, and T. ti. Bl ahm. 1979. Concentrat ion, ex ten t , and d u r a t i o n of s a l i n i t y ir l tr i j- s i on i n t o t h e C ~ ~ l u m b i a R ive r estuary, September t o October 1977-1978. U.S. Arny Corps Erlg. Coastal Zone and Est. Stud ies.

ecosystems: d i c i e n t i f i c pe r spec t i ve . Marcel Dekker, New York.

$!eyer, J.H., 41-1~1 2.4. 9da i r. 1979. ?uqet Sound he r r i ng survpys, i nc l u d i nq ohser- vat ions of tkle qu l of 2 e o r g i a sac-roe f ishery, 1975-1977. ij - 5 . F ish . I J i l d l . Serv., Olympia, 'Jast~. 7 1 PI>.

McDOwel'* and S * G w l leyer, j.~, , T.A. Pedrce, and R. 5 . ~oulaer . Autunnal p rocess ing of d i sso lved organic ma t t e r i n a sinall woodland stream eco- 1981a. 4n exaniqat.ion of j u v e n i l e churl

system. Ecal ogy 57:551-569. and c h i w o k salmozr i n Wyf ebos Waterw?!~. Fis9. 4ss is t . Off., U.S. F i s h W i l l l .

i{cCary, N.B. 1971. An a t l a s o f t!ie Serv., Qlynpia, Wash. 13 PP.

C2lumbia 2 i v e r e f f l u e n t and i t s d i s t r i - b u t i o n a t sea. Spec. 2ep. 47. 1J.S. Meyer, J.H., T.A. Pearce, and 5.3. Dat lan .

F\tolnic Energy Comq., Contr. (ATR945-1)- 1901b. i l i s t r i b u t i o n and f o o d h a b i t s of

2225. Oep. Ocearl., Urliv. LJashi2gton, j u ven i l e salmonids i n the Du~~a.n ish es td -

Sea t t le . 57 pp. dry, Washington, 1989. F i sh . r l s s i s t . Off., U.9. F ish W i l d l , 5erv. O l y i p i a

Yctiur~h, J.L. 1939. The eulachon. Fish, Wash.. 42 p ~ .

Res* Can* * Pat* Rep' 40: M i l l e r , Re$, , and 5.F. q o r t o n . 1980. 17-22. Geographical d i s t r i b u t i o n of nuye t Sound

f ishes: Iqapr and da ta source sheets. 3 WcHugh, J.L. 1940. Where does t'le eula- vol. Fish. Res. I i i s t . . C o l l . Fish.,

chon spadn? Fish. Res. aoard Can., Pac. Univ. Vash., Sea t t le . Prog. Rep. 44: 18-19.

M i l l e r , B.S . , C.A. X i i n e n s t a d , I,.L. FlcHugh, J.L. 1967. Estuar ine nekton. Moulton, K.C. Fresh, F,C. Funk, ' { ,A,

Pdges 531-529 C.H. Lauf f , ed. Estu- Karp, and S.F. i for ton. 1372. Pullet a r ies . Am. Assoc. Adv. Sci. Publ. 83. Sol~nd hasel i ne nrogram: n e a r s h o r e f i s h Wash., D.C. 757 pp. survey. F ina l Rep. , Ju1 y 137%-June

1977, t o Uash. Dep, Ecol . Appendix 9 t o iblcIntire, C.D., and M.C. 4mspoker. 1981. Raseline Cltudy %po r t 10. Lacoy, dash.

Benth ic pr i r i lary p roduc t i on i n t he C3lu;n- 220 pp. b i a X i ve r Estuary. Proy. Rep., Oct. 1, 1979-Oec. 31, 1980, t o Pac. IUW River Basins Conm., Res. Contr., CREDDP Task M i l l e r , R.S., c.4. Sirlens tad, J.N. Cross, #A-2.3. Dep. 8otany, P l a n t Pato., Oreg. K,L. Fresh, and 5.N. S t e i n f o r t , 1980. S ta te Univ., Corval 1 i s . Nearshore f i s h and macro i nve r t eb ra t e

assemblages along t he S t r a i t o f Juan de McLusky, D.S. 1981. The es tuar ine eco- Fuca inc lud ing food h a b i ts of the common

systein. John Wi ley and Sons. New York. nearshore f i sh : f i n d l reuor t o f t ! l ree 150 pp. years sdlnpliog, 1975 - l g79 . OOC FPA-5QO/

7-90-027. 211 PP. Mchr rdy , G. 1977. species-speci f i c P ~ Y -

top lank ton p roduc t i on r a t es dur ing a M i 1 C.8. 1g72= T Q O P ~ a n k t o n indica- s? r i ng d id tom bloom i n Yaquind Bay, t o r s of the sedsoodl Cycle of c u r r e n t s Oreg. Ph.D. D i s s e r t a t i o n . Oreg. S ta te along the Oregon cads t. Trans, h, Univ., C o r v a l l i s . 216 pp. Micro. Soc. 91:87.

145

Page 159: The ecology of estuarine channels of the Pacific Northwest coast: A

Fl is i tano, D.A. 1977, Species cornposit ion and re1 a t i v e ab~ndance of 1 a rva l and p o s t - l a r v a l f i shes i n the Columbia 2 i v e r estuary , 1173. I . . 1 lilar. Fish. 9 u l l . 75:?15-222.

Yonroe, G.U., F. Reynolds, 9.M. Rrowning, and J.W. Speth. 1974. Na tu ra l Resources of t he Eel K i ve r Del ta . Coastal Wet1 and Ser. 9, C a l i f . Dep. F i s h Gane. 10Gpp.

i lorisdwa, M. 1968. Stredrns: t h e i r dy- namics and inorphol ogy. McGraw Hi1 1 Book Co., New York. 175 pp.

ftlul h o l l and, P.J. 1981. Formation o f par- t i c u l a t e o rgan ic cdrbon i n wa te r f rom a southeastern swamp-stream. Limn01 . Oceanogr. 26: 790-735.

! l u l l en, 9,E. 1972, Ecology of shad and ' s t r i p e d bass i n coas ta l r i v e r s and estu-

a r i es . Annu. Rep., J u l y 1, 1971-June 30, 1972, Fish.Comn. Oreg.

Etullen, R.E. 1974. Tagging o f s t r i p e d bass i n t h e Umpqua River , 1971-1973. Coastal Riv. Inves t . Rep. 74-7, Fish, Co!nm. Oreg .

Mu1 l en , R.E. 1977. The occurrence and d i s t r i b u t i o n o f f i s h i n the Unpqua R i ve r estuary , June through October 1972. Oreg. Dep. Fish. W i l d l . , I n f o . Rep. Ser., Fish. 77-3. 39 pp.

i4yers, K.W., and H.F. t lor ton. 1982. Temporal use o f an Oregon es tua r y by ha tchery and w i l d j u v e n i l e salmon. Pages 377-392 V. Kennedy, ed. Estu- a r i n e conpar i sons. Acade1:iic Press, New York. .

Nai~ian, R.J., and J.R. S i b e r t . 1978. Transpor t o f n u t r i e n t s and carbon from t he Nanairno R i ve r t o i t s estuary. Lirnnol . Oceanogr. 23; 1183-1193,

I ia t ional Mar ine F i s h e r i e s Service. 1981. SaIr!ionid and non-salmonid f i shes . Annu. Data Rep., Second Yedr, t o Pac. NI R i v e r Basins Comm., CREDDP Tasks A-2.3 and A-2.9. U.S. ktl. Nar. F ish. Serv., FIW and Alaska Fish. Cent., Sea t t l e , Wastl. 139 pp.

I b t i o n a l Technica l I n f o r m a t i o n Serv ice. 1931a. Dredging: environrnental and b i o l o g i c a l e f f e c t s , 1970-January, 1981 ( c i t a t i o n s f r on t h e Eng i n e e r i nq Index Data Base). PB81-803603. N T I S , Spr ing- f i e l d , Va. 154 pp.

Nat ional Technica l I n f o r m a t i o n Serv ice . l981b. Dredg i ng : env i r onnen ta l aspects, 1977-January 1981 ( c i t a t i o n s from t h e NTIS Data Base). PB81-803611. PITIS, S p r i n g f i e l d , Va. 107 pp.

National Technica l I n f o m a t i o n Serv ice . 1 9 8 1 ~ . Dredging: h i01 og i c a l e f f ec t s , 1979-January 1981 ( c i t a t i o n s f r o n t h e NTIS Data Base). PB81-803G29. NTIS, S p r i n g f i e l d , Va. 100 pp.

Neal, V.T. 1965. A c a l c u l a t i o n o f f l u s h - i n g t i n e s and p o l l u t i o n d i s t r i b u t i o n f o r t h e Columbia R i v e r es tuary . Ph.D. D is - s e r t a t i o n . Oreg . S t a t e Univ., C o r v a l l i s . 8 1 pp.

Mishizawa, S. 1971. Concen t ra t ion o f o rgan ic and i no rgan i c m a t e r i a l i n t h e su r face s k i n a t t h e equator , 155OW. B u l l . PI ankton Soc. Jpn. 18:42-44.

N i t t r oue r , C.A. 1978. The process of d e t r i t a l sed inent accumul a t i o n i n a con- t i n e n t a l she1 f environment: an examina- t i o n o f the Washington She l f . Ph.D. Disse r t a t i on . IJniv. Wash., S e a t t l e. 243 pp.

Nixon, S., and C. Ov i a t t . 1973. Ecology of a New Engl and sa l t marsh. Ecol . Flonogr, 43:463-498.

Nat ional Mar ine F i s h e r i e s Serv ice. 1980. tb r thco te , T.G., N.T. Johnston, and K. I kn -sa lnon id and salmonid f i shes . Annu. Tsumura. 1376. Renthic, ep i hen th i c and Data Rep., F i r s t Year, t o Pac. M Rive r d r i f t fauna o f the l o w e r F raser R i v e r . Basins Comm., CREDDP Tdsks A-2.8 and Tech. Rep. 11, Westwat. Res. Cent., A-2.9. U.S. ktl. Har. Fish. Serv., Univ. R r i t. Col . , Vancouver, Canada. Hanciond, Oreg. 24 pp. 227 pp,

Page 160: The ecology of estuarine channels of the Pacific Northwest coast: A

Northcote, T.G., F1.T. Johnston, an3 K. Tsunura. 1979. Feeding r e l a t i o n s h i p s and food web s t r d c t u r e o f l owe r F rase r R i ve r f i shes . Tech. Rep. 16, Westwat. Res. Cent., Univ. B r i t . Col., Vancouver, Canada. 73 pp.

Oduni, W.E. 1970. U t i l i z a t i o n o f the d i r e c t g raz i ng and p l a n t d e t r i t u s food chains by t h e s t r i p e d m u l l e t , r?ug i l cephalus. Pages 222-240 - i n J.H. Stee le , ed. Marine food chains. Univ. C d l i f . Press, Berkel ey.

Odum, W.E., and E.J. Heald. 1975. Ttie d e t r i t u s based food web o f an e s t u a r i n e rsdngrove conmuni ty. Pages 265-285 in L. E. Cronin, ed. Es tuar ine research. Vol. 1. Acader:iic Press, New York.

O f f i ce r , C.G. 1976. Physical oceano- graphy o f e s t u a r i e s (and assoc ia ted ccas ta l wa te rs ) . John Wi ley and Sons, N e w York. 465 pp.

01 i v e r , J .S., P. N. Sl a t t e r y , and L.W. tiul- berg. 1977. Pat ter r is of s~ lccess ion i n ben th i c i n f a u na l cor?mu ~i t i e s f o l 1 owing d redy ing and dredged ma te r i a l d isposal i n Flonterey Bdy. F i na l Rep., rloss Landing Mar. Labs., l loss Landing, C a l i f . 192 pp.

Olsen, R.E., and I . P r a t t . 1973. Para- s i t e s as i n d i c a t o r s o f Eng l i sh s o l ~ (Parophrys ve tu l u s ) nursery grounds. Trans. Am. Fish. Soc. 102:405-411.

OINeal, G., and J. Sceva, 1971. The e f fec ts o f dredy i n g on water qua1 i ty i n t h e Northwest. U. S. Env i r . P ro tec t . Agency, Region 10. O f f . Wat. Program, Sea t t l e , Wash. 158 pp.

Oregon S t a t e U n i v e r s i t y . 1971. Oceano- graphy o f the nearshore coas ta l waters o f t h e P a c i f i c bbr thwest re1 a t i n y t o p o s s i b l e p o l l u t i o n . Rep. prepared f o r U.S. Env i r . P ro tec t . Agency. Wat. Qual. O f f . , Grant No. 16080 EOK. Oreg. S t a t e Univ., C o r v a l l i s . Vol. 1, 615 pp; Vol. 2. 744 pp.

Oregon S t a t e U n i v e r s i t y . 1977. Environ- mental impact o f dredging i n es tuar ies .

F i nd l Rep. t o NSF Appl . Sci . Res. Appl . , Schools of Eng. and Cjceanoq., Oreq. Sta te Univ., C o r v a l l i s . 682 pp.

Oregon S ta te U n i v e r s i t y School o f Oceano- graphy. 19805. Benth ic in fauna. Annu. l i a ta Rep. f i r s t year , t o Pac. Mi Rive r tias i : ~ s Con~i. , CREOLIP Task A-2. G School Oceanog. Oreg. S ta te Univ., Corval 1 i s . 65 PP.

Oregon S ta te l l n i v e r s i t y School o f Itceano- graphy. 1980b. Water colur?n ar i lnary product ion. Annu. Data Rep., f i r s t year, t o Pac. Id4 R i ve r Basins Colrm., CREODP Task A-2.4. School Oceanog. Oreg. S ta te Univ., Corva l l i s . 47 op.

P a c i f i c Northwest R i v e r Basins Commission. 1971. Co1 umbia- North P a c i f i c r e g i o n coriprehensive framework study. Rep. + Appendices I - X V I . Pac. Riv. Basins Conrn., Vancouver, Wash.

P a c i f i c Pbrthwest R i v e r Basins Comiss ion . 1980. ' Columbia R i v e r Estuary data devel o p w n t program. 1979-80 Annu. Rep. Vol s. 1-2. Vancouver, Wash.

Paine, R.T. 1966. Food web co~: ip lex i ty and species d i v e r s i t y . Am. kt. 100: 65-75.

Paine, R.T. 1969. A n o t e on t r o p h i c com- p l e x i t y and community s t a b i l i ty. Am. kt. 103:91-93.

