teofflioi - defense technical information center 2.3 debris separation 2-13 ... 4.8.9 communication...

377
# iH CO o r TW-LX-12 3/000/00 TEOffliOI RAH ^ (TM Series) This document was produced by SOC in performance af AF 19(628)-l646 t System.496L Space Track for Elect onic Systems Division, AFSC. ORBITAL ANALYST HANDBOOK k May 196J+ SYSTEM DEVELOPMENT CORPORATION 45 HARTWELL AVE. LEXINGTON MASSACHUSETTS 0 COMMAND CONTROL DIVISION CORPORATE OFFICES Santa Monica. Caiifornia A 1159 IX 7/63

Upload: lybao

Post on 26-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

#

iH CO

o

r

TW-LX-12 3/000/00

TEOffliOI RAH ^

(TM Series)

This document was produced by SOC in performance af AF 19(628)-l646t System.496L

Space Track for Elect onic Systems Division, AFSC.

ORBITAL ANALYST

HANDBOOK

k May 196J+

SYSTEM

DEVELOPMENT

CORPORATION

45 HARTWELL AVE.

LEXINGTON

MASSACHUSETTS

0

COMMAND CONTROL DIVISION

CORPORATE OFFICES Santa Monica. Caiifornia

A 1159 IX 7/63

lk August 1964 A Page B Blank

TM-LX-I23/OOO/OOB

MOnHCATIOM Tl TM-LX-123/OOO/OO, "Orbital

Analyst Handbook," dated 4 May 1964

Syitim Dovolopmont Corporation/2500 Colorado Ava./Santa Monica, California

APPROVED

R. E. FergUöfcn

Modified Pages

A and B

CURRENT MODIFICATION

Notes and Filing Instructions

Remove pages A and B, dated 1 July 1964 and insert pages A and B, dated l4 August 1964.

Remove pages 4-33 ar*d. k-^k, dated 4 May 1964 and insert pages 4-33 through k-^kY, dated lk August 1964

•CUMULATIVE LIST OF MODIFICATIONS-

Modified Pages

i-iv 3-1, 3-2 3-35, 3-36 4-7, 4-8 4-9 4-33 thru 4-34Y 5-1 5-3, 5-fc 5-9 thru 5-12 5-27 thru 5-64

Modification Number and Date

A (l July 1964) New pages A (l July 1964) New pages A (l July 1964) New pages A (l July 1964) New pages A (1 July 1964) Errata B (14 August 1964) New pages A (l July 1964) New page A (l July 1964) New pages A (l July 1964) New pages A (l July 1964) New pages A (1 July 1964) New tab

1 July ±96h i TM-LX-123/OOO/OQA

TABLE OF CONTENTS

Page Table of Contents i

Section 1. INTRODUCTION 1-1

Section 2. TASKS 2-1

2.1 DOMESTIC LAUNCH 2-3 2.1.1 Check List 2-3 2.1.2 Task Description 2-4

2.2 FOREIGN LAUNCH PROCESSING ,. .. 2-9 2.2.1 Check List , 2-9 2.2.2 Task Description. 2-10

2.3 DEBRIS SEPARATION 2-13 2.3.1 Check List 2-13 2.3.2 Task Description 2-1 k

2.4 PROXIMITY DETERMINATION 2-15 2.1.1 Check List 2-15 2.4.2 Check List 2-15 2.4.3 Task Description. 2-l6 2.4.4 Task Description 2-l6

2.5 ELEMENT MAINTENANCE 2-17 2.5.1 Check List 2-17 2.5.2 Task Description 2-l8

2.6 DECAY PREDICTION 2-21 2.6.1 Check List 2-21 2.6.2 Task Description 2-22

Section 3. PROCEDURES 3-1

3.1 NOMINAL ELEMENT SET DETERMINATION 3-3 3.1.1 General.. , 3-3 3.1.2 Domestic Launch Information 3*3 3.1.3 Foreign Launch Information 3-7

3.2 INITIAL ELEMENT SET DETERMINATION 3-9 3.2.1 General 3-9 3-2.2 Foreign Launch Information 3-9

3.3 SYSTEM SEAIC FILES UPDATE 3-11 3-3-1 General 3-11 3.3.2 Foreign Launch 3-11 3.3.3 Domestic Launch 3-12 3.3.4 Satellite Maintenance 3-12 3-3-^ SEAI Tape Files Maintenance 3-13

»v

1 July x96k ii IM-LX-123/OOO/0OA

Page

3-4 OBSERVATION ASSOCIATION 3-15 3.4.1 General 3-I5 3.4.2 Gross Association 3-15 3.4.3 Routine Association 3-15 3.4.4 Special Association 3-l6

3.5 ELEMENT CORRECTION 3-19 3.5.1 General 3-19 3.5.2 Complete Correction - Anomalistic Data 3-19 3-5-3 Partial Correction (Time equation only) -

Nodal Data 3-19

3.6 SENSOR TASKING. 3-21 3-6*1 General. 3-21 3.6.2 USAF Sensors 3-21 3.6.3 NAVSPASUR Sensors. 3-21

3.7 BULLETIN GENERATION 3-23 3.7.1 General 3-23

3.8 LOOK ANGLE GENERATION 3-25 3.8.1 General 3-25 3.8.2 Anomalistic Data 3-25 3.8.3 Nodal Data 3-25

3.9 ELEMENT SET ADJUSTMENT 3-27 3.9.1 General 3-27 3.9.2 Foreign Launch Data 3-27 3-9-3 Domestic Launch Data 3-27 3.9.4 Unusual Orbital Data 3-27

3.10 OBSERVATION SELECTION 3-29 3*10.1 General 3-29 3.10.2 Initial Observations 3-29 3.10.3 Element Set Variations 3-29 3.10.4 Observations on an Unusual Orbit 3~30 3.10.5 Observations on Associated Bodies 3-30 3-10.6 Unidentified Observations 3-30

3.11 DECAY PREDICTION 3-33 3.11.1 General. . . 3-33 3.11.2 Initial Decay Indications 3-33 3.H.3 Final Decay Indications 3-33

3.12 ELEMENT CONVERSION 3-35 3.12.1 General. 3.35

I July 1964 iii TM-LX-I23/0OO/OQA

Section 4. PROGRAMS 4-1

4.1 EXECUTIVE AREA 4-3 4.2 ASSOCIATION AREA 4-5 4.2.1 RASSN 4-7 4.2.2 OBSSEP 4-17 4.2.3 REDUCT 4-19 4.2.4 Other 4-27

4.3 ELEMENT DETERMINATION AREA 4-31 4.3.1 ESPOD 4-33 4.3.2 IOANGLE , 4-35 4.3.3 IOHG 4-4l 4.3.4 IORF 4-47 4.3.5 LOCVEC 4-53 4.3.6 ROC 4-57 4.3.7 SEAI 4-61 4.3.8 SGPDC 4-65 4.3.9 SPIRDEC 4-71 4.3.10 SPWDC 4-73 4.3.11 XROADS 4-89 4.3.12 Other 4-97

4.4 OBSERVATION ACQUISITION AREA 4-99 4.4.1 BNSCHED 4-101 4.4.2 BLTNSGP 4-105 4.4.3 GLASGP 4-111 4.4.4 GRNTRK 4-115 4.4.5 LAP 4-119 4.4.6 OBSERV 4-127 4.4.7 PSR 4-133 4.4.8 SYSBULL 4-137 4.4.9 XYZLA 4-147 4.4.10 Other 4-151

4.5 INTERPLANETARY AREA 4-153 4.5.1 HELIO 4-155 4.5.2 MUNENDC 4-169 4.5.3 NEAR 4-179

4.6 SPECIAL PURPOSE AREA 4-187 4.6.1 RESPLT 4-189 4.6.2 Other 4-193

1 July 196U iv IM-LX-123/OOO/OQA

Page

4.7 1620 COMPUTER PROGRAMS 4-197 4.7.1 Jacchia II Satellite Decay Prediction 4-199 4.7.2 King-Hele/Findley Decay Prediction... 4-203 4.7.3 l620 Launch 4-205

4.8 STANDARD SYSTEM INFORMATION 4-209 4.8.1 PCS Sequence. , 4-211 4.8.2 Schedule Tape Operation 4-213 4.8.3 Observation Card Format 4-217 4.8.4 Satellite Number Card Format 4-221 4.8.5 Sensor File Card Format 4-223 4.8.6 Element Set File Card Formats 4-225 4.8.7 Acquisition File Card Format 4-237 4.8.8 Information File Card Format 4-239 4.8.9 Communication File Card Format 4-243 4.8.10 SEAI File Deletion Card Format 4-245

Section 5- APPENDICES 5-1

5.1 FORMS 5-3

5.2 MISCELLANEOUS. 5-11 5.2.1 Conversion Factors 5-13 5.2.2 Modified Julian Days - 1964, 5-17 5.2.3 Oblate Spheriodal Earth Model 5-19 5.2.4 Right Ascension of Greenwich," 0 Jan, 000C£ 5-21 5.2.5 Satellite Elevation and Slant Range 5-23 5..?. 6 Semi-Major Axis Vs. Period 5-25 5.2.7 Mathematical Constants 5-28 5.2.8 Formulas 5-30 5.2.9 Minutes and Seconds to Degrees 5-33

5.3 OBSERVATION REPORT FORMATS 5-35 5.3.1 Standard A Format. 5-35 5.3.2 Station 315 Old Format 5-38 5.3.3 Hoiloman AFB Format, 5-40 5.3.4 Moonwatch Format. .. . .. 5-I1I 5.3.5 SAO Baker-Nunn 5-43 5.3.6 SATEV Format. •" 5-45 5.3.7 SATOF Format 5-48 5.3.8 SATUG Format 5.5O 5.3.9 Trinidad Format 5-52 5.3.10 SYNCOM II Format 5-5U 5.3.11 681/682 Format 5-56 5.3.12 Millstone Format 5-58 5.3.13 Code Tables 5-60

5.4 GLOSSARY. . 5-63

h May 1964 1-1 TM-LX-123/OOO/OO (Page 1-2 Blank)

Section 1

INTRODUCTION

This handbook has been prepared to provide 4«t-Aero&paee Control -Squadron ^ADO)

personnel assigned to the Orbital Analyst position in SPACETRACK with detailed

procedures and standardized methods for accomplishing their assigned tasks in

satellite processing.j These tasks are:

a. Domestic Launch

b. Foreign Launch

c. Debr's Separation

d. Proximity Determination

e. Element Maintenance

f. Decay Prediction

Each task represents a major orbital problem. A check list for each problem

is provided. The required steps leading to the solution of the problem are

identified. Analyst procedures are described and cross-referenced to per-

tinent tasks. Computer programs which support the orbital analyst are or-

ganized by functional area and detailed with respect to their use, input

options and formats, and output format. Other system programs not of primary

interest to the analyst are identified and briefly discussed. Standard

system card formats, the system tape requirements, and the operating modes

are described in detail. Aids, charts, graphs, and other material which

assist in job performance are to be found in the appendix.

f k May 1964 2-1

(Page 2-2 Blank)

Section 2

TM-LX-123/OOO/OO

TASKS

The analyst is responsible for solving a variety of orbital problems. These

may occur independently or in numerous combinations. There are six such

problems, each constituting a task. Each task is described at two levels of

detail. The Check List identifies the major requirements of the task, and the

task description identifies a workable set of procedures which will suffice

for task accomplishment in a majority of cases. Each of the procedures is

referenced to a more detailed description of its use in the Procedures section

of this document.

The following tasks are described:

Task Page

1. Domestic Launch 2-3

2. Foreign Launch 2-9

3. Debris Separation 2-13

k. Orbital Proximity Determination 2-15

5. Element Maintenance 2-17

6. Decay Prediction 2-21

I

2.1 DOMESTIC LAUNCH

k May I96U 2-3 TM-LX-123/000/00

2.1 DOMESTIC LAUNCH

2.1.1 Check List

2.1.1.1 Satellite classification

2.1.1.2 Pre-launch information

2.1.1.3 Pre-launch folder:

a. 1ACS Form 31

b. Calculated element set

c. Computed element set

d. Nominal bulletin

e. Nominal look angles

f. Launch nemo

g. Launch messages

2.1.1.1* Lift-off time

2.1.1.5 Sensor notification

2.1.1.6 Adjusted element set ( Q , T )

2.1.1.7 Sensor notification

2.1.1.8 SPADATS object number

2.1.1.9 International code name

2.1.1.10 Released bulletin and look angles

2.1 DOMESTIC LNJJ':CH

2-4 TM-LX-123/000/00

2.1.2 Task Description

2.1.2.1 Determine security classification of satellite.

2.1.2.2 Gather the following pre-launch information and initiate Form 31, to include:

a.

b.

c.

d.

e.

f.

g.

h.

i.

Nominal number

Day of Launch

PA = anomalistic Period (in ddys), or

a = semi-major axis

i = inclination

e = eccentricity

¢. = injection latitude l.

Aw = injection longitude i

Time from lift-off to injection

j. Direction of satellite motion at I: northerly or southerly

2.1.2.3 Manually calculate a nominal element set (procedure 3.1), as follows: a.

b.

Calculate w :

sin u = sinoj0~ s:i.n i (N.); sin (180°-u) = ( s.)

sin j¢~ sin i

w0 = u, (¢i is +); w0

~ 360°-u, (¢1 is -).

::ct~ Ta1!0] if o0 ~ ~0 ~ 90°, then o0 ~ ~ ~ 90°

cot~- /80j" )SA=: f.] cot [?a; l8oj; if 90° < : 0 ~ 180°,

M0

-:o E - Qe MPA

t,. t = 360°

then 90° < ~ ~ 180° 2

c.

2-5 -

2.1 OOMESTIC LAUNCH

TM-LX-123/000/00

~ Time of lift-off (in days) + Time from lift-off to injection (in days). -i

T0

T1

(in days)- 6.t

NOTE: Nominal time of lift-off is assumed to occur at OOOOZ hours

on the doy of launch.

Calculate 0 (wi~h 9 0 0 (1964)

ER ·=

cos

t.H 0

'l ,,

90

[T0

X 1.00273791)

0 6.t X 3f0 ,

\ ± !::,\ wi

e,~ - '·w J'l' -0 -·

- EH

Determine C fro:n ec~entrlci ty vs. perigee plot (Fig. 2-1); where perigee

hei~ht (q) (in earth radii) = a (1-e).

2.1.2.;> Cor::pute a no:t~nal element set (procedure 3.1) using the 1620 launch

program.

2.1.2.5 Compare the ncminal element sets and make the necessary corrections

on -:!1e :::even-~a:r<l element set cards output by the 1620 program.

2 .1.~:. 6 Build <-l special SEAIC tape for the launch (procedure 313L.uaing ti.Je

2.1.2.7 Gcnerutc a bullotlli (procedure 3.7) and look angles (procedure 3.8)

usir:l', the BLTNGG? and GI.ASGP programs ( OCS 17). The security classification

'~.:: U:c look m:G;lc::c i:~ thr: h.i ~:l1er of the classification of the sennor or the

satcl.ll te. The secc::ri.ty classification of the bulletin is the same as that

'~ the satcllJ tr:~. In::;ur•:' epJJropdate sensor tasking.

2.1 DOt•tE~·nc lAUNCH

2-6 TM-LX-123/000/00

2 .1.2 .8 E.xamine the bulletin and look angles far errors and release through

the P~ajec~/Sensor Branch.

2.1.2.9 Rece1ve actual lift-off time.

2.1.2.10 Hotify the ~:;.::n::;ors by phone of the time of their first pass, immedi-

ately afte~· l"!..ft-off and j'~st prior to acquisition.

2.1.2.11 C&lct<late T0

and o0

, as follows:

a. Calculute T0

: I~crcase nominal T0

by lift-off time (in days).

c. Calculate o0 : Re-calculate 00

using T0

.

2 .1.2 .12 Update the :wminol element set to reflect actual 00

and T0

.

2.1.2.13 Correct the :1ominal element set using reported observations.

2 .1.2 .13 .1 If the LnHtal observations are identHied with the satellite .•

and if they sufficiently represent the orbit of the satellite, correct the

nor::.i.nal element set (procedure 3· 5) usln~ the SGPOC program. This is usually

done after t~o or three revolutions o: data have been received.

2.1.2.13.2 If insuffi2ient taggeu observations are rece1ved:

a. Fro:-:1 BHEHS sen:;._.~s :.o separete all observations on the 410 tape

'\-Jithin the expe.:::"ted sensor ac_quisit1on times from the_balance, us1ng

~~he HAP, ORCON and OBSSEP programs; nssoc1ate the observation on the

!:ich-pnority R-tapc· uith oll element sc:t.=; in theE-file (procedure

3.1!), usi.ng the RP.~3SN pr·ogram; generate observat1on cards, using the

SR'f!.ffiG progrom; retrievr:- all unascociated observation cards manually.

b. Fro~:1 o'.:.hcr sensors - r'f'trieve all possibly associated observation

c. f,r.;soclate the olJscrvaL:e;r . .: (procedure 3.4) w1th the nominal element

::.;ct, c.:c:::nc 1~~1r.~ PJ\~~::;H pr:Jgrorn 1n the SC!!'I'P mocle with lenient assoc.iat.ion

2.1 DOMESTIC LAUNCH

k May 196^4 2-7 TM-LX-123/000/00

e. If the DC fails, compute an initial element set (procedure 3-2) using

IOHG, etc., or manually adjust the nominal elements (procedure 3*9)

as warranted;

f. Correct the element set again (procedure 3-5) using the SGPDC program.

2.1.2.14 If the DC is successful:

a. Change the initial and final revolution on the seventh card of the

element set.

b. Ujdate the E, A and I files on the SEAIC tape (procedure 3*3) using

the SEAI program.

c. Publish a bulletin (procedure 3-7) and look angles (procedure 3*8)•

2.1 DOMESTIC UmCB

k May 196h 2-8 •W-IJC-I23/OOO/OO

C TERM

U M J- -t Urn. . Ä _ _J m --g H- -€ '1 - 7 » l ». rw •jr h # 1 1

• 1

.4 .* >| —1—r "**—t 4 w f

f > <> f .r 41 4

V > f

-1 t. r

A f q& — t * 4

* *

~t * t J f I 9 J If

69 f

1— r #

1 1 f 4) r ^U b f f w

X 2 1 w 1 1 '

3 £ J $ 8 I * f t

• ~r t # 36: E * f

1 t i 1 * _j L • f f i 1 1

30- 1 1 1 f

• f

30 J ± f ^ f • (XIO ) § 1 NO SUPPORTING DATA

I FOR e>o.3

1 MASS AREA NOT CONSIDERED

1 j 1 1

£ 1 [~ _J

a 1 i I | i

*^ IS - 1 J * J Mi

^ 1 It s - 1 it s _ t i t Jt r 1

t A X X i s

- —

—|— —

JiSG CR I 10

KX> 450 «00 750 900 1060 1200 i960 f§M EARTH RAOll |

95« 1 KM

»s.S 2870 3*2.7 4784 574 0 668.7 765.4 8610 95671

2.2 FOREIGN LAUNCH

4 May 1964 2-9 TM-LX-12 3/000/00

2.2 FOREIGN LAUNCH PROCESSING

2.2.1 Check List

2.2.1.1 Discrimination

2.2.1.2 Observation selection

2.2.1.3 Element set determination

2.2.1.4 Nominal element set adjustment (T and Qn)

2.2.1.5 Initial element set evaluation

2.2.1.6 Element set correction

2.2.1.7 Nominal element set evaluation

2.2.1.8 SEAIC update

2.2.1.9 Trial bulletin

2.2.1.10 Sensor tasking

2.2.1.11 Released bulletin and look angles

~·'OREIGH LAUNCH

2-10 TM-LX-123/000/00

;~ .2 .2 Tasl: Description

:~ .:?. .2 .l C'J:npare ::.ni tlal fan data with Beam Projection charts for d5.scrimin-

2.2.:?.;2 Exa:r.ine i.ni.tial observations for a major trend (procedure 3.4 and

3.10) ancl remove those observations which deviate from such a trend. Retain

"Jw de,;·~ute cl:ser-<"ations for use in determining the possible existence of

'J ') 0 J ._ • c. • c_ • _; Ii' the :I.ni tial obsenrations are fan data, compare them with the

2.2 .2 .L I}2te1·mine :·rom the RADINT charts comparison if any of the nominal

elc~ent sets can be used to represent the initial fan data (procedure 3.1).

2.2.2.5 If one of t:·,e t.or~inal element sets represents the initial fan data,

clpdate Tc·· and Or ba::.;ed on assumed lift-off time (see appropriate folder). I ()

2.2.2.6 If none of ".::he nominal element sets represents the initi:<Jl ffn data,

rnan:.:ally calculate m1 cle:nent set using the initial fan datu and sele~ed

i~fcrmation (procedure 3.1).

2 .:~ .2 .7 If the lni. ~,jnl '~;1Jservations arc trac!-:er dat.13, compute an :i.ni tial

ele:nent set (rrocedure ·-:;.2) using thFO IOHG progre:!:.

~~.2.2.8 If the ·in~t-i.c:1 -.;bservations are telernet!-J data, compute an initial

cler:er;t :::et; (prc,c,~dure 3.2) using the IOANGLE prol!r~nn.

2.:2 .2 .9 r:· ~~he in:i -tial cLscrrutions are e;eocentric rectangular coordinates

a~d velcclty data, comp~te an initial element SE~ (procedure 3.2) using the

2.2.2.1C If ~~e inlt~al ocscrvutions are simply two or more isolated radar

:.': xe::: J :·!·z_r~: t!:e c~a::;c c.r cL ~·::·e r·r;;,~ ::;tations Dwl/cr on the same or different

:··:::·.-ch:·~ic.:J~:, ·c,:::v;t:•: :1!1 .:::~ t~iul clement GeL (p~·ucedurc 3.2) using the IORF

2.~~.2.11 C::·n,,_.•, ~;;;c L<>:::~rwl clu!lcnt set (procedure 3.)) usine; the initial

4

2.2 FOREIGN LAUNCH

k May 1964 2-11 TM-LX-123/OOO/OO (Page 2-12 Blank)

a. A t

b. At range

c. A 0

d. Aß range

e. Perigee height

f. Period

g. Drag

2.2.2.13 If* any of the elements is unacceptable, correct the element set

(procedure 3«5)> using additional observations in the SGPDC program.

2.2.2.14 If the DC fails, treat the satellite as an element maintenance

problem.

2.2.2.15 If the DC is successful, evaluate the element set for acceptability,

2.2.2.16 When all the elements are acceptable, add the element set to the

System SEAIC files and the SEAIC tape (procedure 3.3) using the Special SEAIC

program. A bulletin (procedure 3*7) and look angles (procedure 3*5) will be

generated automatically, as well as a trial bulletin.

2.2.2.17 Examine the trial bulletin for acceptability.

2.2.2.18 Insure appropriate sensor ^asking (procedure 3-6).

2.2.2.19 Release the bulletin and look angles through the DSSO.

2.3 DEBRIS SEPARATION

2.3.1 Check List

2.3.LI Corrected main element set

2.3.1.2 Selected debris observations

2.3.1.3 Debris element set(s)

2.3.1.4 SEAIC update

2.3.1.5 Sensor tasking

2.3.1.6 Released bulletin and look angles

2.3 DEBRIS SEPARATION

k May I96U 2-13 TM-LX-123/OOO/OO

..... ? - . _;

DE~1 !iiS SEPARATION

2-14 TM-LX-123/000/00

2.~.2 To3k DescriPtio~

~.j.2.l c,~rrcct ~he r:min eler.:er.t set (procedure 3.5) 1sing the most recent

.!. ~ .. :'::.2 Select :fn)r:: nll associated observations (procedure 3.10) those which

::.::;:: ~-q.!··-·~3e:·,:, debris pi-::c.::s :-ather than the rnain body.

:?.3.2.~ .·_,:;,c~iate t!;e:~ debris observations with the main element set (procedure

~:.:~) .• ·_;::;·L;,:~ the REDUCT p·c:13:-3r:: or the RASSN program ir: the SCHTP mode.

").j.2.'· Exa:;,ine the residu:J.ls to identify groups of c..bservatic,ns which may

:2r:stit~te r.:~jor trc~ds related to debris objects (prncedure 3.10).

~::.3.2.5 r-~c:d:.:.fy the :::ni!': element set (procedure 3.5) (•,dth a temporary identi-

:~icatic;; nu:::ber), ucinc; eosh group of selected debris observations in the

:=~?OC !)rs;l·a:-::, pr•:;du::::.::.:.c a debris element set for eac!: debris object.

').3.2.C E t!-:e DC i'~J:.L_. :r.•Jlify ·~he m&in element set (procedure 3.5) using

· · ,, L:::e res..:.duals r·:· ':!-Je debris observations in the SYSBULL program, rro-

;~. 3.2. 7 C:.<1!1f:e t!1e ter:r;or<3Q' identification number t.L the next usable

sa'• ~ ~tr;; nt:::.t.e!·, ~:Jsslc·: <:::-1<:' pror.er IntermrUonal CCYJe: suffix,and add the

r• -., ... __ ele::.er-:t set 2r.r1 ''!~I~rupriDte acquisitio:-, and. infurmation data to the

:;:;s'.:e:~ !"~E!IIC :·~ lc; :.J~:d t:v~ CEAIC tupc ( fil'OCCdU!'e 3. 3) using the SEAl rrograrn.

2.3.2.9.1 I~ ~he uet~i~ ~s fro:: a furelcn satellite, generHte a bulletin

( r:-':C'''durc :, . '() ur.d l cDi: U'''~lr:·~ (procedure 3. 8) using the BLTHSGP and GIASGP

release &s soon as

~. ; [. ., ( ..

FFCXIMITY DE7SRM

May 1964 2-15, TM-LX-I23 OCC X

2.4 PROXIMITY DETERMINATION

2.4.1 Check List - for orbits related to each other

2.4.1.1 Observation association

2.4.1.2 Element set correction

2.4.1.3 Initial proximity computation

2.4.1.4 Final proximity computation

2.4.1.; Proximity determination

2.4.2 Check List - for orbits related to a given point and

2.4.2.1 Initial proximity computation

2.4.2.2 Element set correction

2.4.2-. 3 Final proximity computation

2.4.2.4 Proximity determination

2.)j

PROXTIHTY DETERrv1

2-16 'IM-LX-123/000/00

2.4.3 Task Description -for orbits related to each other.

2.4.3.1 Associate all ol,servations (procedure 3.4) with one element set usin~ tl:e Pv-'\SSN program in the SCHTP mode.

2.!+.3.2 Examine all residuals to identify groups of observations (procedure

3.10) which may constitute major trends related to different orbits.

2.4.3.3 Determine an element set for each orbit (procedures 3.2 or 3.5)

2.1L3.1J. Correct each element set (procedure 3.5) with epoch time being the

ti.me of nodal crossing for the revolution on which closest estimated proxi-

!:l:i. ty ~Jccurred.

2.11-.3.5 Compute the time_. distance and positions of closest proximity using

the XROADS program, with the time range equal to the span of time durin~

vhich closest estimated proximity occurred.

2.4.3.6 Examine the XROADS program output for the nmallest proximity dintance.

2.4.3.7 Recompute the time, distance a~d positions of closest proximity using I the points of smallest proximity distance in the XROADS program and as small

a time range as is reas::mable and meaningful. This rrny be repeated until the ~ .. ··· ·

analyst achieves the desired level of estimation a~curacy.

2.4.3.8 Determine fror:l the final XROADS output the point, time and distance

of closest proximity.

2.l+.h Task Descrlntion -for orbits related to a given point and time.

2.1:.h.l Compute nll satellite :p::Jsitions relative to a given tjme and

c:eneratc.: a Position Situation Heport usine; the PSR program.

2.4.4.2 Exami~e the Position Situation Report to determine those satellites

·,rithin ::.he reqt~lred range '.)f the given point.

2.4.1:.3 Correct each elemr:nt set (procedure 3.5) using the SGPDC program

2.!1.4.14 Rcc::;myn;te eac:1 satellite position for the revolution on which the

s2.tc~!2.ite L; cloce:~t to the given point and time usinc; the GRNTRK program.

2.i,.h.r; D·:.:~,ermlne from the cmtput of the GRNTRK program those satellites

· .. ;[t.!~:n U:r-• ,,~rlui.red ranr:e of the given point and tjmP.

'

2-17

2.5.1 Check List

') " ' "1 .-_.) . . l. ~- Element set correction

?.).1.2 SEAIC up:la te

?.~.1.3 Bulletin, look angle generation

Sensor tasking

2.).1.) Element set correction

SEAIC u:;xia te

2.').1.7 Return satellite to DSSO

?.').1.2- Unidentified observation association

Element set correction

Observetion reduction

Eler:1ent evaltm t ion

~.: .1.12 Ele:nen-:. ndjttstrnent

L~ast squares correction

Bulleting, look angle generation

Release b'JlJ.et:in and/or look angles

2.5 ELEMENT MArnT

TM-LX-123/000/00

EI_J:,~NT ~1ATI!1'

2-18 TM-LX-123/000/00

2.~.2 Task Description

2.~.2.1 Sufficient Observations

I:f' sufficient ob::;ervat:Lons are available, correct the last good element set

(procedure 3.)), using selected observations (procedure J;W) in the SGPDC

pro~ra!n.

2.).2.2 If the DC fails, evaluate the element set as in 2.5.2.11 below.

2.5.2.3 If the DC partially corrects the elements, re-evaluate the observa­

tions o.nd c:nn}Xlre the input elements with the output elements from the DC.

CCJrrect the better element set again (procedure 3.5) using the re-selected

n:;servntions in the SGPDC program. This may be repeated as long as the

SGPDC program o.ppears to improve the elements.

2.).2.1+ If the DC is successful, up:latethe System SEAIC files (procedure

3.3) usinr; tLe SEAI proc;ram. The element set may be assigned the next

:.l~=c:bl;o; nu:nber ac ·:::2.taloc;ue elements, or may be Identified alphanumerically

~ts test, ele::-:ent::::. 'rc·.;:;t clements are considered less valid than catalogue

Generc\te a b.ll.letln (procedure 3.7) and look angles (procedure 3.8)

H Gppr:Jpriate usir;~~ '-~:·.:: BLTNSGP and/or the GLASGP programs, OCS 17, or, if

n d-tcrrn cxJ.~;ts_, the GLA? proc;rum.

I:1:3ure appropriate sensor to.sking (procedure 3.6).

2.5.2.1 If additional observations are returned by the tasked sensors,

cc)!'rec:t the ele:ae!lt ce-:. (procedure 3.5) using the selected and additional

obc•-.:r·n '~ icm::: Lr: tbr.:> SGPDC pror~rat:J.

2.5,.2.0 TJ:p'lute the Sy:::tem SEAIC files (procedure 3.3) using the SEAI program.

Ii' te:;t element::: ·,rere used they must be deleted and the old cataloc;ue elements

rcpla.::·~d wit}: tile n,_c•,.r element set. Maintain the satellite until. it can be

re'~urned ~.o the DSSO for rc_)qtine proce::::;sing.

