the challenge of degradative chain transfer in renewable

38
Engineering Conferences International ECI Digital Archives Polymer Reaction Engineering IX Proceedings Spring 5-11-2015 e challenge of degradative chain transfer in renewable monomer polymerization Marc Dube University of Oawa Follow this and additional works at: hp://dc.engconfintl.org/polymer_rx_eng_IX is Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Polymer Reaction Engineering IX by an authorized administrator of ECI Digital Archives. For more information, please contact [email protected]. Recommended Citation Marc Dube, "e challenge of degradative chain transfer in renewable monomer polymerization" in "Polymer Reaction Engineering IX", E. Vivaldo-Lima, UNAM; J. Debling, BASF; F. Zaldo-Garcia, CP-COMEX; J. Tsavalas, Univ. of New Hampshire Eds, ECI Symposium Series, (2015). hp://dc.engconfintl.org/polymer_rx_eng_IX/2

Upload: others

Post on 25-Nov-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The challenge of degradative chain transfer in renewable

Engineering Conferences InternationalECI Digital Archives

Polymer Reaction Engineering IX Proceedings

Spring 5-11-2015

The challenge of degradative chain transfer inrenewable monomer polymerizationMarc DubeUniversity of Ottawa

Follow this and additional works at: http://dc.engconfintl.org/polymer_rx_eng_IX

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion inPolymer Reaction Engineering IX by an authorized administrator of ECI Digital Archives. For more information, please contact [email protected].

Recommended CitationMarc Dube, "The challenge of degradative chain transfer in renewable monomer polymerization" in "Polymer Reaction EngineeringIX", E. Vivaldo-Lima, UNAM; J. Debling, BASF; F. Zaldo-Garcia, CP-COMEX; J. Tsavalas, Univ. of New Hampshire Eds, ECISymposium Series, (2015). http://dc.engconfintl.org/polymer_rx_eng_IX/2

Page 2: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.cauOttawa.ca

THE CHALLENGE OF DEGRADATIVE CHAIN TRANSFER IN RENEWABLE MONOMER POLYMERIZATIONProf. Marc A. Dubé, P.Eng., FCIC, FEIC

Vice-Dean (Research)

Department of Chemical and Biological Engineering

Centre for Catalysis Research and Innovation

Faculté de génie | Faculty of Engineering

genie.uOttawa.ca | engineering.uOttawa.ca

Page 3: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

1. Prevent waste

2. Design safer chemicals and products

3. Design less hazardous chemical syntheses

4. Use renewable feedstock

5. Use catalysts

6. Avoid chemical derivatives

7. Maximize atom economy

8. Use safer solvents and reaction conditions

9. Increase energy efficiency

10. Design chemicals and products to degrade after use

11. Analyze in real time to prevent pollution

12. Minimize the potential for accidents

The 12 Principles of Green Chemistry:

Dubé, M.A. and Salehpour, S. (2014), Applying the Principles of Green Chemistry to Polymer Production Technology. Macromolecular Reaction Engineering, 8:7–28.

Page 4: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Renewable Materials

Page 5: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Terpenes

• large and diverse class of organic compounds, produced by a variety of plants, particularly conifers, (some by insects, e.g., termites);

• often strong-smelling;

• insecticidal properties;

• terpenes are hydrocarbons; terpenoids contain additional functional groups.

Page 6: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Terpenes

• Derived commercially from conifer resins, such as those made by pine;

• found in essential oils which are used widely as

– natural flavor additives for food,

– fragrances in perfumery, and

– in medicine and alternative medicines such as aromatherapy;

• synthetic variations and derivatives of natural terpenes and terpenoids also greatly expand the variety of aromas used in perfumery and flavors used in food additives;

• Vitamin A is a terpene.

Page 7: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Terpenes• Derived biosynthetically from

units of isoprene by terpene synthase;

• multiples of isoprene, (C5H8)n, linked "head to tail" to form linear chains or arranged to form rings;

• classified sequentially by size as hemiterpenes, monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, etc.