Paine, R.T. 1977. Contro l 1 ed manipul a- t i o n s i n t h e n a r i n e i n t e r t i d a l zone and t h e i r c o n t r i b u t i o n s t o eco log ica l theory. Acad. kt. Sci. P h i l ., Spec. Pub1 . 12:245-270.

Paine, R.T. 1930. A Food webs: l i n kage , i n t e r a c t i o n , s t r e n g t h and comnuni t y i n f r a s t r u c t u r e . J. Anim. Ecol . 49: 667-685.

Park, K., C.L. Osterberg, and V.0. Forster . 1372. Chemical budget of t h e Columbia River . Pages 123-134 fi A.T. P r u t e r ,and D.L. A1 verson, eds. The Columbia R i ve r es tuary and ad jacent ocean waters : b io -env i ronnenta l s tud ies . Univ. Wash. Press, Sea t t l e.

Page 161: The ecology of estuarine channels of the Pacific Northwest coast: A

Parr, R.A. 1974. tiarbor dredging and benth ic infauna: a case study. Y.S. Thesis. Oreg. State Univ., Co rva l l i s . 114 pp.

Parsons, T.R., F1. Takahashi, and 6. Har- gave. 1977. B io loq ica l oceanoara~hi c proccesses. pergamh Press, kw ~ o r k . 332 pp.

Pearcy, W.G. 1962. Ecology o f an estu- a r i ne ,popu la t i on o f w in ter f lounder Pseudo 1 e t r z \ r c tes americanus (Wal baum) . TTiJT98TnghaIn TGanogr . ~ o i e c t . Yale Uni v. 18: 1-78.

Pearcy, W.G., and '5 . . t*leyers. 1974. Larvdl f i shes o f Yaquina Bay, 9regon: a nursery ground f o r coarine Fishes? 11,s. Fish. Bu l l . 72:201-213.

Pearson, E.A., and H.B. Gotads. 1951. qeport on waste evaluat ion o f iioquium Plant , Rayonier Inc., and p o l l u t i o n sur- veys o f Grdys Harbor June-November 1950. Rep. prep, fo r Grays Harbor r l iv. I3ayonier, Inc., I ioqi l i t~~l l , iJasC1. 161 pp.

Pearson, ?l .P . 1959. The abundance and d i s t r i b u t i o n o f harLor seals and S t e l l a r sea l i o n s i n Oregon. M.S. Thesis. 9reg. State Univ., Corva l l i s . 23 pp.

Percy, K.L., C. S~t tc?r l in ,C l .4 . Be l la , and P.C. '(1 itigerilan. 1974. Q e j c r i p t i o n s and i n f o r ~ i l d t i o n sources f o r Oregon estu- a r ies . Sea Srant Co l l . Prog., Oreg, Std t o Uni v. , Corval l i s . 294 pp.

Peter, C.F., K.O. Richter , D.A. Manual, and S.G. Heurnan. 1978. Colonial nest- irig sea and wading b i r d use o f es tua r ine is lands i n the P a c i f i c Northwest. 1I.S. Army Eng. Waterways Exp. Stn., Vicks- burg, Miss. Tech. Rep. 0-73-17. 197 pp,

Peters, G.Q., t l . J . Dawson, B.F. H r u t f i o r d , and R.R. Uhitney. 1976. Aqueous leachate frorn western red cedar: e f fec ts on so:ne aquat ic organisms. 3. Fish. Qes. Soar j Can. 33:2703-27r39.

Peters, K.E., R.E. Sweeney, and I.R. % a ~ - lan. 1978. Cor re la t i on o f carbon and n i t rogen s tab le isotope r a t i o s i n sed i - nentary organic .natter. L i rnnol. Oceanogr. 23: 538-604.

Peterson, C.H. 1979. Predation, colnpeti- t i v e exclirsion, and d i v e r s i t y i n the . so f t sediment henth ic communitiei? o f es- t u a r i es and 1 agoons. Pages 233-264 & R.J. L iv ingston, ed. Ecological pro- cesses i n coasta l and marine systems, Plenum Press, New York.

Pearsons, J.P., and R.J. Verts. 1970. Peterson, C.H., and V.M. Peterson. 1979, Abundance and d i s t r i b u t i o n o f harbor The ecology o f i n t e r t i d a l f l a t s of N o r t h sedls and nor thern sea 1 ions i n Oregon. Carol ina: a community p r o f i l e . 1I.S. !.lurrelet 51:l-5. F ish Wi ld l . Serv. B io l . Serv. Program.

FUS/OBS-73/39. 73 PO.

B * C g Effects of l og duln~ing Pethick, J.5. 1980. Ve loc i ty surges and and r a f t i n g on the qar ine environment o f s o u t h e d ~ t Alaska. Gen. Tech. Rep. asymmetry i n t i d a l channels. E s t u a r i n e

PNW-22. U.S. Dep. Agric., For. Serv. Coastal Mar. Sci. 11:331-345.

523 pp. Phi 11 ips, R.C. 1969. Temperate grass f l a t s . Chap. C-7A i n H.T. Odum and R.J,

Penland, S , 1976. The Caspian tern: a Cope1 and, eds. Coastal ecosystems o f na tu ra l h i s to ry . Wash. Wild1 . 28: 15-19. the Un i ted States. Ungubl. Sep, I ns t ,

Mar. Sci., Univ. N.C. EWPCA Con t rac t Pequegna t, W.E. 1975. fk iobenthos eco- Rep. 68-128.

systems as i nd i ca to rs of the e f f e c t s o f dredging, Pages 573-583 in- Estuar ine P h i l 1 i p s , R.C. 1972. Ecological 1 i f e research, Vol. 2, Geol. and Engin., h i s t o r y o f Zostera rnarina L. ( e e l g r Proc, 2nd i n t ' l - E s t . Res. Conf., M y r t l e i n Puget Sound, Washington. Ph.D Beach, S.C. act , 1973. Acadewic Press, . ser ta t ion . Univ. Wash., Se Inc., New York. 154 pp.

148

*

Page 162: The ecology of estuarine channels of the Pacific Northwest coast: A

P h i l l i p s , R.C. 1974. Temperate grass f l a t s . Pages 244-249 fi 9.T. adurn, B.J. Copeland, and E.A. VcMahan, eds. Coast- a l . ecosystems o f t h e Vn i ted States: a source book f 3 r es tua r i ne a1 anning. Vol . 2, Co :~serva t ion Found., !dashing- ton, 9.C.

Phipps, J.R., and E.D. Scherner. 1930. Grays Harbor n a v i g a t i o n improvement s tudy: a n a l y s i s o f sediments a t i n v e r - t e b r a t e s t udy s i t e s . 8ep. t o S e a t t l e D i s t r i c t , 1J.S. Army Corps Enq., Grays Harbor Col 1 ., Aberdeen, Wash. 10 pp.

Prandle, D. 1981. S a l i n i t y i n t r u s i o n i n es tuar ies . J. Phys ica l Gcean. 11: 1311-1324.

P r i ce , W.A., and M.P. Kendrick. 1963. F i e l d and model i n v e s t i g a t i o n i n t o t h e reasons f o r s i l t a t i o n i n t h e rlersey es- tuary . Proc. I n s t . C i v i l Eng. 24:473-517.

Pr i t chard , D.W. 19G7, What i s an estu- a ry : phys ica l v iewpoint . Pages 3-5 G.F. Lau f f , ed. Estuar ies. Pa. Assoc. Adv. Sci., Publ. 83, Washington, D.C.

P i c k r a l , J.C., and W.E. Odum. 1976. Ben- Proctor , C.V., J . C . Garcia, D.V. Galv in , t h i c d e t r i t u s i n a sa l t ~na rsh t i d a l G.C. Lewis, L.C. Loehr, and A.M. Plassa. creek. Pages 280-292 in 19. Wiley, ed. 1980. An eco log ica l c h a r a c t e r i z a t i o n o f Es tuar ine processes. Vol . 2: Ci.rcu1 a- t h e P a c i f i c Northwest coas ta l reg ion. t i o n , sediments, and t r a n s f e r o f rr later i - Vol. 5, IJ.S. F i s h W i l d l . Serv. R i o l . a1 i n t h e es tuary . Academic Press, New Serv. Progran. FWS/OBS-79/11 through York, 428 pp. 79/15.

P ie lou , E.C. 1977. l lathernat ical ecology. Provasol i, t . , K. S h i r a i s h i , and J.R. John Wi ley and Sons, New York. 385 pp. Lance. 1959. k tr i t i o n a l i d iosyn-

c ras ies o f Arternia and T i q r i opus i n -- Pike, G.C., dnd I .R. MacAskie. 1969. nlonoxenic cu l tu re . Annu. N. Y. Acad.

l l a r i n e rnamrnal s o f B r i t i s h Col urnbia. Sci . 72:250-261, F ish. Res. Board Can., S u l l . 171. 54 PP- Qasim, S.Z., and U. N. Sankaranarayanan.

1972. Organic d e t r i t u s o f a t r o p i c a l Pomeroy, W . E I . , and C.D. Levings. 1980. estuary . I lar. B i o l . 15:193-199.

Assoc i a t i on and feeding r e l a t i o n s h i p s be tween Eo amnarus con fe r v i co l us Race, E1.S., and D.R. C h r i s t i e . 1982. (Stimpson) *, Gannaridae) and Coastal zone development: 11i t i g a t i o n , b e n t h i c a lgae on Sturgeon and Roberts marsh c rea t i on , and decision-making. Banks, F raser R i ve r estuary . Can. J. Envi ron. Manage. 6(4) :317-328. Fish. Aquat. Sc i . 37: l -10.

Ramsey, W.L. 1962. D isso lved oxygen i n Pomeroy, W.M., and J.G. Stockner. 1976. shal low near-shore water a n d i t s r e l a t i o n

E f f e c t s o f environmental d i s tu rbance on t o poss i b l e bubble format ion. L i nno l . t h e d i s t r i b u t i o n and pr imary p roduc t i on Oceanogr. 7:453-461. o f ben th i c a lgae on a B r i t i s h Columbia es tuary . J. Fish. Res. Board Can. 33: R a t t i , F. 1979a. Natural resources of 1175-1187. U~npqua estuary. Estuary Inven to ry

Rep. 2(5) . Res. Dev. Sec., Oreg. Dep. P o ~ ~ e r o y , R.L., L.R. Shenton, R.D.H. Jones, F i s h Wild1 ., Port land. 57 pp.

and R.J. Reimold. 1972. b h t r i e n t f l u x i n es tuar ies . Pages 274-291 i n t k t r i e n t R a t t i , F. 1379b. IJatural resources of f l u x i n es tua r i es . ASLO S ~ C . Symp. Rogue estuary. Estuary I nven to r y Reo. Vol. 1. 2(8) . Res. Dev. Sec., Oreg. Dep. F i sh

W i l d l . , Por t1 and. 33 pp. Poulet , S.A. 1973. Grazing o f Pseudo-

ca lanus minu tus on n a t u r a l l y occu r r i ng Recher, H.F. 1966. Some aspects of t he p a r t i c u l a t e mat te r . Limnol. Cceanogr. eco logy o f m ig ran t shorebi rds. Ecology 18: 564-573. 47:393-407.

149

Page 163: The ecology of estuarine channels of the Pacific Northwest coast: A

f!eimers, P.E. 1973. The l e n g t h o f r e s i - dence o f j u v e n i l e f a l l chinook salmon i n Sixes R ive r , Oregon. Res. Rep. F i sh Comri. Oreg . 4(2) : 1-43.

Reimers, P.E., and K.J. Raxter. 1?76. Fishes of Sixes River , Oregon. Oreg. Dep. F ish l . l i ld l . , Res. Sect., I n f o . Ren. Ser., F ish. 76-4. 7 pp.

Reineck, H.E., and I . R . Singh. 1980. Depos i t i ona l sedimentary environments w i t h re fe rence t o te r r igenous c l a s t i c s . Spr inger-Ver l ay , New York. 549 pp.

Richardson, S. L. 1973. Abundance and d i s t r i b u t i o n of l a r v a l f i s h e s i n waters o f Oregon, May-October 1968, w i t h spec ia l emphasis on t h e n o r t h e r n anchovy, Engrdul i s mordax. U.S. Na tl . llar. Fish. Serv. Fish. B u l l . 71:697-711.

Richnlan, S., D.R. k i n l e , and R. Huf f . 1977. Grazing by adul t es tua r i ne c a l an- o i d copepods o f t h e Chesapeake Bay. Mar. B i o l . 42:69-84.

Rieper, PI. 1973. Bac te r i a as food f o r mar ine h a r p a c t i c o i d copepods. Mar. B i o l . 45:337-345.

Roffe, T.J. 1981. Populat ion, food ha- b i t s , and behav io r o f p inn ipeds i n the Rogue R i v e r and t h e i r r e l a t i o n s h i p t o sdlinon runs. Ph.D. U i s s e r t a t i o n . Oreg. S ta te Univ., C o r v a l l i s . 155 pp.

Rogers, h.M. 1940. Occurrence and reten- t i o n o f p l ank ton w i t h i n t h e estuary . J. Fish. Res. Board Can. 5:164-171.

Root, R.B. 1967. The n i che e x p l o i t a t i o n p a t t e r n o f t h e b l ue-gray gna tca tcher . Ecol . Monogr. 37:317-350.

Roy, E.H., J.S. Creager, S.R. \.!a1 t e r , and J.C. Borgeld. 1979. An i n v e s t i g a t i o n t o determine t h e bedload and suspended sediment t r a n s p o r t over t h e o u t e r t i d a l del t a and mon i t o r t he sedimentary env i - ronment a t s i t e s E and 0 near t h e mouth o f the Columbia R ive r . F i n a l Rep. t o U.S. Army Corps o f Eng., P o r t l a n d Dist . , Dep. Oceanogr., Univ. Wash., Sea t t l e ,

Rcyal, L.A. 1972. An examinat ion o f t h e anadromous t r o u t program o f t h e Washi ng- t o n S t a t e Game Department. Unpubl. Rep. t o Wash. Dep. Game, Wash. Coop. Fish. Un i t , Univ. Wash., Sea t t l e . 176 pp.

Roye, C. 1979. Natural resources o f Coos G o A . lgG3* Organic aggregates in Bay estuary . Estuary I n v e n t o r y Rep.

sea water and t h e dynamics o f t h e i r for - n a t i o n and u t i l i z a t i o n . Limn01 . 2(6) . Res. Dev. Sec., Oreg. Dep. F i s h

Oceanogr. 8: 378-381. Wildl . , Por t land . 87 pp.