;:'.).~'.9 Insuffl~Lcut cJb:;ervations

r:· :-;ufi'~ci"':n'.; cJb:-;':~r·.'rJtions are unav3ilable, associate the_...unidentified obser-

·;i, tl :;::~; in :).'~' :jy::::;i_err, (procedure 3. 1,) with the lact good element set using the

RASSIJ p!·:=·r~n:r:: in the SCHTP mode. The association parameters should have wide

'

'

2-19 (Page 2-20 Blank)

2.5 ELEMENT MAINT

TM-LX-123/000/00

? ~1"2"10 Con·cct t!1l: element set using the SGPDC program as in 2.5.2.1 above.

c: .. ~;-2.11 T.! sufficient obscr·vations are--still unavailable, or if-for some

other renc;cn t!1e DC f'uilc•, reduce all observations (procedure 3.4) against the

best elcn;cnt :::'-c·~ u.s i n,:s the REDlTC'J' program. An examination of past element sets

~~:3y ~·c·:c:<Jl tl:l' bcginrHJW ·Jf the r:Lsparity between the observations and the

2. ';. 2 12 E~:o~;nnr> tl•P r,~.:;idu<.Jl:, outp.1t by the REDUCT program to determine the

2.'~ 2.'i3 lf tlx cler:H'tJ''' :Jffp·tE<l by the time equation appear valid, reselect

t~:~· ,,i,sc:·•::Jt lOtJ': ( pr,··c:~•_,rr· -~· 10; El'Jd/or manually adjust one or more of the

~·c:·::1i1~rw clc:::c-n::s (;j:·r:::'Crllll'C' j 9! •o fac:ilitate successful differential cor-

:·c-\,' ·_.! ~~·:··u• '-"w~ -.'.'(; -.~ ·, fn· 11··•·JtP o :;ucccssful DC, generate a delta t

l'C'-'C]~,·: .• -::.:, :;J.u~. ( prcw,_·d~J:·~c" 3 lO~ of the residuals output by the REDUCT

the, "'quat1on des-~r.i bing the plot and the

r

~'. L· DECAY PREDICTION

2.'~.~ .J Kinc;-Hc-1e/F.inJle:; estimate

2.(.1.~ Decay f8lder.

n. Satellite c~urncteristics

~~. ~3GPDC ~_,utput

Sens~r tuskln~ messn~es

BulJetins released

2-21

2.6 DECAY PREDICTION

TM-LX-123/000/00

"' Jd.Ul t v:. lYV:)lu~~ion, period vs. revolution or period vn. day plots

l:~nt;-Hele/Flndl~::':,', Jucchi.u and other program predictions

2.'. 1.•. Ob.:.·~·vnt::·::m :,.,:·· -~,-:1atl.cm nnd element c::Jrrection

.xi. ·:~-. :·c::Jhtt:ion oc- period vs. day plot

~;.:~.1 .lC1 L'-'c.::t ~:q_llCll''=''-; ::orrection, bulletin and look angles

2.~.1.12 Delt~ t vs. r~v~lution plot

DECAY PREDICTIOn

2-22 'l'M-LX-123/000/00

2.6.2.1 Estimate the decay day (procedure 3.11) using King-Hele/FindJey

prosrn~n.

~.G.2.2 When the period is 90 minutes or less, initiate a decay folder on

the ~atellite, '~o include.

~,. Sa.tellite ~haracteristics: tumble ratA, motion, size, shape and mass.

b. SGPDC ou Lput from a 90-minute period to decay

All ~;ens'Jr tasking messages

d. B~Jlletin:::: released from a 90-minute period to decay

e. Lo'Jk anrles relea~ed from a 90-minute period to decay

.. -'-.

g.

D•::Lta t ·;s. revolution and period vs. revolution or period vs. day plot:~ .

Y.lnc-Eelc/Findlcy, Jacchla and uther proc;rarn predictions

Final decay message

2J,.2.j Correct tbe latest elernent set (procedure 3.5) uslr!['; all observation::; f ln the SGFDC program.

C'.(;.c'.~ Generate a bulletw (procedure 3.'() and look anc;les (procedure 3.8)

us inc the BLTNSGP o.n.J ·.:; LA::'.GP pror~rarns ( OCS lr().

2.( .. 2.5 Insure appr'.1D!'.wtc· sensor tasking (pcocedure 3.6).

2.'6,2.6 Release.: look anc;les to sensors.

~'.C2.7 AsscJc1.Gle the adLi:LtL:mal obse:rvutjons (procedure 3.!1) with the

latest element ::et us1nc. the RASSH program.

2.(.2.8 c~rrect the latest element set (procedure 3.5) u~ 'c the additional

associated ob::;ervations in the SGPDC program. Repeat the generation of a

bullet.Ln and lry:JJ.: angles, :.:·~ns:Jr ta~;Jd.nr;, obser·.,ration association and elemerd:

set c:Jrrecti~n until:

a. The DC i~ils, ar

~.· .. ~.9 ·,·Jl:·~n •.:~;tir~ated d•.ccay js less tha11 cme hundred revolutions away,

prc:d :.~~- •.::•.: rJc:'~·3:: r·c~Vcllt,t:ion (procedure 3.11) using period/revolution data

:r: ~.L•· ,rr:~:::L:r, pro,Tam; val.idate this by extrapoJation of the curve on a •

l

2-23

2.6 DECAY PREDICTION

TM-LX-123/000/00

~.2.10 ~-."he:; the DC fails, attempt to correct the elements (procedure 3.5)

the REDUCT-SYSBULL-GLAP program sequence .

.. :?.12 1·~an~:ally r::e~e-:-atc a delta t vs. revolution plot (procedure 3.11).

<::' 1~. l.:lctJ • ::e s•·n~:c:'' syct.e~ fails to acquire the satellite in successive

.. ;~ 11. r;xn:~:l!1e ~-:~:· ~)'U!'lC·'.iS ~Je~;uy pr12dictions and, when they ogree, deter-

1· !--:8!1\~·Jl ~~lot ;f pcrLc;d vc. rcvolut1on and/or period vs. day ..

,. 'l'~:~c Sl an l;c• .. wecr. t!w la:jt cbservntion reportP.d and the first pre-

1 July 1964 3-1 TM-LX-123/00C/0QA

Section 3

PROCEDURES

A variety of procedures are utilized to sclve orbital determination problems.

They appear in various tas^s and in various combinations. A procedure may or

may not involve the use of computer program support, and the fashion in which

it is used may vary from task to task or from program to program. The re-

lationship between the procedures and the six tasks described in Section 2

is shown in Figure VI-

VIA fnllnui me

9

i:

ii

I 12

llowing procedures are included in this section:

Procedures

Nominal element set determination

Initial element set determination

System Sensor, Element, Acquisition, Information

and Ccmmunication (SEAIC) files update

Observation association

ELement c orre c t ien

Ser.scr tasking

Bullet i n genera ti on

Lee/, angle generation

Element se*. ad *uctnent

Ofcser\'ation selection

Decay predict:~n

El e me n t C: nv e r s i en

Page

3-3

3-9

3-11

3-15

3-19

3-21

3-23

3-25

3-27

3-29

j -j.

3-35

1 July 1964 3-2 IM-IX-I23/OOO/OQA

Procedures Tasks*

Title 1 2 i 6

1

2,

3-

6.

7. 8.

9 10.

11.

12.

Nominal element set determination

Initial element set determination,

SEAIC files update.

Observation association.

Element correction.

Sensor tasking.

Bulletin generation.

Lock angle generation.

Element set adjustment.

Observation selection.

Decay prediction

Eleme nt c cnver s i on.

X X

XX X

XXX X

X X X X X X

X X X X X X

XXX XX

XXX XX

XXX XX

XX X

X X X X X

Figure 3-1

Procedures and Related Tasks

*-*: i: te: Task titles:

D:mescic Laune:

2. Foreign Launch

Decrts Sera rat:

Proximity Dete:

Element Mai-nte:

Decay Predict:

;.na

t

I i

3-3

.1 ;;O!·UNAL Ern·IEHT SET DETERHNATION

.:!..l General

3.1 NOMINAL EUMENT

TM-LX-123/000/00

~c~inal element set is generated from predicted orbital values in order to

:c·o·:ide look ant;les to sensors so that the satellite can be tracked. Nominal

'cer.-:ents are determined t,efore each domestic launch and may be required for

::casional foreign launches for which iniUal observations are insufficient.

1e r;::):::inal ele:r:ent set should contain values for the following orbital

a. Epoch year

b. PA = anomalistic period, a semi-~ajor axis or q = perigee distance

c. i = inclination

d. e = eccentricity

e. epoch time

argument of perigee

right ascensic.n

C = drag

.1.2 Domestic Latmcn Information

ni.onal Aeronauti~s and Space Administration (NASA) or Space Systems Division

·~sD) c·:~ the U. S. Air Force usu~lly supply pre-launch information before every

' ~ ' ...... ' ~. ~ .... _ .. -- ~ ..

. l.~~ .l I!:.f-U.t

c. : (m<:::Js·.n·ed ccuntercloc;<:·.,.ise from the equator, east of the ascending

~, = l~~itude of injection (I)

x~. = lo~c!tude ~est cf ~njection

Di:·r;r·•.:m: c: c;G~~(:llit~ :::otion at I: ncrtherly or southerly

3-l NOI<lHiAL ELEME'I>JT

3-h TM-LX-123/000/00

Any ~~et of porarr.eters which define an orbit (e.g., position and velocity

vee :.or·s) :-nay be used in place of P A, i and e, with the proper formulas.

3.1.2 2 Processing

Ur:cn receipt of pre-launch information on a domestic launch, determine a set

of nomi:1ul elements in the standard format by manual calculation and by using

the I .. B,M" 1620 Computer Launch program. The two nominal element sets are

co:npared and, if they do not agree, the disparities should be analyzed and

adJusted.

3-1.2.2.1 To calculate the Argument of Perigee (w ) on revolution zero: 0

a. Calculate the distance (u) in the orbit from injection to the

closest ascending node (actual or theoretical):

Gin ¢. sin u = . .

1, if the direction of satellite motion ut I is northerly. s.1n 1

sin ¢1

sin i. ' if the direction of satelllite motion at I is

southerly ..

r.~. Culculate the Argument of Perigee (w ) measured from the theoretj cul 0

escend:i.ng node nn rrc:volution zero to the lJCrigee point in the direction

of satellite ~1oti.un:

w u, if T "'·; :n the northern hemisphere. 0

w c I is in the southern hemisphere.

NOTE: Pr.::l·:icco i.:::; ascumed to occur at I.

3.1.2.2.2 To colcul~Jte the Urne (T0

) of the satellite's imaginary passage

E ~ 90°, then 0° s:- s: 90°

2

~0 - 180~~-·-= cot --.---- ---

L 2 l + e'

9oo < E 2

$ 180°

t

3-5

n. Cnlculutc tl~e Menn Anomaly (M):

3.1 NOMINAL ELEMENT

TM-LX-123/000/00

There are 57.3 u~grec: per radian.

Calculate the t irno difference C:~t) between T and the time of 0

i !ljecU on ( T~ ) ; .L

t.t

I • ) d. Calculate 'l'. \ 1r1 duys since 1 January : l

rp ~i 'rl.me of lL:ft-off (in duys since 1 January) + Time from lift-off

to injection (in fractions of a day)

NOTE: If time from lift-off to injection is given in seconds,

divide Ly 86,400.

HOTE: Nom:i n:1l Umc of lift-off is assumed to occur at OOOOZ on the

dny uf luunch.

~. CalcuJate T : ('

(.; :,_; rll i -

~.:.. .. .::.~!.:> T,) c:~J.lc\:lute t!K· l'ight ascension (O )on revolution zero, (measured 0

~·us::,;u:·d frc,7:: t!w '.'enwl e'1uinox to the ascending node):

:". CulL'uLtc th: rlr:::ht uscension of zero longjtude (Greenwich) at

'I' (;,'r, ), '<.'ith r·.',:!Jt usc:cnston of zero longitude ut OOOOZ on urn

"·o , J:.m1.w r-y, l96h ( G

0) = 98 '(4077.

Gn ~·1 rn

10

= G • 0 Umes the fractional port of (T

0 · 1.00273791)]

L. ~o.JcuJ:Jtt:• t:;.:; :Lr:·erence in longitude (t::.A.) between injection

>.,:u·i 'J1Yle (;\., ) und the closest ascending node (actual or theoretical), \,.

r::c.:J~•.;~·cd ~n ~~ ;Jest\·mrd di rectJon from Greenwlch:

. . . '-. . .) J;., ) . - u)

3-6 TM-LX-123/000/00

Calculate the lonu;itude of the theoretical ascending node

!·evolu tlon zero:

A 1.; = A ± t:.\ - ER

0 ""i

IJOTE: 0

The Gigns of t:.>.. and 360 can be determined from the following

table, where P = prograde and R = retrograde satellite motion,

und N == northern hemisphere and S = southern hemisphere injection

latitude. Addition or subtraction of 360°, where indicated in

the table, will not change the value of (>... ± t:.>..- ER) wi

c. Calculate 0 : 0

()

N

s

p

Jj).. 360°

+

- +

3.1.2.2.1, Dcterr::ine the denc: term (C):

~

iiA ~60°

-- +

a. Enter the C-te r::, ]·let (Figure 3-2) \·rl th peric:ee heic;ht a Love the

b. Read tlle C-~cr·m lJO.c:e ~1umher from 1 to 0 (left to right) bet'\.,2en the

two appropriate cont8urs.

Read the C-terr:~ ezv,ncnt number· (to the base 10) between the two

rJ!T·rq,y·iatc ccmtou:·;_; :1~: the top of t-.he plot. -G

Fer exo.,:Jl')le. :if c = •J.2 and ER " 1.03, C " -O.c( x 10 . If e = 0.08 and ER - • • - r -e .

1.06, c;, -0.0 x 10 or -1.0 x 10 . The fractional part of the peri,zce

3-7

3·1 NOMINAL ELEMENT

TM-LX-123/000/00

F1··~"-laur:ch ~nfcnr:ution on foreign launches is usually unavailable. However,

i.ni tic:l obscnru~~ions m·ty come from three types of sensors.

3.1.3.1 Inrut

o. Ruda:· fan dutu: t Lme, uzimuth, elevation, range and range rate

(optional)

t:. 'I'rucker- duta: time, azimuth, elevation, range and range rate

c. Telc:netry data: time, azimuth and elevation

') l . • " j· ..• ) •• :. Pl·ocessl.nc

If te1.ero.etr:r or tracker datu ure received on a foreign launch, an initial

n}cr;!r~nt set. i:..; computed (procedure 3.2). If radar fan data only are received,

:~.er:'::Jlly [e!leratc un ele:!:ent set.

f::·::·c r:~'(' s:.;Yer~<l rredetcrrn:Lned element sets ·which have been computed from

:·:·,··:>:·~::;::·en;:,:"- lmmches. These :-:Jay be used as nominal element sets for

:;.tccl'•:di:•c l:.~u:·::::!le:~. Attempt to associate initial fan data with fan data

:: I'l'ev~ m:s lau:iches t() .:_'~1c ~li tate selection of one of the nominal elerr.~nt

::;··~:..;. r:::· t::e in.:.ti:Jl dJserv~ltions do associate, use the selected nominal

•2.~ .. c:·~e:1~ c:r~t c:r:t.i.l udd~ t..ionul observations are received. If the additional

(:,··:~··:u•.:o:ls ·_u:;s('c[:.:tc closely -..:it.h the nt'rninul element set (procedure 3.4),

i~; ::: ::..':: .. r-:~cto::d (;:roceclure 3 5). Other\-lise, the additional observations

~:::c·Jld !;e •.;:.~ed tc' cGr::pc.;.te Dn iniUul element set (procedure 3.2).

·,r:-:en r.~F~ L1~ tlul :·em dc1ta duc·s not associate with any historical data,

u~.~>.c:::pt tc, c~Jlculu~.:rc~ un .inJ.ti~,l element set (procedure 3.2) using the

:::: t~ul fur; dota and ether <.r:ailul!le information.

3-8 ~-LX-123/000/00

I .. -e -e -7 -8 -e -10 j.• ' " •• .18 .4 .2

., 50

• ~ • ~-

I I# ,~ t' , _4 l•

,; ,.. "'!" #'

J: ' I#~ .,#. Lf' ,

11 ,_. Lll"' t--

45

; I ~ , • ~ ' _. ,! I#-

40

II : ; ·f-

• I • ~· I I 4

' • I• I ~ ; • ~-• I • . ..

--1-J II I I ~--~~-I --, -- -

3 " I I I • • • I

I NO SUPPORTING DATA FOR e>0.3

MASS AREA NOT CONSID£REO 2 5

I I

2

Ell X 10

I I f. - ,_-

0 i

I

I I ' 5 I I 1\ ~ l

' 0 l " I 1\ ..

I 1 I' \ l 1\.

-l-t- 1\ ~ "'- --

I' I

- ---;---j -- -!-- i ___ L _..J~-- -~~- -- ._. ----I-- -~~ -f- - --- f-5 LH II\ -~ 1'-

' t--- -~-- ~- ·-t- !t.. .. . ~ 0 -~-t-r-1-t-t +-- ~ ' --f-.- ~-I-

4 1~0 :'100 -.~o 600

9~.6 19U 287.0 382.7

~ 900 EARTH RADII

478.4 ~74.0

KILOMETERS

FIGURE 3·-2

C-- TERM GRAPH

10!10 1200

669.7 765.4

15~

8610

-i

r-

"(X

9567

'

'

3-9

3.2 INITIAL ELEHEN'l'

TM-LX-123/000/00

"'~ llJJ'I'IAL ELD1ENT SET DETERMINATION

J\:; ] ::: t l:JJ ele:'!ent sc:t is deterr:-lined from initial observations in order to

;:·,.·:ide ~co!-·. unt:les to sc~1sors so that the satellite can be tracked. This

.:; .. :: .;~ Fcrclr~n Launch lr.f'ormation

:;:,,: :.l:.il. c.h•.:en·o-:;lons ~'Jn foreign launches usually come from three types of

~·. 2. :~. l Ir~pu t

a. R:Jdar i'an datu: time, azimuth_. elevation 1 range and range rate

(optionul)

lc. Tr~1cker datu: time azimuth_. elc=vation 1 range and range rate

Tc· J.er:1et r:·: d:1tu: time, az.>:mth and elevation

~.2.2.2 Processing

1Jr c·r: r·ec~elpt c,f radc.n· 1 :_,n dut:, ur, u foreie:;n launch, uttempt to associate the

ir:[r;i.o.J. fun datu i-:i:!; :··m cl:Jta o:1 pre•:ious foreign launches (procedure 3.1).

L' tl':.e lr.i ~iuJ ubsec/Jtlu:L dl: r:ut ussoc:iute, attempt to calculate an initial

c.ll.:~~cnt :~ct. u~:~ng !.he iLl :.:<.d ctJo.;erYutions und other selected information.

111n proceJur0 for this ~alculati~n follows as closely as possible the procedure

.. ' ~. cJe:::ent set based on U.S pre-luunch information

(I!'(•~c:d.:,:·,c 3 1). L·lC'l-: of ('V~! lett! inforrrution, however, rnuy require that a

:_, :.,:Jreign lsunch, the _!ni tial Qrbi t by

::r·t·: ·, .. :,_~:!;: :; (TC:Ir.) i'l'' :'t',:'~' 1 •• •.1:;cd to compute the ini.t.al]_ e.lement set.

~C,iW :T' :r;·u::, :Jsc:_; U:n••- trlree-dir:-:ensionu.l fixes fror:r one sensor to

The })ro~:;ram uutomat.icully uses all remaining

::;r;:"::t'-~.m:' 1J: dlf'1'er·e::t:u.lly C(irrcc:t thut element set (by the Simplified

_:; .. ~·

I:'HTIAL ELfl·1ENT

3-10 TM-LX-123/000/00

lJpcn receipt of telemetry data on a foreign launch, the l_nitial Orbit from

Angular Fixes (IOANGLE) program is used to compute the initial element set.

Three angular position fixes from one sensor are used in the computation

and the remaining o18ervations are t.:.tilized in a differential correction.

:S::.sically the same methods as in the IOHG program are employed for both

nler~ient set computation and differential correction.

lf or.ly geocentric rectangular coordinates and velocity data are available

on n lntmch, the Rade.r Orbit _Qomputation (ROC) program is used to compute

the initial elerr,ent set. No differential correction is included in this

program.

If t\-:o or more radar fixes only are available on a launch, nse the Initial

Orbit from InC:ependent Radar Fixe~- (IORF) program to compute the initial

element set. These fixes may be isolated radar hits which come from

different stations or which occur during different revolutions. Differential

correction is not included in this pr,)gramo •

3-11

SYSTE!·1 S:Et\IC FILES UPDATE

General

3·3 SEAIC UPDATE

TM-LX-123/000/00

Scr.~;u:· .• Ele~r,ent, Acqui sit Lon, Information and Communi. cation data are maintained

on .:.:ll sutellites carried by the SPACETRACK Center. This data is maintained

C'n r;unch;d ~ards in t!Je System SEAIC files. It is also stored on the SEAIC

::are :'or most satellites, because many of' the programs accept SEAIC tape

:nl:·uts. Tne SEAI Tape FJ le Maintenance program is used to add, modify or

delete ::nformation from the SEAIC tape.

3· 3.2 Foreir:n Inunch

Upon establishine; the first acceptable element set on a foreign launrh,

-+::he E, A and I files on the satellite are added to the SFAIC tape to

:aci litate ':-he generation of a bulletin and look angles. The Special

?o1·e:i gn SEAI 'D::lpe File Maintenance program is used because it includes a

p·r•dete:·:r:lned ncquisi ticn o.nd information file especially designed for

3· 3·2 .l Input

Classi~ic.:Jtion

D.

L'J. unc h :J reu

d. FLl\Sii tj 1_llletin indicator (optional)

E• - . Set•:lll tc t:n:m::;mi. t tine; indlcu tor ( optionul)

j. -~ .2 .2

'~::: G1cr·: ~~-~ Fore i r::n SEAI Tape F.i le ~!aintenance program addn the E, A and I

L le:; tc ~}!e SEAIC tape and automatically enters the bulletin and look

:,::,-1,:~ ;:~ene~·at.iO!t pr·ocedure::; (procedures 3·7 and 3.8). A and I-file cards

s::~~Jld :)e 1~l'1C':'led :..:o <:;hot the information on the SFAIC Tape is also in the

~.. -.. ) .... SEATC UPDATE

3.3.:, Dome~tic Launch

3-12 TM~LX-123/000/00

Upon c:c:.ermin::ttion of u nominal element set on a domestic launch, request that

a sr;edo.l SEAIC tape be built. This specio.l tape is used until after the

satellite is l:J.unched and an acceptable element set determined.

3·3·3-1 Input

a.

b.

" ,_ . d.

Sensor ciata

Nomin~l Element Set

Acquisition data - usually from the Operations Division

Information data - usually from the Operations Division

Satellite Maintenance

After a reliable element set for any satellite has been determined, the

element set is maintained in the System SEAIC files. Subsequent changes to

the clement sets are rna de mH.nually or automa. tic ally, depending on the stability

o1' the satellite :md the reliability of the element set.

~. 3. 1~ .1 Input

u. Elene:-.:t se-t

h. J\cqu"i~;:i tion dat:~

c. Inf'orm:rt.ion datu

3. 3. 4.? Prcc~es~~ ir.g

:;:_;:- tho:: '2le:;;cnt set is cor:::ectcd by the ~implif ied ~eneral Perturbation

Ephcr:1e:r:ic wi~;h Di:·:·erentLal Correction (SGPDC) program in the automatic

r~wde .• the ne".-1 c:lc:;;ent cet ;:ill be stored on the SEAIC tape in place of the

old el(~r::ent :3et provitled convergence occurs on all six elements and the

d:n1g tcr;:! (procedure 3.5). Otherwise, the old element set remains on the

SEAIC tape. If the SGPDC program is used in the Schedule Tape mode, the

SE/\.J Tape File l·h ir:t•:T'.ancc program is used to update the SEAIC tape (pro­

C(:clm·c 3. 3).

3-13 (Page 3-14 Blank)

2· ).) SFAI Tnpe Files ?4aintenance

3-3 SEAIC UPDATE

TM-LX-123/000/00

Additions ~nd or deletions may be made to th~ S-file, E-file, A-file and

I-:".:.les using the SEA.I Tape File Maintenance program with the appropriate

S, E .. A or I-file card or the SE....\I File Deletion card.

3-15

3.4 OBSERVATION ASSOC

'IM-LX-123/000/00

0~: serv0tl ens re;::el\·ed ty the SPACEI'RACK Center must be associated with a

sa'.;•:ll:i te be::'orc they ':un l.Je used to correct the element set describing that

sa~~ell~ te ..

3.L~ .2 {}1·oss Association

Tr:e cr::;ss associet:i.on of observations with a satellite is accomplished by

1denti2'yir;g those cbservuticns which fall in a srecified time span. The

Ll :::e SIBn is usu2lly t.hut during which the satellite is expected to be

·,;_::,~:in the acquis:! ti or. ce;pabili ty of the sensor which returned the

Assc.'c~:: cltioL cr_L teriCJ - e.g., time span

;,;,- :: J.wrce ::::Jsses of J:Jtn :l:·e received, as from BME'wS, the Observation

')r<.'C!:·atic:: (03SSEP) l':·c;:r~:r~. is used to separate the observations into two

c~·~:c<rs ac~cord ::::~ ·Jc ~~::e t.ir::.e span indicated. The OBSSEP program outputs

·>~ .:::~;e:'".~l\,~;:::; fullir.c ;.:.i.~Jli.:: the time span on a high priority Beport tape

(R-~;:J!'E:) ::.;r:d t:;c,se :·alljnc: ::utslde the time span on a low priority R-tape.

exu~ined ~ist;ally.

~.4._ Rc~tjne Assuc:~~lu~

proc:ram is used to accomplish the routine

OI3~.iERVATION ASSOC

3-16 TM-LX-123/000/00

'fhc RASSN progTam nuy be run i.n the automatic or the Schedule Tape mode.

In the autom:1LJ.c modG the program attempts to associate all observations

with all satellites on the SEAIC tape. In the Schedule Tape mode the program

attempts to associate all observations with thost:: satellites for l'lhich

element sets are input.

The pro~:p:am assigns one of three levels of associatton to each observation and

iC.cntii'ie::> the sr1tellite with which it is associated. The levels of association

are Associ:ltecl (Ra), Doubtful (Rd) and Unassociated (Ru).

3.1~.4 Special Association

Special as~;ociation of observations with a satellite may bE: requi.red whenever ... , . ~-

--~. ·:·· '· ' L-.:' -:-·n·~~ctPrP -; n the RASSN program are too open or too restricted

:·or ~ccuratc ~ssociation to occur.

:1.. Ob:~ervation data

b . Sensor da t:.l.

c. Element data

d. Assoeia-::.ion parameters

3.l.4.2 Processing

Eitter the P.ASSN or the Reduction (REDUCT) program may be used to achieve

associ,ltion under special conditions.

The RASSN program, run in the Schedule Tape mode, requ:l.resspecification of

the numerical values of the as~·:)C:lation pn.ramet•~rs (time, right ascension,

height, vector magnitude and beta). The program tags each observation as

associated or unussucint0d.

'l'Lc REDUCT procr:1m ro::~duc:cs obr;crvations back to the last nodal crossing and

cor.1putc:; the n:s ldu~1l diff'r~rcnces between the observations and the elements

ln tenns of' time .. right ascension and height. The program then identifies

those ob:::crvattons whose residuals fall within one of several sets of tolerancP

limits contairwt.l ln Lhe program. 'l'he limits are spec 1f'ied each time the program

:! :.: run.

h May 1964 3-17 (Page 3-18 Blank)

3 .1~ OBSERVATION ASSOC

TM-LX-123/000/00

TI1e rcciduals output by the RASSN or REDUCT program may be used to further

refine the association levels of the observations (procedure 3.10).

r

3-19

ELFJ.ffiNT CORRECTION

General

3·5 ELFME\~ CORP~CTION

TM-LX-123/000/00

T!1c pur}'o~:f> ·,·,f clement c~orrection is to refine on element set, making use

o:· ulJ::>er:uticns recei•Jetl since the preceding correction, so that the resultant

:5·').2 Co~rmlete Correction - anor~mlistic data

rJt:d the druc terrn .

') (, ') "l _). ) • L_ • ......__ .Input

L ~ Sensor du tt.1

'J'r.c_· ~)Cl-DC IH'C'I~' alii u.., '-''~: .. :1 ~"' t.u tlifferent:i.ally correct all of the six orbital

~·Jr;:ncn~~s Dnd the drag parameter" In case the attempt to converge on these

sc•:ey; I-'arumeter:::: fn.i L;. the program automatica1ly tries to converge on a

fci.;er nu~nber. The Pl',J[::ram is de signed to handle most satellites having

ZC:!''• tl· :1c<lcrute cecentr.iclty Secular variations due to the earth bulge

~1nd at~.:ospher:Lc drnc are accmmted for directly. The perturbations due to

:;r>Jcn· nJd.!.:lti on I'ressures and gravity fields of the oun and moon are neglected

:n-.DJyt,Lcullyj howc·:er, any long 1~erm effects of theoe perturbations are

; :wlurJed ir: the elemr~nt curn~etions obtained by the least squares error

J !', cc,c;s. The SGPDC program does not compute the first derivative (D) of

::-.,. j Lu·tiul Corre~-~tion ( 'l'ime equation only)-nodal data

F:t~"-: ~d c ·~··!Tee U e-n or un element ::;et corrects only those parameters affecting

~"::" ;_~::::e c;:' cru:~s:nf~ ~-he ascending node: T0

, P, C, and D (the first

ELE'·!ETiT CORR.F.CTtofJ

3-20 TM-LX-123/000/00

a. Elemc~nt set.

L:. Time~ residt;o.l:::: ot specific revolutions

OrJer of the ·~quo.:.icm to be fit- linear_. quadratic or cubic

:" ! -. ) ') _, •• / 1 _) • t.... P:rocess:i.ng

'I'n·-; S-tstcm ~ullc:~~ 1 n (SYSBUT.JL) program may be used to correct an element set

tJcforc prod\h ~~lf: :J bullcti n. The program computes a least squares fit to

tr;r; tJ r~1'" t' l.~;a 1 Lor~ l'r"m time residual inputs. Tnese resldual values usually

co:nc f'!-·m thr:; out};ut nr thr.; REDUCT program (prot':::lt,:'f:' j.l+) and the order of

t!v· e tuatim: i.::: deterrnl ned by examination of the t:i;1:·: residuals plotted aga1nst

t·nf·~ir revolution ntl!nl~er (p-r·.:Jcedurr! 3.10).

3-21

Gene r·ol

3.6 SENSOR TASKING

TM-LX-123/000/00

A : :· i c !'j :,y fer ' :>,~C1",< n,• u partl cular sntelli te and the amount of data to be

:·r·I ~)rt,c:J :~,:<y Lc c.: pee i Li.cd l:.:y Jnsurln13 that the proper sensors are tasked at

~.t 0 USAF Scn~trs

T::•_::·c: :,~·-::~ t,!;n::e r•rl or_! t:; levels rmd three data levels.

1

3

Datu Su!'f'Jx

A

., '-

c

1

Meaning

Observations on emergency or extremely high priority space events.

High priority observation5---0n selected satellites.

Routine observations on selected satellites.

Send all possible position data from the time of ocquisi tion until the object passes beyond the sensor capability.

Send all position data obtainable during u perlod not to exceed 3 minutes

Send best single observation.

Meaning

All observations referenced to applicable receiver stations ore re­ported by telephone and followed by an "Immediate" precedence message as soon as possitle.