Page 8: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Limonene• Monocyclic terpene in many essential oils

(e.g., lemons, oranges, grapefruits).

• Optically active

• Low toxicity (D-limonene smells of oranges)

• Can be purchased in pure state

Page 9: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

D-Limonene production

• Oil from juicing and peel processing of oranges consists of ~90-95% limonene

Essential OilD-limonene

content

Grapefruit 95%

Tangerine 94%

Orange 91%

Mandarin 72%

Lemon 65%

Lime 49%

Page 10: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

D-Limonene - Applications

Cosmetics

Medicine

Green solvent

Page 11: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

D-Limonene and allylic hydrogen…

Vinyl group = candidate for polymerization

Free-radical homopolymerization?

Page 12: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

D-Limonene and allylic hydrogen…

Cationic homopolymerization?

Copolymerization (e.g., MA, AN, MMA, Sty)

Page 13: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Degradative chain transfer

Page 14: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Degradative chain transfer:

Normal chain transfer: 𝑋𝑛

𝑅𝑝

𝑅𝑝~constant

Degradative chain transfer

𝑋𝑛

Page 15: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Objectives

• Free-radical copolymerization of limonene

• Target application: pressure-sensitive adhesives

Page 16: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Experimental plan

• Screening study

• Low conversion experiments:

– reactivity ratios

• Full conversion experiments:

– copolymer composition

– molecular weight

– glass transition temperature

• Modelling

• Extension to terpolymerization

Page 17: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Screening study

• 50/50 mol/mol monomer feed composition

• 1 wt.% BPO

• 60 oC

Page 18: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Glass transition temperature - PSA

Monomer Polymer Tg

(℃)

Limonene (LIM) 116

Methyl methacrylate (MMA) 105

Styrene (STY) 100

Butyl methacrylate (BMA) 20

Isobutyl acrylate (IBA) -24

n-Butyl acrylate (BA) -54

Dodecyl methacrylate (DMA)

-65

2-Ethylhexyl acrylate (EHA) -70

Page 19: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Reactivity ratio estimation

𝐹1

𝐹2=

𝑀1 𝑟1 𝑀1 + 𝑀2

𝑀2 𝑟2 𝑀2 + 𝑀1

𝑟𝑖 =𝑘𝑝𝑖𝑖

𝑘𝑝𝑖𝑗

𝑓10′ =

2

2+𝑟1

𝑓10′′ =

𝑟22 + 𝑟2

Recall assumptions!

Page 20: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Copolymer composition – 1H-NMR

F

B A

E

G

D

A4.0A5.4

a m i'

e g

p n

b f d' h' d i h

Page 21: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F EH

A(m

ol f

ract

ion

)

fEHA (mol fraction)

Mayo-Lewis

Experimental data

Tidwell-Mortimer

b) EHA/LIM

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FB

A(m

olfr

ac

tio

n)

fBA (mol fraction)

Mayo-Lewis modelprediction

Experimental data

c) BA/LIM

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

FB

MA

(mo

l fr

ac

tio

n)

fBMA (mol fraction)

Mayo-Lewis

Experimental data

Tidwell-Mortimer

a) BMA/LIM

Low conversion, Mayo-Lewis plots (80 oC).

Page 22: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Reactivity ratios

ComonomersCopolymer reactivity

ratios (80 oC)r1 r2

EHA/Lim 6.896 0.032BMA/Lim 6.096 0.046BA/Lim 6.008 0.007

0.035

0.039

0.043

0.047

0.051

0.055

5 5.5 6 6.5 7

r LIM

rBMA

0.022

0.026

0.03

0.034

0.038

0.042

5.4 6 6.6 7.2 7.8 8.4

r 2

r1

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

0.0080

4.50 5.00 5.50 6.00 6.50 7.00 7.50

r Lim

rBA

BA/Lim EHA/Lim

BMA/Lim

Page 23: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

Co

nve

rsio

n (

wt.

fra

cti

on

)