Russel, R.J. 1967. O r i g i n s o f es tua r i es . K i l ey, G.A. 1970. P a r t i c u l a t e o rgan ic ma t t e r i n sea water. Adv. klar. B i o l . Pages 93-99 i n G.F. L a u f f , ed.

G:1-118. Es tuar ies . h. Assoc. Adv. Sci., Publ. 83. Washington, D.C.

R i ley , G.A., P.J. Glangersky, and D. Van ilemert. 1964. Organic aggregates i n t r o p i c a l and sub t r op i ca l su r face waters o f t h e North A t l a n t i c Ocean. L imnol . Oceanogr. 9 : 199-209.

R i ley , G.A., D. Van Hernert, and P.J. Wan- gersky. 1965. Organic aggregates i n su r face and deep waters o f t h e Sargasso Sea. Lirnnol . Oceanogr. lO:354-363.

Russel-Hunter, W.D. 1970. Aqua t i c p ro - d u c t i v i t y . FlacFli l lan, New York. 306 PP *

Russe l l , H.J., Jr. 1964. The endemic zooplankton p o p u l a t i o n as a food supp l y f o r young h e r r i n g i n Yaquina Pay. M.S. Thesis. Oreg. S t a t e Univ., C o r v a l l i s . 42 p.p.

Robertson, A.I., and K.H. Mann. 1980. Salo, E.O. 1969. Es tua r i ne eco logy re - The r o l e o f isopods and amphipods i n t he search p r o j e c t . F i n a l Rep., June 1, i n i t i a l f ragmenta t ion o f ee lg rass d e t r i - 1965-September 30, 1968. F ish. Ses. t us i n Nova Scot ia , Canada. Har. B i o l . Inst . , Univ. Wash., Sea t t l e . 8 0 p p . 59:63-69.

150

Page 164: The ecology of estuarine channels of the Pacific Northwest coast: A

Salo, E.O., N.J. Rax, T.E. P r ins low, C.J. Whitnus, B.P. Snyder, and C.A. Simenstad. 1980. The e f f e c t s of con- s t r u c t i o n o f naval f a c i l i t i e s on t he o u t m i g r a t i o n o f j u v e n i l e sa lnon ids frorq Hood Canal , Washington. F i n a l Rep., Flarch 1, 1975 throuqh J u l y 31, 1973 t o U.S. Navy. FRI-ULJ-8006, Fish. Res. I ns t . , Col I . Fish., Univ. itlash., Sea t t l e . 159 pp.

Salo, L.J. 1975. A base l i ne survey of s i g n i f i c a n t mar ine b i r d s i n Washington State. Coastal Zone Envi ron. Stud. Rep. 1 t o Wash. S ta te Dep. Ecol . , Wash. Dep. Game PB-254 233. 418 pp.

Sanborn, H.R. 1975. An i n v e s t i g a t i o n of the ben th i c in fauna a t two dredge and f o i l r dredge d isposa l s i t e s ad jacen t t o t he mouth of t h e Columbia R ive r . U.S. Nat l . Ocean. Atnos. Admin., Nat l . Uar. Fish. Serv., 144 Alaska F ish . Ceter, S e a t t l e , Ilash. 19 pp.

Sanders, H.L. 1959. Sediments and t he s t r u c t u r e o f bottoni communities. Pages 583-584 i n M. Sears, ed. I n t e r n a t i o n a l oceanogr, congress - p r e p r i n t s . Am. Assoc. Adv. Sci., Washington, D.C.

Sand i fe r , P.A. 1975. The r o l e o f pe lag ic 1 arvae i n r e c r u i t ~ n e n t t o popu la t i ons o f a d u l t decapod crustaceans i n the York R ive r es tua r y and ad jacent l owe r Chesa- peake Bay, V i r g i n i a . Es tuar ine Coastal Mar. Sc i . 3:269-279.

Schaumberg, F.D. 1973. The i n f l u e n c e o f 1 oy handl i ng on water qual i ty. EPA-R2- 73-085. O f f i c e Res. bloni tor . , 1J.S. Environ. Pro tec t . Agency, Washington, D.C. 105 pp.

Schef fer , V . S . , and J.W. S l ipp . 1944. The harbor seal i n Washington State.

. Am. Mid l . Nat. 32:373-416.

Schef fer , V.B., and J.W. Sl i pp . 1348. The whales and do lph ins of Washington S ta te w i t h ' a key t o t h e cetaceans of t h e west. coas t of t j o r th h e r i c a . h. F-lidl.

- kt. 39~257-337.

Scheffer. V.B., and C.C. Sperry. 19Gi. Food h a b i t s o f t he p a c i f i c ' ha rbo r seal, Phoco r i c h d r d i i . J. llammal 12:214-226. ---- -----

Scheidegger, K.F., atld J.H. Phipps. 1976. D ispersa l pa t t e rns of sands i n Grays Harbor estuary , Washington, J . Sedinent. Pe t r o l . 46: 163-166;

Schul t z , E.A., and H.B. Simmons. 1957. Fresh water-sal t water densi ty cu r ren t s , a ma jo r cause o f s i l t a t i o n i n es tua r i es . Tech. B u l l . No. 2, Conr:~. T i da l Hydrau- l i c s , U.S. Army Corps Eny. 2 8 p p .

Schul t z . L.P. 1933. The aqe and qrowth o f ~ t t l e r i n o p s a f f i n i s oregonia Jordan and Snyder and o f o t h e r subspecies o f baysmel-t a long t h e P a c i f i c coas t of t h e Un i ted States. IJniv. \dash. Publ. P i o l . 2(3) :45-201.

Schu l t z , R.D., and J.R. Berq. 1976. Some e f f e c t s o f 1 og dueping on es tua r i es . ktl. Ocean. Atmos. Adnin., btl. Flar. Fish. Serv., Juneau, Alaska. 64 pp.

S c h u y t ~ a , G.S., and R.D. Shank1 and. 197G. E f f e c t s o f l o g handl i n g and s t o r - age on water qual i t y . U.S. Environ. Pro tec t . Agency, EPA-600/2-76-262. 111

Science Appl i c a t i o n s , Inc. , and Woodward- C1 yde Consul t an t s . 1981. Emergent p l a n t p roduc t ion . Anncr. Data Rep., F i r s t Year, t o Pac. Nvl Rive r Basins Comm., CREDDP Task A-2.2. Vancouver, Wash. 48 pp.

Scot t , J. !A. 1973. Resource a l l o c a t i o n i n f o u r s yn top i c species o f ma r i ne d i v - i n g b i r d s . Ph.D. D i s s e r t a t i o n . Oreq. S t a t e Univ. Corva l l i s .

Seaman, Fi. H., ed. 1977. Columbia R i ve r es tua r y i n v e n t o r y o f phys i ca l , b i o l og i - ca l , and c u l t u r a l c h a r a c t e r i s t i c s . Col o. Riv. Es tuar ine Study Task force, As t o r i a, Oreg .

Shewan, J. 11. 1963. The d i f f e r e n t i a t i o n o f c e r t a i n genera o f gram n e g a t i v e bac- t e r i a f requent1 y encountered i n n a r i ne environments. Pages 499-520 - in C. H.

Page 165: The ecology of estuarine channels of the Pacific Northwest coast: A

Oppenhci~ner ed. Symposiun on i l a r i n e n icr3tz io logy. Char1 es C. Thonas, Publ . , Sp r i ng f i e l d , I 1 1.

Sholkowitz, E. 2. 1976. F l o c c u l a t i o n o f d isso lved o rgan ic and i n o r g a n i c m a t t e r dur ing n i x i n g o f r i v e r water and sea- water. Geochim. Cos~nochim. Acta. 40:831-845.

Shubnikov, D. 4. 1377. A coas ta l -es tu - d r i n e cornnuni t y of f i s h e s o f t h e North I nd i an Ocedn and the eco log i ca l r e l a - t i onsh ips o f i t s conponents. J. I ch thyo l . 17:693-709.

S i be r t , J. Q. 1379. D e t r i t u s and juven- i l e sa'tr~on p roduc t ion i n t h e Nanaimo estuary. I I. Meiofauna a v a i l abl e as food t o j u v e n i l e chun sa lqon (Oncorhyn- chus ke ta ) . J. Fish. Res. Board Can. -- 36:497-503.

S i be r t , J. R. 1981. I o t e r t i d a l I iyperben- t h i c p o p ? r l d t i o ~ ~ s i n t ! ie Yanai!no estuary . i4ar. R io l . 64: 359-?G!i.

S ibe r t , J. R . , 3. A. Ydsk, and T. , I . Bro~in. 1977a. A diver-oper; l t?d s led f o r sa~npl i 73 the epibenthos. Fish. 1-13r. Serv. Tech. Rep. 738. 1 9 p p .

f , iebur th , I!. I . , d A, Jensen. 1959. S tud ies on a l j a l sqbs tdnces i r i the sea. 11. The Forrrldtion o f S e l b s t o f f (hu~sic ~ n a t e r i a l ) by p' ldeophytr exudates. J . Elcp. Plar. B i o l . Ecol . 3:?7!-289.

S i e g f r i e d , C. 4. 1982. Trophic r e l a t i o n s o f Crangon f r a n c i scwum Stimpson dnd ---------- Pal aemon m a c r o d a c t y l ~ ~ s Rathbun: p r d a - ----- ---- t i o n on t h e opossuta-shrimp, Neomysis ~ i ierced i 5 --- -- Ho 1 iues . Llydrobiologi d 39:129-139.

S e i q f r i e d , C. 4., and M. E. Kopache. 1980. Feedi ng o f Neornys i s :iierce&& ( ~ o l l ~ e s ) . R i 01 . 9 u l l . 159: 193-205.

Sirlienstad, C. 4. I n press. Evidence f o r densi ty-dependent phenoriienon i t i P a c i f i c salnion. Appendix B i n Compensatory ~nechatisims i n f i s h p o p ~ ~ l a t i ans and rec- ofiaiended r rsedrch . R ~ P . t9 E lec t . Pow. Res. I n s t . , Envi rosphere Co., Nevtport Beach, C a l i f .

Sir-ierlstad, C. A,, ?nd J. 9. Co rde l l . 1950. Ana lys is o f ep i ben th i c fauna fronl ~:i t y Wa terway , Comnericelnent Ra?, I lash ington. I lnpubl. Ren. t o Dep. Publ i c Yorks, C i t y o f Tacoma, Vashington. 9 PP

S iber t , (1. R . , T. J. Brown, Y. C. Hedley, Sitnenstad, C. 4., and 3. b1. Eggers, eds. '3. A. Kask, and R. (1. Naiaan. 1977b. 1981. J u v e n i l e salmonid and b a i t f i s h i l e t r i tus-Sasrd food webs: e x p i o i t a t i o n d i s t r i b u t i o n , abundance, and prey by j u v e n i l e chun sdlmon. Scierlce 196: resources i n s e l e c t e d areas o f Grays 649-650. I larbor , Washington. F i n a l 9ep. t o

S e a t t l e Dis t . , U.S. Army Corps o f Eng., Siberst , $1. R., and V , J , Harpharn. 1979. F ish. Res. I n s t . , Co l l . Fish., I ln iv .

Ef fec t s o f i n t e r t i d a l l o g s to rage on t h e Wash. Sea t t l e . FRI-UW-8116. 205 pp. meiofauna and i n t e r s t i t i a l environment of t h e i4dnai:no 2 i v e r de l t a . Fish. Mar. Si~nenstad, C. A., and E. 9. '5alo. 1982. Serv. Tech. Rep. 953. ?7pp. Foraging success as a determinant o f

e s t u a r i n e and nedrshore c a r r y i n g caoac- i j i ebur th , J. PI. 1969. Stud ies on a1 gal i t y o f j ~ ~ v e n i l e chum salmon (Oncorhyn-

substances i n t h e sea. 111. The p ro - - chus k e t a l i n Hood Canal, Washington. duc t i on o f e c t r a c e l l u l a r o rgan ic m a t t e r Pages 21-37 in R. R. Me1 t e f f and R. 4. by 1 i t t o r a l rnari ne waters. J. Exp. 51ar. Neve, eds. proceeding: . p a c i f i c B i o l . i c o l . 2:174-189. a q ~ ~ a c u l t u r e syrnposi urn, Anchorage,

A laska and New Po r t , Oregon, 4ugust 18- Siebur th , J.M. , aqd A. Jensen. 1958. 27, 1980. Alaska Sea Grant Rep. 92-2,

St!~:l ies on a l g a l substances i n t h e sea. Univ. 4laska, Fairbanks. I . G e l b s t o f f (humic ! na te r i a l ) i n t e r - r e s t r i a l and inar ine waters. J. Exp. Si~nenstad, C. A., B. S. M i l l e r , C. F. iilar. Oiol, Ecal. 3:271-289. Nyblade, K. Thornburgh, and L. J.

152

Page 166: The ecology of estuarine channels of the Pacific Northwest coast: A

Bledsoe. 1379a. Food web re1 a t ionsh ips o f no r t he rn Puget Soun~l and the Strli t o f Juan de Fuca: a syn thes is o f the a v a i l a b l e k n o ~ l e d g e . EPA DOC ries. 9eo. EPS-603/7-79-259. 335 pp.

Simenstad, $. A., !J. .I. Y i n ~ e y , and A. 7. M i l l e r . 1379b. Ep iben t l i i c zooolankton asse~nblases a t se lec ted s i t e s along the S t r a i t o f Juan de Fuca. NOAA Tech. ile~no. FRL YE5A-45. 73 po.

Simenstad, C. A,, W. 3. Kinney, 5. 5 . Parker, E. 9. Salo, J. 9. Cordel 1, and ii. Buechner. 1980. 3rey community s t r u c t u r e and t r o p h i c ecoloqy o f outlni- g r a t i n g j ~ ~ v e n i l e chum and p i nk sal non i n iiood Canal, 1Jashington: 3 synthes is o f three yea rs ' stcrdie5, 1977-1979. Fish. Res. I ns t . , Co l l . Fish., I ln iv . Idash., Yea t t le . F2I-%I-8026. 113 po.

Siinenstatl, C. A , , 1). . Egqers, 9. C. Idisslqar, and E. C. Volk. 19S?a, Beyond guts: the powers and o i t f a l l s of experitr lental l y docurnenti ng f unc t i ona l aspects o f f i s h f o rag i ng behavior. Pages 33-46 G. Y. C a i l l i e t and C. A. Si 13iens tdd, ed s . , Proceed i rigs : Gl!TSilOP 1981, t h i r d Pnci f i c workshop f i s h food h a b i t s s tud ies , Dec. 5-3, 1981. Asilornar C o ~ f . Cent., P a c i f i c Grove, Cal i f . , Wash. Sea Sran t , IJniv. !Jash,, Seat t le . NSG-NO 52-2.