All observations refe~enced to applicable receiver stations ore reported by "l-'rlority" precedence message as soon us possible.

SEJiSOR 'I'ASKING

Tasking Categorv

5

3-22 TM-LX-123/000/00

Meaning

All multi-station observations re­ferenced to Kickapoo site and all single observations referenced to applicable receiver stations are re­ported by "Routine" precedence message every 8 hours.

Same as Category 3: every 24 hours.

Same as Category 3: excluding single observations, every 2L~ hours.

Categories l, 2, and 3 are in effect tne same as tne presentCategory lJ 2,

and 3 used with USAF Sensors wnen applied to new foreign launcnes (Category 1)

and new domestic launches (Category 2). ~nerefore, all pre-printed message

f'c:::1ns ·will inclur1 <:? SPASUR as addressee on the initial alert messages from

NORAD SPADATS for both foreign and domestic launcnes. Suffixes A, B, and C

do not api1ly to NAVSPASUR and tney have been advised to disregard tne suffix

on multiple addressed messages.

Categories 1~. and 5 will b<: prirnarlly used by tne Data Control/Sensor Brancn

wnen assigning routine rnontnly tasking ~nrougn NORAD SPADATS. However, sensor

tasking may be cnanged, on rc1utine t;yrpe satellites, to Category 4 or 5 wnen

appLcable.

'

3-23 (Page 3-24 Blank)

3. 7 BULLETin GENERATION

3-7 BLTN GENERATION

TM-LX-123/000/00

l1 bulleti!1 ( eJ:hemerl s) contains predicted satellite position information.

Future satellite positions ore extrapolated from an element set best

!'it: inc the current rmd pust satellite observations.

3. ·r .1.1 Input

a. Element set

j.'i.l-2 Processinc;

'Y:1c~·e a~·e two methods 0f c;eneroting a bulletin. Normally the ~u_!le_!:i,!! with

~:irniJlificd Qeneral l:erturbntions (BLTNSGP) program is used to generate

a bulletin. If the SYSBULL program is used to correct the element set, it

,,,. ~ 11 r~·oduce a bulleU n automatically, and unlike BLTNSGP, will use the D

te2·r:c. TI1e BLTNSGP program uses anomalistic data, whereas the SYSBULL program

uses r:cdal data.

:1. A:J. element se:. at ~.he tirne of crossing the ascending node for the

Position ar:c: time oi' C!"ossing an ascending node for all revolutions

Pcsi-:.i.un, :lrre m:J }v_:lt·:-Jt at consecutive latitudes covering one

J~ chldl t.i.on_. the BLTNSGP f'rogrnm prepares a modified description of the

orb~tal clements, which is used for special prediction purposes as specified

: :; t}:c Inte!"·na~"ional _Qeuphyslcal Year ( IGY) World Wide Code for Satellite

3.8 LA GENERATION

i h May 196U 3-26 TM-LX-123/C00/C0

3.8.3.1 Input

a. Sensor data

b. Element set

c. Acquisition data

3.8.3.2 Processing

Tne GLAP program will compute a set of acquisition coordinates for eacn

satellite and the associated sensors. Tne program computes look angles

for general acquisition purposes.

3-9 ELEMENT ADJUST

k May 196h 3-27 "" 'm-LX-123/OOO/OO (Page 3-28 Blank)

3.9 ELEMENT SET ADJUSTMENT

3.9.1 General

When excessively large residuals exist, manual adjustment of the affected

element value may provide for a successful differential correction uping

routine procedures.

3.9-2 Foreign Launch Data

If the initial observations are insufficient to compute or calculate an

initial element set, or if the initial observations will not associate with

any of the nominal element sets, adjust one or more of the element values in

the closest nominal element set on a trial basis, and attempt to associate the

initial observations with this adjusted nominal element set.

3*9.3 Domestic Launch Data

Following a domestic launch the nominal elements (fin and T~) are manually

adjusted to reflect the actual lift-off time.

3.9^ Unusual Orbital Data

It is sometimes difficult to maintain a reliable set of orbital elements

on a satellite with an unusual orbit. Observations may no longer be received

or the elements may not converge on the observations available in a differential

correction (procedure 3 5)> Occasionally all but one or two of the elements

converge on the observations, indicating that the observations are reliable

but that one or more of the element values may be in error. Adjust the

apparently erroneous element values and attempt to attain convergence on all

the elements in another differential correction.

3-10 OBS SELECTION

k May 1964 3-29 TM-LX-123/OOO/OO

3.10 OBSERVATION SELECTION

3-10.1 General

Removal of doubtful or erroneous observations from a group of data will

usually facilitate a more accurate differential correction. Particular

observations are often selected from those available because they reflect

a major trend, evenly represent an entire orbit or indicate a different

but associated orbit.

The methods of observation selection are manual. In clear-cut cases, identify

observations by a visual examination of the hard copy produced by one of the

association programs. Otherwise plot the observations on a graph, in terms

of their deviations in observation time (delta t) or right ascension (HQ)

from predicted values, as a function of revolutions. The groupings of

residuals may reveal the source of a problem in the maintenance of reliable

elements. The output of the REDUCT program 'procedure 3-M is often used

to provide the data for such a graph.

3.10.2 Initial Observations

Initial observations on a newly launched satellite usually reflect a major

trend. Elimination of those observations which deviate from such a trend

tends to improve the computed element set. (procedure 3*2)

3.10.3 Element Set Variations

Observations on a satellite often reflect a slight change in the orbit of

the satellite by their general trend- A review of delta t vs. revolution usin^

all the observations sometimes indicates a break in the general trend. If

earlier observations (prior to the trend change) are eliminated, the most

recent element set can be differentially corrected (procedure 3*5) using

only the recent observations, which represent the latest changes in the orbit.

3.10 OBS SELECTION

h May 196U 3-30 TM-LX-123/OOO/CO

3-10.4 Observations on an Unusual Orbit

Satellites having unusual orbits often reflect one or more of the following:

a. High eccentricity

b. Low inclination

c. Small radar cross-section

d. Perigee in soutnern nemispnere

e. Large period

f. Small period (e.g., approacning decay)

g. High drag

n. Element set errors

When a satellite has an unusual orbit, sensor coverage is generally marginal.

Thus the observations reported often represent a few unequally distributed

points in the satellite orbit. A group of selected observations, evenly

representing tne entire satellite orbit, usually provides a better correction

of the element set.

3.10.5 Observations on Assocv ated Bodies

When part of tne main body of a satellite breaks off or is separated in

the form of debris, tne debris observations are often not as numerous as

the larger body observations. However, debris observations are usually

received about tne same time as tne main body observations, and may associate

partially or completely witn the main body element set. Debris observations

deviate mainly in tneir time residuals and, for a particular piece, tnese

deviations are consistent. Tne use of only debris observations in differentially

correcting tne main body element set provides an element set on the debris

object. The main body element set before correction is retained to represent

the main body of tne satellite.

3.10.6 Unidentified Observations

Occasionally tnere are too few observations associated with an element set

to provide for ade4uate correction of the element set. Some of the un-

identified observations in tne system, wnicn did not associate witn tne

3-10 OBS SELECTION

h May 1964 3-31 TM-LX-123/000/00 (Page 3-32 Blank)

element set using routine procedures, may in fact represent the satellite.

Observations received during a particular time period over a specific sensor

may be selected manually or by use of the OBSSEP program. Next, they are

associated with those observations which do not associate with any other sate]lite,

and then examined for possible association with a given element set.

iy

3.11 DECAY PREDICTION

k May 196U 3-33 TM-LX-123/OGO/OO

3.11 DECAY PREDICTION

3.11.1 General

A satellite is removed from the system when it has reentered the earth's

atmosphere or is no longer in orbit. Decay predict.-'on is seldom exact, so

several methods should be used simultaneously.

3.11.2 Initial Decay Indications

The Duty Space Surveillance Officer (DSSO) usually forecasts satellite

decay by a period check. The satellite is then transferred to the Analysis

Division for maintenance until it has decayed.

3.11.^.1 Input

a. Element set

b. Probable decay indication:

1. Period less than 90 minutes or

2. Decrease in period and eccentricity, and elements that hold for

only a fev days.

3.H.2.2 Processing

Determine a probable decay day by running the King-Hele/Findley program with

the element set, or by examining the results of the last King-Hele/Findley

run on this element set, which the DSSO initiated before transferring the

satellite to the Analysis Division. A revclution vs. day plot is generated

to substantiate the King-Hele/Findley predictions.

3.H.2.3 Output

The King-Hele and Findley routines both predict a decay day.

3.H.3 Final Decay Indications

The approach of final decay is indicated by the period, the rate of change

of the period and the satellite characteristics (tumble rate, motion, size,

shape and mass). Maintenance of the satellite requires greater attention

especially when decay appears to be less than ICO revolutions away. Care-

flil selection of observations may substantially improve the element set.

3-11 DECAY PREDICTION

h May 196k 3-34 OM-LX-123/OOO/OO

3.H.3.I Input

a. A graph of tne difference between predicted and reported observation

time for each revolution (delta t vs. revolution.)

b. A graph of the period for eacn revolution (period vs. revolution or day)

c. Satellite cnaracteristics - tumble rate, motion, size, snape and mass.

3.11.3-2 Processing

There are four metnods of predicting decay:

a. Run the Jacchia program using tne periods and corresponding

revolution.

b. Manually extrapolate the period on the period vs. revolution or day

graph, and compare tne results witn tnose of the Jacchia program.

c. Examine tne delta t vs. revolution graph for a break in tne curve.

This curve usually becomes cubic in snape and, just before final

decay, the rate of decrease of delta t increases so snarply as to

deviate from a cubic curve and approacn a logaritnmic curve.

d. Identify that time span between the last observation reported and

the first predicted observation not reported. Tnis is only as reliable

as the element set used to generate tne look angles for *,ne sensors.

Usually all four metnods are used, and Jaccnia may even be run several times

using different sets of periods, to determine a predicted range of revolutions

within wnicn to expect final decay. If results of tne various methods agree,

the analyst may conclude tnat final decay nas occurred wn^n tne first tasked

sensor fails to report an observation. Otnerwise tne analyst may wait until

several tasked sensors nave failed to observe tne satellite.

Occasionally satellites decay snortly after launcn or are deorbited. Time

for decay prediction is not available and tne time of decay is often reported

by an outside agency.

After final decay nas been concluded, initiate tne final decay message and

remove the satellite from tne SEAIA files.

3.12 ELEMENT CONVERSION

lJuly 1964 3-35 lM-LX-]23/000/00A

f)

3.12 ELEMENT CONVERSION

3.12.1 General

Elements received from external agencies (NASA, 659^-th Aerospace Test Wing,

Sunnyvale, NAVSPASUR) must be converted to a form useable by SPACETRACK.

The procedure for making the necessary adjustments is outlined below.

It should be noted that epoch times shown are not necessarily for a nodal

crossing as used by SPACETRACK, but are usually defined for some arbitrary

point in the orbit. The epoch time is measured at some point beyond perigee

and the satellite position at epoch is given by the mean anomaly, M.

3.12.1.1 Input

a. Orbital element set.

3.12.1.2 Processing

First, determine the time from perigee to the next nodal crossing. This is

dme by subtracting the argument of perigee (üu)from 36O . Figure 3~3 *s a

geographical representation of the problem.

atellite

point of ascending nodal crossing

M = mean anomaly from the message

u) B argument of perigee

perigee

v = the angle between perigee and nodal crossing (360°-^ )

Figure 3"3

3.32 ELEMENT CONVERSION

Uuly 1964 3-36 IW-LX-123/OOO/uOA

Let the quantity obtained above equal v, and, by substituting in equation 1,

determine the eccentric anomaly, E.

/,\ _ e + cos v , , . .j. \X) cos E = •— , where e = eccentricity 1 + e cos v *

Calculate the mean anomaly, M by equation (2):

(2) H « E . e sin E (57-3°),

Then, by substitution in (3) determine M , (total change in mean motion from old epoch to new epoch) * (3/ M=M - M, M = mean anomaly from the message

The time of the epoch in the message may now be changed to the time of the

ascending node by using equation (4) and (5). Mt (4) At = -rrzo P., P. = anomalistic period from the message

(5) T = T + At, T = nodal epoch time

T - message epoch time m

The right ascension of the ascending node at T must now be corrected, using

the right ascension (Q) to calculate a new right ascension (d ).

(6) 0 = Q + Ö At, where: Q = right ascension from message.

0 = right ascension of nodal crossing.

0 = right ascension motion.

Since the argument of perigee is given for a nodal crossing on SPACETRACK

elements the argument of perigee on the message must be changed by equation (7)

(T) W = UÜ + ti)At, where u> = new argument of perigee, o o CO = argument of perigee from the message.

U) = argument of perigee motion.

Next, perigee distance and semi-major axis must be converted into earth radii.

Finally, a new epoch revolution number should be calculated. This can be

obtained from an old bulletin, or from the time equation (8).

(8) T = TQ + PNAN + C (A N)2 + D (A N)3

r m- LX-12 3/000/00

r

4 May 1964 4-1 (Page 4-2 Blank)

Section 4

PROGRAMS

The programs in the B-2 System are organized into six functional areas:

a. Executive

b. Association

c. Element Determination

d. Observation Acquisition

e. Interplanetary

f. Miscellaneous

A seventh group consists of programs for use on the 1620 computer.

Card and deck input formats are specified and outputs described for the

programs most frequently used by the analyst. Tfte purposes of the less

used programs appear at the end of their appropriate functional area.

Following the program sections are descriptions of OCS sequences, Schedule

Tape requirements and standard card formats.

.

4 May 1964 4-3 TM-LX-123/OOO/OO (Page 4-4, Blank)

4.1 EXECUTIVE AREA

The executive area of the B-2 System is composed of a real-time subsystem

(BMEWS and INTPROC), a non-real-time subsystem (EXECM0D1, SYMOCT, EXECM0D2,

and EXECM0D3), and an initialization subsystem (BSTARTUP and BRSTART). The

real-time executive subsystem providet for BMEWS DIP backup while the non-

real-time executive subsystem provides control for the Space Track programs.

There are two modes of operating the B-2 System:

a. Interruptable - Space Track and BMEWS DIP backup

b. Non-interruptable - Space Track only

The BSTARTUP program is used to initialize the B-2 System when running in

the interruptable mode. The BRSTART program is used to re-start the system

when a machine malfunction has occurred in the real-time area of core. The

INTPROC program provides v,he capability to interrupt a Space Track program

and perform BMEWS DIP backup, and then return to the interrupted program

without loss of data. The BMEWS program provides duplicate backup for the

BMEWS DIP processor, under the control of the INTPROC program.

The primary non-real-time executive program is EXECM0D1, which contains the

basic routines that are required for operator control of the Space Track

System. The EXECM0D2 program provides control of OCS and Schedule Tape

runs, including program environment and system tape control. EXECM0D3 is

the Schedule Tape executive program. It is used for converting control

cards and data cards stored on the schedule tape, and for storing them in

core in a format acceptable to the othe^ system programs. It also transfers

data from the prestored schedule tape to a dato input tape when data for a

manual program is interpreted. After the data cards have been converted,

control is returned to EXECM0D2 where the specified program is read in and

operated. The SYMOCT program converts mnemonic octal corrections from a

prestored tape to a format acceptable to the central computer. The program

operates as a closed subroutine of the EXECM0D1 program.

*

h May 19& 4-5 -M-LX-123/OOO/OO (Page k-6 Blank)

4.2 ASSOCIATION AREA

The Association area includes the input conversion programs (MAP and ORCON),

the association sequence prr^rams (RASSN, RTPJUG, SRTMRG and SRCHEK), another

association program (REDUCT) and observation file maintenance programs (OFURGE,

OBSSEP, SRADU, RUMOV, PRINTER, GOODER and OBSEND).

r

»

RASSN

IJuly 1964 4-7 TM-LX-I23/OOO/OOA

4.2.1 REPORT ASSOCIATION - RASSN

4.2.1.1 Purpose

The RASSN program associates each of the observations with the element set

as Associated (Ra), Doubtful (Rd) or Unassociated (Ru). The classification

is based on a comparision of the residuals against specified criteria.

These criteria are specified by the Analyst when in the Schedule Tape Kode.

In the Automatic Mode, the criteria are contained within the program with

the following values:

At = 2 min.

RA = Not tested.

AH = Not tested.

VM = 1000 km.

e = .2°

4.2.1.2 Input

4.2.1.2.1 Automatic Mode - in an OCS sequence

a. Observations from the R-tape.

b. Element sets from the E-file tape.

c. Sensor coordinates from the S-file tape.

d. OCS Toggle number = Desired OCS sequence.

4.2.1.2.2 Schedule Tape Mode (Toggle 24 On)

Deck Column Position Card type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

1-6 SPSJ0B

9-13 RASSN

RASSN

1 July 1964 4-Ta IM-LX-123/000/OQA

(Page 4-7b Blank)

Deck Column Position Card type Number Punch

17 0 = Element Set cards, S-file and R-tape

inputs.

1 = Observation cards, S-file and E-file

inputs.

2 = Parameter card, Satellite Number card

and S-file, E-file and R-tape inputs.

3 = Element Set cards, Observation cards,

and S-file tape inputs.

k = Parameter card and S -file, E-file and

R-tape inputs.

5 = Parameter card, Observation cards and

S-file and E-file tape inputs.

6 = Parameter card, Element Set cards,

Observation cards and S-file tape inputs

7 = Parameter card, Element Set cards and

S-file and R-tape inputs.

18 0 = Sorted/Merged, Hardcopy and residual

cards output.

1 = Sorted/No Merge, Hardcopy and residual

cards output.

2 = No Sort/No Merge, Hardcopy output.

3 = No Sort/Merged, Hardcopy output.

80 J = Card type.

RASSN

1 July 196k 4-8 IM-LX-123/OOO/OQA )

Deck Column Position Card Type Number Punch

Parameter Card

1-8

9-16

17-24

25-32

33-40

80

Delta T limit (max. = l440 min.)

Delta RA limit (max. = 3^0°)

Delta H limit (max. = 6378 km.)

Vec. Mag. limit (max. = 10 km.)

Beta limit (max. = 90°)

P = Card type

NOTE: Any unspecified limit (blank cols.) is assumed to contain its

maximum value.

6 Data Cards:

a. Input Option 0:

(l) Element Set cards

b. Input Option 1:

(l) Observation cards

c. Input Option 2:

(1) Parameter card

(2) Satellite Number card

d. Input Option 3"

(1) Element Set cards

(2) Observation cards

J

- • . -

t

Deck Position Card

Column Ttype .Number Punch

e.€. Input Option k:

(l) Parameter card

f.*. Input Option 5:

(1) Parameter card

(2) Observation cards

Input Option 6:

(1) Parameter card

(2) Element Set cards

(3) Observation cards

h. * Input Option 7:

(1) Parameter card

(2) Element Set cards

7 End of Case Card

8 End of Job Card

9 End of Schedule Tape Card

10 Blank Card

4.2.1-3 Output

RASSN

k May 1964 4-9 IM-LX-123/OOO/OO

k.2.I.3.I Normal RASSN

The ordering of the printed output from RASSN may be made in two forms, sorted

and unsorted. For sorted output associated (Ra) and doubtfully associated (RD)

observations are printed first and listed in the order received from the

R-tape. The unassociated observations are printed in the second section

of printout in chronological order. In the unsorted form, all reports are

output in the order processed.

The quantities printed are:

1. association status (STATUS)

1 = Ra for radar report

2 = Rd for radar report

3 = Ru for radar report

RASSN

h May 1964 4-10 TM-LX-123/OOO/OO

k - Ra for angles only report

5 = Rd for angles only report

6 = Ru for angles only report

7 = Ra for range rate report*

8 = Ru for range rate report*

2. tag (association made by sensor - OSAT)

3. sensor number (STAT)

k. observation time (last digit of year, month, day, hour, minutes,

seconds and hundredths of seconds YYM DD KHMMSS.SS)

5. association number (satellite number with which the observation has

been associated; blank for Ru's - NSAT)

6. message number (if present; MSGNO)

7. revolution number and element set number (Ra & Rd only; REV EL)

The remaining quantities vary with the type of association status and are

as shown below

STATUS QUANTITIES PRINTED

1 U &t, vector magnitude, ß, time since epoch

2 Uo, &t, vector magnitude, ß, Ap> Ah, AA cos h, time since epoch ;

3 0, \, H, A, h, p, sidereal time

k U, > At, , vector magnitude, ß, time since epoch ho n

5 U, , At, , vector magnitude, (3, time since epoch, A6 and Aa j ho n

cos 6, or Ah and A-A c°s h

6 6 and a or h and A

7 Ap, tag = association number, time since epoch

8 P

* currently not used

RAGSN

k May 1964 4-11 TM-LX-123/OOO/OO

• -

where U = argument of lPtitude

&t = observed minus predicted difference in time (minutes)

Victor Magnitude = magnitude of vector distance between observed

and predicted positions (km)

ß = "out of plane"angle

p = range

p = range rate *

Ap = observed minus predicted range

h = elevation

Ah = observed minus predicted elevation

6 = declination

A6 = observed minus predicted declination

or = right ascension

Aa cos 6 = observed minus predicted right «ascension

A = azimuth

AA cos h = observed minus predicted azimuth

At, = At computed from elements

AU. = AU computed from elements ho o

If on the same observation there are two or more doubtful assoceticns, they

are printed in the output. The best doubtful, based on the lowest vector

magnitude, is marked with an asterisk next to association status. A tagged

observation whose tag is changed in processing is shown first as a doubtful

association with a question mark next to association status. As many

residuals as have been computed are printed; those not computed at the time

of untagging are shown as zero.

SAM

PLE

PR

INT

OU

T,

RA

SSN

T

OSA

T

STA

T

YMM

DD

HH

MM

SS.S

S D

T

U

BE

TA

VE

C-M

AG

D

RA

NG

D

EL

EV

DA

CO

SH

TI-

TO

A

MIN

D

EG

DEG

K

M

KM

DEG

DEG

D

AY

S T

NSA

T

OB

SN

M

SGN

O

RE

V

EL

U

S

DE

LH

D

EL

RA

1 OO

O

32

8 1+

01

19 2

1303

7 A

2 68

1

2841

3 13

10

24

3 00

0

32

9 40

1 19 2

1295

1-98

28

412

2 00

0

32

9 ^0

1 1

9 21

1756

.42

f^8

2839

6 13

301

6

2*00

0

32

9 40

1 19 2

1141

0.30

23

6

2838

5 13

563

47

2 00

0

32

9 40

1 19 2

1141

0.30

54

2 28

385

1268

0

7

4 00

4

03

3 40

1 19

0312

10.9

2 00

4 29

249

0

0000

2613

1 2S

7

5';0

04

0

4l

401

l8

1455

25-2

4 29

252

00

000

0 29

7

4 00

4

041

401

18 1

4552

5.24

57

3 29

252

0000

0 16

38

10

2?02

8

345 4

01

18

1300

53-5

4 29

242

0000

0 0

117

3 02

8

34

5 40

1 18

1300

53.5

4 29

242

0000

0 5?0

8l

0

29

401

18 0

5445

2.18

29

204

00

000

0 14

6

6 0

8l

0

29

401

18

0544

52.1

8 29

204

00

000

-.56

84 -.

13

..01

65

-.0

7

..43

85

-01

--5

7

85

-31

.03

107

-.03

.00

94

-.05

-.05

125

-.6

0

.00

0

-.0

0

.00

3

7-3

.28

274

111

191

293 13

11

208

0

7359

-7.6

.0

•173

-1

1

.6

•293

.0

.0

.0

PAG

E

1

AL

T

RA

NG

E

EL

EV

AZ

IM

KM

RM

DEG

DEG

LA

T

LO

NG

SID

.T

RR

AT

DR

R

DEG

DEG

H

H M

M

M/S

M/S

.81

-.1

2

1.5

6

-.5

7.8

5

.2

18.

72

1.3

3

582.

O

2

12

8.8

6.8

346.

1 80.5

184.8

1

9 26

-1.3

-2

.8

.82

41.7

8

.0

13.7

7

75

2.9

IIO

5.O

39-4

1.49

.0

46.7

179.

2 8

25

23

.2

7

8.9

6

.40

I M k

-3.3 2

6?.

7

1 K 1 ts o

o

RASSN

k May 1964 4-13 lM-LX-123/OOO/OO

4.2.1.3.2 SRCHEK

Normally the SRTMRG and SRCHEK programs are automatically run immediately

after RASST^ so the SRCHEK output is included here. The quantities printed

are:

1. Satellite number and name.

2. Epoch date and time (year, month, day, hour, minutes, seconds,

thousandths of seconds).

3. Element number.

4. RMS value and RMS limit.

5. Delta T and mean delta T (of Ra's in last 5 days).

6. Number of observations from date and time, to date and time

7. Predicted date and time at which delta T will reach or exceed

.8 minutes (.8 DELTA T). A minus sign after the date indicates

that the satellite will not reach .8 minutes prior to bulletin

expiration. A plus sign indicates that the sate^.ite will exceed

.8 minutec before the elements expire. Eleven X's will be printed

for satellites with less than 5 observations or when the slope of

the least square fit is zero.

8. Number of blocks on the SRADU tape being utilized for observations on

the satellite and where they are located.

9. Number of Ra's since epoch and in the last two days.

4.2.1.3.3 SATTB from SRCHEK

A Satellite Table (SATTB) is also produced by the SRCHEK program. This table

contains those satellites which require an SGPDC run. Specific information

for each satellite is printed:

1. Indicators, listed in order of priority

a. Minus (-) - bulletin/element expiration date is within 36 hours

of expiration.

b. Plus ( + ) - RMS exceeds RMS limit for t:ie satellite.

c. Plus L (+L) - No Ra's within the last two days.

d. Plus T (+T) - Mean £t of all Ra's for last five days exceeds .4

minutes.

e. I suffix - an automatic run has been generated.

RASSN

k May 1964 k-lk TM-UC-123/OOO/OO

2. RMS value

3. Number of observations

k. Delta T

SAMPLE PRINTOUT, SRCHEK SATTB

SATTB- LIST OF SATELLITES WHICH NEED ELEMENTS CORRECTED

SATELLITE NO. RMS NO. OF OBS. T - TO

+L 059 2k 5 12.2 -I 08l 8 2 •9 +L 188 0 0 6.7 +L 194 38 6 29.2 +L 195 6 1 18.2 +L 196 15 2 26.1 +L 205 0 0 k.O +L 239 0 0 13.9 +L 273 26 1+ 17.0 +L 322 96 12 9.h +L 359 0 0 .8 +T 378 179 22 39.1

4.2.1.3.1+ Analyst RASSN

If a parameter card is used in input with input options 5 or 6 (Analyst

RASSN) the RASSN output will be presented in a slightly different format

although the content is the same. All of the associations within the limits

specified will be printed in the doubtful format to allow printing of all

residuals. The last line for each observation will be in the unassociated

format to allow printing of the observational data.

h May 1964

e 4-15

Page 16 blank) IM-DC-12 3/000/00

-« o < : tun MO

t

Id I Ü X N

h D c h Z

K 0.

u J «L

2 <

1

t • • •• ** p». » K 1 01 9 •4 V« * VI T«

• • «4

M 1 • • Ot«t M m -4 OS

• H X >• ft >• 9 9 1 X 9 1 9 •+

a aa XX 0 r 0 a < • 9 X •« • Ul «• a IrfX 0 ! H 90 s • x

ft- XX X

IN- I X 9) X

»- ^ •- 0 ft- • ft- » ft-« Oft- ft» M ft- ft

r n < a» «X f«nr < < 9 J

«— • 9.

ft- -J • •9 -J

ft- -*« -. c JZ

0 a O • V» • «1 0 VI

49 •» • •> 9 a» ft- ••«* •>- • •» •» • J

•» "n •«• •»•- •* J «ft -» 0 ft- J o r ui -4 Ul zu •4 MO O MO X W '

X w

-* -J ui

Of at

Ul

0 • • « «ft «n V« 9 • 9 19 9» -»«ft • Of ^ «•• O « • •< « • 4 ft» « • ^ •9 »« *> or • ft» 9 OC

•* « IO « «r» 0» «9 w^ • •> •« •) •ft Nft» 9 «9 • 9 «t r 9 A •> • « «ft W.

ft*«* ft* ft* ft« » Cft (9 «••o • » • oiO • ft» «9 «1 9 a • •» • * «H O «4 * •< tH O O « » • • e» - • ft r». a • ft» 1 n «« •4 • «9 V« • ft «« ft • ft- 0 »- a «ft- 0 O M * M • O M • • X 9 X« • X 9 9 M 9> ft«9> «ft« 9) « -

O Jl

O « «1

O x n 1- m*~ xw ft- | 0 x x 0 X 0 oc 9 ac«M OCJC 9 a. «\ a a. ft> UJ •

ft» «ft «ft •>

»9 0* #»<b 19 • • •« ft 0» 9 A •9 t 19 ft » •

«4 • ««• O ft 9 09% 9 «4 *• f9 a 9M a ft «H O ft CM a ft 01 •4 Af •4 «ft 9 *4 CM 9

» 9

ft • •* 9

ft 9 O

• • *3 • ft O • ft O m 9ft- •»9 ft- ft» 9 ft- X <• X9> X 9)

• •C 9> or « cur O 9 O« or 9 Ut or 9 X 9 U- -1 U. Ik.

0 M •» ft»

• Ik. • o> • zo 0«

u X O • zo % i O •t • ox <o «ft »- ft» •» ft- •*•

* M 0 » V> J» <n •tic z AC X «ft X ft* «J Ml 0 ftftO

0 ••a i «9 M 0 *» •ftO 0 1 • • _» 0 fll-i r». 0» * O » r»- oa»

ft- nn -4 4» •- «ft 9) »4 «9 M • ft« ft* -J ft- -» -J »4 rJ 9» J hi •» -J •- •>• Ul < «* • 5

1 " ft»

UI9 O (A

Ul o

z 10

<

h

>• J < Z < *

H

0 h Z —

i.

W J a, Z <

< t o

ex Ul o

(X

• «a I - Ul

o P Ul

o

1 a x

;: 1 »

• >

•«». ft* «4

•0

10 r*

tu

t «w

i irt • 9 • •

»op «D «ft <•

y «ft •

ft»«»

r» 4» » +t o*

9

»«ft r» «4 9»

«ft CM »

ik«c

ft» p ft» •»• ft» «v

o 19 fa 1 01 +*(* . v« ft» ; «o

« ft * * * «4<ft r4 • 4* 0»« «M * «ft

9 9 r

«> f

5:

o« to

A M •«ft

fft«t

(9

I IN

1 » ft? I I CM

> C9

ft»

m

9 l> «9

CM

OBSSEP

f

r

(

4 May 1964 4-17 TM-LX-123/000/00 (Page 18 blank)

4.2.2 OBSERVATION SEPARATION - OBSSEP

4-2.2.1 Purpose

The OBSSEP program separates the observations on a R-tape into two groups,

generating two new R-tapes. The separation is based on observation time.

Those observations falling within the specified time slice(s) will be Dlaced

on a "high priority" R-tape, and all others on a "low priority" R-tape.

4,2,2.2 Input

Each time slice is specified by the analyst and input via the i'lexowriter:

a. Hour, minute, month, day and year of start t.'rae.

b. Hour, minute, month, day and year of stop time.

4,2.2 3 Output

No program printout is generated by this program.