Time (min)

f BMA=0.7

f BMA=0.8

f BMA=0.9

a) BMA/LIM

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

Co

nve

rsio

n (

wt.

fra

cti

on

)

Time (min)

f EHA=0.4

f EHA=0.5

f EHA=0.7

f EHA=0.9

b) EHA/LIM

Conversion vs. time

via gravimetry80 oC, 1 wt.% BPO

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

Co

nve

rsio

n (

wt.

fra

cti

on

)

Time (min)

fBA=0.9 fBA=0.8fBA=0.7 fBA=0.6

c) BA/LIM

Page 24: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

FB

MA

(mo

le f

racti

on

)

Conversion (wt. fraction)

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

F1

(mo

l. f

rac

tio

n)

Conversion (wt. fraction)

a) BMA/LIM b) EHA/LIM

Copolymer composition

vs. conversion via 1H-NMR

spectroscopy80 oC, 1 wt.% BPO

f BMA=0.7 f BMA=0.8 f BMA=0.9

f EHA=0.7 f EHA=0.9

f EHA=0.4 f EHA=0.5

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FB

A(m

ole

fra

cti

on

)

Conversion (wt. fraction)

fBA=0.9

fBA=0.8

fBA=0.7

fBA=0.6

fBA=0.5

fBA=0.4

fBA=0.3

fBA=0.2

fBA=0.1c) BA/LIM

Page 25: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Mw

(×1

0-5

)

Conversion (wt. fraction)

f BMA=0.7

f BMA=0.8

f BMA=0.9

a) BMA/LIM

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Mw

(×1

0-5

)

Conversion (wt. fraction)

f EHA=0.7

f EHA=0.9

b) EHA/LIM

Weight-average

molecular weight vs.

conversion via GPC-

MALS-DRI-VISC

0

10

20

30

40

50

60

70

0.0 0.2 0.4 0.6 0.8 1.0

fBA=0.9fBA=0.7fBA=0.5

Mw

(kD

a)

Conversion (wt. fraction)

c) BA/LIM

Page 26: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Model development (with E. Vivaldo-Lima)

Reaction Step

Chemical Initiation I→2f R∙

R∙+M1→RM1∙

R∙+M1→RM1∙′

R∙+M2→RM2∙

Propagation RM1,r∙+M1→ RM1,(r+1)

RM1,r∙+M2→ RM2,(r+1)

RM2,r∙+M1→ RM1,(r+1)

RM2,r∙+M2→ RM2,(r+1)

RM1,r∙′+M1→ RM1,(r+1)

∙ ′

RM1,r∙′+M2→ RM2,(r+1)

∙ ′

Chain Transfer to

Monomer

RM1,r∙+M2→ Pr +RM2

RM2,r∙+M2→ Pr +RM2

RM1,r∙+M1→ Pr + RM1

∙′

RM2,r∙+M1→ Pr +RM1

∙′

Reaction Step

Termination by

Combination

RM1,r∙+ RM1,s

∙→ P(r+s)

RM1,r∙+ RM2,s

∙→ P(r+s)

RM2,r∙+ RM2,s

∙→ P(r+s)

RM1,r∙′+ RM1,s

∙′→ P(r+s)

RM1,r∙+ RM1,s

∙′→ P(r+s)

RM2,r∙+ RM1,s

∙′→ P(r+s)

Termination by

Disproportionation

RM1,r∙+ RM1,s

∙→ Pr+ Ps

RM1,r∙+ RM2,s

∙→ Pr+ Ps

RM2,r∙+ RM2,s

∙→ Pr+ Ps

Page 27: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Model development(with E. Vivaldo-Lima)

CaseBMA/LIM

(mol/mol)

BPO

(mol·L-1)

Reaction

Temperature

(oC)

1 90/10 0.020 80

2 80/20 0.018 80

3 70/30 0.019 80

Page 28: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Model development(with E. Vivaldo-Lima)

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8

FB

MA

(mo

l fr

ac

tio

n)

Conversion (wt. fraction)