Si~ilens tad, C. A., Y. C. Fresh, and E. 0. Salo. 1982b. The r o l e o f Puget Sound an3 Washington coas ta l es tuar ies i n the 1 i f e h i s t o r y o f P a c i f i c salmon: an lrnappreci a ted funct ion. I n V. Kennedy, ed. Es i l rar ine cornpari s o x . Academic Press, Weir York.

Si lms, C. W. 1970. Juven i l e salrnonid arid s t e e l hedd i n t h e Coluinbia Z i v e r estuary. ?ages 82-86 - i n Proceedings: 1-I.W. Estu- a r i n e and coas td l zone symposium. Por t1 and, Oreg.

S i t t s , R. M., and A. ld. Knight. 1979. Preda t ion bv t h e es tua r i ne shrimps Cran on f r a n i i scorum and Palaernon macro- &s. B i o l . B u l l . 156:355-368.

S jo lseth, 0. 1963. S t u t l i es of ,iuve:li l e sal;mti i n the ?looksack 2 i v z r System and Yell i n g h a ~ ~ l 3ay. t4.S. Thes is . Univ. Wash., Sea t t l? . 95 pp.

Slottcl, L. 5., C. Y. S o l l i t t , C. A. Re l la , D. 14. Hancock, $1. E. McCauley, arid R. Parr. 1973. Ef fects of hopper dredging and i n clianncl spo i 1 i n y i n Coos Bay, Oregon. Oreg. S t d t ? IJni v., C o r v a l l i s . 147 pp.

Slnit.11, J. E, 1977. A b a s e l i n e study of i r ivertel>rates and s ~ f tile env i rol l lsental itxpdct o f i n t e r t i d a l log r a f t i n g on the 5nohoraish , l i ve r de1 t a . F i n a l Rep. 77-2. Coop. Fish. Un i t , C o I l . Fish., IJniv. Adsh., Sea t t le . 84 pi].

Smith, J. E. 1980. S e a s o n a l i t y , s p a t i a l d i spers ion pd t t e r n s and 1 4 i g r a t i o n o f oent l l ic i n ve r t eb rd tes i n 27 i n t e r t i d a l ~narsi i -sdndf la t sys te~n o f P u j e t Sound, Washington, and t h e i r r e l a t i o ~ t o water- fovrl forag ing and the feeding ecology o f s t n y h o r ~ scul > in , 1-ep tr1c;ottus annatus. Ph,D, i l i s se r t a t i o t i . Univ . Wash., Seatt le. 171 yp.

Smith, J . L,, and 7. . Yudd. 1975a. Inpact o f dredging on t h e a v i a n fauna i n Grays Harbor. Appendix Y i n U.5. Arwy Corps Engi neerr , na i n t e n a n z dredging and the env i ron~nen t o f Grays lia rbor, Washington. Sea t t l 4 , ?.lash.

4s i th, J. L., and D. R. flurld. 1376b. Impact of dredging on the mammalian fauna i n Grays Harbor. Appendix I in 1J.S. Array Corps Eng ineers , ,ndintenance dredging and t he env i ronment o f Grays Harbor, Washington. S e a t t l e , Wash.

Smith, J . L., n. R. Mudd, and I - . M. F4ess:ner. 137.13, Impact o f dredgir ig on the vege ta t ion i n Grays Iiarbor. Appendix F in va in tenance dredging and the env i ronnen t of Grays Harbor, Was'lington. 5 e a t t l e D i s t . , I . Armv Corps Eng., % a t t i e , Wash. 121 pp.

Saith, J. q., J. R. Phipps, E , 3 . Schemer, and 0. F. '5amuelson. 1975. Impact o f dredging on w t s r q u a l i t y i n Grays Harbor, Washington. Pages 512-528

Page 167: The ecology of estuarine channels of the Pacific Northwest coast: A

i n P. A. Krenkel , J. Harr ison, and J. C. - Burd ick 111, eds. Proceeding spec i a l conference d redg ing and i t s env i ron:nen- t a l e f f e c t s , Jan. 26-?S, 1975. Mobil,?, ,91a. ASCE, !4ew York.

Smith, J. M., L. W. Messmer, J . R. Phipps, 9. F. Samuelson, and E. O. Schemer. 1989. Grays Harbor ocean d isposa l s tudy: 1 i t e r a t u r e rev iew and p r e l im ina r y ben t3 i c salnpl ing. Crays !]arbor and Chehal i s R i v e r I~nprovenents t o Naviga- t i o n Environmental Stud ies. Rep, t o 5 e a t t l e Dist., 1J.S. Army Corps Eng., Grays Harbor Col 1 ege, hberdeen, Wash. 160 pp.

Smith, T. p. 1980. Response o f a ben th i c mar ine microcos~n sub jec ted t o changes i n energy f low. Dages 301-317 in J. p. Giesy, Jr., ed. Hicrocosins i n e c o l o g i - c a l research. OOE Symp., Mov. 8-10, 1978, Augusta, Georgia. Tech. I r l fo . Center, U.S. Den. Energy. 1119 pp.

Smith, 'JI. E., and R. W . Saal fe ld . 1955. S tud ies on Columbia R i ve r stnel t. Thal- e i c h t h y s p a c i f i cus (Richardson). Wash. Dep. Fish., F is9 , 9es. Pap. l ( 3 ) : 3-25.

S ta r r , R. 1.1. 1979a. Na tu ra l resources o f Nes tucca estuary . Estuary I nven to r y Rep. ? (3 ) . 4 s . Dev. Sec., Oreg. k p . F i sh Wi ld l , , Por t land , 29 pp.

S t a r r , R. M. 1979b. Na tu ra l resources o f Si l e t r estuary . Es tuary I nven to r y Rep. 2 ( 3 ) . Res. Dev. Sec., k e g . nep. F i s h Wi ld l . , Por t land . 44 pp.

Stau f f e r , G. 0. 1970. Est imates o f popu- l a t i o n paraineters o f the 1965 and 196G a d u l t chinook salmon runs i n t he Green- Duuamish River . M.S. Thes is Co l l . Fish., Univ. Wash., Sea t t le . 155 pp.

S te in , J. E., and J. G. Ilenisorl. 1965. Resident t ime o f waste i n Grays Harbor. I T T Rayonier, Inc., Olympic Res. Div., Rep. No. 610:l-2. 15 pp.

Stephens, G. C. 1967. D isso lved organic i na te r i a l as d n u t r i t i o n a l source f o r mar ine and es tua r i ne i n v e r t e b r a t e s . Pages 357-373 i n G. Ii. Lau f f , ed. Estu- a r i es . An. AS?%. 4dv. Sci . publ . 83, Wasqington, U.C.

Stephens, H. S., N. C. Coles, and J. A. CLarke, eds. 1977. Papers presented a t t he second i n t e r n a t i o n a l syzipos i u n on dredy iny technology. Vol. 1. B r i t . flydroniech. Res. Assc~c. , F l u i d Eng. , Cran f ie ld , Bedford, ingl and.

Sternberg, R. W . 1967. r4easurements af sediment move~:ient and r i p p l e ~ a i g r a t i o n i n a shal low marine environment. Yar. Geol . 5 ( 3 ) : 195-205.

Steward, M. G. 1979. Absorp t ion o f d i s - solved o rgan ic n u t r i e n t s by mar ine inver tebra tes . Oceanogr. Mar. R i o l . Annu. Rev. 17: 153-192.

Stober, Q. J . , D. T. Griggs, and 9. t. Mayer. 1973a. Species d i v e r s i t y of t h e mar ine f i s h community i n n o r t h Skag i t Bay. Pages 373-400 in Q. J. Stober and E. 0. Salo, eds. Eco log i ca l s t ud i es of t h e proposed K i k e t I s 1 and Nuc lear F'ower S i te . F i n a l Rep., FRI-UW-7304, F i s h Res. Inst., Col l . Fish. Univ. Wash., Sea t t l e .

Stober, Q.J., s.11. , ialden, and O.T. Cr iggs. 19735. J u v e n i l e salmonid m i - g r a t i o n through Skag i t yay. Pages 35-70 i n Q.J. Stober and E.O. Salo, eds. Eco- - l o g i c a l s tud ies o f the proposed K i k e t I s l a n d nuc lear power s i t e . F i n a l Rep., F9I-UW-7304, F i sh Res. I ns t . , I l n i v . Wash., Sea t t le . 537 pp.

Stockner, J. G., and 0. D. Cl i f f . 1979. Phytop lankton ecology o f Vancouver l i a r - bor. J. Fish. Res. Roard Canada 35:l-10.

Stommet, Y., and Y. G. iarrner. 1952. Aburpt change i n w i d t h i n two- layer open channel f low. J . ;jar. Res. 11:205-214.

S te i n f e l d , J. 9. 1972. D i s t r i b u t i o n o f Stout , H.y.ed. 197G. The n a t u r a l resour - P a c i f i c h e r r i n g spawn i n Yaquina Ray, ces and human u t i l i z a t i o n o f N e t a r t s Oregon, and observa t ions on rnortal i ty Bay, Oregon. Oreg. S t a t e Univ., th rough hatch ing. Y.S. Thesis Oreg, Co rva l l i s . 274 pp. S t a t e Univ., C o r v a l l i s . 75 pp.

154

Page 168: The ecology of estuarine channels of the Pacific Northwest coast: A

Stua r t , V., tl. I . Lucan, and R. . Vewell. 1951. Ye te ro t r ooh i c u t i 1 i z a t i o n o f oar- t i c u l a t e m a t t e r ' f rom t he ke l p ? a ~ ! ~ i ? a r i a --- p a l 1 ida . Mar. Ecol. Pros. Ser. 4~337-343.

Sundborg, 4. 1356. The R i ve r K la ra lven ; a s tudy on f l u v i a l processes. Seoyr. Ann. 35: 125-316.

Su tc l i f f e , W . I { . , E. ?. Say lor , and i). 4. Menzeel. 1963. Sea sur fdce chemist ry and 1 angaui r c i r c u l a t ion. Deep-sea 9es. 9:120-124.

Teal. 3. 1.1. 1362. Energy f l ow i n the s a l t ~na rs l i ecosyste:~ o f Georgia. Ecol- ogy 43:614-624.

Teer i , J. A., and D. A. Schoel l e r . 1979. 1 3 ~ values of an he rb i vo re and t h e r a t i o o f C , t o C , p l a n t carbon i n i t s d i e t . Oecol o g i a 39: 197-200.

Thayer, G. W., P. L. Parker, H. W. LaCroix, and B. Fry. 1978. The s t a b l e carbon i so tope r a t i o f o r some components o f an ee lgrass, -- Zostera - - - , marina. bed. Oecologia 35:112.

Sverdrup, H. IJ. , 11. Johnwn, f i l d Thon, K. [Jnpubl Benth ic a l g a l d j s - Fleming. 1942. The oceans, t h e i r phys- t r i b u t i o n , abundance, and p r o d u c t i v i t y i c s , chemist ry , and b io logy . b e n t i c e - i n Grays Harbor estuary , Washington. Hal 1, Inc., New York. 1087 po. Presented a t Oct. 24-25, 1980 meet ing o f

Pac. Est. Res. Soc., Cal if. Sta te Univ., Sweeney, R. F., and I. 9. Kaolan. 198q. I~umbol d t .

Na tu ra l ahundances o f 15!4 as a sourcp i n d i c a t o r f o r near-shore sedilnentary Thomann, R. V. 1967. T ine-ser ies analy- d i sso lved n i t r ogen . Mar. Chem. 9:31-94. s i s of water q u a l i t y data. J. Sani t .

Eng. Div. Proc. ASCE 93:123. Sw i f t , D. J. P. 1976. Coastal sedirienta-

t i on . Pages 255-310 D. J . Stanley Thomas, D. W . . 1982. H a b i t a t changes i n

and D. J. P. S w i f t , eds. Yar ine sediment t h e Columbia R i ve r estuary . llnpubl . t r a n s p o r t and environlnental management. Rep., Colo. Riv. Estuary Study Team, John Wiley, Ne\d York. As t o r i a, Oreg .

Thomson, R. E. 1981. Oceanography of t h e Symposium on t he c l a s s i f i c a t i o n o f brack- B r i t i s h Columbia coast. Cana. Spec.

i s h waters. 1959. A p r i l 8-14, 1958. Publ. f i s h . Aquat. Sci. 56, Dep. Fish. Venice, I t a l y . Arch. Oceanogr. Limnol. Oceans, Ottawa. 291 pp. 11, Suppl .

Tabata, S. 1972. The novement o f Fraser R ive r i n f l uenced water i n t h e S t r a i t o f Georgia as deduced from a se r i es o f aer- i a l photographs. Pac. Mar. Sci. Rep. 72-6. I n s t . Ocean. Sci., P a t r i c i a Bay, V i c t o r i a , B. C., Canada. 69 pp.

Taghon, G. L. 1982. Opticla1 f o rag i ng by deposi t - f eed ing i nve r t eb ra tes : r o l e s o f p a r t i c l e s i z e coat ing. Oecologia 52:295-304.

Takahashi, Fl., K. F u j i i , and T. R. Parsons. 1973. S imu la t i on s tudy o f phy- top1 ankton pho tosyn thes is and growth i n t he F raser R i ve r estuary . Mar. B i o l . 19:102-116.

Thwaites, R. G., ed. 1959. O r i g i na l j o u r n a l s o f t h e Lewis and C la rk expedi- t i o n , 1804-1806, Vols. 3 and 4. An t i - quar ian Press Ltd., Flew York.

T i e t j e n , J. H., and J. J. Lee. 1977. Feeding behav io r o f lnar ine nematodes. Pages 21-35 i n B. C. Coull, ed. Ecology of mar ine benthos. B e l l e W. Baruch F ib . i n Mar. Sci. 6, Univ. S. C. Press, Columbia.

Trumble, R., D. P e n t t i l a , D. Day, P. M c A l l i s t e r , J. Boet tner , R. Adair , and P. Wares. 1977. Resu l t s o f h e r r i n g spawning ground surveys i n Puget Sound, 1975 and 1976. S ta te Wash. Dep. iish- Prog. Rep. 21. Olympia, Wash. 2 pp.