REDUCT

k May 1964 4-19 TM-LX-12 3/000/00

4.2.3 NODAL CROSSING REDUCTION - REDUCT

4.2.3.1 Purpose

The REDUCT program reduces observations to the last nodal crossing, computes

residual differences betveen the observations and an element set and compares

the differences against specified tolerance limits. There are three sub-

sections in the REDUCT program.

a. General - for visual, radar and/or Baker-Nunn observations

b. Doppler - for doppler observations

c. Direction Finder - for direction finder observations

Residuals Computed by Various Program Sections

Program Section Time Residual Right Ascension

Residual Height Residual

Visual Radar Baker-Nunn Doppler Direction Finder

X X X X X

X X X

X

Tolerance Codes and Corresponding Values

Right Ascension 1 Code Time (days) (degrees) Height (km)

Blank-» 0 j .002 20 200 1 1 5 500 1 2 .003 360 10000 3 .002 36O 10000 4 .001 36O 10000

1 5 .003 5 300 6 .05 2-5 200

REDUCT

k May 1964 1+-20 TM-LX-123/OOO/OO

4.2.3.2 Input - Schedule Tape Mode (Toggle 24 On)

Deck Position Card Type

Column Number Punch

1

2

3

k

Schedule Tape Card

Job Card

Remarks Card

Program ID Card

17-19

25-30

31-35

Parameter Card

RUN

REDUCT

,DATA

1 0 = Special sensor tape (not the S-file tape)

input

1 = Sensor cards input

3 0 = Use interim tape and check residuals vs.

tolerance limits

1 = No interim tape and no check of residuals

vs. tolerance limits

8 0 = Identified observations processed against

associated element set only

1 = All observations processed as unknowns

9 0 = Hardcopy output

1 = Hardcopy and TTY output

10 0 = Re-reduction, with open tolerance limits,

of unassociated observations

1 = No re-reduction of unassociated observations

11 0 = Compute perigee distance

1 = Use perigee distance from element set

Element Lead Card

8 7 = Card type

Element Set Cards (max. =25 sets)

Sensor Lead Card (unnecessary with special sensor tape)

8 8 = Card type

REDÜCT

ns

k May 196i+ 4-21 TM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

9 Sensor Cards (max. = 750 sensors)

10 Observation Lead Card

7 0 (or Blank) = Tolerance Code 0

1 = Tolerance Code 1

2 = Tolerance Code 2

3 = Tolerance Code 3

k = Tolerance Code h

5 = Tolerance Code 5

6 = Tolerance Code 6

8 8 = Card Type

NOTE. The tolerance limits for a group of observations may be changed by

preceding the observation cards with another Observation Lead card

11 Observation Cards (no limit)

12 Blank Card

13 End of Input Card

79 9 = Card type

Ik End of Data Card

15 End of Job Card

16 End of Schedule Tape Card

17 Blank Ca-d

4.2.3-3 Output

h.2.3«3-1 Satellite Inventory

Output begins with the satellite inventory. Seven groups, composed of

satellite number and element number, are printed per line.

k.2 3-3«2 Observation Output

Observation output will occur in three formats depending on which part of

the program has done the reduction.

REDUCT

k May 1964 k-22 TM-LX-123/OOO/OO

4.2.3.3.2.I General Reduction Output

1. Observation identification number

a. Satellite number

b. last digit of year of observation

c. month, day, hour, minutes, seconds, hundredths of seconds (ID)

2. Epoch revolution number (N)

3. Argument of latitude (U)

k. Time of nodal crossing (T sub N)

5. Time residual in days (DELTA T)

6. Latitude of subsatellite point (PHI S)

7. Longitude of subsatellite point (LS)

8. Right ascension of ascending node in degrees (RA N)

9. Right ascension residual (DEL RA)

10. Height in kilometers (H (KM))

11. Height residual (DEL H) - zero for B-N or VIS.

12. Obs type (TYPE) - VIS for visual

RDR for radar

B-N for Baker-Nunn

13. Element Number (ELM)

14. Station number (STA)

15. Optional $ - implies obsei'vation time precedes epoch by more than

h days.

00

REDUCT

4 May 1964 4-2 3 TM-LX-123/OOO/OO

4.2.3-3*2.2 Direction Finder Reduction (not currently used)

1. Identification (same as for general reduction)

2. Epoch revolution (N)

3. Time of nodal crossing (T SUB N)

4. Time residual (DELTA T)

5. Elevation in degrees (H)

6. Slant range in kilometers (s)

7. Height in kilometers (H (KM))

8. Element number (ELBA)

9. Station number (STA)

4.2.3«3-2.3 Doppler Output (not currently used)

1. Identification (same as for general reduction)

2. Epoch revolution (N)

3. Computed time of nodal crossing (T SUB N)

4* Time residual (DELTA T)

5« Arc distance in nautical miles from station to subsatellite point (D)

6. Elevation in degrees (H)

7. Slant range in kilometers (S)

8. Element number (ELM)

9. Station number (STA)

4.2.3'3-3 Explanatory Comments

Miscellaneous informative comments may be interspersed for observations. These

always appear with the ID information. Some of the more significant comments

are:

1. UNTAGGED UOS REDUCED W/0 TOLERANCES

All observations which follow have previously appeared as untagged

UO's, and have now been re-reduced with large tolerances.

2. U0 S FOLLOW

All observations which follow on the page did not correspond to any

satellite whose elements are stored in the catalog.

REDUCT

k May 196k 4-2^ TM-LX-123/OOO/OO

3. UNKXXXXX***XXX

The next observation is an unknown. The message number is given. If

the observation was a known observation which was treated as an un-

known, the satellite number is also given.

REDÜCT

k May 196b U-25 Page 26 blank)

TM-DC-123/000/00

1 MM

*-*

M| 1 * ••

1 i «i «

3 1 5

M««

«

M

t*

W 1^

1 'S • • '•• e «40 M j •«>

* • « IN

•9 I l->

#9

c

i* !

iN

* *>*

I« M

»•

i

N

I !

1

s3

s t •»«

o •

i i

• •» •

» n

K> n w WM» •000

M

» «4

• •

M>M

IM CVflW

««

M IM

I !

v*

r"» T+ W» —

u

N «- •t 4fr

M> 4»

3

4 May 1964 4-27 IM-LX-123/OOO/OO

4,2.-4 OTHER

The following programs in the Association area are seldom used by the analyst.

A brief description of each program is given.

4.2.4.1 GOODER

The GOODER program is used when the SRCHEK program indicates that there are

satellites out of order on the SRADU tape. The program generates a new SRADU

tape restoring the satellites to their proper order.

4.2.4.2 MAP

MAP is a program designed to assemble DMNI data into input observation messages

in a format acceptable to ORCCN. The DMNI input tapes are generated in real-

time by INTPROC or off-line with the 410 Recorder, The DMNI tapes currently

contain only the high-speed data from BMEWS; however, the MAP program is

designed to process both high-speed and teletype data. The only data currently

assembled by MAP are BMEWS Q-point (penetrations of the BMEWS fans) messages.

All other data, including incomplete messages and improper formatted messages,

is discarded.

The DMNI dump tapes are processed in the order in which they were generated.

A left-over message table is maintained by MAP to prevent loss of data be-

tween successive DMNI tapes»

4.2»4„3 OESEND

The OBSEND program produces teletype and/or hard copy outputs from observations

on the SRADU tape. The program is used for transmitting observations to the

backup facility at Hanscom. The program allows for output!ng selected satellite

observations or all observations on the SRADU tape.

4.2 4.4 OPURGE

The OPURGE program it, used to purge observations from the SRADU tape. The

program operates in four modes as follows

a. Mode one - delete all observations for a specific satellite.

4 May 1964 4-28 TM-LX-123/OOO/OO

b. Mode two - delete only those observations requested by satellite and

sensor number.

c. Mode three - delete individual observations as specified by satellite

and observation number

d. Mode four - delete all observations prior to an input time and satellite

number.

4.2.4.5 ORCON

The purpose of ORCON is to decode, edit, and store sensor observations. The

observation reports are in a variety of formats and may be received via tele-

type, or digital data link (BMEWS). All observations of various types received

via the several communications systems are converted to one standard format

and stored on an R-tape. Error checking is performed and observations in

error are not stored on the R-tape; however, they are recorded on the system

output tape so corrective action can be taken.

4.2.4.6 PRINTER

The PRINTER program is an observation editing program. It converts the

observations on the R-tape to a readable format. The program is presently

used after the operation of ORCON to determine if all input data (especially

BMEWS Q-point messages) has been converted. The program will also convert

the information on the DMNI dump tapes to a readable format. This option

is especially useful in the checkout of certain programs and in error

correction

4.2.4.7 RTPJUG

The function of the RTPJUG program is to transfer all unprocessed observations

from the R-tape to a scratch tape so they can be processed later by RAGGN.

The console interrupt mode would be used only if a high priority run is

required during the operation of RAGGN.

RTPJUG is run as a result of

a. A console interrupt during the operation of RAGGN, or

b- As a manual program when a machine malfunction occurs during the

operation of RAGGN

4 May 1964 4-29 ^-LX-123/OOO/OO

(Page 30 blank)

4.2,4 08 RUMOV

The RUMOV program transfers the unassociated observations from the SRADU

tape to an R-tape for reprocessing by RASSN.

4.2.U„9 SRADU

The SRADU program generates a SRADU tape from standard observation cards. The

program first builds a RADU tape and then calls in the SRTMRG program vhich

sorts the RADU tape and builds the SRADU tape«

4.2.4.10 SRCHEK

The SRCHEK program is normally run automatically after SRTMRG in the association

sequence. However, the program can be run in the manual mode. The program is

used to:

a. determine if errors exist on the SRADU tape

b. furnish a satellite table (SATTB) of those satellites whose elements

need updating

c. describe the observational status of each satellite on the SRADU

tape (e.g., RMS, mean At, number of Ra's received in last five days, etc.)

4.2.4.11 SRTMRG

The SRTMRG program is normally run automatically after the operation of RASSN.

However, it can be run as a manual program if tape errors are encountered.

Its main functions are to:

a. Sort all newly associated observations (stored on RADU tapes) and

merge these observations onto the system observation tape (SRADU tape.)

bo Produce observation cards from the newly associated observations.

These cards are used for running programs in the schedule tape mode

and for system backup files

c. Purge those observations from SRADU tape that are not useful in the

differential correction function.

k May 196^ b-31 TM-LX-12 3/000/00 (Page 32 blank)

i+,3 ELEMENT DETERMINATION AREA

The Element Determination area includes the initial orbit computation

programs (IOHG, IORF, IOANGLE, and ROC), the differential correction

programs (SGPDC, SPWDC and ESPOD), the maintenance and summary programs

(SUM, SEAI, HANSEL, MSGV, LOCVEC, XROADS and CCOE), and the decay pre-

diction program (SPIRDECB).

(

#

ESPOD

14 August 1964 4-33 TM-LX-123/OOO/OOB

4.3,1 ELECTRONIC SYSTEMS PRECISION ORBIT DETERMINATION - ESPOD ''

4.3.I.I Purpose

The ESPOD program differentially corrects a given element set (first updating

the elements to a later epoch on option) and computes predicted satellite

positions. It can further differentially correct a given set of constant

biases in range, azimuth/right ascension, elevation/declination, range rate,

sensor longitude, sensor latitude, sensor height, and time for several sensors.

The differential correction is accomplished using a weighted least squares fit

to the observations. The trajectory and ephemeris computations use a special

perturbations Cowell formulation, where the whole force field is integrated.

The (optional) update of the elements to a later epoch uses a simplified gen-

eral perturbations formulation. Various statistical quantities are calculated

and output to aid the analyst in determining the degree of validity of the re-

sults. ESPOD may be used for orbits of any eccentricity (including elliptic,

parabolic, and hyperbolic types) provided the earth is the primary force center

Perturbations due to the moon and sun are accounted for by using ephemeris

tapes of these bodies. Several atmospheres are available on option.

4.3.12 Input - Schedule Tape Mode only (Toggle 24 On)

Deck Column Position Card Type Number Punch

1 Schedule Tape Card

2 Job Card

1. The write-up for the ESPOD program input has been furnished by the 496L SPO.

ESPOD

Ik August 19ft 4-35A TM-LX-123/000/0OB

Deck Column Position Card Type Number Punch

3 Remarks Card (optional)

h Program ID Card

17-19 RUN

25-29 ESPOD

30-34 ,DATA

5 Job Description Card

1-3 JDC = Card type

h-J Satellite Number (rt. adj.)

8-17 Satellite Name (optional)

l8-29 Header to be printed on output (optional)

30 0 = COLD START

1 = CONDITIONED START (i.e. results generated (on Tape 7 by previous

2 = CONDITIONAL START (ESPOD runs are input (on Tape 7-

31 0 = Neither observations nor sensors are input

in any way except by a previous Tape 7.

1 - Either observations and/or sensors are in-

put in the deck or on SRADU or SEAI tapes.

32 0 - Do not print sensor locations.

1 = Print sensor locations.

33 Q - Do n°t print observations.

1 = Print observations.

3^- 0 = No sensor cards are in input deck.

4

ESPOD

14 August 196k 4-33B TM-LX-I23/OOO/0OB

Deck Column Position Card Type Number Punch

3^- 1 = Sensor cards are in input deck (These will

supplement or override sensor data from

SEAI tape).

35 0 = Obtain observations from SRAIÜ tape.

1 = Obtain observations from observation cards

in input deck.

36 0 = Do not print the constants used in ESPOD.

1 = Print the constants used in ESPOD.

37 0 = Use seven-card element set from input deck

or E-file, or use IGTYP card in input deck,

or previous Tape 7«

1 = Use elements stored by a PRDCT card on an

immediately preceding ESPOD run.

kl 0 = Do not differentially correct.

1 = Differentially correct (i.e. use ESPODDC).

T k2 0 = A-priori A A matrix not input.

T 1 = A-priori A A matrix input (SMAT cards).

1+3 0 = Do not punch (A A)" matrix.

1 = Punch (A A) matrix each iteration.

(UPMAT cards)

T kk 0 = Do not punch A A matrix.

rp 1 = Punch A A matrix each Iteration (SMAT cards)

I

ESPOD

Ik August 196U k-^C TM-LX-123/000/00B

Deck Position Card Type

Column Number Punch

k$ 0 = Print the u, v, w residuals.

1 = Print the s, t, w residuals.

2 = Print sensor latitude, longitude, height

residuals (i.e. how much sensor must be

"moved" to make calculated orbit coincide

with observation)

k6 0 = Retain "proven" elements for use in the

calculation of the predictions. ("Proven"

elements are those which were used to cal-

culate the trajectory and residuals of the

very last iteration).

1 = Retain "new" elements for use in the cal-

culation of the predictions ("new" elements

are those which were predicted by the very

last iteration, but which have not been

used for the calculation of residuals).

k*f 0 = Normal differential correction on same

elements each iteration.

1 = Calculate velocity correction to minimize

the RMS of the time residuals, but do not

apply the correction.

2 - Calculate velocity correction to minimize

the RMS of the time residuals, and apply

the correction on first iteration.

C I

ESPOD

14 August 1964 4-33D TM-LX-123/000/0OB

Deck Column Position Card Type Number Punch

51 0 = Do not calculate predictions or epnemeris.

1 = Calculate predictions/epnemeris (i.e., use

ESPODEPH)

52 0 = DAC cards are not present in input deck.

1 = DAC cards are present in input deck.

53 0 = Do not generate an XYZ ephemeris tape.

1 = Generate an XYZ ephemeris tape on Tape 10

for the program XYZLA, writing all ephemeris

points on output Tape 11 as well.

2 = Generate an XYZ ephemeris tape on Tape 10

for the program XYZLA, writing only first

and last ephemeris points on output Tape 11.

55 0 = Do not output the updated statistical

quantities.

1 = Output the updated statistical quantities

(i.e. those associated with the points of

the ephemeris).

56 0 = Do not punch the updated covariance matrix

T inverse (A A matrix, SMAT cards).

1 = Punch the updated covariance matrix inverse.

NOTE: Zeros and blanks are equivalent for Cols. 30-80.

NOTE: All cards between the JDC and ENDPR cards may be in any order.

ESPOD

Ik August 1964 <-33E TM-LX-123/000/0OB

Deck Column Position Card Type Number Punch

Remarks Card (optional)

1-2 01 = Card number.

5-7 REM

10-72 (As desired). These remarks are printed on the

ESPOD output, but are not typed on the flexowriter

Initial Conditions Card #1 (omitted if seven-card element set is in

the input deck or is obtained from the SEAI tape).

1-2 01 = Card number.

3-4 Differential Correction Iteration Number (op-

tional)

5-9 ICOND = Card type.

10-23 * Initial value of Right Ascension (deg) (or

longitude east (deg) ) or X (km).

29-42 * Initial value of Declination (deg) or Y (km).

48-61 * Initial value of Flight Path Angle (deg) or

Z (km).

67-80 * Initial value of Azimuth of Velocity Vector

(deg) or X (km/sec).

Initial Conditions Card #2 (omitted if seven-card element set is in

the input deck or is obtained from the SEAI tape).

1-2 02 = Card number.

3-4 Differential Correction Iteration Number

(optional).

NOTE: ^-tcrisk means i;se decimal poine somewhere in field.

ESPOD

* Ik August 1964 ),

-t •

Deck Column Position Card Type Number Punch

-W TM-LX-I23/OOO/OOB

ter

»).

»).

5-9 ICOND = Card type.

10-23 * Initial value of geocentric range (km) or Y

(km/sec).

29-42 * Initial value of magnitude of velocity vector

(km/sec) or Z (Km/sec).

Initial Time Card #1 (omitted if seven-card element set is in the

input deck or is obtained from the SEAI tape).

(This card gives the time associated with Initial Conditions, i.e.

epoch).

1-2 01 = Card number.

5-9 ITIME = Card type.

10-23 * Last two digits of year plus decimal point.

29-^2 * Month of year (one or two digits plus decimal

point).

48-61 * Day of month (one or two digits plus decimal

point).

67-80 * Hour of day (one or two digits plus decimal

point).

Initial Time Card #2 (omitted if seven-card element set is in the

deck or is obtained from the SEAI tape).

1-2 02 = Card number.

5-9 ITIME = Card type.

NOTE: Asterisk means use decimal point somewhere in this f4.eld.

ESPOD

Ik August 1964 »+-33G TM-LX-123/0OO/0OB

Deck Column Position Card Type Number Punch

10-23 * Minutes of hour (one or two digits plus decimal

point).

29-1+2 * Seconds of minute (one or two digits plus deci-

mal point plus decimal fraction of second).

Initial Conditions Type Card (omitted if seven-card element set is

in input deck or is to be obtained from SEAI tape.)

1-2 01 = Card number.

5-9 ICTYP = Card type.

10-23 * 1.0 = Initial Conditions are right ascension,

declination, flight path angle, azimuth

of velocity vector, magnitude of geocentric

range, magnitude of velocity vector,

(i.e. ADBAHV).

2.0 * Initial Conditions are: east longitude,

declination, flight path angle, azimuth

of velocity vector, magnitude of geocentric

range, magnitude of velocity vector.

(i.e. A DBARV) • * •

3.0 -~ Initial conditions are XYZXYZ

12 Drag Parameter Card (Car. be omitted if drag is negligible.

Must be input if DC is on Cd ä/2M).

NOTE: Asterisk means use decimal point somewhere in this field.

ESPOD

Ik August 196h U-33H TM-LX-I23/OOO/OOB

Deck Column Position Card Type Number Punch

1-2 01 = Card number.

3-k Differential correction iteration number

(optional).

5-8 DRAG.

10-23 * Initial value of Cd A/2M (in square meters/

kilogram)

where Cd = Coefficient of Drag (approx. 2.2)

A = Cross-sectional area of satellite.

M = Mass of satellite.

29-^2 * Initial value of K.

U8-6l * Blank or 0.0 = No drag variation

1.0 = Drag variation model is

K (| cos5 I - £) (day-night)

2.0 = Drag *ariation model is

K (]Mo ) (secular)

6T-8O * 1.0 = Use ARDC 1959 Static Atmosphere

2.0 - Use Paetzold/ARDC 1959 Dynamic Atmosphere

Blank or 0.0 or 3-0 = Use C0ESA 1962 Static

Atmosphere

U.O = Use C0ESA I962 Dynamic Atmosphere.

NOTE: An asterisk means use decimal point somewhere in this field.

NOTE: APF 10 cards must be input if a dynamic atmosphere is used.

ESPOD

lU August 196U U-33I TM-LX-I23/OOC/OOB

Deck Column Position Card Type Number Punch

NOTE: Trailing floating point fields may be left blank, but no in-between

floating-point fields may be left blank (fill with 0.0 if not used).

13 Bounds Parameter Card(s) (-'.These cards input if and only if one

wishes to override the nominal values

of bounds which are built into ESPOD^.

(The bounds appear in one-to-one corres-

pondence and order as the one-punch flags

on the CAT1 and CAT2 cards).

1-2 Bounds Card Number (e.g. 01, 02, 03, etc.)

3-^ Differential Correction Iteration Number

(optional)

5-8 BNDS = Card type.

10-23 * Maximum value of change between iterations

of a differential correction variable (i.e.

initial condition, drag, drag variation, or

bias).

29J+2 * (same as cols. 10-23 but for another variable).

U8-61 * (Same as cols. 10-23 but for still another

variable).

67-80 * (Same as cols. 10-23 but for still another

variable).

NOTE: Asterisk means use decimal point somewhere in this field.

,)

I \

ESPOD

11+ August 196U 4-33J TM-LX-I23/OOO/OOB

Deck Column Position Card Type Number Punch

NOTE: As many ENDS cards may be used as are necessary to specify the

required number of bounds. The last ENDS card may have several

trailing blank fields. For example, only one bound might appear

on the last ENDS card.

NOTE: Units of the bounds are the same as the units of the variables

corresponding to the bounds.

Category One Differential Correction Variables Card

NOTE: If a differential correction is to be performed (i.e. col. kl of

JDC card has one punch) and if both CAT1 and CAT2 cards are omitted,

ESPOD automatically differentially corrects the six ADBARV variables

If a differential correction is to be performed only on Category 2

variables (biases), or if no differential correction is to be per-

formed at all (i.e. col. kl of JDC card is blank or zero), then omit

CAT1 card.

1-2 01 = Card number.

5-8 CAT1 - Card type.

10 0 = Do not differentially correct Alpha

(Right Ascension).

1 = Differentially correct Alpha (Right

Ascension.

11 0 = Do not differentially correct Delta

(Declination).

1 - Differentially correct Delta (Declination)

ESPOD

Ik August 1964 4-33K TM-LX-123/000/0OB

Deck Column Position Card Type Number Punch

12 0 = Do not differentially correct Beta

(Flight Path Angle).

1 = Differentially Correcc Beta (Flight Path

Angle).

13 0 = Do not differentially correct Az

(Azimuth of Velocity Vector).

1 = Differentially correct Az (Azimuth of

Velocity Vector).

Ik 0 = Do not differentially correct R

(Magnitude of geocentric range vector).

1 = Differentially correct R

(Magnitude of geocentric range vector).

15 0 = Do not differentially correct V

(Magnitude of velocity vector).

1 = Differentially correct V

(Magnitude of velocity vector).

16 0 = Do not differentially correct Cd A/2M.

1 = Differentially correct Cd A/2M.

17 0 = Do not differentially correct K

(Drag variation parameter).

1 = Differentially correct K

(Drag variation parameter).

ESPOD

14 August 1964 4-33L TM-LX-123/000/00B

Deck Column Position Card Type Number Punch

Number of DC Iterations Card (if this card is omitted, ESPOD assumes

a maximum of five DC iterations).

1-2 01 = Card number.

5-9 NITER = Card type.

10-23 * Maximum number of differential correction

iterations (integral number plus decimal point).

Weighting Parameter Card(s) (input if and only if one wishes to

supplement or override the weighting parameters

which are already built into ESPOD).

1-2 Sigma Type Number (in the Master Sigma or

Sensor Type List, or as associated by an

STYPE card). (Number may range between 01

and 60).

5-9 SIGMA = Card type.

10-23 * Standard Deviation in Range (km) (Right Ascen-

sion of Field Reduced BN) expected for sensor(s)

associated with the Sigma Type Number.

29-42 * Standard Deviation in Azimuth (degrees)

(Declination of Field Reduced BN) expected

for the sensor(s) associated with the Sigma

Type Number.

NOTE: Asterisk means this field must have decimal point somewhere in it.

ESPOD

11* August 1964 fc-33N TM-LX-123/OOO/OOB

Deck Column Position Card Type Number Punch

48-61 * Standard Deviation in Elevation (degrees)

(Right Ascension of Precision Reduced BN)

expected for the sensor(s) associated with

the Sigma Type Number.

67-80 * Standard Deviation in Range Rate (km/sec)

(Declination of Precision Reduced BN) expected

for the sensor(s) associated with the Sigma

Type Number.

Sensor Type and Parameter Card(s)

(input if and only if one wishes to supplement

or override the sensor weighting types and

parameters which are already built into ESPOD)

1-2 Sensor Type and Parameter Card Number

(e.g. 01, 02, 03,...)

5-9 STYPE = Card type.

10-13 Sensor Number.

14-15 Sigma Type (i.e. weighting type) to be associ-

ated with the sensor in columns 10-13. (Two

digits, no decimal).

l6-19 Gross Outlier Rejection parameter (Gs)

for the sensor in columns 10-13. (Right

adjusted, no decimal point).

NOTE: Asterisk denotes use of decimal point somewhere in this field.

ESPOD

;> Ik August 1964 -33N TM-LX-123/OOO/OOB

Deck Position Card Typo

Column Number Punch

20 0 or blank = Do not apply refraction correction

to measurements of sensor in columns 10-13.

1 = Apply refraction correction to sensor in

col. 10-13.

21-23 N (mean surface value of refractivity * 10 ) s

for the sensor in columns 10-13, (not required

if col. 20 is blank).

29-32 Sensor Number.

33-34 Sigma Type (i.e. Weighting Type) to be associated

with sensor in col. 29-32 (two digits, no decimal)

35-33 Gross Outlier Rejection parameter (Gs) for the

sensor in col. 29-32 (right adjusted, no decimal

point).

39 0 or blank = Do not apply refraction correction

to measurements of sensor in col. 29-32.

1 = Apply refraction correction for sensor in

col. 29-32.

40-42 N (mean surface value of refractivity • 10 ) s

for the sensor in columns 29-32; (not necessary

if col. 39 is blank).

48-51 Sensor Number

52-53 Sigma. Type (i.e. Weighting Type) to be associ-

ESPOD

Ik August 1964 4-350 TM-LX-123/000/0OB

Deck Column Position Card Type Number Punch

ated with the sensor in col. 48-51 (two digits,

no decimal).

54-57 Gross Outlier Rejection parameter (Gs) for the

sensor in col. 48-51 (right adjusted, no decimal).

58 0 or blank = Do not apply refraction correction

to measurements of sensor in col. 48-51.

1 = Apply refraction correction for sensor in

col. 48-51.

59-61 N (Mean Surface Refractivity ' 10 ) for sensor s

in cols. 48-51- (Not required if col. 58 is

blank).

67-70 Sensor Number.

71-72 Sigma Type (i.e. Weighting Type) to be associ-

ated with the sensor in col. 67-70 (two digits,

no decimal).

73-76 Gross Outlier Rejection parameter (Gs) for the

sensor in col. 67-70 (right adjusted, no decimal).

77 0 or blank = Do not apply refraction correction

to measurements of sensor in col. 67-70.

1 = Apply refraction correction for sensor in

col. 67-70.

78-80 Ns (Mean Surface Refractivity • 10 ) for sensor

in cols. 67-70. (Not required if col. 77 is blank)

Ik). §

ESPOD

Ik August 1964 4-33P TM-LX-.123/O0O/OOB

Deck Column Position Card Type Number Punch

NOTE: Only those fields which one wishes to supplement or override need to

be input. The Gross Outlier Rejection parameter causes observations

to be rejected as follows:

Reject Range Observation if Range Residual >G (standard devia- \ > " s

tion in range for this sensor).

Reject Azimuth Observation if I (Azimuth Residual) cos Elevation

^> G (standard deviation in Azimuth for this sensor) s

Reject Elevation Observation if I Elevation residual > G (stand- I I s

ard deviation in Elevation for this sensor).

Reject Range Rate Observation if Range Rate Residual >G (stand- I 1 s

ard deviation in range rate for this sensor).

Reject Right Ascension Observation if | (Right Ascension Residual)

cos 0

sensor).

Reject Declination Observation if I (Declination Residual)

(standard deviation in declination for this sensor).

Category Two Differential Correction Variables Card(s) (Biases)

(Omitted if no DC to be done on Category Two Variables).

1-2 Category Two Card Number (e.g. 01, 02, 03,etc.)

5-8 CAT2

10-13 Sensor Number

Ik 0 = Do not differentially correct RANGE BIAS

for this sensor.

> G (standard deviation in right ascension for this

> Gs

ESPOD

Ik August 1964 4-33Q TM-LX-123/OOO/OOB

Deck Position Card Type

Column Number Punch

1 = Differentially correct RANGE BIAS for this

sensor.

15 0 = Do not differentially correct AZIMUTH BIAS

for this sensor.

1 = Differentially correct AZIMUTH BIAS for

this sensor.

16 0 = Do not differentially correct ELEVATION

BIAS for this sensor.

1 = Differentially correct ELEVATION BIAS for

this sensor.

17 0 = Do not differentially correct RANGE RATE

BIAS for this sensor.

1 = Differentially correct RANGE RATE BIAS for

this sensor.

18 0 = Do not differentially correct RIC3iT ASCEN-

SION BIAS for this sensor.

1 - Differentially correct RIGHT ASCENSION BIAS

for this sensor. (Must be optical sensor).

19 0 = Do not differentially correct DECLINATION

BIAS tor this sensor.

1 = Differentially correct DECLINATION BIAS for

this sensor. (Must be optical sensor).

•* '

ESPOD

Ik August 196^ 4-33R TM-LX-123/OOO/OOB

Deck Column Position Card Type Number Punch

20 0 = Do not differentially correct TIME BIAS for

this sensor.

1 = Differentially correct TIME BIAS for this

sensor.

21 0 = Do not differentially correct this sensor's

LATITUDE BIAS.

1 = Differentially correct this sensor's LATI-

TUDE BIAS.

22 0 - Do not differentially correct this sensor's

LONGITUDE BIAS.

1 = Differentially correct this sensor's LONGI-

TUDE BIAS.

23 0 = Do not differentially correct this sensor's

HEIGHT BIAS.

1 = Differentially correct this sensor's HEIGHT

BIAS.

29-32 Sensor Number.

33-42 Information identical with Column Numbers Ik

through 23.

48-51 Sensor Number.

52-6l Information identical with Column Numbers ik

through 23.

67-70 Sensor Number.

ESPOD

Ik August 1964 4-33S TM-LX-I23/OOO/OOB

Deck Column Position Card Type Number Punch

Y1-Ö0 Information identical with Column Numbers 14-23•

NOTE: Any number of CAT2 cards may be used. However, only the last CAT2

card may have trailing blank fields. That is, there must be four

sensors per CAT2 card except for the last CAT2 card, which may have

any number between one and four).

Bias Estimate Card(s) (initial Value of Biases). (Omitted if no

differential correction is being performed on any Category Two

Variables (Biases). If a D.C. is being done on any biases, ESPOD

will automatically make initial bias estimates of zero if this card

is omitted).