Case 1

Model Prediction

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

FB

MA

(mo

l fr

ac

tio

n)

Conversion (wt. fraction)

Case 2

Model Prediction

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

FB

MA

(mo

l fr

ac

tio

n)

Conversion (wt. fraction)

Case 3

Model Prediction

Page 29: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Model development(with E. Vivaldo-Lima)

Page 30: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Terpolymerization

Reaction conditions

Glass ampoules

Monomers (~5 g)

BPO 1 wt.%

80 oC

Precipitate in MeOH

Dry to constant weight

BA/BMA/Lim Feed

(molar ratio)

80/10/10

40/50/10

70/10/20

40/40/20

60/10/30

50/20/30

50/10/40

Page 31: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400 500 600

Co

nve

rsio

n (

wt.

%)

Time (min)

BA/BMA/Lim 40/50/10 BA/BMA/Lim 80/10/10

BA/BMA/Lim 40/40/20 BA/BMA/Lim 70/10/20

BA/BMA/Lim 50/20/30 BA/BMA/Lim 60/10/30

BA/BMA/Lim 50/10/40

Terpolymer conversion

Page 32: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Monomers Copolymer reactivity ratios

r1 r2

BMA/BA 2.008 0.460BMA/Lim 6.096 0.046BA/Lim 6.008 0.007

Terpolymer composition

Page 33: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

Te

rpo

lym

er

co

mp

osit

ion

Conversion wt.%

BA/BMA/Lim 80/10/10

BA mole fraction

BMA mole fraction

Lim mole fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Te

rpo

lym

er

co

mp

osit

ion

Conversion wt.%

BA/BMA/Lim 70/10/20

BA mole fraction

BMA mole fraction

Lim mole fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Te

rpo

lym

er

co

mp

osit

ion

Conversion wt.%

BA/BMA/Lim 60/10/30

BA mole fraction

BMA mole fraction

Lim mole fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Te

rpo

lym

er

co

mp

osit

ion

Conversion wt.%

BA/BMA/Lim 50/20/30

BA mole fraction

BMA mole fraction

Lim mole fraction

Page 34: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Terpolymer molecular weight

0

10

20

30

40

50

60

70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mo

lec

ula

r w

eig

ht

(kD

a)

Conversion (wt.%)

Mw BA/BMA/Lim 80/10/10

Mn BA/BMA/Lim 80/10/10

Mw BA/BMA/Lim 70/10/20

Mn BA/BMA/Lim 70/10/20

Mw BA/BMA/Lim 50/10/40

Mn BA/BMA/Lim 50/10/40

Page 35: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Terpolymer glass transition temperature

BA/BMA/Lim

feed composition(mol/mol/mol)

FBA (mol

fraction)

FBMA(mol

fraction)

FLim(mol

fraction)

Tg(oC)

80/10/10 0.835 0.132 0.034 -39.6

40/50/10 0.434 0.550 0.016 -16.6

70/10/20 0.770 0.176 0.053 -35.9

40/40/20 0.441 0.527 0.032 -16.1

60/10/30 0.708 0.221 0.071 -31.8

50/20/30 0.602 0.342 0.056 -30.9

50/10/40 0.653 0.254 0.092 -30.2

Page 36: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Conclusion

• Challenge: further increase to the incorporation of limonene into co- and terpolymers

– Crosslinkers?

– NMP? (see poster by Ren)

– Temperature effects?

– Semibatch feed/emulsion?

• Potential to unlock a treasure trove of allylic monomers

Oranges Orange oils D-Limonene Sustainable polymers

Page 37: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

uOttawaSustainable Polymer Reaction Engineering

S. Ren (PhD) Y. Zhang (PhD)

S. Dastjerdi (PhD)

Page 38: The challenge of degradative chain transfer in renewable

genie.uOttawa.ca | engineering.uOttawa.ca

Acknowledgements

• Ms. Lisha Zhang, MITACS (China)

• Dr. Esther Treviño, CIQA, México

• Prof. Eduardo Vivaldo-Lima, UNAM, México