Page 169: The ecology of estuarine channels of the Pacific Northwest coast: A

Tyler , R. W, 1964. D i s t r i b u t i o n and v i - g r a t i o n z ~ f young sal~non i n Oellingham Bay, I ldshington, Circ. 2 1 2 , Fish. Q,es. Inst., Univ. Wash., Sea t t le . 26 pp.

i l n i v e r s f t y o f Uashingtun Department o f Oceanography. 1980. A sedinento l og i c a l study o f the Colunbia R ive r estuary. Annil. Rep. by Sed incn ta t ion Work Un i t 8-2.1 f o r Pac. EU Rive r Bas. Corn., Vancouver, Ilash. 177 pp.

U.S. Art-iy Corps o f Enqinecrs. 1973. i l i o r e p r o t e c t i o n manual, I. Coastal En7i ncc r ing Research Center.

I . . Amy Corps o f Engineers. 1975. f i rial cnv i ronmentdl impact s tate~nent. Opcrat i on and (:la i ntenance o f the chan- ne ls and breakwaters i n Yaquina Bay and R ivc r . 11.5. Aniy Corp. Enq., Por t land D i s t . , Por t land, Oreq, 135 pp,

I . . Amy Corps o f Engineers. 1976. Wi l \apa R i v e r and Harbor Navigat ion Pro- j e c t , Washington. F ina l env i ron. impact statement, S e a t t l e D i s t . , U.S. Any Corps Eng., Sea t t le , Wash. 464 pp.

U.S. Uepartment of I n t e r i o r . 1971, I& t(rra1 rtzsources, eco log ica l aspects, uses dnd qu ide l i nes f o r the managenent o f Coos Ray, Oregon. A Spec, Rep., O f f . Sec., Pac. r1.W. Region, Por t land, (freq. 128 }JP.

U,S, Geolog ica l Survey. 1070. Water re- sources data f o r Washinq ton, water year 1977. U.S. Geol, Surv. \.later-Data Rep. MA-77-1, Vol . 1. W e s t ~ r n Washington. Tdcoma, Wash. 433 pp.

U.S. Geologica l Survey. 1980. Water re- sources dd td f o r Washington, water year 1979. 1i.S. Geol, Surv. Water-Data Rep, YA-79-1, Vol. I. Western Washington. Taco~:~a, Wash. 433 pp.

Vancc, R. R. 1978. A mutual i s t i c i n t e r - a c t i o n between $ s e s s i l e .narine c l an and i t s ep ib ion ts . Ecology 59:G7'3-685.

Vanden Berghe, W., and M. Bergmans. 1981. D i f f e r e n t i d l food preferences i n t h ree co-occurr ing species o f T isbe (Copepoda,

Harpact i co ida) . !41r. Ecol . Prog. Ser. 4:213-219.

Vel irnirov, R. 1980. Fonnat i on and poten- t i a l t r o p h i c s i g n i f i c a n c e o f marine foan nedr ke l p beds i c l t he Benguel a upwell i ng system. Mar. B i o l . 58:311-328.

Venkati irati~nan~, Y., arld D. 4. rlcflanus. 1373. O r i g i n and d i s t r i b u t i o n :IF sands and g rave ls Dn the no r t he rn Cont inenta l Shel f o f f Washington. J. Sedi~ ient . Pe t ro l . 43:799-811.

Venqeer, Y., and C. D. Levings. 1977, Popul a t i ons , b i o~nass arid food hab i t s o f ducks on the Fraser d e l t d i n t e r t i d a l art'd, B r i t i s h Colur.~bia. Wildfowl 28 : 49-60.

Vernberq, I.J. B., and F. J. Vernberg. 1972. Environ.:iental phys io logy o f marine animal s. Sp r i nger-Verl ag , Ber l i n . 346 pp.

V i rns te in , R. W . 1977. The i i ~ p o r t d n c e o f predat ion by crabs and f i s h e s on ben th ic infduna i n Chesapeake Bay. Ecology 53: 1199-1217.

Vra t, V. 1949. Reproduct ive behavior and devclopqent o f eggs o f t h e three-sp ine s t ickt eback (Gasterosteus acul aetus) of Cal i forn i a. Copeia 1949: 252-260.

Wahl, T. R., S. N. Speich, 0. A. Manuwal , K. V. t i i rsch, dnd C. M i l l e r . 1981. Har ine b i r d popul a t i ons o f the S t r a i t of Juan de Fuca, S t r a i t o f Georgia, and ad- j a cen t waters i n 1978 and 1979. Interagency Energy/Env i ronment R. & D Program Rep. EPA-600/7-81- 156. U.S. Environ. Protect . Agency, Washington, D . . 789 pp.

Waldichuck, M. 1957. Phys ica l oceano- graphy o f the S t r a i t o f Georgia, B r i t i s h Columbia. J. Fish. Res. Soard Canada 14:321-486.

Wallace, G. T., and R. A. O~ce . 1978. Transport o f p a r t i c u l a t e o rgan ic ma t t e r by bubbles i n marine waters. L inno l . Oceanogr. 23:1155-1167.

Page 170: The ecology of estuarine channels of the Pacific Northwest coast: A

Yares, P. G. 1971. Rio1oq.y o f t he p i l e perch (Rhacochi lus vaccaj i n ~ a q u i n a Sav, Oreqon. U.S. Rur. Swort Fish. w i i d l . 51: 2 1 pp.

Uarren, C. E. 1971. B io logy and water po l 1 u t i o n c o n t r o l . W. 6 . Saunders Co., Ph i lade lph ia , Pa. 434 pp.

Washing ton Department o f Game. 1981. F ina l r e p o r t - w i l d1 i f e . Colo. Qiv. Est. Data Dev. Prog., Pac. NA Riv. Basins, Comm. , Vancouver, Wash.

Watt, K. E. I . 1964. Coniments on f l u c t u - a t ions o f animal popu la t ions and Inea- sures of colnmuni t y s t a b i l i t y . Can. Entomol . 36: 1434-1442. .

Weitcamp, D. E., and T. H. Schadt. 1981. Comlnencement Ray s tud ies, t echn i ca l re- p o r t , Vol. 3: Fish, wetlands. Rep. t o Sea t t l e D i s t . , U.S. Anny Corps Eng., Parametrix, Inc., Sea t t le , Wash.

i lelch, E. R., R. M. Emery, R. I. Matsuda, and W. A. Dawsorl. 1972. The r e l a t i o n o f p e r i p h y t i c and p l a n k t o n i c 3 lga l growth i n an es tuary t o hydrographic factors. L i ~nno l . keanog r . 17: 731-737.

Glendler, H. 0. , G. Deschamps, and Y , H. Anos. 1954. Downstredla r ~ i g r a n t s tud ies. Pages 8-14 Coastal i n v e s t i - gat ions, March-August 1354. Wash. Dep. Fish,, Olympia.

tr311Sport. $1. Sed i : i en t . P p t r d l . 39:1149-1156.

\.liebe, Ii. J., anti J. t is ton. 1972. SLudies o f the derobic, n o n e ~ d ~ t i heterot rop i i ic bacteri, j of the ben t : los . Pages 231-312 i n A. T. P r u t e r and 0- 1.. Alverson, eds.The Colu9bid R i v e r e s t u - ary and dd jacer~t ocean wa te r s ; b i a e n v i r - orimetltdl studies. IJni v. ~ a s k r . Press, Seattle.

Uiens, J. A., and J. 11. s?:~,t t. 1975. Xodel esti inatiori of energy f 1 3 w i n Ore- don coastal seabi r d pop111 3 t i orts . Condor 7 7 :439-452.

dieser, CJ. 1359. The e f f e c t of qrdi r l s ize on thcl t l i s t r i bu t i o r i of sriial l i n v e r - tebrdtes inhab i t i ng the heachns :lf P d ~ e t Sound. Lilnnul. Oceanoyr. 4: 1131-199.

Ili l l i s h , D. J . 1971. Factors corltrol 1 ing liiarine dnd es t u s r i w s J S ~ i t t o r a l ~nacro - fauna. Helgol. Wiss. E leerc?sun t? rs . 30:445-454.

Wildish, D. , I . , and !I. ! K r f s trnar'lson, 1379. T ida l energy and sub1 i t t o r a i ben- th i c animals i n estuar ies. - 3 . Fish. Res. 3oard Can. 36: 1197-1206.

Williams, 2 . f . 1083. : ) i s t r i b u t i c l n dnd r e l a t i v e dbundance of i na jo r z p i b e n t h i c crustncea i n the C3lumbia R i v e r e s t u a r y . I+!.$. Thesis. Uni r . Uash., 5 e a t t l ~ . 98 P P *

Westrheim, 5. J. 1955. S ize composit ion, growth, and seasonal abundance of juve- Wil l ialns, P. !4. 1967. Sea s u r f d c e che~n i - n i l ? Engl i s h s o l e (Parophrys v e t u l us s t ry : organic carbon dnd o r y a n i c and Yaquina Bay. Res. B r i e f s inorganic n i t rogen and phos 2 t i o r t l s i n Oreg. 6:4-9. surface f i lms and subsu r f ace waters .

Deep-Sea Res. 14:791-300. Wetrjiore, A. 1924. Food an3 economic re-

l a t i o n s o f Nor th kner i can grebes. U.S. Wil l iams, R. H., R * M. Laratdie, and J . 11. Dep. Agr ic . B u l l . 1196. 23 p p . Anes. 1975. A cata log r ~ f W a s ' 7 i q t o n

stredins. Vols. 1 - 2 . !.lash. r)ep. Wheeler, D. E., and C. E. E p i f a n i ~ . 1978. Fish., Olynpia.

Behavioral response t o hydrgs t a t i c pres- sure i n l a r v a e o f two species of xan th id i l i l son, R. 8. 1951. f l i s t r i b u t i o n , cr3bs. Mar. B i o l . 46:167-174. growth, feeding habi ts , d b u d ~ t n c q , t h e r -

l ~ ~ a l and sal i n i t y re1 a t i ons o f Neof?ysis Whetten, J. T., (1. C. Ke l ley , and I-. G. -- .nercedi s (Hol mes ) froin t he P l i co*fiek~ and

Hanson. 1969. C h a r a c t e r i s t i c s of Serpentine Rivers, B r i t i s h C ~ l ~ j m b i a . 5olumbia R i v e r sediment and sedi i~ lent M.A. Thesis. Univ. 3r-3 t. col . ,

Vancouver, B.C., Canada. 59 Dn. 157

Page 171: The ecology of estuarine channels of the Pacific Northwest coast: A

Winslade, P. 4. 1974a. Rehaviora l s t gd i es on t h e l e s s e r rand ee l - - - - - 4inr~oftvtes rnarinus 9 a i t t . I. The e f f e c t o f food --- a v a i l a b i l i t y on d c t i v i t y and t ? e r01r o f o l f a c t i o n i n food detect ior l . $ 3 . Fish, 3 i o l . 6:555-575.

g ins lade , K R. 1974h. Re9aviora l s t ~ d i e s on the l e s s o r sand ee l Antn~dfies~ marinus R a i t t . 11. The e f f e c t o f l i g h t -- -- i n t e n s i t y on a c t i v i t y . J . Fish. I3 io l . 63577-586,

K ins lade, O. R. 1 9 7 4 ~ . Rehaviora l s t ud i es on t h e l e s s e r sand e e l An~noci ies ,garinus R a i t t , 111. The e f fec ro 'c ; t e l F ---- pe ra tu re on d c t i v i t y an4 the e n v i ron:nen- t a l c o n t r o l o f t h e annual c v c l e o f d c t i v i t y . J. Fish. B i o l . G:587-599.

Wood, L., and iJ . J. t iarg is . 1971. Trans- p o r t o f b i v a l v e l a r v a e i n a t i d a l estu- ary. pages 24-44 in D. J. Cr isp, ed. Four th European mar ine sc ience sy~~iposium Canbridge I l n i v. Press, England.

\,loodin, S . 4. 1981. D i s t , ~ r b a n c e ancl com- muni ty s t r u c t u r e i n a sbal low water sand f l a t . Ecology 63: 1052-1066.

blooldr idge, T., and T. Eras~nus. 1930. U t i l i z a t i o n o f t i d a l c u r r e n t s hy es tua-

r i n e zooplankton. Es tu3 r i ne Coas ta1 Mar. Sc i . 11 : 197-114.

Wright, L. n. 1977. Sedi!nent t r a n s o o r t and d e p o s i t i o n a t r i v e r rnouths: a syn- thes is . Geol. Soc. h. R u l l . 99:857-958.

Gr ight , I,. r),, and ,I . V. Coleman. 1973. Va r i a t i ons i n :norpt io lo lv o f !'lajor r i v e r de l t as as func t ions o f ocean wave and r i v e r d ischarge regir ies. Ru l l . Am. Assoc. p e t r o l . Geol . 57:370-398.

Wydoski , S, S., and R. R. Whitney. 1979. I n l and f i s h e s o f Washington. Univ. Wash. Press, Sea t t le . 220 pp.

Yocun, C. F., and !.I. K e l l e r . 1961. Cor- r e l a t i o n o f food h a b i t s and abundance o f waterfowl, Humbol t Bay, Cal i f o r n i a . Cal if. F ish . Gane 47:41-53.

Zegers, P. 1979. The e f f e c t s o f l o g r a f t ground on t h e ben th i c i n v e r t e b r a t e s o f the Coos es tuary . Oreg. Dep. Environ. Qual. 44 pp.

Zimerman, S. T. 1972. Seasonal succes- s ion o f zooplankton popu la t i ons i n t h e d i ssimil a r mar ine mbayments on t h e Ore- gon coast. Ph.D. D i s s e r t a t i o n . Oreg. S ta te Univ., C o r v a l l i s . 212 pp.

Page 172: The ecology of estuarine channels of the Pacific Northwest coast: A

APPENIX A

Glossary 9 f Terms

Page 173: The ecology of estuarine channels of the Pacific Northwest coast: A

GLOSSARY OF TERMS

Advect ion - Local change i n a proper ty o f a system tha t takes p l ace as a r e s u l t of a cu r ren t , as o f a i r o r water; i n c 1 udes t r anspo r t of water vapor, heat, sediment load, s a l i n i t y (Proc to r e t a l . 1980).

A l k a l i n l t y - The capaci ty o f a water mass t o accept protons, i.e., hydrogen ions.

Anadror~ious - M i g r a t i n g up r i v e r s from the sea t o breed i n f resh water.

Benthic - Re la t i ng t o t h e bottom o f the body of water, i.e. animals, l i v i n g w i t h i n o r d i r e c t l y upon t h e sub- s t ra te .

Benthivore - Oryanism which feeds on benthic f l o r a and fauna.