1-2 Bias Estimate Card Number (e.g. 01, 02, 03, etc.)

3-4 Differential Correction Iteration Number (op-

tional).

5-9 BISES - Card Type.

10-23 * Initial value of a bias.

29-1+2 * Initial value of another bias.

h -6l • Initial value of still another bias.

67-80 * Initial value of still another bias.

NOTE: Asterisk means use decimal point somewhere in this field.

NOTE: Any number of BISES cards may be used. However, only the last BISES

card may have trailing blank fields. That is, there must be four

bias initial values per BISES card except for the last BISES card,

which may have any number between one and four. The initial values

I

ESPOD

Ik August. 1964 4-33T TM-LX-123/000/0OB

Deck Column Position Card Type Number Punch

of the biases should be listed in one-to-one correspondence and order as

the one-punch flags on the CAT2 card(s).

20 S-matrix Card(s) (a-pricri A A matrix) (optional input)

1-2 S-matrix card number (e.g. 01, 02, 03...)

3-i+ Differential Correction Iteration Number

(optional).

5-8 SMAT - Card type.

10-23 * Value of an element of the S-matrix.

29-^2 * Value of an element of the S-matrix.

U8-6l * Value of an element of the S-matrix.

6T-8O * Value of an element of the S-matrix.

NOTE: An asterisk indicates a floating point field.

NOTE: As many S-matrix cards (sequentially numbered) as are necessary to

completely give the matrix are input. As the matrix is symmetric,

only the upper triangular elements are input. They are input in

the following order: the top row from left to right, the second

row from left to right beginning r the second element, the third

row from left to right beginning at the third element, etc.

NOTE: If the S-matrix is input, col. ^2 of the JDC card must have a one-

punch.

NOTE: If the JDC card has a one-punch in col. kh, S-matrix cards corre-

sponding to epoch will be punched out in the correct format after each

< •

ESPOD

14 August 1964 4-33U TM-U-123/0OO/OOB

Deck Column Position Card Type Number Punch

iteration. If the JDC card has a 1 in col. 56, S-matrix cards

corresponding to each ephemeris point will be punched.

NOTE: If S-matrix cards are input, then CATl and CAT2 cards (punched to

indicate the respective variables of the SMAT cards) must also be

input.

T -1» 21 Covariance Matrix Card(s) (a-priori (A A) ) (optional input)

1-2 Covariance Matrix Card Number (e.g. 01, 02,

03,...).

3-4 Differential Correction Iteration Number

(optional).

5-9 UPMAT = Card type.

10-23 * Value of an element of the a -priori (A A)

matrix.

T -1 24-42 * Value of an element of the a-priori (A A)

matrix.

T -1 48-6l * Value of an element of the a-priori (A A)

matrix.

T -1 67-80 * Value of an element of the a-priori (A A)

matrix.

NOTE: An asterisk indicates a floating point field.

NOTE: As many covariance matrix cards are input (sequentially numbered) as

are necessary to completely give the matrix. Restrictions: The

maximum covariance matrix size is 8 x 8. ü covariance matrix entered

- \

ESPOD

Ik August 1964 h-33V TM-LX-123/OOO/oOB

Deck Column Position Card Type Number Punch

by UPMAT cards may only contain Category One variables. A CATl card

(punched to indicate the respective variables appearing on the

UPMAT cards) must be input whenever UPMAT cards are input.

NOTE: As the covariance matrix is symmetric, only the lower triangular

part of the matrix is input. They are input in the following order:

the first element of the first row, the first two elements of the

second row from left to right, the first three elements of the third

row from left to right, etc.

Zonal Harmonic Card (if this card is omitted, ESPOD assumes a stand-

ard set: J2, J , J^).

1-2 01 = Card Number.

5-9 ZONAL = Card type.

10 0 = Do not include Jp in the earth gravitational

potential model.,

1 = Include Jp in the earth gravitational

potential model.

11 0 = Do not include J .

1 = Include J-.

12 0 = Do not include J. .

1 - Include «L .

13 0 - Do not include J..

1 = Include J^.

ESPOD

Ik August 1964 ^-33W TM-LX-123/000/00B

Deck Column Position Card Type Number Punch

14

15

16

17

13

19

20

0 = Do not include «L-.

1 = Include J,-.

0 = Do not include J?.

1 = Include J-.

0 = Do not include JQ.

1 = Include Jo.

0 = Do not include Jq.

1 = Include Jq.

0 = Do not include J

1 = Include J-.~.

0 = Do not include- I

1 = Include J, .

0 = Do not include J

10'

11 •

12

1 = Include J 12-

NOTE: Values of J , J ,, J,0 must be input on 99 cards.

Sectorial Harmonics Card (if this card is omitted, no sectorial

harmonics are included).

1-2 01 = Card number.

5-9

10

SECTR = Card type.

0 = Do not include jf in the earth gravita-

tional potential model.

1 = Include JZ in the earth gravitational

potential model.

ESPOD

Ik August 196U ^-33X TM-LX-123/OOO/0OB

Deck Column Position Card Type Number Punch

11 0 = Do not include Jr.

3 1 = Include J::.

k 12 0 = Do not include J. .

k 1 = Include J, .

4

13 0 = Do not include £.

1 = Include J^.

Ik 0 = Do not include J>.

1 = Include J>.

Tesseral Harmonics Card (if this card is omitted, no tesseral

harmonics are included).

1-2 01 = Card number.

5-9 TESSR = Card type.

10-11 Value of tt- and m respectively means include

K>i„ the term J v ±7 in the earth's gravitational 1

potential model.

13-lk Value of np and mp respectively means include

the term J <«*>. "2

l6-17 Value of n and nu respectively means include

the term J '"V. n3

19-20 Value of n, and m. respectively means include

the term J ^"V. nk

ESPOD

Ik August 1964 -1-J3Y TM-LX-123/OOO/OOB

Deck Column Position Card Type Number Punch

22-23 Value of n^ and m respectively means include

the term J ^K n5

29-30 Value iv and nv respectively means include the

term J 'm6'. n6

32-33 Value of n? and nu respectively means include

the term J w'.

35-36 Value of no and mn respectively means include

the term J 'm8'. n8

38-39 Value of nQ and mq respectively means include

(m ) the term J K 9J.

n9

41-42 Value of n r and m,A respectively means include J-vJ iu

the term J ^m10'. nio

48-49 Value of n , and DL. , respectively means include

the term J *mll'. nll

51-52 Value of n p and m respectively means include

the term J 'm12'. n12

54-55 Value of n and m respectively means include

the term J 'm13'. nl3

ESPOD

Ik August 1964 '4-337. TM-LX-I23/OCO/OOB

Deck Column Position Card Type Number Punch

57-58 Value of n , and m , respectively means include

the term J ^\kK nlk

NOTE: Any or all of the following fourteen terms may be chosen:

(1) (2) (1) (2) (3) (1) (2) (3) T (4)

(1) T (2) T (3) T CM T (5) o

J^ , JV , J/: J Jf. > Jf. • Subscripts and superscripts

not punched on the TESSR card will be excluded from the geopotential

model. Values of J through «Lr must be entered on 99 cards.

New Constants Card (This card used if and only if one wishes to

override any particular constant in ESPOD with

a new value for a particular run.)

1-2 99 = Card type.

5-9 Location number of the constant (right

adjusted) (obtained from the master list).

10-23 * Value of the new constant whose location is

given in col. 5-9»

2^-28 Location number of a constant (right adjusted).

29-42 * Value of the new constant whose location is

given in col. 24-28.

1+3-47 Location number of a constant (right adjusted)

48-61 * Value of the new constant whose location is

given in col. 43-47*

62-66 Location number of a constant (right adjusted)

NOTE: Asterisk means decimal point must appear somewhere in field.

ESPOD

Ik August 1964 4-34 TM-LX-123/000/0OB

Deck Column Position Card Type Number Punch

67-80 * Value of the new constant whose location is

given in col. 62-66.

NOTE: Unneeded fields may be left blank.

Standard Element Set (with blank, 1 or 2 in col. 68 of Card 7).

Updating Elements Parameter Card (This card used if and only if

one wishes to update a seven-

card element set to a different

epoch).

1-2 01 = Card number.

5-9 DNREV = Card type.

10-23 * 1.0 = Update the seven-card element set to a

specified time given in days and fractions

of days in cols. 29-42*.

2.0 = Update the seven-card element set a

specified number of revolutions past

the epoch of the element set, the number

being given in col. 29-42* (this number

may be fractional).

3.0 - Update the seven-card element set to a

specified revolution number given in

col. 29-42*.

-1.0 = Update to the time of the last observation

NOTE: An asterisk denotes a field which must contain a decimal point.

s

ESPOD

14 August 1964 4>34A TM-LX-123/OOO/OOB

Deck Column Position Card Type Number Punch

29-42 * Days and fractions to which to update, or

Number of revolutions to update past epoch,

or Revolution Number to which to update, or

Blank (if update to time of last observation).

NOTE: Elements on cards are not updated unless a DNREV card is present.

Elements from the E-file are updated to the time of the last

observation unless a DNREV card is present.

Delete Residuals Card(s) (These cards used if and only if one wishes

to delete particular residuals from con-

sideration in all iterations of a run).

1-2 Delete Residual Card Number (e.g. 01, 02, 03...).

5-9 DELET = Card type.

10-l6 * Beginning Residual Number

17-23 * Ending Residual Number

29-35 * Beginning Residual Number

Causes deletion for all included numbers

Causes deletion for all included

36-42 * Ending Residual Number _l numbers.

48-54 * Beginning Residual Number

55-0I * Ending Residual Number

67-73 * Beginning Residual Number

74-80 * Ending Residual Number

NOTE: More than one of these cards may be used. Unneeded fields should

be left blank.

NOTE: Asterisk indicates a floating point field.

Causes deletion for all included numbers.

Causes deletion for all included numbers.

• -..... i

ESPOD

Ik August 196h U-3UB IM-LX-123/OOO/OOB

Deck Position Card Type

Column Number Punch

Dynamic Atmosphere Parameter Card(s) (Omitted if a dynamic atmosphere is

not used).

1-2 Dynamic Atmosphere Parameter Card Number

(e.g. 01, 02, etc.)

5-9 APF10 - Card type.

10-13 * Day number in the year.

14-18 * Value of Ap for the day in col. IO-.13.

19-23 * Value of F10 for the day in col. 10-13.

29-32 * Day number in the year.

33-37 * Value of Ap for the day in col. 29-32.

38-1*2 * Value of F10 for the day in col. 29-32.

1*8-51 * Day number in the year.

52-56 * Value of Ap for the day in col. 1*8-51.

57-61 * Value of P.0 for the day in col. 1*8-51.

67-70 * Day number in the year.

71-75 * Value of Ap for the day in col. 67-70.

76-80 * Value of F10 for the day in col. 67-70.

NOTE: Asterisk denotes a floating point field.

NOTE: 30 is maximum number of sets of one value of Ap and one value of

F,0 which may be entered. Thus there can never be more than eight

APF10 cards.

NOTE: If days are omitted between two day numbers, a linear interpolation

is done.

*

ö Ik Auguct 196^ U-3^C

ESPOD

TM-LX-123/OOO/OOB

I

Deck Column Position Card Type Number Punch

Ephemerls Specification Card(s)

1-2 Ephemerls Specification Card Number

(01, 02, 03, 0*0.

5-9 DEIffT = Card type.

10-23 * Value (in minutes of step size beJ^een

successive calculated positions).

29-1+2 * Time (in minutes) since epoch of the last point

of the calculated positions at the step size

given in col. 10-23.

48-61 * Value (in minutes) of another step size between

successive calculated positions.

67-80 * Time (in minutes) since epoch of the last

point of the calculated positions at the step

size given in col. 48-61.

NOTE: A maximum of four Ephemerls Specification cards may be used.

NOTE: The step size may be negative, Indicating an ephemerls calculated

backwards in time.

30 Prediction Specification Card

1-2 01 = Card number.

5-9 PRDCT = Card type.

NOTE: An asterisk indicates a floating-point field.

\ I

-SPOD

.

Ik August 196^ k-5kv TM-LX-123/000/00B

Teck Column Position Card Type Number Punch

10-23 * Time (in days and fractions of days) of first

prediction point,

29-U2 * Time (in days and fractions of days) of second

prediction point.

1+8-61 * Time (in days and fractions of days) of third

prediction point.

67-80 * Time (in days and fractions of days) of fourth

prediction point.

NOTE: Only one PRDCT card may be used in any run; i.e. the maximum number

of specific prediction times is four.

NOTE: Unneeded time of prediction fields may be left blank.

Time Step Specification Card (if this card is omitted, ESPOD uses

a variable time step size in the numeri-

cal integration).

1-2 01 = Card number.

5-9 TSTEP = Card type.

10-23 * Time step size (in minutes) to be used through-

out the numerical integration.

Maximum Time Specification Card (if this card is omitted, ESPOD will

automatically disregard observations

which are more than ten days from epoch).

NOTE: An asterisk denotes a floating-point field.

Ik August 19& ^-3^E

ESPOD

TM-LX-I23/OOO/OOB

)•

Deck Column Position Card Type Number Punch

1-2 01 = Card number.

5-8 TMAX = Card type.

10-23 * Maximum time in days and fractions from epoch

for which observations are to be used. (Obser-

vations are disregarded if more than this number

of days from epoch)..

Radiation Pressure Parameter Card (This card is only for radiation

pressure perturbations).

1-2 01 = Card number.

5-9 RABPR = Card type.

10-23 * Effective Area of satellite in square meters.

29-1*2 * Mass of satellite in kilograms.

End Preliminary Data Card

5-9 ENDPR = Card type.

Standard SPADATS Observation Cards (Not required if no DC is to be done).

NOTE: If observation cards are input, col. 31 of the JDC card must have a

one-punch. If there are less than 65O observations, they may be in

any temporal order; if more than 65O, they must be in descending

time order. There is no maximum limit to the number of observations.

End Observations Card (Required only if observation cards are input).

5-9 ENDOB = Card type.

NOTE: An asterisk denotes a floating-point field.

E3P0D

Ik August 196U *f-3^F TM-LX-I23/OOO/OOB

Deck Column Position Card Type Number Punch

Standard SPADATS Sensor Cards

(Standard SPADATS Sensor cards)

(input if and only if one wishes to override or

supplement the sensor file on the SEAI tape).

(if sensor cards are input, columns 31 a^d 3^ of the

JDC card must have a one-punch).

End Sensor Card (This card is input if and only if sensor cards are

input).

5-9 ENDSN = Card type.

N End Data Card (Last card of all ESPOD decks).

5-9 ENDAT = Card type.

N+l End of Data Card

N+2 End of Job Card

N+3 End of Schedule Tape Card

N+4 Blank Card

Ik August I96U -34G

ESPOD

TM-LX-123/OOO/OüB

U.3.I.3 Output

The program provides output on both hard copy and punched cards.

4.3.I.3.I Program Printout

Part 1: Lists the input cards, with the columns of the printout corre-

sponding exactly with the columns of the cards.

Part 2: General

a. Type of observations.

b. Satellite number and name.

c. Type of program run (e.g. COLD START or NON-COLD START).

d. Right ascension of Greenwich at 2^00 on day of epoch

(AIPHA G ZERO).

e. Epoch uime of the program run.

f. Initial conditions.

X - Position vector (km).

Y - Position vector (km).

Z - Position vector (km).

XDOT - Velocity vector (km/sec).

YDOT - Velocity vector (km/sec).

ZDOT - Velocity vector (km/sec).

Geocentric

Inertial

Cartesian

Coordinates

ALPHA - Right ascension (deg).

DELTA - Declination (deg).

BETA - Flight path angle (deg).

A - Azimuth (deg).

R - Range (km).

V - Velocity (km/sec).

Geocentric

Inertial

Spherical

Coordinates

ESPOD

Ik August 1964 1,-3411 TM-LX-123/ooo/OOB

CDA/2M (optional) - Atmospheric drag parameter (meters /

kilogram).

Part 3: Program Constants (optional).

Part h: Sensor Information (printed if Part 3 iß requested).

1. SENSOR NO. - Sensor number.

2. SIGMA TYPE - Standard deviation category applied to the

sensor.

3. RANGE/RA(FR) - Standard deviation in range/standard devia-

tion in right ascension for a field-reduced observation from

a Baker-Nunn camera.

h. AZ/DEC(FR) - Standard deviation in azimuth/standard devia-

tion in declination for a field-reduced observation from a

Baker-Nunn camera.

5. EL/RA(PR) - Standard deviation in elevation/standard devia-

tion in right ascension for a precision-reduced observation

from a Baker-Nunn camera.

6. ROT/DEC (PR) - Standard deviation in range rate/standard de-

viation in declination for a precision-reduced observation

from a Baker-Nunn camera.

7. GSUBS - Gross outlier editing criterion for the observations

in terms of N sigma.

8. REFR. FIAG - Refraction correction indicator (l = applied,

0 = not applied).

9« NSUBS = Refraction index for the time of interest.

ESPOD

-wK 1^ August 196k k~$a TM-Lx-123/oco/ooB

I

Part 5: Observe 1. ion Type

1. Ii) - Sensor number.

2. T-TO - Time of observation (inin. from epoch).

3. YR, MN, DAY, HR. MIN, SEC - Time observation (Greenwich time)

h. R - Range (tat),

5. A - Azimuth (deg).

6. EL - Elevation (deg).

7- R DOT - Range rate (km/sec).

8« HA - Hour angle (deg), in lieu of azimuth.

9. D - Declination (deg), in lieu of elevation.

Part 6: Sensor Locations

1. ST. NO, - Sensor number.

2. LAT. - Sensor latitude north (deg).

3. LONG. - Sensor longitude west (deg).

K. ALT. - Sensor altitude (meters).

Part 7: Residuals Print

1. ID - Sensor number.

2. DATE - Time of the observation from which the residuals

were obtained.

3. N - Residual number.

4. RANGE KM - Range residual (km).

5« AZ,HA DBG. - Azimuth/hour angle residual (deg).

6. EL,DC DBG. - Elevation/declination residual (deg).

1

ESPOD

ik August 196k 4-3'a TM-LX-123/000/00B

7. RDOT KM/SEC - Range rate residual (km/sec).

8. U KM (see notes) - Up component of the position residual

(km) collinear with and positive in the same direction as

the radius vector.

9. V KM (see notes) - Down component of the position residual

(km), orthogonal to the radius vector, in the orbit plane,

positive in the direction of motion.

10. W KM (see notes) - Cross component of the position residual

(km), normal to the orbit plane and positive in the direc-

tion of the angular momentum vector to complete a right-

handed coordinate system.

11. VM KM - Magnitude of the position residual or displacement

vector (km).

12. DEL T MIN - Time separation of computed and measured posi-

tions (min), assuming Keplerian mean motion.

13• U DEG - Argument of latitude (deg), angle from the ascend-

ing node to the radius vector.

Ik. BETA DEG. - Residual angle between the measured position

vector and the computed orbit plane.

NOTE: One of three symbols may appear following any numerical value, indica-

ting deletion of the residual from further calculations:

* = DEIETE input deletion.

G = Gross outlier deletion.

K = KRMS test deletion.

ESPOD

Ik Augudt 1964 k-3& TM-Dc-123/ooo/ooß

NOTE: U KM, V KM, and W KM may be optionally replaced by normal, tangential

and cross-directional components of a vector describing the displace-

ment of the observed with respect to the computed position:

S KM - Vector component (km), orthogonal to the velocity vector

and in the orbit plane, forming a right-handed coordinate

system with T and W.

T KM - Vector component (km), collinear with and in the same direc-

tion as the velocity vector.

W KM - Vector component (km), normal to the orbit plane and in the

same direction as the angular momentum vector.

NOTE: U KM, V KM and W KM may be optionally replaced by components of a

vector describing the displacement of the sensor which would be re-

quired to reduce the residual to zero.

ST. IAT DEG - Geocentric north latitude displacement (deg).

ST. LONE DEG - East longitude displacement (deg).

ST. HT KM - Height displacement (km above mean equatorial sea level).

Part 8: Estimates of Mean and Standard Deviations by Sensor and Type.

1. ST. ID. - Sensor number.

2. R - Range values (km).

3* A,HA - Azimuth or hour angle values (deg).

h. E,D - Elevation or declination values (deg).

5. RDOT - Rar^ü rate values (km/sec).

6. MEAN - Arithmetic mean.

7. ESTD - Estimated standard deviation (one sigma) of the mean.

8. NA/NR - Number of observations accepted/number of observations

rejected«

.

ESPOD

Ik August 1964 4-34L TM-LX-123/OöD/OOB

Part 9* Curve Fit Iteration Summary

1. Category 1 variables:

AIPHA - Right ascension (deg).

DEITA - Declination (deg).

BETA - Fli#it path angle (deg).

AZ - Azimuth to inertial velocity vector (deg).

R - Radius vector from geocenter (km).

V - Velocity vector magnitude (km/sec).

CDA/2M - Drag parameter (meters /kilogram).

K - Drag variation (secular option: meters /kilogram/day;

.periodic option: meters /kilogram.

2. DEI/TA - the corrections applied to each variable.

3» OLD - Numerical values from the previous iteration.

4. NEW - OID + DELTA.

5. SIGMA - The uncertainty in each variable, computed from the

covariauce matrix.

6. BOUNDS - The constraints epplied to the changes which the

program is allowed to make to the variables.

7« Category 2 variables:

R - Range (km).

A,HA - Azimuth or hour angle (deg).

E,D - Elevation or declination (deg).

RDOT - Range rate (km/sec).

LAX - Sensor north latitude (deg).

V

1

o lk August 196^ U-^M

ESPOD

TM-LX-123/OOO/OOB

IfNG - Sensor east longitude (deg).

ALT - Sensor altitude (meters).

T - Time (sec).

8. EELTA, OLD, NEW, SIGMA, BOUNDS - same as for Category 1

variables.

9. Convergence statement.

10. Bounds statement.

11. CURRENT RMS - Current root-mean-square of the residuals.

12. PREDICTED RMS - The RMS predicted for the next iteration.

13. BEST RMS - The best RMS so far in the curve fit run.

lk. DELTA V - The velocity correction based on the delta t fit.

15. RMS DEL T - Current root-mean-square of the time residuals.

16. PREDICTED RMS DEL T - The RMS predicted for the next itera-

tion,

IT- Correlation matrix, with rowb and columns numbered to

correspond to the Category 1 variables.

18. Covariance matrix, with rows and columns numbered to corre-

spond to the Category 1 variables.

19. Run termination statement.

Part 10: Trajectory (or Ephemeris)

1. Date and Greenwich mean time for the data.

2. Time from epoch (min).

3. Time from January 0 of the year of epoch (days).

v

:' •

ESPOD

Ik August 19& k-$kX TM-LX-I23/OOO/OOB

k. X, Y, Z, XDOT, YDOT, ZDOT - Components of the position (km)

and velocity (km/sec) vector in geocentric inertial Cartesian

coordinates. It is a right-handed orthogonal system where

the X axis is in the direction of the vernal equinox and

the Z axis is in the direction of true north. Coordinates h

are true as of 0#0 day of epoch.

5. Polar spherical position and velocity coordinates (ADBARV):

ALFA - Right ascension (deg).

DI/TA - Declination (deg).

BETA - Flight path angle (deg), positive downward from the

local vertical.

AZ - Azimuth of the velocity vector (deg).

R - Range (km).

V - Magnitude of the velocity vector (km/sec).

6. ALT - Height (km).

7. LAT - Geodetic north latitude (deg).

8. LONE - East longitude (deg).

9. Classical osculating elements:

SMA - Semimajor axis (km).

ECC - Eccentricity.

INC - Inclination (deg).

NODE - Right ascension of the ascending node (deg).

OMG - Argument of perigee (deg).

M - Mean anomaly (deg).

x^-jtzBrna

o

ESFOD

Ik August 1964 k-3kO TM-LX-123/OOO/oOB

10. UX, UY, UZ - Direction cosines of the position in Cartesian

coordinates, with axes directed as in the XYZ system.

11. RPVX, RPVY, RPVZ - Components in Cartesian coordinates of a

vector in the orbit plane which is orthogonal to the position

(r) and angular momentum (h) vectors.

12. AIAT - Argument of latitude (deg), equals the sum of the

argument of perigee and the true anomaly.

13» TAU - Time until the next ascending nodal crossing (min.

from epoch).

lU. PRD - Osculating orbital period (min).

15« Indeterminacy free elements:

l/A - Inverse of the semimajor axis (E.R.). 1

D - Scalar product of position and velocity vectors (E.R.?),

equals (R-R)-f-\f/^ .

16. APOG - Apogee distance (km), above a mean equator.

17• PRG - Perigee distance (km), tbove a mean equator.

18. ELUPSE or HYPERBOLA - Orbit's conic form.

19. XVM, YVM, ZVM, XD\M, YDVM, ZDYM - Selenocentric position

(km) and velocity (km/sec) coordinates, true as of 0*0 day

of epoch.

20. XVS, YVS, ZVS, SDVS, YDVS, ZDVS - Heliocentric position (km)

and velocity (km/sec) coordinates, true as of 0*0 day of

epoch.

21. DVIM - Distance from the vehicle to the selenocenter (moon)

(km).

ESPOD

Ik August 1964 k-j>k¥ TM-LX-I23/0OO/OOB

22. DVFS - Distance fron ',ne vehicle to the heliocenter (sun)

(km).

In addition to the above items, the following are optional:

23. ORBIT PLANE SIGMA AND RHO MATRIX - A matrix of standard

deviations (diagonal terms) and correlation coefficients

(off-diagonal terms) related to the UVW Orbit Plane coordin-

ates :

U - Position vector (up) component (km) in the direction of

and collinear with the radius vector.

V - Position vector (down) component (km) in the direction

of motion and orthogonal to the radius vector in the orbit

plane.

W - Position vector (cross) component (km) normal to the

orbit plane in the direction of the angular momentum vector

to complete a right-handed coordinate system.

UDOT - Velocity vector of U.

VDOT - Velocity vector of V.

WDCT - Velocity vector of W. p

CDA/2M - Drag parameter (meters /kilogram).

or

K - Drag variation parameter (for secular option: meters /

kilogram/day; for periodic option: meters /kilogram).

2k. EIGENVECTORS OF U, V, W COVARIANCE MATRIX - Direction cosine

components with respect to the U, V, W axes for the orthogonal

axes of the error ellipsoid defined by the covariance matrix.

.

14 August 1964 4-34Q OM-LX-123/OOO/OOB

2$. SQUARE ROOTS OF THE EIGENVALUES - Represent the lengths of

the orthogonal semi-principal axes of the error ellipsoid.

26. TO ALIGN U, V, W WITH Cffi PRINCIPAL AXES - A series of

ordered rotations which will reposition an observer, facing

initially in the positive V direction, to a new orientation

facing along the error ellipsoid's nearest principal axis:

YAW RIGHT - (deg).

PITCH DOWN - (deg).

ROLL CLOCKWISE - (deg).

27. POLAR SI04A AND RHO MATRIX - A matrix of standard deviations

(diagonal terms) and correlation coefficients (off-diagonal

terms) related to the Polar Spherical coordinates: ALPHA,

DELTA, BETA, AZ, R AND V.

28. CARTESIAN SIGMA AND RHO MATRIX - A matrix of standard devia-

tions (diagonal terms) and correlation coefficients (off-

diagonal terms) related to the geocentric inertial Cartesian

coordinates: X, Y, Z XDOT, YDOT, ZDOT.

4.3.I.3.2 Punched Cards

The program provides punched card output in three formats.

Part 1: Seven-card Element Set

The program provides OID or NEW osculating elements, as requested in col. 46

of the JDC card.

Part 2: Solution Parameters

The program provides a record of data from a run in a format identical with

ESPOD

Ik August 196k 4-3UR TM-LX-123/OOO/OOB

selected input card formats, for use in subsequent input decks. The data are

grouped by iteration, and each output card contains the iteration number in

cols. 3-U. The output cards can be read by referring to the corresponding

input cards: ICOND, ERAG, MSES, ENDS. ICTYP, ITBiE, SMAT, UPMAT.

Part 3: DAC Parameters

The program automatically provides the second and third card of a 3-card DAC

set when DAC cards are input to supply the desired update times. The first

card must be provided by the Analyst before using this output as input to

another program (see Message Header card for the GIPAR program). The output

cards can be read by referring to the corresponding input cards.

# ll August 196U l*-j4S

ESPOD

IM-DC-I23/OOO/OOB

•**

o**

a

UlB»

00«

* <r •* M M w4 « u* M Ml 3 • • r* •- M a X X • « M • Mac O • <• • •- 3** u 0 a • O _» 41 « T X -1

0 X * » 4t « M u 9. «4 O M • •

-I a. *- a O 4 • + *> X * «

0 a«« -4 » «f •«» *. *• A •-.n •« Ml« k» •* X c _» X <> O» u »- M • M X • • J c *

XI X

L

» • • 4>

• O w = -. * « r-

i» •- a "5 • *« «4

. ci • •». • • © w« w ^ t <• «*> « < «««r. 3 • «* r. « MI «« «« a • » •-< •- to< «w * * _ -« <<t (>•«««&

• »UUU«-KU« «<

•3 mf «->

. >COOCC«>C.O

c < a.

•9 «I «f

** w«

« «4

a. »j

w

SA

MP

LE

P

RIN

TO

UT

. E

SP

OD

PA

RT

3

,

PR

OG

RA

M

CO

NS

TA

NT

S

PR

OG

RA

M

CO

NS

TA

NT

S

>

c

en

sO

1«1

,43

7*2

69

09

*2

147

,3

32991299*6

153

,099999999*1

159

•10**30000«2

169

,200000000*7

171

,00000000000

177

,232000000*9

183

,309999999*2

189

,939999999*2

195

,00000000000

201

,00008*98080

287

,913000000*2

213

•00008800000

219

•637816499*7

142

,339230000*2

148

,81476904999

194

,099999999*1

160

•,2

29

99

99

99

.9

166

.116999999.6

172

,399000000*5

176

,410000000*6

164

,190999999*9

190

.,130000000**

196

,00000000000

202

•80000008860

286

,903000000*2

214

•00000006886

220

•234546649*9

143

•320679960*2

149

.10762899996

199

.00000000000

161

-,179999999-5

167

.00000000000

173

,264000888*5

179

,167000000*5

165

.459999999*6

191

.560000000*6

197

.00000000000

203

.00000000000

209

•00000000000

215

•209297361*6

221

,572957795*2

144

•553039340*2

150

,949920086*2

156

.00000000000

162

••64

0068

880*

7

166

,00000000000

174

•06660666600

180

•08066868660

186

,00000866600

192

•00886868668

196

,00006666600

264

.66666868668

116

•66666686666

216

•304799999-3

222

•607911919*4

149

• 699999999*1

146

.122996966

191

,317886649*3

152

868686686

197

,68660686666

, 156

666660686

163

•390666668*6 •

164

470000000

169

•86000000666

170

666860666

179

•68686866686

, 176

668866686

161

•66686866886

162

219999999

167

•68686868668

166

163499999

193

.66666866868

< 194

666666666

199

•68000066886

260

666866666

265

•88866666666 *i

26*

979866666

211

,86866866668

ft*

666686666

217

,637616499*4

216

697816499

229

•344999488*4

t2*

166962749 •9

I E i

PA

RT

4

, S

EN

SO

R

INF

OR

MA

TIO

N

(NO

E

XA

MP

LE

G

IVE

N)

O

o

Cd

Ei'FCD

/ LW-IJC- L

O» <3 €» ••> «, d « ooooocDf->.D>ooc»o«oooooooooooooc»c5>oooooooooooooo

ooooooooooooooooooooooooooooooooonoooooooo OOOOOOOOOOoOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOÄöO

»-OOCJO OO 00©000000«JOO ..Do OOOOO «JOCJOOO.DOOOOOOOOOOOOOOOOO

OOOOOOOOoOlDOOOCDOCDOOOCDOOCOOOOCDOOOOOG. OOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOC~OOOoOOOOOOOOOOOOOOOOOt_)C>0000000000 a a o o a o o c> o o o o CD o r> o o o o a n ooooooooooooo o o o o o o oooooooooo « « I > «D «1 OOOOO «J O O O C- O Cl c C n <> OOOOOOOO OOOOO O O O O O Q O O CJ O O <S O O O O

Or-«« « «X or- r> *r> *t *t o * oNK^M« « r- » «D w»«ooo c> *f *» f t- * >- »- « « « *»-«-^-. o.r««;>«.».