B igh t - A bend, curve, o r i nden ta t i on i n the shore of a sea, i n c l u d i n g the body o f water bounded by such a coastal form.

tomoos ng Branching , Boulder - Rock fragment wi d i ameaer interco~;r;runicating, thereby producing la rger than 60.4 cm (Cowardin e t a l . a n c t l i k e or bra ided appearance. 1979).

Anyul a r - A roundness yrade showing very l i t t l e o r no evidence of wear, w i t h edges and corners sharp (Am. Geol. I n s t . 1976).

Au to t roph ic - Sel f -nour isn ing; r e f e r r i n g t o organisms t ha t are capable o f con- s t r u c t i n g organic ma t t e r w i t h h i yh- energy bonds frodl inorganic substanc- es f o r t h e i r food supply by photosyn- t h e s i s o r ct~emosynthesi s.

Uar - An elongated landform generated by waves and currents , usual l y running para1 1 e l t o shore, composed predomi - nant ly o f unconsol i da ted sand, grave 1 , cobbles, stones and rubble and w i t h Mdter on two sides.

Bed - Bottom of the channel.

Cav i t a t i on - Corras ive and co r ros i ve e f - f ec t of c o l l a p s i n g of bubbles pro- duced by a decrease o f pressure t o increase o f water v e l o c i t y (Bernoul i i e f f ec t ) a t p o i n t where pressure i s increased t o decrease o f v e l o c i t y (Am. Geol. I n s t . 1976)

Channel - An open condu i t e i t h e r na tu ra l - l y o r a r t i f i c i a l l y created which p e r i o d i c a l l y o r con t inuous ly conta ins rnovlng water, o r which forms a con- nec t i ng l i n k between two bodies o f Water (Langbein and I s e r i 1960).

Channel Bank - The s l o p i n g l a n d border ing a channel, which t y p i c a l l y has a steeper slope than e i t h e r the bottom o f the channel o r t h e adjacent land (Cowardin e t a l . 1979).

Bed Load - Sediment p a r t i c l e s and o ther Cobble - Rock fragments w i t h diameters deb r i s r o l l e d alony t h e bottom by between 7.6 cm and 25.4 cm (Cowardin rnovlng water. e t a l . 1979).

Page 174: The ecology of estuarine channels of the Pacific Northwest coast: A

Competence - Maximum s i ze o f p a r t i c l e s o f i l e t r i t d s - F ine l y d i v i d e d n a t e r i a l of o r - g i ven s p e c i f i c g r a v i t y which a water ganic 3 r inorganic o r i g i n which i s mass w i l l move a t a g iven ve l oc i t y . e i t h e r suspended i n the water coluriln o r ,

i n the case of l a r g e p a r t i c l e s , accurnu- Consumer - He te ro t r oph l c orqani sm, ch i e f l v l a t e d on the ho t ton . -

animals, which inges t o ther organ- isms o r p a r t i c u l a t e organic matter. D i f f u s i o n - The spreading ou t o f mole-

cu les, atoms, o r i ons i n a water

C o r i o l i s E f f e c t - The e f f e c t of t h e mass i n d i r e c t i o n s t end ing t o equal-

e a r t h ' s r o t a t i o n t o d e f l e c t water i z e concentrat ions i n a l l pa r t s of

masses t o t h e r i g h t i n the nor thern t h e system.

'phere and to the left in the D i v e r s i t y - Term o r lneasure used t o de- nor thern hemisphere.

s c r i be the species-abundance d i s -

Cor ras ion - Mechani c a l e ros ion performed t r i b u t i o n of a b i o t i c assemblage o r

by moving agents, gene ra l l y by t h e community; bo th t he number o f spe-

irrlpact o r g r i n d i n g a c t i o n o f p a r t i - c i e s and tne evenness o f t h e i r abun-

c l e s i n water. dances c o n t r i b u t e t o t he term (P ie l ou 1977).

Cor ros ion - Chemical eros ion which resul t s f rom t he r e a c t i o n o f water and rocks on t h e su r f ace o f t he land.

C r i t i c a l E ros ion V e l o c i t y - Lowest ve loc- i t y a t which g ra i ns o f a g iven size, l oose on t h e bed o f a channel, wi 11 move.

Decomposer - An organism t h a t breaks down dead o rgan i c mat te r i n t o s impler con- s t i t uen t s f o r i t s n u t r i t i o n .

Uernersal - Nekton ic fauna l i v i n g on o r c l o s e l y assoc ia ted w i t h t h e bottom; t y p i c a l l y r e f e r s t o f ishes, where ep i ben th i c r e f e r s t o i n ve r t eb ra te fauna.

Dendr i t i c - A dra inage p a t t e r n chardcter - i z e d by i r r e g u l a r branching i n a l l d i r e c t i o n s w i t h the t r i b u t a r i e s j o i n - i n g t h e main channel a t a l l angles (An. Geol . I n s t . 1976).

Dens i t y - Abundance of organisms per u n i t area o r volume.

Deposi t Feeder - Organism, t y p i c a l l y ben- t h i c , which i s e i t h e r somewhat se lec- t i v e o r almost completely unse lec t i ve i n feeding; inc ludes organisms which sweep t h e surface o r use c i l i a r y t r a c t s a l ong e x t e n s i l e tentac les.

E l u t r i a t e - Tne f l u i d product o f m ix ing water, o r a water a c i d so l u t i on , w i t h sediment, a1 low i ng s e t t l i n y over a va ry ing amount o f t i m e and decant iny t h e r e s u l t i n y s o l u t i o n ,

Epibenth ic - Associated p r i m a r i l y w i t h t h e surface o f t h e bottom but a lso w i t h t h e water column d i r e c t l y above t h e bottom.

Euhal ine - Assoc ia ted w i t h nrouth O r ex- treme s a l i n i t y , i .e . , 30-40 ppt, reg ion o f es tuary (Symp. Class. Brack. Mat. 1959).

F a c u l t a t i v e (Feeder) - An orgarlisln wnich i s not f unc t i ona l l y cons t ra ined t o feeding on one yenera l t ype o f p l a n t o r animal b u t may feed on d ive rse prey from severa l t r o p h i c leve ls .

F l occu la t i on - Aggregat ion o f small sus- pended p a r t i c l e s due t o i o n i c changes brouyht on by contact w i t h seawater.

F l u v i a t i l e - Belonging t o a r i v e r o r produced Dy r i v e r a c t i o n (An. Geol . i n s t . 1976).

Flow Rat io - R a t i o o f volume o f upland water e n t e r i n g t h e es tuary du r i ng a t i d a l c yc l e t o i t s t i d a l prism.

Page 175: The ecology of estuarine channels of the Pacific Northwest coast: A

F l u v i a l - Of, o r p e r t a i n i n g to, r i ve rs . Ob l iga te (Feeder) - Organism const ra ined by moryholoyy o r behav io r t o feed ing

Food Web - The p a t t e r n and sequence o f on one general t y p e o f p l a n t o r feed ing i n t e r r e l a t i o n s h i p s among t h e animal. organisms o f a community , from reduc- e r and producer organisms t o t h e Omnivore - Organism which feeds on both h ighes t ca rn ivo res . p l a n t and animal mat te r .

Food Web L inkage - The t r o p h i c connect ion between food web node.

Food Web Module - I n t e r a c t i n g species t h a t seem dependent upon s p e c i f i c prey r e - sources, y i ve evidence f o r evolved m o d i f i c a t i o n f o r use o f , o r associa- t i o n w i t h , these resources, and t h a t disappear upon removal o f a s t r ong l y i n t e r a c t i n g spec ies { o r appear w i t h i t s a d d i t i o n ) c o n s t i t u t e a module (Paine 1980).

O l i yoha l i ne - Assoc iated w i t h head o r low s a l i n i t y , i.e., 0.5-5 l p t , r ey i on o f estuary (Symy. Class. Brack. Wat. 1959).

Pe lay ic - C h a r a c t e r i s t i c o f t h e water c o l - umn and not i n a s s o c i a t i o n w i t h t h e bottom.

P h i Un i t s - Un i t s o f p a r t i c l e o r g r a i n s i z e where @I = -1092 d i a (mm).

Food Web Node - Species, taxon, o r func- P l ank t i vo re - Organism which feeds on t i o n a l feeding group c o n s t i t u t i n g a suspended zooplankton and nekton. un ique p rey o r p reda to r compartment i n a food web. Polyhal i ne - Associated w i t h m idd le and

lower reaches o f es tuary , t y p i c a l l y Gravel - Hock fragments w i t h diameters be- w i t h s a l i n i t i e s between 18-30 pp t

tween 2 mm and 7.6 cm (Cowardin e t (Symp. Class. Brack. Water 1959). a l . 1979).

L i t t o r a l - P e r t a i n i n g t o t h e shore zone Primary Product ion a ate) - ~ e a s u r e of between extreme h i gh and low t i d e carbon f i xed pe r u n i t area per u n i t l e v e l s d u r i n g s p r i n g t i d e s . t ime by pho tosyn the t i c organisms

(producers) . usual l y expressed as Meropl ankton - P lank ton ic stages (eggs and y C m-2 hr' i .

l a r vae ) o f organisms which i n l a t e r 1 i f e wi 11 become members of t h e hen- Kheotaxis - Movement o f an organism i n thos o r nekton. which a water stream o r c u r r e n t i s

t h e d i r e c t i v e s t imulus.

Mesohal ine - Assoc ia ted w i t h upper reaches o r i n t e rmed ia te s a l i n i t i e s , i.e., 5- Sa l ine - Possessiny a h i y h deyree o f sa- 18 p y t , r e g i o n o f estuary (Symp. l i n i t y , i.e., more than 3° /00 (Am. Class. Brack. Mat. 1959). Geol. I n s t . 1976).

Nekton ic - Capable o f swirnrning aga ins t normal wave and c u r r e n t ac t ion , i .e., se l f - p rope l led.

N e r i t i c - Shal low sur face water zone ex- tend ing f rom t h e h i g h - t i d e mark t o the edye o f t he c o n t i n e n t a l she l f .

Neuston - Organisms assoc ia ted w i t h t h e su r face f i l m o f t h e water.

S a l i n i t y - The t o t a l amount o t d i s so l ved so l i d m a t e r i a l ( i n grams) con ta ined i n one k i log ram o f water, expressed as O/,, ( pp t ) . For t h i s measurement a l l o rgan ic ma t t e r i s ox i d i zed , a l l carbonate converted t o ox ide, and a l l bromide and i o d i d e r ep l aced by c h l o r - i d e (Sverdrup e t a l . 1942; c o l l o q u i - a l - t h e s a l t i n e s s o f a body o f water).

Page 176: The ecology of estuarine channels of the Pacific Northwest coast: A

Sand - Coarse-grai ned minera l sediments w i t h d iameters between 74 pm and 2 mln (Cowardin e t a l . 1979).

Sp r i ng T ides - The h i ghes t h i gh and lowes t low t i d e s d u r i n g t he l una r month.

Standing c rop - Term app l i ed t o biomass o f oryanisms per u n i t area o r volume.

Standing s tock - Term used t o descr ibe combined concept o f dens i t y and s tand ing crop.

Stone - Hock fragments w i t h diameters be- tween 25.4 cm and 60.9 cm (Cowardin e t a l . 1979).

Subaer ia l wet1 ands - Wetland h a b i t a t s which l i e between mean low water and mean h i gh water.

S u b l i t t o r a l - P e r t a i n i n g t o t h e marine zone between extreme lowest 1 ow t i d a l l e v e l and t h e marg in o f t h e cont inen- t a l she l f .

Subrounded - A roundness grade i n which cons iderab le wear i s ev ident , w i t h edges and corners rounded t o smooth curves and t h e area o f t h e o r i g i n a l faces cons iderab ly reduced (An. Geol .

Suspension feeder - Organism which pro- cesses water f o r food, e i t h e r pas- s i v e l y ( b e n t h i c ) o r a c t i v e l y (pe lay - i c ) e n t r a i n i n g phy top lank ton and o t h e r microscopic organisms and sus- pended d e t r i t u s .

Th igmotax is - Movement o f an organism i n which con tac t w i t h a s o l i d body ( i e . , a1 gae, bot tom sediments, rocks, p i l i n g s ) i s t h e d i r e c t i v e s t i m u l i s ; a l s o c a l l e d s t e reo tax i s .

T i da l a m p l i f i c a t i o n ( f a c t o r ) - Local t i d a l range as a f u n c t i o n ( d i v i d e d by) t h e t i d a l range a t o r near t h e mouth o f t h e estuary .

T roph ic - Related t o food, feeding, and n u t r i t i o n .

T roph ic l e v e l - A group o f oryanisms i n a food web t h a t secures food i n t h e same general manner.

V o l a t i l e s o l i d s - Products, exc l us i ve o f mois ture, g i ven o f f as gas and vapor as determined by d e f i n i t e p resc r ibed method01 ogy ; measure o f o rgan ic content .

Page 177: The ecology of estuarine channels of the Pacific Northwest coast: A
National Wetlands Research Center
This page has been left blank intentionally.
Page 178: The ecology of estuarine channels of the Pacific Northwest coast: A

APPENDIX I3

Sedinent C l a s s i f i c a t i o n Schtmcs

Page 179: The ecology of estuarine channels of the Pacific Northwest coast: A

Appendix fab le 0-1. Various schemes of unconsolidated sediment p a r t i c l e c l a s s i f i c a t i o n (Source: U.S. Army Corps Engineers 1973).