• II »«.*»< «-•f>«0«rvjv>»ei*r<|>«»*9»'»

« > -> c J «-> 11 o t • O i • e> oOoooO o O o o

r- »• c r •» > « - o-t

OOO DO»» 9» CO OOOOOO»» OOOOO o o O O O '> o »OOOOO»»» OOO OOO» » O o » CDOOOOO»» o O) 0 » O a o ••» o » Tk o O 9 o o O -> » o » »-. « « r- «• »• 1 •> . t « . * «• r . . .> i> •. « , r\ > « .- 1 . »• r » * , > iv • r- . r~- •»

K «O W(M WtO « *t *t fK)*)IV^O(>Mn«K)H0>B^«(>*»l»lP#NM0«»OHHN>0«««» »««MW«

» o o > » » » » o »00»»» 00» o»»»o»00*oc*rv.oooooo»» oooooo c> o » » » o e>

ocoooooooooooofrcooc-ooatoooroo^oocooooooooooc-o^oooe

«•« --'.3 «or-« •>#*o«o«<r»<>>'-ie»>rw«r««'->''C>«'-*r<*»«>«Ci»»'*-««-.»o <•:>»*•*>«*«»• «>o«- o «- ,- i^'M!-N."««rf-tf-««r-r-'««o»ocooooi»^««f-r>r-r^rrv|K*r.r.^ix«)»«tc«)««)0 (VtVN(VW(V(^!X<V(V(MNN(M(V(M(M(VO<OlV^»)IO'0«IV(^ .< -< -< .-• "• ^" -« - • -< ^ ************ ***t****

« »*J « rtOi". .< nj « « ooi<\ O • f •«* f"w "> t > o . * rv u> es, m r^ ooooN«iy09M\ooHniMt* «4tf\ 000 oN«va!i«>"ii»«»ift ^«r««>-^o»owvooj^«r>oooooooo <-«(vm««««fO««««ofOao<

JT r\ *• » .-< » orvjOOOOJ«-«.-! 1 «4 *4o 9 ••"» o o> «• o .-4 .-t rl rf O HO

-v f>i rv

O X) «4 i/> « "^ O^BBMT«

"M *>J A* -V «*J io*)io m mmm (MWPI n»M«i«nii-Mfli« -• —

9

«J » r- • O .*€>•< 1 » "'» 9 « 9 rf> O ,/N r4*>«'»»<\»1ri«'»'0->")'*)^N'N^ « * «N « « « •0-i»^i^«0»«««'v •J» «M-fANrCCPrlCrhC ^•4)<V»*'»-*(\»c,f\.»r>»»OOir«IO<Vr-. «r>c«4^p)iMWC<C on«n *H c. > <-• *r 1 r• r < r> •*- *r <r m- j- rf- ^ r* «-v *- / r f> f> >r ir >r. r u- "> -) »"> >*> ^ if« *r « o o o -m *- *» r- -- r- • «5 «> » o o o o w • • • • • • ••••• ...... ........... ......................

^ ^« H ^« «J o O u O CD O o» o O O O O » O O O O «> *D «• » «1 >• ^- '• >*• -X "» rx rw -« w rf .-• .-i >« u «r> . O O O O O • •

X

lli^mivivniniO'OiNniumNni.. xi\inii>iMniii(iviviM!MiM(M(\ii<«i^H ************ ********** ** ******** X

Li a

0 > 0 h ft Z <n 0 u

K

3 < >

0 a >- u z M

ffl K 0 a. M m

J K a. K 2 < < a. •

>-ir>iT cfyf^JfiiT'tif'is* n P r> r> />i*»-r>«r r* J\ 4* x> *r* r> r> rio/*T>Ti/N.f«>f>>r<'f<ir'ifti<>'/^ic«f>^>r>i>if>ir> r ** f> *p

"1 \ c - -\ A •, ,\ 1 ,-\ \ ,•• i\ >\ ."v rv. x r\ A r\ \ \ r\ \ n <\ .^ i\ f\ \ o

r *. O *. «. «J •* *J *-*••• * <J *-<<•«'<*.*«-'<.«-< -I- 4 ***-*-'«••»'< 43 *J * «- •«'«.' * «• * «J »• -«J * « * «- « «> *

» »».... ...». ,...»» . . » t, k ...(•••• • •

O O CD O O OOOOO CDOCD®CDOOO€30CDOOaCDO)00'rD'3Cjr>C»0 OOOOOO OOOO ••> O OOOO

r;*ri»r;i'jnic^i,in,<. rinr)io«K)Hi>)nwiow', n«n«»««i«i «itl»» »1 ' *t *» *t <t • • m • * > ' • • « • • f •• t »• 9 •»*••»•• I f , . , i » I . I . . » t * . . • . I . * « • • •

^»000«r»0000000>>0000«>000»000«»^r*j».«>00<i<.<«'00«©'#0000«0«004>

,r •*• *r, iT) •* *; •''i)^f; *r>"l'*)if>r'r TKiHKiwir, l'|"•K'•^f•^"'l^l'>^•''l''l,^*'tOl'll'llr^l''''l','l|'lJ , 4 c « r c-r-O'e-c-e-o«!« c --O0«rc"rc-cr. Cc oc . . • . • r r- » * 1 <r c ^ o 0 c «» «-• e> * • «- c •

• I»

.1 "I

<y • *. •») 49 *> rv 9 •-<

j >^ o o o f j o <r> o

i 4"" • ' ^ .---" "V /\ »->->«> c -o—i f ^« io -i "i <\ c. ... i ,f\ i> r» « « .^ . /• -,

o o o oo CDocaf^tDocDOO'-^CD

,-• « r. r~ . . r 4^ - o (TN * <\»ciN9of»rif< »iO r HI\« -. iv »i /• . • ». i\, .. m r« n iii» »m (v n, <-3r^C»OC.»Or»3C>CTCTOO«»0<»OC».> <?> O O Ct

«• - r »-«r-«"no»N»-«r^p»)j «fs r-. to o v • • 4» f\j « < O Mfl M'. r> « « o « •" > c » c \ a <jr\i>ru>

•DO CD i^ o ••"> r- ID * r -%» *>•>•*> •- CD .< > * t --<••• —\ .•

rri(>ir. !/>ipirirj>y>ififii."- «« «« «« » « « »» « « « « « « « <> * « « . « i ^ . . «- s r » t J «•<•«-*• w~ »

»• <. > • v rw • ..-.•> . *f-...»r\jx>>*>»r-r-i">,rM<i (vrf. c-r-«i«or>49«<**t««--4'Di*> •-•«.-< <.«--*ec<>»r-ocr^« t> U V« O CD <>i Kk OMK) ,1 Hrir»m »IHIV'i» . < »; .. v • • . > . . • I *4 .....•«.,. .i ,< .-« OCDOO««400CD

CD OCDCDOOO CDOOOCDOCDO OOCDOCDCDOOOCDOOCDOeD4PC5f:?OOC30CJOCDOCDOOOC30«r40000

^ s a

oo^i^iAeotoesfi^rKOio

r»if-cv»-r>.^i>i>*f-<j-i>.-t-ri>cr--<c_o-~tr c- O - .- 4

-.*>>•». « i > — < . i < *-- ;> -o o \t r .- J x i s « *-. 4» ">• tf I'M r»» ON « « » r < > r< 4 >r>«o

•- 4, « ;J0'.-i"»lXr4r\,«it>ce«r.>Olr>r>«'-.~>»»«e-4D

CD ak.->rx»«»>o#o4»"-.4»4B~'4 •»>•«»•» .-i« n o> r> » >--- *

' » . • < 4J « 4' • r ..i 4 > a -, . i r i_ „-. 9 .- -. « - 4 ; tf . . , ... . -« t t f • H *-, -> r ix "> v w-> r- •>. •»> c> t> r-i r- -v

J ........ ............... .. ...... .....................

1«e<l«|\o<Ulo(>»)N o 4D * 49 r* o *• n >• « »r> 9 »\r."tONN«HI r .<ir nr - ««M»>»»>v>»4*>»»>49 1

3 * • I t » . i I . I •. • « • » • I • I

Of »~ »*i a to a x .J K « 3 a o •~> a • ,--. m • J Ul -1 Ul

Ill a ul O.

>

O NHt » «T « flOflft > •n V »-• o(M « > «OOi> « v4v4000 C3«4«40«Oa«4^0v4 00r400C3C»O^OrlO • ^: -4 CD C» O O C>^«CDOC3C3C>Or>*000 0 00<HC30CDOC30 rDOCDOOOOOCDOOCDCDCDCDOCDOOOOOCD

43 _^_)-*-JOl-DCJ«0-3O.J

•• »- «an««»«

X <3 >/••.' »DP c m > « « « <. » « r«. « «

on niM « » O^.X* rl 's (V .< « r< « CD (%4 K5 «K »O » « \ • « O

• f. « ^^«^OOOv4v4ear\«40m(M^«CM(VOlVOiXOOO O r4000 0000000>OC3L30<'>000 OC30000CSO

."V *•* * •

«fs«rs.rv^fw<scBonx«ox.4«ort«ro«««^#io430oM4n«r^»rx««cm«o»^mV4r<.4or<.»«(>ga(>i

.-W • i » rv r. iri <i «0«lTl«a's,^ C*40 *00»0 CiMXlt«,« COO .) «. 4, Xi <N «) » » 0^<\Orl^«»l«\0»<l* »»JO»

o^r»»rfi«(<i43«f»(>*^.\i»« ^«ofs<»rvrv«B 4 < * 4 /»*»r»«4«<«

< < 1 Ik

r)r<NK (VJK1 PO <« 4» «

Hi\ » 1 - « «

»fitf«tfNif>ir^tfNir*«r>irirf>i«"^ir»i< ^\x>rf~-^i^ir'ir>i#,if>i/Nj,^^>nK5K3»'/rfN^ir<>o«>«>4Df~'^fvrv-^,-9ß«)«BO»(>o«>»

tit ^< r ir « r. uft»( r r « r c (\ »- irir««» €>.!«-»*»> ici»f\«,r. *• ^ r^ o. ». i « K -• »'• »« «N^irfv

54 n> «>« oi ix ro o« IM

>>.-3 !>*>>>»>* »»•»»•»»•> ->>»>>>•»—'».«OtCO O « C 4 O -- 4» «•«.«* 41 « « O « •

* B *. ^ >( ») ' ^ *. ' < ^ ". 1 R ^ " ^ ' ^ i*1. 1 < ' ' '. " f- f1 '• •"• * ' ' " "« * •»-•»•'^ •4^>r'. r. Hi n W) *> •*> *> OOOOC&CCJ-O Ccco3>c-cb_' .- • c! '• t c c :>c-:. o c- O ovtco^to^ooo^o

**

k

SA

MP

LE

P

RIN

TO

UT

ES

PO

D

PA

RT

8-

E

ST

IMA

TE

S

OF

M

EA

NS

A

ND

S

TA

ND

AR

D D

EV

IAT

ION

S

rS

TxA

TE

S O

«

EA

sg 4

*0

S

TA

AR

i, Ü

tvI»

Tlü

NS

»

* S

EN

SO

R A

>D

TV

Pi

0*3«

C74<

C 7

4 i

0 1«

4

,12

12

15

B5

»2

1

0 /

HV

i C 3

*«J

*

/ P

, 1ft

C3

38

0*l

,7io

*'l

6l*

2

25 /

n

,5634 7

<*3

l*l

90

51

i9*l

257

/

2

">97 5

3059*1

79

/

0

,0U

0O

nu

0O

OU

, Q

0 o

0 u

0 t

0 0

0 C

/

0

oouooocooo

. ü a

n o

u j c

o o

u

0 /

0

, 0

0 "

30

00

00

C

, 0

0M

DO

OO

OO

f

/

o

. u a i..

o"

a c

c o

u ,H

0O

IJU

Ü00ü

u /

C

A . -

*

3365911B19

l0'92l9/5.5

6 /

0

41843352-1

'021 4"0624i

25

/

0

250*«t'21 -1

48992/2681

2*9

/ 0

lb'»

9el0

*l

7S

/

1

185»-*

J4:>

-1

2 /

ü

1 0

<*> ?

o 0

6 1

• i

9828J

«ii

»l

2 /

0

227?l9

(J4.i

,.il

lJ8>

U2*l

3 /

0

14

«ft

3< •

><>• 1

1*«7««*02»1

3

/

0

.63708257*5

.5

656537314

6

/

i

.53335567.1

.6

5.J

M66578

2

5 /

•.42605573-1

.1805823292

259

/ n

. 1^«J0743^6

.79u/0»3*-,5

7V

/

•,5?481375*2

.628847620.0

i I

»

•.8182243091

.3813073599

2 / 1

-.2278247472

.4

005f,8

1l?

4

3 /

n

••84461368-1

,408715*5«1

4 i

n

R-OT

453'4850-l

13890336-1

5 / 1

855^7580*2

l72?22ii-l

75/ 0

35772400-1

2*7*33l*-l

2*9/

0

110*804467

148*672884

75

/

o

OOQrCOUOOO

000n00u000

o /

0

, 000"00ü00ü

,000rU0')00U

0 /

0

1oco

r,oooaco

, 0 C0100000

0

o /

e

.000^000000

OOOPOOUOOO

o /

0

»f

A».

£§T

P

NA

/».»

«I

* M

Tl«

H

A /

•»«

«IA

N

C|T

*• • '

"" R

*E »

s C

ST

, **

/<«•

«

«l

*N

H A

/ «

t R

«E A

s

CtT

D

»,»

/•,&

«Ü

4N

(•

TO

N

»/v

R

Mf

*'-

liT

O

•z

w

•:•

SA

MP

LE

P

RIN

TO

UT

, E

SP

OD

PA

RT

•,

S

EN

SO

R L

OC

AT

ION

S

(N

O

EX

AM

PL

E G

IVE

N)

P

AR

T 7

,

RE

SID

UA

LS

P

RIN

T

• A

WP

H

PR

INT

OU

T,

r.

SP

OD

rA

»T

T

%

CU

NV

E

T

IT

ER

AT

ION

S

UM

MA

RY

I?€

«4

riC

« *v

M i

4\G

£»

«Y

t

v

*«X

*BtE

f D

EL

TA

O

LP

N

Cw

S

I&*A

•O

tiN

DS

1

AL

PH

A

, "O

OO

OO

OO

OO

C

. b

** J

6» ?V

V.<

: .8

62

36

67

99

*?

.2-4

1 s

;w«

a

,("9

99

99

99

9*1

3

*€

t**

.^

ae

ot^

öö

t .1

««

9S

43

«9

*2

.19

69

64

39

9*?

,2

*5342173^

.0

99999999*1

3

B

IT«

.

' 0

C 0

0 0

0 0

0 0

C- .8

9Q

6375*9

*2

.89.6

37599*2

,l

l47

0S

>2

83

«a

.,:•••:?

::::

*

A

f .«

oe

oo

oe

oo

oo

.1

*5101799*3

.I

95l0

i79

9.j

.

1*

?9

63

66

i v2

.5

oe

oo

oe

oo

oo

5

0

. r

c 0

0 (i

0 0

o o

o y

.7s

79

s6

99

*4

.737936699*4

.1

42444677-»

. p

99

99

99

99

*i

6

V

..1

11

*9

1**3

-3

, 7»6068600*1

,7

26

0'?

43

f»*l

(1

495/9

933»}

, "9

99

99

9 ?

997

GA

TM

«»

'

8 V

**^

HK

r£#

0*L

*A

f>LP

N

£~

SIG

MA

H

O N

Db

7

OS

?*f

. ~

G 0

0 0

0 0

0 0

0 C

. C

iCO

OO

OQ

OO

OO

.

0 0

Ü 0

0 0

o 0

0 0

0 .3

11

61

74

93

23

.

"99V

<?

?999*2

BQLUTIO* IB CONVCRöINB

SOLUTION i« NOT AffECTED BY BOnNgS

CU

RR

CN

T

HH

S

ME

TIC

TC

D

HH

S

B€S

T -S

4,8

96

71

1

1.1

93

93

9

4.8

98

71

1

DFL

T TTT SUMMARY

DFLTA

v »MS DEL

T »«EDICTCD RMS DEL

T

.000111

.076329

.067678

CORRELATION «ATRIX

4 5

1 .0

99

99

98

*1

B

r*>

*97

*£*9

»

fr9

*99

^9

*l

3 .4

*44

33

19

8

-.7fl

0S

«3487

.8

99

99

99

*1

4 «

4*9

26

01

4*

-.11166*1

85

.1

88

47

76

98

.0

99

99

99

*1

9 .1

890894-1

,1

J410

*8

.1

.12/2

6/0

.1

A1

82

59

-1

,0999999*^

6

.3f9

i79t*l

.l

ftl?

""-l

•-l5

l7«

»*_

-.

2S

1?

Q3

4-1

».9

99639350

. r9

99999*i

7

..4

79

8S

2I-

1

,3?

1A

3*6

.1

. . 9

02

83

«J.i

-.

60

/20

25

«l

t.

59

l6l4

6. 1

äTA

I

NV

£*B

C

.5992749.1

.0

899*9

9*1

1 7

3 4

5

*- 7

1 .*

37

2S

3l-

9

* •*llM

tlf»

.T

**tW

l-9

1

•11

14

92

7.9

..21»i?

ll2.9

•1

31

58

21

.9

« «

1'3

'SA

tf

-.9

i64

0-*

' .3

47

/2*1

-6

.2921i7

9«5

1

,lif

*9

9*.5

.9

*5

97

*7

.5

.BJ79906-4

.S

8'l/7

0»5

.2

82

90

48

.1

* «.I««ai9

4*9

.4

659'

>6»B

»2*33339-7

-.

566*645-4

•,2

C7

60

-4

.21193*1

-7

7 ..S

l«7|'l-

4

.28454*9

.4

•.3227215-4

*.3

1/8

12

3-4

».2

56

16

B5

-?

,27

18

67

9.9

.9

/10

b4

S-l

w

:•:. i\ i.)

* : - "»«_ .j.-.

< •»j r«r3 •O Nn V. 43 O « • • • • • • •r> • • r- - t» •^ « CD • »T> CJ lT • »n K) »•» »r» fM >-« «D r>- a. » * .- pg«/> -* i 43 ~* • » rs o CM NtDlT i O f> - >• -« c «r, »•> »» u< » o .-« > * < •»» 3D « o r> «T> OH« ir> « tA » 43 •"« (\ N N »r» 43 O •r •••«

« O «O •> »r> o c~ » fMfM • • J •*/ *->

•> •> »W • , .

j« * * « » «V v. 4t .JO _i »- a > >

_i <t a O

••> « »4 » •*> fM "i M -v »< » * • "•3 fM « * • * •

r-> o «M •a 43 ** o •-• C3 «' ^ K» <M .'••»*- • •n «^ *• <fi rot*» -> > •> ^ «0 m *4 a IMO /NO*. o *. r- 9 CO» »400 'N. •O 43 ft t—

* *.-« »4«») n> n o « m a *! c» • 4> IO N to A rv V* a «\ fM» «S fM * « « t» ". * * »*»fM o- o »4 CJ J-N •-> 3D «4 »^ r» rw O « < Al V* O

r4 "O SO

r • o o « 43 «f» -» 'M

»: c m M a - »*> «r. « o ^ r>

o

cl 0 a-1 a! UJ

r~

0

z * a

^ '* » » >• «»4 c» Ml iA «i

* « > > > • > > > u a e tv 0L O Q O o * « » M »» ** a M •o Ott* O r4 « "O «0 » 3D « • • *- • o • * » « I ^ « 43 •O €> f>J > « » to O CD *-t 93 * «D •-• « o .i f 3 » P40 •O « >o t> > «-» « U "> CO -> «1IVO Hon

(V ** m • * r<* ¥t !X « « 1« «> P- «N r» « i*i » HC O M • e> «< o M « •• *> • • *- c» «r> « « » V« C9 »- o r> J so O O w ^> •TV « M »t «

X «~« OJflfc » rtn» irt *4 «N »-« I • * • • •

o < -4 4 M »- •* O <AW«I Ui lli. J*" >-• 3 3 3 O » >• > \Sr -1 -J UJ

a ao K >- M

f> • •4 «4 «d O«»»» «O «4 «4 «4 <" • • • • • * * K • « O - Ol • » 9> <-* * » •» -O • €0 r« r> cj <t> €C tt e> r» « »^ N * • ^. r^ e« ••"• w4 «i m K K

o» * o (V fu 43 ^ «o « * •-« -<* •> «> fM«M ^ r* «»»>•-• a z *v IT CO ^ « 9 43 eit n »- >-* «^» P- 4> •43 *4 »> CP mr •• « * * « -c •r» o « »O «-»<•€.' s

e> -•« 4} • »^ O »-« « « » n •-« •* «•• r<r> PC ^« tv « »> o

• * • • • • • a

a Ci

i t- •- »- ut e X 33 * * I *•

o o o o » > > > « r* o ca a o o o o o

M • •« 2 W » »M 4 > s a * K5 * * ** tM O •CO« (9

0 * • * • • • O • • • 1-4

« « '•.«-, » r« «v «0 r^ * . . m >- « o •< O« •f» • r- n co <r «o

o » fu 0» f.. •> r> r< « «V O »4 UJ <-« ». «0 o >» n T« r-« l\ C» » y w »»-, » «fl t^ r« O t>4 « •• ; ; •«

*•» »^ •«• w4 « K * r»- OC <* _i

< "» o • (V fM ^« • K 4> »•• & ^ •- • « r v< f.- «4« r K « O t~ -.« » » w4 o tr* »- r- «t r* fN ^ (x «r «o Win ^ »-<

on

> » 1 ( a

cf o

— •« •- »^ < u O 1 X X c • a u * •>. > > >

h *^

I w

to rv l«J 3 -1 Ul Ul UJ t • CJ _< •4 -j :J (_. cv« ^ •4 Ct •O o 4] > M «(V ir

«r «r« •-• T U * o » ^4<J T ^J ar so <•• r> •^ » * 3 -4 »> 4> SB a ^4 > >4 X - . - ^»^ CJ a o CM ^J •>• X * "< .. « o •> »-t 1 « » .

c* rs. m —. « ttt j- > S3 fM y O X M N "M CM •- cM t-

y> r> r* » fM 43 »4 r-. Ul • »4 | • o • K t> r>» I r. »»» 3 B* SO « O f». ^- i^ »4 ^. «» «- o *-' fM •4 X

w « <3 U. • • • io • x /• * » o> x> C) • »- •• 1 11 *o r» o o I I o o

»«« if 15 »OO.I M -t r* a a 5> »1 IJ)

m - • o »at i • CJ

Ul

UJ a

3 U -J

x •* >-«o IM «4 lf> > J ^" > a a » • «> jr 3 --* •» 9> t» Ui «* >

»4 4> -> -« IO »>

*•• «D

C3 f> *4 0>

«o o «^ i o 0 « 3D O

rv 42 CM

o r-t f>. N fM hi a Q r» fM r^ •*< > »-• r*

O «> CM «0 na ««« ^ »ft » « «> P^ « e» r4 K) «9 » «•« rs •< K)

8 HHO rC Ki > S) r< I

r* 9> <M >»i « <: *•• r 3 « 3» rv « fM <..• O" .">.;>« •

O * «*J »4 O

NI .-•«•» -o .-€

r4 SO »4 •• SM fM •o «r > * o i r> o « ao o <M r««r)« an «f» CM »-« f- O «0

«4 «\ r» « ••> •% »»•

l> A »' » f» »Ti rl « rt •? O «

• I " »» 4 *• «

r> rio a • I«- N

«-» • «0 » e> 4t r^ o * Oi

•O "V f> CM « r>) O C3 <M •<> <0 K> o «o o o

« €D » €3

o *> .4 »

«or« » r» **i

9> «r> <M 80 o >n «No i> so ?- « « o 43 <0 ^ fM fM "•»

• •

o o o » 4> if» o» m «4M »v to

O > If« "5 r- v« o IT > K e» «r H « i». I»

"J fM "^ »V fM <J> »-• CC

a i - • »-» fM » Oi/> D •M ^ • « (O f^ * cic so tr> «o o> »4 <r

a (SJtV OHIA e» »4 o • r* r- i o « iV » O C3 If» r4 C3 »O •C «1 »4 » If» CM I • O «" »f» o X 4 r^ r> r» •• «« a •4 O CD »o « »- « «o » if» %e M » «N 3» M o _* <W ON Mom Q >- CM »OiK so « X UJ *4 O (M «4 ^ z MOK f> f>- a a * * • r- 4i ~o 4 on *i fM

r4 4) • OV «3

o z

41 t I • I

t 4*

< fM o « O f» «0 IJ1 fC.Otf rM « X t HN » H(V f> <» f» «7 » c o io so o if» e •*> z M S~ .M IM .-4 30 1 • 1 »f — «-• 3D m CD « w* fM jy T fM 43 « •»> O X> M •inn» ,M cr » -«QOO^lIM M M «4 » O •> O •4 «» a j •M -> « t.i « r> UJ •4*>) 43 tO tf» 30 •* « •r> « >4 «a> •> •» a »>i «Mm Bf» 4> _l *4 43 »4 »O fM fM a .-. P. «-> »"> « -• o < • • • • • a • • o • • •>

4 May 1964 4-35

IGANGLE

OM-LX-123/OOO/OO

4.3.2 INITIAL ORBIT DETERMINATION FROM ANGULAR FIXES - lOANGLE

4.3.2.1 Purpose

The lOANGLE program computes an element set describing a satellite orbit from

three angular position fixes from the same sensor on the same revolution (e.g.,

telemetry data). The element set is then differentially corrected using

additional observations.

4.3.2.2 Input - Schedule Tape Mode only (Toggle 24 On)

Deck Position Card I*ype

Column Number Punch

Schedule Tape Card

Job Card

Remarks Card

Program ID Card

1-6

9-15

IT

18

80

Parameter Card 1

1-3

4-6

7

8

9-18

SPSJ0B

lOANGLE

0 = Parameter card, Observation cards and

S-file tape inputs.

2 = Parameter card, Observation cards and

Sensor cards inputs

0 = Hardcopy and punched cards output

J = Card type

Satellite number

Element set number

0 = Circular approximation only

1 = Circular approximation and elliptical

sector-to-triangle approximation

0 • No differential correction

1 = Differential correction

Satellite name

IOANGLE

..

4 May 1964

Deck Fosition Card type

4-36 ÜM-UC-12 3/000/00

Column Number Punch

23-36

41-48

80

Parameter Card 2

24-36

67

6

T

8

9

80

End of Case Card

End of Job Card

End of Schedule Tape Card

Blank Card

Epoch revolution (floating point)

Minimum time between observations in the

initial orbit computation

F = card type

Final revolution (floating point)

0 = Correct the inclination

1 = Do not correct the inclination

P = Card type

4.3.2.3 Output

Program printout consists of four parts.

4.3.2.3.1 Part 1

The first part contains:

1. For each input observation; obs number, sensor identification, obs

date, and observed angles.

2. Preliminary elements using the circular approximation input option:

a. M12, the geocentric angle between the observations in radians

b. semi-major axis in earth radii (A)

c. inclination indegrees (INCL)

d. node in degrees (NODE)

e. period in minutes (P (MIN))

f. a , a components (AXNO, AYNO)

g. components of angular momentam vector (HXO, HYO, HZO)

h. mean longitude in degrees (LO)

IOANGLE

k May 1964 4-37 TM-LX-123/OOO/OO

3. or, elements using first circular and then the sector-to-triangle

method (input option):

a. semi-major axis in earth radii (A)

b. eccentricity (E)

c. inclination in degrees (i)

d. node in degrees (NODE)

e. argument of perigee in degrees (OMEGA)

f. time of nodal passage in minutes (TN)

g. period in minutes (P (MIN))

h. a , a , components (AXNO, AYNO)

i. components of angular momentum (HXO, HYO, HZO)

j. mean longitude (LO)

4.3.2.3-2 Parts 2-4

Parts 2-4 of the printed output contains the differential correction with

further observations and corresponds to Parts 1-3 of the SGPDC program (see

section 4.3.8.3).

*

.-.-•

SAM

PLE

PR

INT

OU

T, I

OA

NG

LE

PAR

T

1,

C

IRC

UL

AR

AN

D

SE

CT

OR

-TO

-TR

IAN

GL

E M

ETH

OD

9

INIT

IAL O

RB

ITA

L E

LEM

ENT

DE

TE

miN

AT

ION F

ROM A

NG

IES

ON

LY

OB

S.N

O.

STA

ID

DA

TE

OF

OB

SER

VA

TIO

N

OB

SER

VED

A

NG

LES

1 03

7 6

OI2

09

15

40

19

.I8

9

26.6

246

(DE

C)

84.3

161

(R

A)

2 03

7 6

01

20

91

54

04

0.2

11

42.2

468

(

DE

C)

85

.38

91

(R

A)

3 03

7 6

OI2

09

15

40

57

.46

3

54

.73

95

(

DE

C)

86.6

212

(R

A)

A

E I

NO

DE

OM

EGA

TN

P

(MIN

)

.11

24

82

84

9+

1

.417429275-1

.8

15

34

24

11

+2

.8

62

67

92

05

+2

.7

90

83

72

32

+2

.4

96

30

09

09

+6

.1

0794406+

3

OB

S.N

O

AX

NO

A

YN

O

HX

O

HY

O

HZO

LO

2 .7

90484257-2

.4

09876256-1

.I

O4588623+

I -.

682224961-1

.1

56

00

06

35

70

.125963077+

3

PAR

T 1,

CIR

CU

LAR M

ETH

OD

LL O

RB

ITA

L E

LEM

ENT

DET

ERM

INA

TIO

N F

ROM A

NG

LES

ON

LY

OB

S.N

O.

STA

ID

DA

TE O

F

O

BSE

RV

ATI

ON

O

BSE

RV

ED A

NG

LES

1 02

9 6

40

22

10

15

01

5.5

68

70.1

501 (

DE

C)

32

8.5

25

4

(RA

)

2 02

9 6

40

22

10

14

21

3.0

07

53.2

261

(

DE

C)

2?6

.29

;>6

(R

A)

3 02

9 6

40

22

10

13

44

3.1

58

17.7

143

(

DE

C)

220.1

483

(R

A)

M12

A

INC

L

NO

DE

P(M

IN)

.30

42

44

96

28

1

.158593401+

1

.872063115+

2

.

202875505+

3

.168744448+

3

OB

S.N

O

AX

NO

A

YN

O

HX

O

HY

O

HZO

LO

1 .0

00

00

00

00

00

.0

0000000000

-.

48

89

61

01

21

0

.115891486+

1

.613798633-

1

.2

80554359+

3

00

C

D a 1 1 to

o

o

• "

I.AI^U.

h May 1)0» U3> TM-IX-12 3/000/00

c

c

UI

o u

u.

ui — 9 <D

C9

ui c-

wo,

M

»»•««•«•-noooo ; ro > a' f^ « ir

tvrvrv^»rv.(\-^rv;rjv^.n»cv'^rvioj ?v • «•«•4 • 4 4 4 4- • 4 ••«4 ft««lM»*»ot c fv« CJ«HC4> v4 cv ^ a «•»» IP •'• r o r-, »»,«•.» i «a« -.

• • • 1 • •

Ui o a

>

1

-i

«

5 ! 1 d

> U 4

u U| X

X I

M Ui «COT

jr u •> UI» out

utx Osr

• •

CM •

•9! «11

« «»••»

UI * 9 Jt •

«ro

rs. w

» •

MM

• 4>

*• » T*

4>! •

-de* • •(•••• v4 err» MON

« v*M « fv « n «4 •• » »

M.M

«i HI

M|M Si i

O «I • -i

•9»

MM

MM • •

a<f»tfk M cv IMA

r» tr *< «

9 « <r

m w M

MM MM

MM MMMM c c

in r m

9 r M M)M MlMMl

WN, * • • 4» fv « * WS

«I»

MM • « «*4> •o a

<» • "5 «V

9 * W«V o *• •X »»1

€* M MM

MM

MM^MMiMM^MMJMMM «I

*»»-

W

o a.

3

• • x rv

» >

M M • • » «I

» II

»TO

9 *• ->->

M M M M HI « ' «r c

M »

MMlM «

M

«Ui •>- ai JO UI 2 a

o u.

-I

«I

»2 u

.J > UI

-IX ui

UIZ a

7 X <>

i

M z

w

*«-

UI • mo o

i I

«»; « -I «v, M CU

< 3 • A- 4? ir>

O

k a a c h

JH •3 « X S * - Ul»- s A.M

M o 4 c • o

n > u ^ 2

a

3 «I at

x »-

> o UI

M

iiWOIMMMMMMMI r«jCTC»«^fc^* -S*B ---•,-- •HBESWm

IOANGI£

U May l)6fc

4

k-kO

in rv n

»- K CM < 3 • • a. T «0 «4

•-• < r>

TM- DC-12 3/000/00

C

«I

: a M<

ä ! I £ AS!

^ « 1 * < 1

«-• _i o i « 1 *• " 1

CVi '*-* j

M j a j a. I

•*

c

•*-

»- .1

< •- i. _J M

;

i

a -

c A o f~ Ul M Z. »- •- Ul u u <u «* Ml Ml Ml • ~» u _i * bi it M« t> * .0 -* .3 u *- •£. CM 0)

C _ «. « _ -1 0 «J a r4 * •i 59 .j. *> Zt

•-« O «H a r- A *-, £ O m Ml c WJ a. fc- X MI »~ M. </> u. Mi »«• w t-* •• iAO « a Ji *• -*i " s

u X x en «a o «1 V c .»

J • ML -* ». M 0 Ul

u v z 1 * z %-

< •-« «V

0 > __ 4/ C •-) _» -i JU M> « o »— •v .3 • I/* «O

' Ml

3 •*• o m. 0 o - -t

h ^ 9 «« « in

Z

K

«4

> 3 Q. a. * Ml •*

y J

c i*> U.

•- •r _$ »- V' »»• a. 2

t-* _» *. • * ^ r- Ml & vJ

< •-» *- J m. «" • « c •* _» •i o

M " D •a:

"• j h i

* , < 1

i I

kit- (V' «i O. 01 Hi

•I t( • i o<

— «-' c

I < •;

o

ä91

9-i

o W 4 » U •

» A X* *- J- •-•

w,

trl

til c

u

(

J i

IOHG

4 May 1964 4-4l TM-LX-123/OOO/OO

4.3.3 INITIAL ORBIT BY HERRICK-GIBBS - IOHG

4.3.3.1 Purpose

The IOHG program computes an element set describing a satellite orbit from three

or mere three-dimensional fixes from the same sensor on the same revolution

(e.g., tracker data). The element set is then differentially corrected using

additional observations.

4.3.3.2 Input - Schedule Tape Mode only (Toggle 24 On)

Deck Position Card type

Column Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

1-6

9-12

17

18

80

5 Program Card 1

1-3

6

8

9-18

36

79

80

SPSJ0B

IOHG

0 = Parameter card, Observations cards and

S-file tape inputs.

0 = Hardcopy and punched cards output

J - Card type

Space Track number

Element Set number

1 = Corresponding Element card number

Object name (optional)

Epoch revolution

1 = Second, next to last and median observa-

tions used in orbit computation

2 = Third* second to last and median observa-

tions used in orbit computation

P = Card type

IOHG

k May 1964 k-k2 IM-LX-I23/OOO/OO

Deck Position Card Type

Column Number Punch

8

9

10

11

12

Parameter Card 2

8

9-22

80

Parameter Card 3

8

29

36

67

k - corresponding Element card number

C-term

P = Card type

7 = Corresponding Element card number

Initial revolution number

Final revolution number

0 = Correct all elements

1 = Set the I-stop

2 = Set the C-stop

k = Correct mean motion

80 P = Card type

Data cards:

a. Parameter card

b. Observation cards (min. = 3 from one sensor, in order of in-

creasing time)

End of Case Card

End of Job Card

End of Schedule Tape Card

Blank Card

4.3.3.3 Output

The program printout contains h parts.

4.3.3.3.1 Part 1

Part 1 contains the following information

1. Satellite name and number

2. Element set number

3. Time of epoch

' .. I

I 0

IOHG

4 May 1964 4-43 IM-LX-123/OOO/oo

4. SPACETRACK elements (initial orbit)

a. Revolution number

b. Serai-major axis, a (earth radii)

c. Eccentricity, e

d. Inclination, i (degrees)

e. Node, Q (degrees)

f. Omega, w (degrees)

g. Drag, CQ (day/rev^)

h. Perigee altitude (statute mi.)

i. Anomalistic period, Pa (min.)

5. N, M elements

a. Revolution number

b. Mean longitude, L (radians)

c. A , A components xn7 yn d. Angular momentum components (H , H , H )

x y z

4.3.3.3.2 Parts 2-4

Parts 2-4 of the printout correspond to parts 1-3 of the SGPDC printout

(see section 4.3.8.3).

£

M

O 8

SA

MP

LE

P

RIN

TO

UT

,

IOH

G

MIT

JU

L

04-J

XT

C

€f£

^t«

^T

nv

, H

E*»!'

-*

üH

MS

Mt=

THO

n P

AR

T 1

**

**r|

. 1.

19ft«

«

>'»T

Ei.

UT

fP

*0

i

369

S

-iT.-w

«. t

TE

N

*1tl

*-!

H

fl

E

LEM

EN

T S

ET

NO

» 3

T rr

iE

-V

E^

JC

HI

?

4fi

.?o

iU33*

3fc»

*Ci

TH

.«C

K E

UE

*C«4

TS

NQUf

c D

E3S

E-S

*E

*

A

E

I

nM»G

A

00

PEW

\IT

PA

D£G

*£E

S

l»4^

/«E

V*«

2

ST

. *

I.

:

ilN

ÜfE

S

J.J.

r

*<U

«-

p Au

tt

D'C

OA

CC

i 1

»>

l,C

H7

52

5i>

,

J998r7

1

01,3

478

31

*S»l

*<f4

3

4*,

<5

48

-..5

85

99

99

V-9

-83t2

«7

9

5,b

8o

0

V4

'U*T

T0

s C

K

PA

fttf

lET

gN

El E

^E^-

TS

O.

«

AC

Hl-

iS

E4

C9

S<

0n

ca

O

E

»S

INC

0H

E0

A)

H*0

M

YO

HZO

E

A&

TH

«A

DII

E

A*T

M M

AU

IT

E

AR

TM

R

AD

ZX

•24419*9

41«1

.94'*

9o

ii4t-

l

-,

23

54

52

;j9

-l

-,74?

Jj>

9t4

J85

•,6

95

6*7

i?*i

4

-,2

l7l-

U2

J3

8

IOHG

k May 19&

O-

(

c I ;:

.."

(A

< • < ttlooriNN«! C-O ...... 4 uy «4* »«•••< roc

9 u

UI o»-

r vi

J

0;3 O « O •» •!>; c- in i .. O. *> » '

uj o riiQk r^ u> r«. e 01 => «j 4-..., ......

OTOj lut ui|

•HI «vj

lac r i

5 J u u

a*

MM m • «• ««««I H»«N« • • I

SB"**** jtpifti« col

• • •! |«4«4ffO »n«i

.••'*>••• I 5 K| x p», r "•* »f I I» «%fO *» fO CO we«». •• • • ihoirn<i\«o;

•I «E • •r

vt

« oci

Uli»

or

utr CJ •«•;

!i« l -» «

Ml

|I9

Kr -a

u# a.

•- x

«_• o

.- ««bo rr> w • •> • • • . ?!« f ••- •>a »l-o « :>

o prv -i « >c -.• mwn r4 *i t*i

i • t i

•o

<\ r r- • » •

> »r» OJ

o

# • * •

rw r»o> -••ft

OJ IT-

tr «\

«v t»

"iK» «N <MI«W

•> S» > m y

U-U5

9!

T '.I o!

utj

or | ui O

<

UI o

UI r

u*

B-

_*Cl

IH ^ ! I

I

•JIM-lÄ-123/OOO/OO

u> x.

Ul -I

u<

o UI or r

.-» o

(A fv UI « ^ «»

_IM «X

(T • U?»- X«l»

f > o* OUI o»

c »-* %. t *. • o •

i »

li» • ba ;r u.

us

IUJ

ID

P;

o> o ,

c

IOHG'

k May 19& k-k6 TM-LX-123/OOO/OO

(A

j n at t> —

e» >" » « r» • w * «J «t »- v «-• JM •o • Ui CT m a t*.

a. i «A a •0 M, O » 0 r ' !

•- •, 1

IV r*- r» JH • » •

•* r to «. <•

tc 0 0 ir »j 1 »0 W ui»-l

i 1

CM &• 0 O • j tt 1 1 • 1 • 1 j« ^ ei

O ^ t> l£ r O UJ X» fO •0

a a tf. M ^ ro «i fO

I

a. ui

»-a •*> jo » UI 5* *

Qi

-IO

a a.

X

h

0 h

J L

<

I

0 X.

»- Ui (O ^

0 •- M 2 l~ UI *-* X. ui -1 it -I ac UI a 0

J < M 0 »-- i

x l-t ui • U. T k& »-» •* -3 .*»

s < •*

O - »- »- UI c» •»

*T Q -> J • u I r- '-» -*. w

-» a. & u *:

I

1 +. «I *v Ir- Z| « ,» *• •• ^ *1 *

w •

4C 0 »- .*: cv _** <t% ul < ¥> O *

*

to • w» m « XI

•- £ r* _ x iv ul ? m *2 •«

•0

*>. »** *-"* •* X »A. 1 X «» «

X * "* £ «4 U > • -r

ni c/ » e *. Ui O »•

•V •O » »V _i * • t.

Uli

Ul|

- - ! »-

h

<

» J« • < • * ifi •J 0 •«• (A to *J ui • •. • X .0 0 IO Ok

^ X. « >• n «% «V

O

U *\ a» CV Uk.

u • » cv c c -» J; r« •A «0 C U. • c 1 -s 3 1^ WJ • (V

w- Cv cv «-, rt •0 to

• .•v «_\ t> • « to •r,

O »0 <J <€• m M Ui • • •

3 •-* X x> •-I ~» » •*• u •4

C3 cv cv Ul «D 0 0 X

Ul ^ If* « 0 «^ £M cv O c» 0 »

« a >v

Ht c- O V <r M tfl fO •0 Ul i^ «W « « a 4 m 0 0 i r» H It- <•

•* 00 at 0 «« 2 •-3 rl «-» a

j •-« r „ _ *

• •0 y> •0 r •* •t »- «»- i~> •0 r>

lA «. «• c- J O »- «4 «4 cv •- f • • * U'

r» J» 1* « Q ^ V V r •*> «*» •0 Tf

•4 «-« PV •-' »f r* c Ul rfi H * J- f*. r* ' *:> • • - -J • n (V

* - p.

•— • j/>Ä ^».-> «O V •a. i- .— •- r- Ul i ^ « ^ .» * _

». .i i. u< 1* u. • • _»0 JO _i«r J

1 ". A J — •- ..» s • 1 -J K a

-J Mr •* r

1

1 1 1

I I I

IORF

4 May 1964 4-47 •JM-U-123/OOO/OO

4.3.4 INITIAL ORBIT DETERMINATION FROM INDEPENDENT RADAR FIXES - IORF

4.3-4.1 Purpose

The IORF program computes an element set describing a satellite orbit from two

or more radar fixes, which may come from different stations or occur during

different revolutions. The element set is then differentially corrected using

additional observations.

4.3.4.2 Input - Schedule Tape Mode only (Toggle 24 On)

Deck Column Position Card Type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

k Program ID Card

1-6 SPSJ0B

9-12 IORF

IT 0 = Pa 0 = Parameter card, Observation cards and S-

file tape inputs.

2 = Parameter card, Observation cards and

Sensor cards inputs.

18 0 * Hardcopy and punched cards

80 J - Card type

Parameter Card 1

1-3 Satellite number

4-6 Element set number

9-18 Satellite name

23-36 Epoch revolution

79 0 - No differential correction

1 = Differential correction

80 P = Card type

NOTE: All inputs are right-adjusted.

IORF

4 May 1964 4-48 TM-IÄ-123/OOO/OO

Deck Column Position Card Type Number Punch

6 Parameter Card 2

9-22 Drag term, C. (days); if unknown, use zero

23*24 M, maximum number of solutions desired

24-36 e^ (min.), magnitude of the difference between

the computed and observed times between the

two positions.

37-48 Q, (km.), distance of the third position fix

from the computed orbit

49-60 m, number of parts into which to divide the

interval between minimum p and maximum p

80 P = Card type

NOTE: If blank, the program assumes M = 1.0, e = .001 min., e, = 100km.

and m = p0.

7 Parameter Card 3

23-36 Predicted revolution number (see DC output)

67 0 = Correct the inclination

1 = Do not correct the inclination

80 P = Card type

8 Data Cards:

a. Input Option 0:

(l) Observation cards

b. Input Option 2:

(1) Observation cards

(2) Sensor cards

9 End of Case Card

10 End of Job Card

11 End of Schedule Tape Cord

12 Blank Card

IORF

k May 1964 k-k9 TM-LX-123/OOO/OO

4.3.4.3 Output

Printout of this program contains 4 parts.

4.3.4.3.1 Part 1

The first part contains:

1. Observations to be used

a. observation numbers

b. time of observations to thousandths of seconds

c. x, y, z and r in earth radii

2. Initial elements

a. semi-major axis in earth radii

b. eccentricity

c. inclination in degrees

d. node in degrees

e. omega in degrees

f. T , time of first node after T , days since 1950

g. L., longitude of first observation in degrees

h. a , a , xn yn'

i. angular momentum components (H , H , H )

j. T , time of first observation, days since 1950

k. revolutions between observations

i. perifocal distance (q) earth radii

1. semi-latus rectum (p) earth radii

m. mean angular motion (x.) radians/min

n. a drag coefficient (c")

4.3.4.3.2 Parts 2-4

Parts 2-4 of the printout correspond to parts of the SCPDC printout (see

section 4.3.8.3).

• A*¥

I INITIAL

ORBIT

DETERMINATION. P-ITERATION METHOD

DTeTMiTQ 17,

1963

PAGE

l

CD

I

SAMPLE PRINTOUT, IORP

OS

TMC

OBBC'VATXONS TO BC US

ED AR

E -

OtS

NO VMMOOHH

HM8S.SSS

230*1 6312Ü90« 2/30.203 .43364592762036

210*1 +111B9Q4 2997*946

.8134W1B19914

23093 631209Q4 3049.339 .2660031|4i5o30

Y-lAOlI

•.51785167591^87

».44991713967*30

-.*li072Öl9l3d39

Z-RADII

"R-R

AOIX

90639245663618

«-97

4798

59_3

l?76

1020

&495

0373*1

.11307*044028*1

.Ulf'7?71462*1

,ll3?39886930*i

I O

A

*RJL

?U

E_

I«D

E0

RE

ES

_

NO

DE

-DE

fiRF

ES

0M

EQ

A»P

CQ

RC

E9

TN

-0A

TS

SIN

CE

l9f0

.1

109770623/7

*1

,33

l4l0

20

99

23

-l

.986417U

9274*2

. 1^

1 >

l*592-6

5*3

.27

98

06

11

24

04

*3

/5o~

9l24

3-J3

469*

4

1.1-

DC

QR

EC

i .•

97l7

7U

gi4

7+

| AX

N .9*4440072979-2

AVN

•.326968214913»!

MX

My

MI

-.6*3744592 6928 ».8196Q941Q996 9 ».1579149*664972

TI-DATS SINCE

1990 jj

¥j BETWEEN 09

1 .909116976650*4 ~~~ 0

Q-WAPII

.106912449044*1

P-R

AD

TI

.Ix0

45->

6»2^

59*1

N

-RA

DIA

N9/

MIN

C O

IL

PR

lME

-1/M

lNS

.63

99

91

04

6T

46

-1

. 000

0ÖÖ

000Ö

~0Ö

Ö2

MA

tNZT

UO

t O

f D

ELTA

I BA

* • .

2395

4*4*

2 Jc

TO

TMEf

tffO

RE

PB

BIs

tTIW

TT

SN

nör

j f

IT

TH

IS

OR

BIT

G I 8

• A

MP

LE

P

RIN

TO

UT

,

IOR

P

I D

IFF

ER

EN

TIA

L

CO

RR

EC

TIO

N

K P

AR

T

2 l!

*»ix

rXl!

o

öC

WR

äL

FtÄ

TU

JlA

Tlö

b

BX

rrE

RfN

TX

AL

tfö

ÄW

CT

YW

'

nE

rp; "

ft*

17.

1»63

PA

Gk.

1

£

S

AT

EL

LIT

E

NO

,

S

AT

EL

LIT

E

NA

Mfl

3

IO

RF

E

LEM

EN

T S

ET

NO

, *2

?

TIM

E

or

r*ö

rw

3

43.1

857468

TA«

SfA

TIH

£

R

R

R

AN

GE

«

T

AS

CE

N

D

^C

L.

A

IIH

UT

M

EL

EV

.

RR

, R

.

V

EC

TOR

DE

LTA

J

B

£TA

N

O.

NO

. V

MM

00

H

H

MM

SS

.SS

A J

«E

K

M,

R

ES

, K

M,

R

ES

«

KM

.

«E

K

M.

RE

S,

KM

.

KM

./S

EC

.

"A

S,

KM

. T

M

IN.

-.3

84

0-1

.

»8

47

-~l~

.1

6556

-.0

0"

.6

33

6-1

-.»

13

1-1

.1

1741

.00

DE

6.

D

EG

.

51"

-.0

60

.

0

36»

32»

3

12

*

*7

3

0.2

«

1

.6

29

3-1

-.13*2

XA

O X

2« S

42

B

»

4

29

«S7.

5>»

1

-.

8C

67

-1

.11*6

*1

36»

32»

3

12

*

30

4

»,3

«

i

-.1

8^

0*1

-,1

2?

2*1

3*»

3i»

3

12 J

»

4

42^

i_

-

.53i>

2*l

.1

6*7

*2

-.2347*2

-

.8082-1

.7

36*2

-

.00

-.

4236*2

-,

63

43

-3

.4

61

*2

,0

-,6

33

3*3

»

•".i

07

9*i

* ~ .if»

**

-3

.6l

-.6380*3

* -

,16

26

*1»

.181*4

-3

.59

-.

7»67*3

* -

.2454*1

*

.?

4i#

4

-

4.8

2

63

.0

77

.0

36»

32»

3 1

2

«

«5

3 1

»,8

7

1

.1

2<

*2*4

*

-.3771+

4

_36»

32

3 1

2 _

fl»

»

34

H

,96

1

,1

16

3*4

«

~

,t2

<2

+ 3

36»

32

8

3 1

2

11

12

50

.43

1 •

.

1612*4

*

-.6

*04*2

78

.1

6

l .

0

.0

PA

RT

3 »

lH»

LX

riE

D

GE

NE

WA

i P

ER

TU

RB

AT

ION

DU

Vfc

KE

NU

AL

CO

RR

EC

TIO

N"

0E

>E"«

BER

17,

1963

TrM

Y'b

F'E

CW

343.1

8T

7668

PA

2

l

SA

TE

LL

ITE

N

O,

SA

TE

LL

ITE

N

AM

E» 3

69

I3

RF

E

LEM

EN

T S

ET

iv

O.

*22

M

Cjt

S,E

_

RM

S

«

MS

2

DLL

TA

D

ELT

A

D

cLTA

O

ELT

A

D

ELT

A

D

ELT

A

N

OD

E

I

DE

LTA

ef

t N

O.

K

M,

KM

/SE

C

N

/N

A

XN

A

YN

0

.147976*4

.783744-1

-.1

10

66

68

0-1

_:O

.RR

E C.

TJE D

_C.L

E.M

E N

TS

RE

V,

CA

SE

MO

. L

TO

A N

O.

DE

GR

EE

S

DA

YS

E

Alt

W

RA

DII

55

1

34

.63

43

7

443717519"

i.il40049

I ~~

or§7

N

OD

E

•DT

ST

.03314

9

o. 6

4i

i2I,"7

05"

.. . i_

..

_

_

. _

3

OM

EGA

D

EG

. :o

D

A/*

-:V

**2

P

ER

A

LT

Sf.

M-I

. r>

A M

lNu

TE

s

27

9.

B3A

.

7000

ÖO

Ö

30

5.5

9V

.4Ö

3

CO

o

r '

6

g S

SA

MP

LE

P

RIN

TO

UT

.

lOR

F

PA

RT

4

"II

MP

LX

TIE

D G

gNgE

UL

KEH

TU

WB

AT

IOM

P

IF^E

HEN

TIA

L

CORR

ECT

ION

ft

CrE

vflE

B

17,

1*6

3 P*at IT

SATELLITE NO,

SATELLITE NAMEI 36V IORF

ELEMENT SET NO

. *??

TIME Or r»0 M 343.1«576«8

DLR Rjjl

Ngw RHj OLD RMS2 NEW RMS2

KM. KM. KM/5EC KM/SEC

DELTA

N/N

DELTA

AXN

.313*3 .306*1 .763-1 .488-2 ,4o525382-8 •.80734-7

NO

. o

r R

ES

IDU

AL

* üf

fcD

~S

24

NO

."^

~H

ES

TD

üA

TS

""R

FJ

EC

TC

O~

^

4

DE

LTA

D

ELT

A

UO

.503*3

-7

.

19

94

7*6

-DE

LTA

. N

Ö'J

E D

ELT

A

Z

25437-7

.53

59

3-6

D-IL

TA

p

1

*ev. «e

r L

TO A E

DAYS EARTH RADII

I NODE OMEGA

ÜEG. D£G. DEO.

:o

0A/R-:V4»2

PER ALT

ST.

Ml.

PA

MINUTES

1

NO. NO.

öL« n rMENTS

DESHEEs

ro

5555 222

NEW ELEMENTS

34,63552

343.17530 1.1057708 .03314

90.^41 21.705 279.836

9ö,*6ft "21V558"" Ml.

079

"

. ^00000

~ VÖ00000

0

273.9

38 4V3

"364. 3

96.304

99.526

99.526"

5555

222

*Ew ELEMENTS

36.75716

343.17515 1.1149223 .01608

5560 223

36.4Ü23

343.92093 1.1149223 .01606

9o.*>6A '21.913 250.032

1*

NODE DOT

« 1.026 DEG/DAY, OMEGA DO

) • .3.016 DEG/3AV

ALL CLEMENTS CORRECTED IN riRST ATTEMPT

ä ELEMENTS NO

T REPLACED.

MANUAL RUN

i 8

f*

n

LOCVEC

h May 196k 4-53 TM-LX-123/OOO/OO

4.3.5 LOCKHEED VECTOR COORDINATES - LOCVEC

4.3.5.I Purpose

The LOCVEC program computes the predicted position and velocity of a satellite

for the Satellite Control Facility (SCF) from a seven-card element set. The

output is a special binary teletype tape which is used as an input to the CDC

computer at SCF.

4.3.5„2 Input - Schedule Tape Mode (Toggle 24 On)

Deck Column Position Card Type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

17-19 RUN

25-30 LOCVEC

31-35 ,DATA

Request Card (max. = 500, requires one for each element set)

1-3 SPADATS object number (optional)

9 First digit of STOsatellite number, or

9 = SPADATS number used

10-12 Satellite number (las

13-20 Satellite name

21-24 Country of origin

6 End Request Deck Card

8 Any of the digits 1-9

7 Element Set Cards (max. = 500 sets)

8 Blank Card

9 End of Data Card

10 End of Job ^ard

11 End of Schedule Tape Card

12 Blank Card

* H iunnyvale Track Ceiiter -= Satellite Control Facility

LOCVEC

h May 1964 k-^k TM-LX-123/OOO/OO

4.3.5.3 Output

There are two output lines printed for each satellite. The order is the same

as that of the request deck. Each line contains:

1. Satellite number

2. Sunnyvale Tracking Center number, or if preceded by 9, the SPACETRACK

number

5. Element number

k. Month, day, hour of epoch

5. Seconds since start of epoch month

6. Epoch revolution

'7. x, y, z coordinates in feet

8. Velocity components in feet per second

ft

1>

SAM

PLE

PRIN

TO

UT

, L

OCV

EC

VEC

TOR

CO

OR

DIN

ATE

S FO

R LO

CKH

EED

SA

T S

TC

ELE

MO

DA H

R EL

APS

EC

REV

11

6 91

16

37

/

1

h

102553.9

37

X/XDOT

Y/DOT

Z/DOT FT/FT/SEC

5090

69

65

57

0.1

6 -

22782710.6

9

1262.0

8

91

48

.18

293O

.8O

22426.2

2

5 NO

03

0*3 Q

-p-

-c-

I

I

tu

H

PC

I UJ o

o

o

o

o

s Q

O

rvi

O

(U

ROC

4 May 1964 4-57 TM-LX-123/000/00

4.3.6 RADAR ORBIT COMPUTATION -ROC

4.3*6.1 Purpose

The ROC program computes an initial orbit from a radar track or from geo-

centric rectangular coordinates and velocities. There is no differential

correction of the computed element set.

4.3.6.2 Input - Schedule Tape Mode (Toggle 24 On)

Deck Position Card Type

Column Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

17-19

25-27

28-32

5 Parameter Card

1-3

6-17

18-35

41

42

6 Data Cards:

a. Input Option 1:

(1) Sensor cards

(2) Observation cards

b. Input Option 2:

(l) Rectangular Coordinate cards

1-14 x (km.), including decimal point

15-28 y (km.)- including decimal point

RUN

ROC

,DATA

Number (odd) of observation cards to be input

(from 3-999); required only for input option 1

Satellite name

Date of computation

1 = Element cards output

1 = print x, y, z, x, y and z for the mean

of the observations

ROC

h May 1964 4-58 TM-LX-12 3/000/00

Deck Column Position Card Type Number Punch

?9-4? z (knu)j including decimal pcint

43-46 Year of epoch

(2) Velocity Component cards

1-14 x (km./sec.), including decimal point

14-28 y (km./sec.), including decimal point

29-42 z (km./sec), including decimal point

43-56 Day of year of observation (in days and

fractions), including decimal point

7 End Card

79 9 = Card type

8 End of Data Card

9 End of Job Card

10 End of Schedule Tape Card

11 Blank Card

3.6.3 Output

Program printout consists of the normal Radar Orbit Computation plus one extra

option.

4.3.6.3.I Normal Printout

The normal printout contains:

1. Satellite name and number.

2. Semi-major axis (km and earth radii).

3. Period (P in days)-

4. Perigee and apogee (in km and earth radii).

5o Right ascension of ascending node (deg.)

6. Argument of perigee (degrees).

7. Time of last perigee pasb (days).

8. Time of last nodal crosing (days).

9- Radius vector (km).

10. Velocity (km/sec).

11. inclination (degrees). p

12. Eccentricity (e) and e .

ROC

h May 1964 4-59 TM-LX-123/000/00

4.3.6.3.? Optional Output

The optional printout contains the geocentric rectangular coordinates (x, y, z) and

the velocity components with the time of the observation.

ff

M

emm

KM

Rlt

H

RA

DYt

il

»4

M3

ii

Tiw

r or g

jgm

i D

AV

t iii

ifliu

mfl

INC

JIN

AT

TO

N

Dco

nrcs

ft

All

iiii

tug

i

fcgf

ltfl

K

M

EA

RTM

R

AO

IX

jaaf

c of

NOPE

O

ATS

$ 8

»A

MP

LE

P

RIN

TO

UT

,

RO

C

«AÖAR ORIXT COMPUTATION

00000000000900000000

•ATXLWETC ?tt It LVROC

rag

mow

wb

mTi

ou g

gwrp

yti

rw

lAT

CL

LT

Tt

NO

T 8

00

ii r

gi t

in

8CMX»MAJ0R AMIS

KM

6730.13*334000

EARTw

RABII

1.0^9182304

WIOMT AtCEMtXON

BC0RCE8

30f.3l03X»»00

RABlUl VECTOR

KM

67l»

,4»t3

»3000

JHÜ

OJL

O

AT!

MIN

UT

E!

tl.f

fOlQ

gtt

Q

AR

OU

MIN

T B

f R

ER

IOtg

O

EO

RE

Talatiisooio

VEU

OC

ITT

K

M/S

EC

71

7001

0407

»

IICE

Uff

tXC

ftTv

O

tllf

ltM

tX

SH

lNfR

ICT

fv

IAU

AR

C

SEAI

4 May 1964 4-61 TM-LX-123/OOO/OO

4.3.7 SEAI TAPE FILE MAINTENANCE - SEAI

4.3.7.1 Purpose

The SEAI program generates a new SEAI tape or modifies an existing SEAI tape

by replacing, adding or deleting data.

4.3.7.2 Input - Schedule Tape Mode (Toggle 24 On)

The SEAI program may be run in the Regular or the Special input mode. The

Special input mode is used exclusively to add an element set to the SEAI

files on a foreign launch. Toggle 47 On = Build new SEAI tape. Toggle 47

Off = Update old SEAI tape.