Wentworth Scale

( s i z e descr ip t ion)

Bou 1 der

Cobble

Phi Uni ts

d*

- 8

Grain Diameter

d (mm)

256.0

U.S. Standard

Sieve Size

U n i f i e d Soi 1

C l a s s i f i c a t i o n (USC)

Cobble

Page 180: The ecology of estuarine channels of the Pacific Northwest coast: A

APPENDIX C

Tidal Channel Character is t ics Measurements (from Levy and Northcote 1981)

Page 181: The ecology of estuarine channels of the Pacific Northwest coast: A

Measured Tidal Channel (TC) Characteristics

1. TC mouth width (m) 2. Width of TC at sampling station ( m ) 3. Distance from sampling site to mouth of TC (m) 4. TC depth (m) 5. Trough depth (cm) 6. TC length (m) 7. Average sedge height (m) 8. Average szdiment particle size (microns) 9. Distance to nearest subtidal refuge (m) 10. Angular deflection to prevailing flowing tide (degrees) II. Channel order 12. Sub- channel length (m) 13. Angle of sedge bank (degrees) 14. Slope of the tidal change (m/hr ) 15. Height of the high tide (m) 16, Turbidity of the water at low t ide (NTU) 17. Area of the TC (m2) 18. Compass heading of main axis of TC (degrees) 19. Relative elevation of TC bottom (m) 20. Elevation of surrounding bank (m) 2 1 . Area of refugia a t low tide (m2) 22. Length of time TC submerged (hr )

cross-section A 1.L SLOUGH

Page 182: The ecology of estuarine channels of the Pacific Northwest coast: A

Measurement o f T ida l Channel tlabi t a t Charac te r i s t i cs

F i sh catch r e s u l t s from the May 10-17 surveys were compared s t a t i s t i c a l l y w i th h a b i t a t c h a r a c t e r i s t i c s o f t i d a l channels t o assess h i c h c h a r a c t e r i s t i c s were associated w i th h igh numbers o f f i s h i n d i f f e r e n t t i d a l channels. The c h a r a c t e r i s t i c s used i n the analys is were chosen t o be e a s i l y measurable e i t h e r d i r e c t l y a t the sampling s i t e o r i n t he laboratory, o r i n d i r e c t l y from Fraser R ive r De l ta Pro jec t Maps. F igure 5 shows several of t h e t i d a l channel c h a r a c t e r i s t i c s and Table 13 suppl ies numerical values. The f o l lowing measurements were taken and included i n s t a t i s t i c a l analyses:

1. Width o f the t i d a l channel mouth i n meters (MTHWDTH) - measured i n t he f i e l d from one t i d a l channel bank t o the other perpend icu lar t o the a x i s o f t he channel.

2. Width a t the sampling s i t e i n meters (STNWDTH) - measured i n the f i e l d from one t i d a l channel bank t o t he other perpendicular t o t h e a x i s o f t he channel.

3. Distance from the sampling s i t e t o t he t i d a l channel mouth i n meters (MTHDIST) - measured w i t h a map measure from the Fraser R ive r Delta Ser ies Maps.

4. Tida l channel depth i n metres (CHNDPTH) - measured i n t h e f i e l d a t low t i de . A rope was st retched between the stakes a t t h e l e v e l o f t he bank and a 3-meter pole, graduated a t 5 cm i n t e r v a l s , was pos i t ioned v e r t i c a l l y i n the deepest pa r t o f the t i d a l channel. The he igh t a t which t h e rope bisected t h e pole was recorded as t h e t i d a l channel depth.

5. Trough depth i n centimeters (TRODPTH) - the res idual t i d a l f l o ~ near low t i d e f requen t l y scoured a trough i n the bottom o f t h e t i d a l , channel which var ied i n depth between sampling s i t es . This depth was measured w i th a r u l e r dur ing periods o f low s lack t i d e between June 7-13, 1979.

6. Length o f t h e t i d a l channel i n ~neters (TCLNGTH) - measured w i t h a map measure from t h e Fraser R ive r Delta Series Maps. The l eng th was def ined from the p o s i t i o n o f t he sampling s i t e t o t he f u r t h e s t p o i n t on t h e 0 foo t geodetic perimeter o f t h e t i d a l channel.

7. Height o f surrounding niarsh p lan ts i n ineters (IITSEDCC) - measured i n t he f i e l d dur ing a one week per iod a t t h e beg inn ing of June, 1979 us ing a 3-meter pole graduated i n 5 cnl i n t e r v a l s .

Page 183: The ecology of estuarine channels of the Pacific Northwest coast: A

8. Mean sediment p a r t i c l e s ize (SFDSIZE) - r e p l i c a t e sediment samples were obtained on June 12, 1973 a t a l l 18 t i d a l channel sampling s i t es . Samples o f t he upper 1 cm of sediment were co l l ec ted w i t h a t rowel c lose t o the center trough of t h e t i d a l channels and t ranspor ted t o the Geochemistry Lab, U.B.C., i n Whir l Pak Bags. The samples were d r i ed i n an oven i n dry ing bags and then broken up w i th a mortar and pestlc. Ind iv idua l samples were then placed on the uppermost (coarsest) of a ser ies o f 6 sieves and shaken f o r 5 minutes. The f rac t ions o f sediment were weighed and the p ropo r t i on o f sediment i n a given s ize range ca lcu la ted as a f r a c t i o n o f t h e t o t a l sample weight. The average p a r t i c l e s i ze i n a given f r a c t i o n was asst~med t o be half-way between the surrounding sieve sizes. The p r o p o r t i o n o f sediment i n a given f r a c t i o n was m u l t i p l i e d by t h e average p a r t i c l e s ize t o obtain weighted propor t ions o f sediment which were then summed to give an est imate o f the mean p a r t i c l e size. The average value o f 2 rep l i ca tes was used i n the s t a t i s t i c a l analyses and i s shown i n Table 13.

9. Distance t o nearest sub-t idal refuge i n meters (REFDIST) - determined as the distance from the sampling s i t e t o the nearest slough ( sub - t i da l ) hab i ta t capable o f main ta in ing j u v e n i l e salmon a t 1 ow t i d e when no water occurred i n the t i d a l channels. Th is d is tance was measured o f f Fraser River Delta Maps w i t h a map measure.

10. Angular de f l ec t i on t o p reva i l i ng f lowing t i d e i n degrees (ANGDEFL) - t h e angle o f the ax i s o f t he t i d a l channel a t t he mouth t o the d i r e c t i o n o f the f lood ing t i d e i n the slough (F igu re 5 ) was measured o f f t h e Fraser River Del ta Maps w i th a p ro t rac to r .

11. T ida l channel order (TCORDER) - t i d a l channels were c l a s s i f i e d according t o t h e fo l l ow ing cha rac te r i s t i cs :

ORDER CHARACTER I ST I CS

1 la rge sub-t idal slough or reach which never dewaters a t low t i de .

2 l a rge channel which experiences h igh v e l o c i t y t i d a l f lows and usual ly does not dewater a t low t i d e .

3 i n t e r - t i d a l channel which branches o f f a 2nd order channel o r slough and usua l ly dewaters completc ly a t low t ide.

small i n t e r - t i d a l channel h i c h branches o f f a 2nd o r 3rd order channel and always dewaters a t low t i d e .

Page 184: The ecology of estuarine channels of the Pacific Northwest coast: A

12. Tota l sub-channel length i n rneters (SUBCHNL) - the length of a1 l t r i b u t a r i e s f l ow ing i n t o the t i d a l channels was measured w i th a nap measure. Only those t r i b u t a r i e s deeper than the 0- foo t contour were i n c l uded.

13. Average angle of t he sedge bank i n degrees (ANGBANK) - determined i n t he f i e l d i n d i r e c t l y through measurement o f parameter: A, B and C (shown on F igure 5 ) and c a l c u l a t i o n o f angles r* and o( wl~ere o(=

tan ' l A /B and d = tdn-' A/C. The mean value f o r these 2 angles was used t o g ive a measure o f the r e l a t i v e slope o f the t i d a l channel banks.

14. Slope o f t h e t i d a l change i n meters per hour (TIDSLOP) - the d i f f e r e n c e between the height o f the predicted h igh and 1 0 v ~ t i d e s a t Po in t Atk inscn was d iv ided by the length o f t ime between these two t i d e s t o g i v e a measure o f t he r a t e o f t i d a l f low f o r t h e dates sampl i ng took place.

15. Height o f t h e h igh t i d e i n meters (HTHTIDE) - the pred ic ted l e v e l s o f t h e h igh t i d e a t Po in t Atkinson f o r the dates sampling took p lace were obta ined from t i d e tables.

16. T u r b i d i t y o f the t rough water a t low t ide i n nephelometric t u r b i d i t y u n i t s (WATURB) - water sampling took place a t low t i d e on June 12, 1979 a t a1 1 18 t i d a l channel sampling s i tes . Sub-surface samples were obta ined f rom the trough o f the t i d a l channel i n 250 m1 p l a s t i c sample j a rs . Care was taken t o avoid d i s tu rb ing the sediment upstream o f t h e sampling s i te. Tu rb id i t y l e v e l s were l a t e r determined i n the labora tory w i t h a tlach Turbidimeter.

17. Area o f t h e t i d a l channel i n square meters (TCARCA) - measured by p lan imet ry from the Fraser R ive r Del ta Ser ies maps. The margitis of the t i d a l channels were def ined by t h e 0- foo t geodetic contour.

18. Compass heading o f the main a x i s o f the t i d a l channel i n degrees (COMPASS) - the main a x i s o f t h e t i d a l channel was drawn onto Fraser R ive r De l ta maps and t h e d i f f e rence between t h i s l i n e and the North a x i s was measured w i th a pro t rac tor .

19. E levat ion o f t he t i d a l channel bottom i n meters (TCELEV) - t h e depth of water i n t h e t i d a l channels was measured w i t h a 3-meter graduated s t a f f gauge a t a l l eighteen s i t e s over a 40 minute per iod near h igh t i d e on June 14, 1979. The l o c a t i o n o f t h e deepest p a r t of t he channel was marked w i t h a prev ious ly deposited anchor and f l oa t . Since a l l measurements were conducted a t a time when the water l e v e l was s t a t i c , measured d i f f e rences r e f l e c t e d va r i a t i ons i n bottom

Page 185: The ecology of estuarine channels of the Pacific Northwest coast: A

elevat ion. The measured water depths were subtracted froin the leve l of the pred ic ted h igh t i d e a t Point Atkinson t o g ive a measure of the absolute e levat ion o f the t i d a l channel bottom. The measurements were repeatl?d on two consecutive high t i d e s t o compare resu l ts . Since the r e l a t i v e ranking o f bottom e leva t i on was consistent , only t h e June 14 r e s u l t s are shown i n Tahle 13.

20. E levat ion o f the surrounding bank i n meters (BNKELEV) - the average of two spot heights nearest the sampling s i t e was determined from the Fraser River Cel ta Series maps. This served t o g ive a measure o f the absolute e levat ion o f the surrounding marsh h a b i t a t above 0 f o o t geodetic elevation.

21. Area of low e leva t i on refuges i n square meters (AREAREF) - the area of sub- t ida l pools i n the t i d a l channels bras planimetered fram the Fraser R iver Delta Series maps. These areas were bounded by dashed l i n e s and ind ica ted low e leva t i on depressions i n the t i d a l channels which contained water a t low t ide .

22. Time of submergence p r i o r t o sampling i n hours (TIMESUB) - ca lcu la ted by p l o t t i n g t i d a l curves (p red i c ted t i d e height a t Po in t Atkinson vs. t ime) and de f i n ing t h e per iod o f t i d a l channel submergence p r i o r t o sampling based on the measured t i d a l channel bottom e levat ions (no. 19 on p. 13). The number o f hours a t which t h e pred ic ted t i d e leve l was greater than the measured e leva t i ons was extrapolated o f f the t i d a l curves.

Page 186: The ecology of estuarine channels of the Pacific Northwest coast: A

Appendix Table C - 1 . Measured t idal channel habitat character is t ics . For explanation o f terms and tinits of measurement, see text.

T lda l SAWPLlNG SITES Channel Woodward Is land Barber I s l end Lsdner Marsh Robsrts Be* Chwecte r ls t l cs

W 1 Y2 W3 W4 W5 W6 81 82 83 84 85 Dl D2 03 04 05 F I F2

MlHWDM 17.0 29.0 1 3 5 4.5 14.5 21.5 15.0 1 3 0 10.5 1 1 5 6.0 13.0 1 9 5 9.5 11.5 1 1 5 10.5 5.5 STNWDTH 9.9 28.0 12.9 7.9 8.3 12.1 11.8 10.8 11.3 12.3 3.9 9.7 11.6 6.9 8.7 0 4 7.2 7.7 MmD IST 192 53 85 30 35 1128 55 65 165 132 4 9 282 28 90 98 40 65 C W T H 1.75 I 1.38 1.19 1 7 4 3 1 1-69 I.% 1.68 2 1 3 1-51 2-16 2.05 1.90 1.77 2.27 1.18 1.88 lRODPTH 9.0 15.0 5.0 5.0 6.0 5.0 6.5 3.5 17.5 8.0 3.0 6.0 1 4 5 7.0 9.0 24.5 6.0 6.0 TCLMiTH 495 870 480 391 566 234 352 370 891 315 346 770 463 215 376 480 414 533 HT SEDGE 0.95 1-05 1.10 1.15 0 . s 1.05 0.85 0.82, 0.96 O.R 0.90 1.10 1 . 0 0.95 1.35 1.40 o .n 0.60 SEOS I ZE 192 I 0 8 98 75 155 89 79 83 77 105 87 72 9 6 84 100 80 80 143 REFDl ST 219 63 489 522 45 1143 70 189 108 216 1 U 11 291 49 217 228 416 290 ANGDEFL 79 56 57 57 46 57 % 79 20 78 65 102 3 1 111 0 0 6 0 77 TCQIDER 3 2 3 3 3 2 3 3 3 3 4 3 3 3 3 2 3 3 SUBCHNL 474 2210 838 31 1 476 492 659 N I229 495 75 200 495 78 252 221 983 4% ANOBAK 19.4 8.6 12.5 17.0 2 6 3 12.6 16.3 20.2 1 6 4 19.8 38.8 24.1 24.2 29-0 22.5 13.4 19.0 26.8 " TIOSLW 0.44 0.44 0.44 0.44 0.44 0.44 0.49 0.49 0.49 0.49 0.49 0.48 0.48 0.48 0-48 0.48 0.46 0.46 May 10-13 T l O S L 6 0.49 0.49 0.49 0.49 0.49 0.49 0 . X 0.36 0.36 0.36 0.36 00.4 0.44 0.44 0.44 0.44 0.49 0.49 Mey 14-17 HTHT l DE 4.2 4.2 4.2 4.2 4.2 4.2 4.1 4.1 4 1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.2 May 10-13 HTHT l C€ 4.1 4.1 4.1 4.1 4.1 4 1 3.7 3.7 3.7 3.7 3.7 1.9 3.9 3.9 3.9 3.9 4.1 4.1 Way 14-17 WATURB 110 77 2s 50 1 130 160 22 100 120 52 67 46 23 36 76 80 57 TCAREA 4608 24071 6197 U)84 4097 2778 3855 4x15 9950 4311 1laO 3 9 3 2694 2044 2323 8240 4617 3214 W A S S 197 95 103 99 263 121 40 114 85 328 122 8 84 143 33 79 144 266 TCELEV 1 . 6 1.41 1-95 2.09 1-68 2.19 1.67 1.91 1.62 1-66 1-96 1.81 1 2.12 1.94 1.58 2-34 2.21 WKELE V 0.2 0.3 0.2 0.3 0.4 0.6 0.6 0.8 0.9 0.5 1.1 0.9 1.2 0.9 1.0 1.2 0.0 0.6 AREAREF 37 2183 632 74 74 9 46 0 1623 37 0 0 46 56 0 1208 418 0 T I MSUB 17.43 17.67 16.49 16.10 17.24 15.83 16.02 15.55 16.12 16.00 15.45 15.86 15.76 15.22 15.59 16.34 15.02 15.32 Mey 10-13 T I K S V B 15.75 16.13 15.12 14.86 15.62 14.68 1 6 0 5 15.57 15.15 15.51 16.21 15.56 15-46 14-96 15-31 16.00 14.47 14.71 Mey 14-17

Page 187: The ecology of estuarine channels of the Pacific Northwest coast: A
National Wetlands Research Center
This page has been left blank intentionally.
Page 188: The ecology of estuarine channels of the Pacific Northwest coast: A

APPENOIX D

Sumnary o f Current Research and Research Groups/Centers Addressing

Estuarine Channel Ecology or Ef fec ts of A1 te ra t i on o f Channel Habi tats

Page 189: The ecology of estuarine channels of the Pacific Northwest coast: A

Estuar ine Channel Research i n P a c i f i c Northwest

Organ iza t ion : Oregon I n s t i t u t e o f Marine B io logy Uni ve rs i t y o f Oregon

Address: Oregon I n s t i t u t e o f Marine B io logy Uni v e r s i t y o f Oreaon Char leston, Oregon 97420

Contac t (s ) : Danie l Varoujean, Paul Rudy J r .

Type of Research : general es t u a r i ne ecology

Loca t i on : Coos Bay

g rgan i za t i un : Oregon Department o f F i s h and Wi ld? i f e

Address: Oregon Department o f F i s h and Wild1 i f e Oregon S ta te Un i ve r s i ty Extens ion Hal 1 303 Corva l 1 i s , Oregon 97331

Contac t (s ) : Danie l Bottom, James Lichatowich, Kim Jones, Peggy He r r i ng

Type of Research: e s t u a r i n e u t i l i z a t i o n by j u v e n i l e salmonids

Loca t ion : Oregon coas ta l es tua r i es , Coos Bay

Organizat ion: Department o f Botany and P lan t Pathology Oregon State Uni vers i t y

Address: Department o f Botany and P l a n t Pathology Oregon State Un i ve r s i t y C o r v a l l i s , Oregon 97331

Contac t (s ) : C. David M c I n t i r e

Type of Research: benth ic pr imary p roduc t ion ; ee lg rass p roduc t ion and physiology; s t r u c t u r e and p roduc t i on o f e p i p h y t i c a lgae

Loca t ion (s ) : Columbia River estuary ; Ne ta r ts Bay

Page 190: The ecology of estuarine channels of the Pacific Northwest coast: A

Organizat ion: Department of General Science Oregon S t a t e Universi ty

Address : Department o f General Science and, Marine Science Center Oregon S t a t e Universi ty Newport, Oregon 97365 Corval 7 i s , Oregon 97331

Con tac t ( s ) : Robert Worrest, Dani 1 Hancock

Type of Research: ecology of e s t u a r i n e diatoms

Location: Yaqui na Bay

Organizat ion: Department of Geography Oregon S t a t e Universi ty

Address : Department of Oceanography Oregon S t a t e University Corval 1 i s , Oregon 97331

Con tac t ( s ) : Robert Frenkel , Theodore Boss

Type of Research: s a l tmarsh comuni t y ecology; introduced spec i e s of e s t u a r i n e macrophytes

Location: Siuslaw River e s tua ry

Organizat ion: School of Oceanography Oregon S t a t e Universi ty

Address : School of Oceanography and, Marine Science Center Oregon S t a t e Universi ty Newport, Oregon 97365 Corvall i s , Oregon

Con tac t ( s ) : Lawrence Small, Charles Mi l l e r , Robert Hol ton , J e f f e r son Gonor James Good

Type of Research: water column primary production; phytoplankton assemblage s t r u c t u r e ; zooplankton grazing on e s t u a r i n e phytoplankton; pe lag ic zooplankton assemblage s t r u c t u r e and dynamics; benthic infauna assemblage d i s t r i b u t i o n and s t r u c t u r e

Location ( s ) : Columbia River e s tua ry , Yaquina Bay, Coos Bay

Page 191: The ecology of estuarine channels of the Pacific Northwest coast: A

Organizat ion: Hammond Laboratory National Marine F isher ies Service

Address : Hammond Laboratory National Marine Fisher ies Service P.O. Box 155 Hammond, Oregon 971 21

Contact(s) : Robert McConnell , George McCabe, Robert Emmett

Type o f Research: f i she r ies ecology; d i s t r i b u t i o n , abundance, and food hab i t s of j uven i l e salmonids and Dungeness crab

Loca t i on : Columbia River estuary

Organizat ion: B a t t e l l e Marine Research Laboratory B a t t e l l e Memorial I n s t i t u t e Northwest

Address : B a t t e l l e Marine Research Laboratory 439 West Sequim Bay Road Seqbim, Washington 98382

Contact(s) : James Young, Walter Pearson, Jack Anderson, Charles Gibson

Type o f Research: estuar ine ecology o f benth ic infauna, pelagic zooplankton and f.ishes; e f fec ts o f o i l p o l l u t i o n on es tuar ine commun- i t i e s

Locat ion : S t r a i t o f Juan de Fuca and northern Puget Sound

Brganizat ion: F isher ies Research I n s t i t u t e Un ive rs i t y o f Washington .

Address: F isher ies Research I n s t i t u t e WH-10 Col lege o f Ocean and Fishery Sciences Un ive rs i t y o f Washington Seat t le , Washington 98195

Contact(S): Charles Simenstad, Robert Wissmar, Ernest Salo, Quent in Stober, Bruce M i l l e r

Type o f Research: es tuar ine u t i l i z a t i o n by j u v e n i l e salmonids; food web s t ruc tu re o f P a c i f i c Northwest es tuar ies ; s t r u c t u r e and dynamics o f epi benth ic and n e r i t i c zooplankton comnuni t i e s i n estuaries; es tuar ine f i s h assemblage s t ruc tu re

Locat ion : Hood Cana 1, Puget Sound and component es tuar ies , Grays Harbor, Columbia River estuary

Page 192: The ecology of estuarine channels of the Pacific Northwest coast: A

Organizat ion: School of Fisheries Un ive rs i t y of Washington

Address : School o f F isher ies WH-10 Col lege of Ocean and Fishery Sciences Un ive rs i t y o f Washington Seat t le , Washington 98195

Contact(s) : David Armstrong, Kenneth Chew, Ronald Thorn, Jack Word

Type of Research: basic biology and ecology o f estuarine crustaceans and molluscs; ea r l y l i f e h i s t o r y ( l a r v a l ) o f economical IY important crustaceans; maricul t u r e o f estuar ine o r g a n i Sms

Locat ion : Grays Harbor, Puget Sound and associated estuar ies

Organizat ion: Department o f Oceanography Un ivers i ty o f Washington

Address: School of Oceanography WE-10 Col 1 ege o f Ocean and Fisher ies Sciences Un ive rs i t y o f Washington Seat t le , Washington 98195

Contact(s) : Joe Creager, Chris Sherwood, David Jay, T. Saunders Engl i sh, Peter Jumars, Arthur Nowel 1

Type o f Research: estuar ine sedimentology and c i r cu la t i on ; estuar ine zoo- p lankton and l a r v a l f i s h d i s t r i bu t i on , abundance, and ecology; benthic infauna and epi fauna ecology

Location: Columbia River estuary, Puget Sound and associated es tua r i es

Organizat ion: Huxley College o f Environmental Studies Western Washington Un ivers i ty

Address : Huxley College o f Environmental Studies Western Washington Un ivers i ty Be1 1 i ngham, Washington 98225

Contact(s) : W i 11 jam Summers, Bert Webber

Type o f Research: e c o l o w o f estuar ine and nearshore marine algae and benthic. inver tebrate comuni t i e s

Location: nor thern Puget Sound estuar ies

Page 193: The ecology of estuarine channels of the Pacific Northwest coast: A

Organization : Department of Oceanography University of Br i t i sh Columbia

Address : Department of Oceanography University of Br i t i sh Columbia Vancouver, Br i t i sh Columbia V6T 281 Canada

Contact(s) : Brenda Harrison

Type of Research: ecology of es tuar ine benthic and epibenthic inver tebra te comnuni t i es

Location: Fraser Ri ver es tuary

Organization: Department o f Botany University o f Bri t i sh Columbia

Address: Department of Botany University of Br i t i sh Columbia Vancouver, Br i t ich Columbia V6T 2B1 Canada

Contact(s) : Paul Harrison, Richard Bigley

Type o f Research : seagrass (Zos tera spp. ) cormuni t y ecology

Location: S t r a i t o f Georgia es tua r i es , northern Puget Sound

Organization : Wes twa t e r Research Centre Universi ty of Br i t i sh Columbia

Address: Westwater Research Centre University of Br i t i sh Columbia Vancouver, B r i t i s h Columbia V6T 1W5 Canada

Contact(s) : Thomas Northcote, David Levy, Anthony Dorcey, Kenneth Ha1 1

Type of Research: e s tua r ine u t i l i z a t i o n by juvenile salmonids; management of e s tua r ine hab i t a t s ; e f fec ts of log ra f t ing , diking and f i l l i n g , and construction of training walls

Location: Fraser River es tuary

Page 194: The ecology of estuarine channels of the Pacific Northwest coast: A

Organ iza t ion : Department of B i o l o g i c a l Sciences Simon Fraser U n i v e r s i t y

Address: Department of B i o l o g i c a l Sciences Simon Fraser Un i v e r s t i y Burnaby, B r i t i s h Columbia V5A 1S6 Canada

Contact ( s ) : Michael St anhope

Type o f Research: es tua r i ne ecology o f gammarid amphipods w i t h r e f e rence t o l o g storage e f f e c t s

Loca t ion : Squami sh and Fraser R ive r es tuar ies

Organ iza t ion : F i she r i es Research Branch, Salmon Hab i ta t Research Sect ion

Address: l ~ e s t Vancouver Laboratory, z ~ a c i f i c B i o l o g i c a l S t a t ion, 4160 Mar in eDrive, Departure Bay Road. West Vancouver, B.C. V7V IN6 Nanaimo, R .C . V9R 5K6 Canada

Contac t (s ) : Co l i n ~ e v i n ~ s l , Mich e l ~ a l d i c h u k l Me1 ~ o t ~ k l C. M C A ~ 1 i s t e r 2 , 9 T.J. ~ r o w n ~ , B. Kask , I. ~ i r t w e l y l , G. ~ r e e r ~ .

Type o f Research: eco logy o f gammarid amphipods i n es tuar ine hab i t a t s ; feed ing ecology of j u v e n i l e salmonids; s u r v i v o r s h i p of chinook re leased i n es tua r i ne and a l t e r n a t e h a b i t a t s ; e f f e c t s of domestic waste on j u v e n i l e salmonids i n es tua r i es

Locat i on : Fraser River , Campbell R ive r , Nanaimo R i ve r es tua r i es

Organ iza t ion : P a c i f i c B i o l o g i c a l S t a t i o n

Address: P a c i f i c B i o l o g i c a l S t a t i o n Department o f t h e Environment P.O. Drawer 100 Nanairno, B r i t i s h Columbia V9R 5K6 Canada

Contact (s) : John S ibe r t , Robin LeBrasseur, Michael Healey, B ren t Hargreaves

Type o f Research: es tua r i ne u t i l i z a t i o n by j u v e n i l e salmonids; ecology o f ep iben th ic zooplankton; es tua r i ne feeding ecology o f j u v e ~ i l e f i shes

Loca ti on : Nanairno R i ve r estuary , o ther Vancouver I s l a n d e s t u a r i e s

Page 195: The ecology of estuarine channels of the Pacific Northwest coast: A

5 0 2 7 2 -101 ' REPORT 3. Rectplent's Accession N o

PAGE -- --

4. Title and Subtntle

THE ECOLOGY OF A COMMUNITY PROFILE --

- ---- -

- -

-- -- - - - - - - - - -- - 9. Performing Organlzatlon Name a n d Address

Fisheries Research In s t i t u t e College of Ocean and Fishery Sciences University of Washington Sea t t l e , WA 98195

8. Perform~ng Organlzatlon Rep:. No. I - . - -- - 10. Pro~ectlTaskIWork Uni t No 1 .- . - 11. Contract(C) or Grant(G) No.

- -- - . -- -- -- - - - - - -- - -p -- -- Organ~zatton Name and Address

Fish and Wild1 i f e Service Division of Biological Services --- - - - U.S. Department of the In te r ior li4 ' - - Washington, DC 20240 - - IS. Supplementary Notes

-- 16. Abstract (Ltrnlt: 200 word$)

This report on the estuarine channel habi tats of the Pacific Northwest i s one of a s e r i e s of community profi les t h a t synthesize useful information about spec i f ic natural coastal habi- t a t s . This prof i le wil l a s s i s t environmental s c i e n t i s t s and biologis ts and coastal planners and managers who are interested in the open-water channels of coastal es tuar ies from the S t r a i t s of Juan de Fuca in Washington, south t o Cape Mendocino, California.

The p ro f i l e describes the geomorphological , hvdrological , chemical, and biological compo- nents and natural processes of the channels, t h e i r energy interchange, and in te rac t ions among adjacent hab i ta t s . In combination these habi tat components and t he i r in te rac t ions d ic ta te the ecological s t ructures and functions of the channels. The subject mater ials of the various chapters a r e integrated and summarized in the l a s t chapter, and considerations f o r habi tat management are iden t i f ied .

_, __._______I__.^_ _ _ - _ _ __ . _ --

117. Oocument Analysis a. Oescriptors 1 Channels Hydro1 ogy Ecology Pacific Northwest Estuaries

b Identlflers/Open Ended Terms

c COSATI F8eldIGroup -

18. Avatlab~laty Statement ; 19. Securtty Class (Ths Reporf)

Unl imi ted ! . ~ ] ~ ~ j fieh-- 120. Secur~ty Class (Ths Page) 22. Prjce

Unclassified I

(See ANSI-239.18; OPTIONAL FORM 272 (4-77) (Formeriv NTIS-35) Department o l Commerce

* U . S . GOVERNMENT P R I N T I N G OFFICE: 1984-772-308