4.3.7.2.1 Regular Input Mode (Toggle 44 Off)

Deck Column Position Card Type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

1« Program ID :ard

17-19 RUN

25-28 SEAI

29-33 .DATA

5 Sensor Card (optional)

6 Element Set Cards (optional)

7 Acquisition Card (optional)

8 Information Card (optional)

9 Delete Card (optional)

10 End Card

1-3 END

11 End of Data Card

12 End of Job ( :ard

13 End of Schedule Tape Card

14 Blank Card

SEAI

4 May 1964 4-62 TM-LX-123/OOO/0O

4.3.7.2.2 Special Input Mode (Toggle 44 On)

Deck Column Position Card type Numb*r Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

17-19 RUN

25-28 SEAI

29-33 ,DATA

5 Parameter Card

1 U, BL

NOTE:

U, Blank = Unclassified

E = Unclassified EFTO

C = Confidential

F = Confidential/NoForn

S = Secret

N = Secret/NoForn

2 D = Deferred

R = Routine

P = Priority

0 = Immediate

Z = Flash

3 K *• Launch area

T, Blank = Launch area

4 Z = Send flash bulletin to DIA/CIIC

Used only when launch deviates from nominal inclination by 5 degrees

or more, or when launch area appears to be other than K or T.

5

80

T, Blank = Transmitting

N » Non-transmitting

P = Card type

SEAI

k May 196k 4-63 (Page h-6k Blank)

Deck Position

Column Card Type Number Punch

6 Element Set Cards

7 End Card

1-3 END

8 End of Data Card

9 End of Job Card

10 End of Schedule Tape Card

11 Blank Card

4.3.7.3 Output

ra-LX-123/ooo/oo

No printed output is generated by this program except for rejected input cards

SGPDC

k May 1964 k-65 1M-IX" 123/000/00

4.3.8 SIMPLIFIED GENERAL PERTURBATIONS 2MFHEMERIS WITH DIFFERENTIAL

CORRECTION - SGPDC

4.3.8.1 Purpose

The SGPDC program computes the best fitting orbit (in the least squares sense)

to a set of observations. All or any of the six elliptical elements and the

drag parameter may be corrected. The program converges on ss many parameters

as possible.

4.3.8.3 Input

4.3.8.2.1 Automatic Mode - in an OCS sequence

a. Observations from the SRADU tape.

b. Sensor coordinates from the S-file tape.

c. Satellite numbers from the SATTB tape.

d. Corresponding element sets from the E-file tape.

e. OCS Toggle number = Desired OCS sequence.

4.3.8.2.2 Schedule Tape Mode (Toggle 24 On)

Deck Column Position Card Type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

1-6 SPSJ0B

9-13 SGPDC

IT 0 = Satellite Number cards, S-file, E-file

and SRADU tape inputs

1 = Satellite Number and Observation cards and

S-file and E-file tape inputs

2 = Observation Number and Element Set cards

and S-file and SRADU tape inputs

3 = Element Set and Observation cards and S-

file tape inputs.

NOTE: When using Element Set Cards: cols. 23-36 of the 7th card should be

blank and col. 67 of the 7th card should specify the desired correction

When using the E-file tape: + , -, E or N must be input by flexowriter.

SGPDC

h May 1964 k-66 TM-LX-123/OOO/oo

Deck Column Position Card Type Number Punch

h = Satellite Number and Observation Number

cards and S-file, E-file and SRADU tape

inputs

l8 0 = Hardcopy and punched cards output

1 = Angle residuals in degrees

80 J = Card type

5 Data Cards:

a. Input Option 0:

Satellite Number cards

b. Input Option 1:

Satellite Number cards

Observation cards

c. Input Option 2:

Observation Number cards

Element Set cards

d. Input Option 3:

Element Set cards

Observation cards

e. Input Option k:

Satellite Number cards

Observation Number cards

6 End of Case Card

7 End of Job Card

8 End of Schedule Tape Card

9 Blank Card

SGPDC

I k May 196U U-67 TM- DC-12 3/000/00

k.3.8.3 Out Fat

Printout from the program contains three separate parts.

4.3.8.3.I Part 1

The first part is the differential correction residuals and contains the

following quantities for each case:

1. Tag and sensor number

2. Time of observation to hundredths of seconds

3. Association status (RA)

k. Rejection indicator (Rj) - asterisk indicates rejection of at least

one residual. The residual rejected will appear with an asterisk also.

5. Range residuals (km)

6. Right ascension and declination residuals (km.) or azimuth

7« Elevation residuals (km.)

8. Range rate residual (km/sec)

9. Vector magnitude (km.)

10. Delta t (minutes)

11. Mean latitude (u)

12. Out-of-plane angle (BETA)

if.3.8.3.2 Part 2

Part 2 contains corrective quantities «nd elements as follows:

RMS and RMS2

&X./H (mean angular velocity)

Aa , Aa (components of a) xn' yn -

AU, (mean latitude)

Changes in node, inclinetion and drag term

Corrected elements (if they are corrected) revolution number, case number,

L, To, a, e, i, Q, uu, C , perigee altitude, Pft. O A

I+.3.8.3.3 Part 3

Part 3 is a summaiy sheet which contains in addition to a printout like

Part 2 old RMo values, old elements, rate of change of omega and node,

and summary notes.

1A

MP

H

PR

INT

OU

T.

IG

PD

C

PA

RT

i

aiW

Lir

un

AE

ME

RA

L

PE

RT

UR

SA

TIO

M

Pir

n:R

EN

TiA

L

co

RR

gfi

TiP

N

fEl»UARY 27

- im

SATELLITE WO

. 726 SATELLITE HAMEl 1064-1H

ELEMENT 9ET MO.

9 TIME OP

FPO

C*

*3.714Q903

TAft 3TA

TXNE

AJO. NB

. Y

HM Pp MM MM 8S.3S

R R RAi.QE

A J

Hit

**t.

RT ASCCN

RES: KM;

DCCL

. RES. KM

. AXXMUTK

JES.

KM,

ELEVi RRl

RCSl

-RJLS_._Mitl

UU/IECl.

VECTOR DELTA

«.A3.

<»». T

MXM,

Hit 3lf

* P

J 8?

n ij

14

.JP

•7

2R

318

*

02

2?

18

58

4

7.9

3

72* 3

ft

*

02.

2?

19

^1

40

,43

1

A

»}3

<8

41

Q

1 •

i»;4

;.4

o*

i 2

• il

lSSß

+X

,l?

?9

tl

iA9

5T

aliS

JJiJ

! . 1

?3

*.2

728

39

«

4

02

29

1

9

41

13*30

2

-,

83

46

*1

7*

6 3

99

4

02

29

1

9

4Q_

39.7

3

2

»

*|4

l,2

9*1

72

8 3

30

4 02

29

19

20

20

.24

l •

4<

65

*1

^

718

34

0

4 0

2

29

9 1

49.9

6

1 •

•> 22

66*2»

72

8 3

40

4

02

2

9

9

1

39.9

7

1

«

*

\2l

16*2«

.1670*2

.39

23

49

* «14181-1

«

^19-

D_9

_*1

.J4

A9_

6A*

_ •

. A3

4 6

« 9

.66

90

*1

.39

05

*9-

•'

74

39

«9

t4

35Q

T6

.36

*2*

•,

33

92

*2

,14

35

*2

.1

20

4t2

JIM

34

0-4

, P2

21

72

6

340

4

0

2

29

1 3

0.30

1

19.9

7

Jt_

A_-j

3J41*i

».

I •

-,

2*9

9*2

»

72>

340

4 ,

02

2?

5 1

10

.CA

1

• *

;2»*3*2*

7Z

8

340

4

02

29

7

16

39

.96

1

-

,1<

30

*2

7ift

340

*

9?

2?

7 1

6 2

?.?

9

1 tU

JIA

*JL

_

-.1

42

9*?

•-

^1635*2

. •,

16

31

*2

JU

1321>

2_

•.3969*t

.3

98

9*1

-.

28

73

-1

7*8

39

8

4

02

21 2

0

34

13.7

5

1

-

,U1«*2

2

..1

,1636*2

,1

911A

2

-;9

3 9

0*1

•7

J.8

_j9

,3_4,0

_2._

2i.

2fl

_34_u

.»g

2 7*

6 399

4

0

2

21

13

35

40,0

9

1 71

8 3

99

4

O

g 23

1?

29

g

j.B

j 1_*_*19J84*1

•/

**

39

9

4

02

21

15

2

9

27

.36

1

• *

,l5

79

*l

728

39

8

4

09

16

9

48

50

.30

1

«

jll7

3*2

71

8 3

99

4

02

17

16

41

25

.61

1 •

•,

77

38

*7

/6

84

1

4

02

17

1 1

9

17

.Si

.1309*2

S9.

9lA

i_

,1556*1

4r.6

9*

l_

.67

03

*1

*63

3?

4t

.1025*2

.3

653*1

•.

83

60

75

.1

86

66

1

14

28

*2

«J

8i*

2

13

37

*2

.367*2

ll

59

*2

^2

7A

*.2

1

28

0*

2

1352*2

.3

32

*2

1

32

5*

2-

.217*2

.^

22*2

.2

196*24

-,

3417-1

6

.3

02

*2

•.1P

47*2

,3

6460«

1276

*2

11

97

*2

+304*2

.3

08

4*?

» •

l63

o2

«l*

.32

6*2

21

63

*2

.1

74

6*

2

-,

«2

976A

gt

-_

.30

41

?A

-.3

13

6-1

•1

9954.9

21 3

39

4

B

| 1

6

16

36

6

,93

2

• .j

80

53

*l

"I Ui

3lf

4

92

19

17

43

1.0

3

2 4

*l

31

7jL

*i

ÜÜ

3

99

4

82

19

17

42

9,0

61iT

6560*l

ttj

??

P

4 01

19

t7

4i

?2t2

2

l yJJS

fftj

JL

7*

8 7

33

4

O

f 1

0 12

42

27

.36 ~

7*

6 3ft

4

02

10

12

1 9

,98

«

.1793«!

-t2576+

2*

aJjf

JU

JL

f1756*9

-

11

310.1

1211*2.

.476308

.223542*

.5161*2

1

23

6*

2

1

11

9*2

.2

•,

83

68

*1

,9497*1

.5

96

0*

1

->.3

J>01

*1

.29

06

*2«

y»R

4)i

.1610*9

>

13

94

*2

1076*1

»

AA

lal

-12316*1

4-

1A3L

4-

••4

12

5*

1

.65

30

*1

•.

111

5*2

•.

8569*1

•12

179

.J.

13

13

. .

;394,*

2

T«62*2

,l

»«*2.

.772*1

..1-4

1*2

.04

..

Al.

."

1

-.0

0

.03

».*

5

•.08

'.

06

•.

A3

• .

03

L

.A1

.0

5

.S3

.0

1

•A 0

2 ..

A3

r.2

2

•.0

0

,06

,0

0

.^2

1

• t?

.P.

»,0

1

.01

PA

Ct.

J D

EC

_1?3

83

_116

116

114

43

146-

166

163

165

164

161

__l6

fl

85

69

12

7

„X

03

1

03

..

*Q

11

6

14

7

12

6

120

lib

21

3

71

BE

TA

DE

G.

&

PA

RT

2 3

IWL

IEX

ED

Jt

AJE

RA

L P

ER

Tu

RJA

TIO

M

Pir

i'ER

EN

TlA

L

CP

RR

EB

TIf

lN

FEB

RU

AR

Y

97.

19A

4

SA

TF

LL

'IT

E N

O.

723

8AT

EL

LX

TE

jjA

ME

j

j 9

64

-lB

fiX

SE

Ml

HT

N

O.

? TX

ME

flf

fPQ

g^

O.7

1409Q

3

PA

8E

?

_H

ftt.

R

N5

RH

SK

KH

/3E

C

DE

LTA

..N

/N

PE

LTA

_4

JUL

_ D

ELT

A

hrt

i.

A.

.M7

«7

ltl

.121

028»

! jjo

jio

oei«

?

PELTA

UP

PELTA

-AiA

PA.

OELTA

I

OELTA

_A».

. Co I o o

GPX

k May 19&

c (Pag« U70 Blank) 1!-'.-LJC-123/000/C)0

j

IT» o «p

o IT.

si

«3 • • - a. z 10 » »

X «4 «4 «*

•I X w

a • ir.

c

o

o UJ

>- ar

(k oc UJ u.

2;

I- UI

I i c O

JD'

• 1

-3

-l S3

1 oc! «1

_ <

c > out

a

u ST c

w 10 If. *J - • •*' »•< «-• ts t? •-« r^ r-» UI UI X C! •X *^ r*- c w* «n m >•

»0 Hi

•v c

r< 0 0- UI u • •n rt »H Cj aa • a 0

C UI . « • a *• j a m ^ ^ r-

m to l*> <v

_l X Ui •*• o

«JV UI

UI Z

in o |X UI (tin

!*r Ui *

rw | •--

z u • a «r. H

>>• «* ax CM! -i * • 0

«/» «4 i •

ar - w*

»-4 </> UI

u. c

• o

I/I —

UJ a

• IT. r-. ro e t> 0» » ••

•- UI « . • • i

0 !> 0 » •- i ; « « * 0 a j ; a

1 ! 1

i

« n K» UI » 9- » X »- ui i »4 r* «H a ft

O r* O X O «3 «3 • «• 2 • a • >•

•< l"-i 0 •* 2 V 3

»- •T» «r •r a 5 Or

c « «I • C| IT i-l -I »-< ^ ^« IT H •I I •» « * tvj « u. ir>

•I * •» -» « i*r I «-• »< »1 «4 «7 • «i >- - - - • w X

«X 1 1; *J a « u.

j •{ : S O oc rv, M UI «X c m »-> •— »- a: _i •*• <• « 0 taf •» •a.

tn »-• r- f» CJ J 0 :ui 0 >- r» in Xv 0 :z »- < • *J • «A

3 I

0 •0 *; c 0 w »- «j .n m c- 1- 0

z. »-

1 X UI X u.

1 = 1 IT,

•J •/• •* _ z c/-. «-, r^ a « Utj lu UI 0 :v <-? ol I

Ui 0 0» «-• u -* IUI Jtr J\ 0 0 -1 J

<s m » «J

: 2 -* UI

u» <r »^ w 0

J

•- •' it, J' «f. -* *f- • u- OV •- »- * -»- - » [ -•

'ki U* U. 'S X X

>c^.5: uCVu.m

SPIREEC

4 May 1964 4-71 TM-LX-123/OOO/OO

» r 4.3.9 SPIRAL DECAY - SPIRDECB

(Page 4-72 Blank

(The input and output information for the SPIRDECB program will be included

in this document when the program becomes operational.)

r

j

SPWDC

k May 19Ö* 4-73 TM-LX-123/OOO/OO

4.3.10 SPECIAL PERTURBATIONS WITH WEIGHTED DIFFERENTIAL CORRECTION - SPWDC

4.3•10.1 Purpose

The SPWDC program corrects a given element set and computes predicted satellite

positions. The differential correction is accomplished using a least square

fit of observations which have been weighted by the Observation Weighting pro-

gram (OBSWGT). The emphemeris and prediction computations use a special

perturbations variation of parameters formulation. This requires that only

the perturbations in the elements be integrated at each integration step

instead of the whole force field as is required by an Encke method. All

integrations are numerical and can take place in either a backward or forward

direction. The perturbations included are:

a. Earth Bulge

b. Drag (1962 NASA atmosphere)

c. Radiation pressure

There are two types of prediction:

a. By time in which the start time, number of points and time between

points are specified.

b. By station pass, in which a closest point of approach (CPA) point

and points on either side of the CPA point are computed.

4.3.10.2 Input - Schedule Tape Mode Only (Toggle 24 On)

Deck Column Position Card Type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

h Program ID Card

1-6 SPSJ0B

9-14 OBSWGT

IT 0 = Pa 0 == Parameter cards, Satellite Number cards,

and S-file, E-file and SRADU tape inputs.

SPWDC

h May 19& k-Jk TM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

17 1 - Parameter cards, Element Set cards, and

(cont'd) s-file and SRADU tape inputs

2 = Parameter cards. Satellite Number cards,

Sensor cards, and E-file and SRAEU

tape inputs

3 = Parameter cards, Sensor cards, Element

set cards and SRADU tape inputs

k = Parameter cards, Observation cards,

Satellite Number cards, and S-file

and E-file tape inputs

5 = Parameter cards, Observation cards,

Element Set cards and S-file tape inputs

6 = Parameter cards, Observation cards, Sensor

cards, Satellite Number cards and E-file

tape inputs

7 = Parameter cards, Observation cards, Sensor

cards and Element Set cards inputs

8 = Parameter cards, Element Set cards and S-

file tape inputs

9 = Parameter cards, Satellite Number cards,

and S-file and E-file tape inputs

18 0 = Hardcopy and punched cards output

5 OBSWGT Parameter Card

1-5 SPWDC

9-11 Satellite number (optional)

12 0, Blank = Weighting Tape input

1 = Use Sensor Weighting Data in OBSWGT Weight

file

79 0, Blank = Use Observation weights in SPWDC

1 = Do not use observation weights in SPWDC

80 P - Card type

SPWDC

h May 19& 4-75 TM-DC-123/OCO/OO

Deck Column Position Card Type Number Punch

6 Vehicle Characteristic Card (required only for DC option)

1-42 Remarks

43-52 Diameter of Satellite (in meters)

53-62 Mass of satellite (in kilograms)

63-72 Reflectivity

79 2 = Parameter card number

80 P = Card type

NOTE: If the Vehicle Characteristic card is omitted, the program assumes

Mass = 10.0 kg., Diameter =1.0 meters and Reflectivity =1.0.

7 Differential Correction Parameter Card (required only for DC)

1 Blank = Variable At integration

1 = Fixed At integration

2-11 Delta t (min.), plus (+) or minus (-)

12 0 = Do not compute bulge perturbation

1 = Compute bulge perturbation

13 0 = Do not compute drag perturbation

1 - Compute drag perturbation

Ik 0 = Do not compute radiation pressure

perturbation

1 = Compute radiation pressure perturbation

15 0, Blank = New epoch is revolution in cols.

16-29 of this card

1 = New epoch is time in cols. 16-29 of this

card

2 = New epoch is time of last observation

l6-29 Time (days) since 1 Jan., or

Absolute revolution number, or

Blank if col. 15 of this card has a 2 punch

30 0, Blank = Do not correct n

1 = Correct n

SF/DC

4 May 1964 4-76 TM-LX-^ 3/000/00

Deck Position Card Type

7 (Cont'd)

Column Number Punch

31

32

33

*

35

36

0, Blank = Do not correct a _T ' xN 1 = Correct a

xN 0, Blank = Do not correct a

yN 1 = Correct a

yN 0, Blank = Do not correct U 0 1 = Correct U 0

37

38

39

0, Blank = Do not correct 0

1 = Correct Q

0, Blank = Do not correct i

1 = Correct i

0, Blank = Do not correct m

1 = Correct m

Maximum number of correction

0, Blank = n is not the only first pass

correction

1 = n is the only first pass correction

0 = No Aq check

1 = Aq check

NOTE: Cols. 38 and 39 are used only if 6 or 7 elements are corrected.

Maximum Aq (km.)

Absolute maximum azimuth, elevation and range

residuals (in kilometers)

Absolute maximum range rate residual (in

kilometers/second)

RMS multiplier

0, Blank = No residual output

1 = First and last residual output

2 = All residuals output

3 = Parameter card number

P = Card type

40-47

48-55

56-63

64-71

72

79

80

SPWDC

4 May 1964 4-77 M-IX-123/OOO/OO

Deck Column Position Card Type Number Punch

8 Absolute Error Parameter Card

1-10 aT (Absolute Error criteria)

11-20 a a x

21-30 a J a y

31-40 a a z

41-50 au h x

51-60 ah y

61-TO ah z

79 4 = Parameter card number

80 P = Card type

NOTE: If the Absolute Error card is omitted, the program assumes 7 P>

a. = 10 , a = a = 10 '*

9 Relative Error Parameter Card

1-10 r, (Relative Error criteria )

11-20 r a x

21-30 r J a y

31-40 r a z

41-50 r. 11 x

51-61 r

61-70

h y

rh z

79 5= Parameter card number

80 P = Card type

SPWDC

k May 1964 k-j8 m-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

10 Time Prediction Parameter Card 1 (Prediction-by-time option only)

1 Blank = Variable At integration

1 = Fixed At integration

2-11 Delta t (min.); Plus (+) or minus (-)

12 0 = Do not compute bulge perturbation

1 = Compute bulge perturbation

13 0 = Do not compute drag perturbation

1 = Compute drag perturbation

Ik 0 = Do not compute radiation pressure

perturbation

1 = Compute radiation pressure perturbation

16 Print option - sum the desired options:

1 = Print t} T, r

2 = Print t} a, e, i, Cl, ti>, U

k = Print T, </>, \ , h

17 0, Blank = No binary tape output

1 = Binary tape output

18 0, Blank = Do not compute prediction reliability

1 = Compute prediction reliability (must have

weighted 6 or 7 element DC including the

drag term)

19 0, Blank = Do not punch r, t

1 --- Punch r, t

79 6 -- Parameter card number

80 P - Card type

11 Time Prediction ParameLer Card 2 (prediction-by-time option only)

1-12 Time (in days) since 1 Jan.

13-20 Delta t (min.)

21-24 Number of output points

79 7 - Parameter card number

80 P = Card type

SPVDC

h May 1964 4-79 TM-IX-123/OOO/00

Deck Column Position Card type Number Punch

12 Station Pass Prprtirt.ion Parameter Card 1 (Prediction-by-stati on

option only)

1 Blank = Variable At integration

1 = Fixed At integration

2-11 Delta t (min.)

12 0 = Do not compute bulge perturbation

1 = Compute bulge perturbation

13 0 = Do not compute drag perturbation

1 = Compute drag perturbation

14 0 = Do not compute radiation pressure

perturbation

1 = Compute radiation pressure perturbation

15-l6 Print opti n - sum the desired options:

1 = Print t, r, r

2 = Print t, a, e, i, 0, m, U

4 = Print t, 0, X , h E

8 = Print t, p, p, A, h

17 0 = No binary tape output

1 = Binary tape output

18 0 = Do not compute prediction reliability

1 = Compute prediction reliability (must

have weighted 6 ot 7 element DC including

the drag term)

19-22 Blank = Station Pass Prediction Parameter

Card 2 provides sensor input

XXXXX = S-file tape provides sensor input

23-32 Number of passes

33-^2 Delta t (min.)* either side of closest

approach

SPWDC

4 May 1964 ^-80 M-U-123/OOO/OO

Deck Column Position Card Type Number Punch

^3-52 Delta t (min.), output per delta t (must have

weighted 6 or 7 element DC including the

drag term)

53-62 Minimum height (deg.)

79 8 • Parameter card number

80 P • Card type

13 Station Pass Prediction Parameter Card 2 (Prediction-by-station

option only)

1-4 Station number

5-14 0N (station latitude)

15-24 \w (station longitude west)

25-34 H (meters) (station height)

79 9 - Parameter card number

80 P = Card type

14 Program Execution Parameter Card

1 0, Blank = No differential correction

1 = Run differential correction

2 0, Blank = No prediction

1 = Compute time prediction

2 = Compute station prediction

3 0 = Print t, U, ß for 1st pass

1 = Print t, U, 0, Ae, Ac* cos 6, Ae,

Ac* cos h (km.), A6 (km.) for 1st pass

2 = Print At, U, ß, Ae, Ac* cos 6, Ae, Ac* cos h

(deg.), A6 (deg.) for all passes A A A

3 = Print At, U, ß, Ae*U, Ae.V, Ae.W, Ae, Ay cos 6

Ae, Aor cos h (deg.), A6 (deg.) and means

for all above values for 1st pass only

78-79 10 = Parameter card number

80 P = Card type

4 May 1964 4-8i

SPWDC

IM-LX-I23/OOO/OO

Deck Column Position Card type Number Punch

15 Observation Cards (optional)

16 Sensor Cards (optional)

17 Satellite Number Cards (optional)

18 Element Set Cards (optional)

19 End of Case Card

20 End of Job Card

21 End of Schedule Tape Card

22 Blank Card

4.3.IO.3 OBSWGT Weighting Tape Format

Deck Position

NOTE:

Column Card Type Number Punch

Program ID Card

1-8 70WEIGHT

9 11, 8, 2 punch = Card type

Observation/Sensor Weighting Card (in lieu of Function Weighting cards)

1-3 Sensor number

4 0 - Sigma data is for all observations from

the specified sensor

2 = Sigma data is for the next observation

only

a1 - p (km.) 9-l6

17-24

25-32

33-40

41

<?2 = p (km./sec.)

c = A or a

a, = h or 6

11, 8, 2 punch = Card type

If a sigma value is not input, leave the field blank.

Function weighting card 1 (im lieu of Observation/Sensor Weighting card)

1-3 Sensor number

4 1 = Parameter data is for a function

5 0, Blank = Last parameter is contained on

this card

1 = Next card is also a parameter card

4 May 1964 4-82 TM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

9-l6 Function 3D (left adjusted)

17-80 Parameter (follow the last parameter by

an 11, 8, 2 punch)

4 Function Weighting Cards 2-10 (in lieu of Observation/Sensor

Weighting card)

1-3 Sensor number

4 1 = Parameter data is for a function

9-l6 Function ID

17-24 9th parameter (if appropriate)

25-32 10th parameter, followed by an 11, 8, 2 punch

4.3-10.4 Output

The maximum program printout consists of differential correction output, •

prediction output, prediction reliability output, and error comments.

4.3.10.4.1 Differential Correction Output

The differential correction output may appear in several different forms

depending on the input option selection. Basically, two formats are avail- 1

able and the other options add or subtract information from them.

4.3.10.4.1.1 Type 1

The first type of printout consists of the residuals for all of the observations,

followed by the RMS and corrections to the elements, and the corrected elements.

The format of the output is like that of SGPDC (see section 4.3.8.3)

4.3.10.4.1.2 Type 2

The second type of differential correction output contains the following

information:

1. Station number

2. Time of observation

3. Residuals for U, V and W in kilometers where U is the unit vector along

radius vector, V is the transverse unit vector, and W is the unit

vector perpendicular to the orbit plane.

4. Range, range rate, and angular residual means and standard deviations.

5. U, V and W residual means and standard deviations.

SA

MP

LE

P

RIN

TO

UT

,

SP

WD

C

DIF

FE

RE

NT

IAL

. C

OR

RE

CT

ION

PA

R T

1

ItfffiL PfETufATTftNS yXTH KEIOMTEO DlfFESfNTlAL CCRReCTICN PRO

tiillLXTt No. 5P2 SATELLITE N4ME» 62 1-TftU

1 ELEMENT SET NO

. 90»

'-ARC-

.10. 196«

PA5E ?

TT-C 3r rPCCM HA.988:254 *PAB I9

ft4

&

sva TI«E

R

RANG? RT ASCE* DPCL. AZIMUT«

ELTV .

»o.

•» r

s'.

- * ? * * °

~ c L*»

j

Rf -A

NU.

V. HH Pf

l MM. MM 8S.SS

J RES. KM. RES. K«. RES. KM, RES. KM*

Rrs, KM.

K*./SEC!

-»-,

. < -.

T «T> .

nrG.

DEO.

31ft

A ft

! 2f

t 2J

S 42 45.40

-.1*08*1

.1*80*1

. 1R11

• 1

15C55-?

.3*2*1

. 3*^1

31

.011

311

* 09 26 23 42 Jtj.lt

«.45C218

.1995*1

.2?^?*"

. 4?4n -

">

. *

• ? .

'. . *-

48

32

.0r"

iM

4 03

It

23 43 «5.26

. -.l9Jg*l

. A4?T05

.1463*1

5*98-?

, ? 51 *

1 « .3*23

32

' ' 6

316

4 03 26 ?3 13 15,35

» , 1

? 91 •

l

. 1

*• 7

+*>

. 7n?»5l

;^v«o

. 7 5

5 *

1

. *

* -11

3 «

. _

336

4 03 26 23 43 2f.34

-.1273*1

.2894(13

.4^5465

. 6

3 A

7 -

7

.13

7*1

.:e 39

31

.t'.

C 336

4 83 26 23 43 35,3i

-.2l42*l

. 1 P>59«1

• . 3° f

|4 .«

^4*4«-?

.539»!

. 3 • 2

ft '4

.01 *

336

4 03 26 23 44 5.2ft

-.17298«

.1317*1

•.a»!«* »1

.58770

.152*1

•» .

- -«;

.0*0

356

4 03 26 23 44 .5.2«,

-.656601

.»«?1*1

. l^7A*1

'. 7

1 • • - ?

. 2 41 •

1

. " * 51

57

» «

'

336 4.33 26 23

4.4

75.2*,

*«1021*1

• .2857*1

• , 1 4?"'*1

.18.4**1

.1'n**i

.0203*9

. ? 9 4 * 1

. 7 2

5 •

1

. *

* -

i . 5

- ? 7

38

- . e

336

4 03

2ft

23 44 *.5,2l

-,679t83

Pi"

336

4 03 26 23 44 «5.16

-.702288

•.2549*1

.214

3*«

.7*61-9

.'«».1

3 r *

r 39

.01s

336

4 03 26 23 44 55,1?

•»1841*1

.1414*1

.2*61 *1

\ «, §«s Q

- •»

.353.1

. :-

?z

Tr.

. 524

336

4 03 26 23 45 5.1ft _

•«1282*1

. 1 *

0 9 *

1 .27*9*1

'7*68-7

. '54.1

."."

?*

*

. 3 ?2

336

4 03 26

2 3

45

j 5 ,13

-.115763

••1703*1

, 2P-3**1

<7«

&?-?

.965*1 •

. - "3r

4)

.*'"*•

ilfi

4 2 3

2*

21

45 P5.12-.

. -ill*!-:

.,.

•.17 0

2*1

«a?or4?

l8?36-2

*2ir

- .3326

» J

.31*

1 CD

LA

J

PA

RT

2

pR

fBlA

L

PE

*T-R

8AT

iaN

$

olT

H 5

EIS

MT

ED

D

IFF

ER

EN

TIA

L

CO

RR

EC

TIO

N

PRO

luitLi lie NO. S02

SATELLITE NAME» 6? B-TAü

I ELEMENT ICT HO. 9OJ

«ARCM 30.

19*4

Ti*r or rpccu

«=A2L

:

»6.0

8 83254 yr

Afi

1964

RpS

."LM.

R*S2

KM/SEC

220562*1 ,-573778-P

DELTA

H/U

-.14

1717

.'J}

-7

DELTA AXM DELTA AVS

..137J4-3

.1

4809*3

DP

LT

A

UO

•A

OT

Aft

iS

.35

75

A-S

0F

LT

4

N*n

r B

Arj

lAS

.5

..11477.4

LT

A

I

..53989*5

t2/K

0S

eoM

EeU

u

EL

EM

EN

TS

TO

A

nEJL

RX

LS-

DA

Y8_

_LN

Y

B.-

^Fft

WTr

t R

AD

II

I N

onr

jata

.

-2

E0,

I32.7

»3ft8

0

6.9

88

02

1.1997489

.13471

OMTQA

DE2.

70.348 113.1*6 335.5^3

-ASS

«as.

.68963

Pra

A T

13311

*4

"INWTES

111.

3 7

1

I G I (5 LA) -

GPV.DC

4 M«y l>6U u-au TM-LX-1.'3/000 00

x «a

r a 7

•* •* r

i

c n

»

x v

€5 «r,

u Q Q CT 13

U U 2 C) C

(g a- • a a * ^ O •

H Ui

l«~ w » J

U) ••

o 2" «T UJ

C3 i

u u

1)

u • « UJ

a

3 »V i t* u ir\ i; •« o w O Ki a -r* a ^

o T

n 19

* Ul

a s

(A T J— - M

h • 3 in 0 jr

h o

z »— — •4 ft *? a

u n a: j Ul

a H^

> *-« <r < 4

k3 «

t^ 1 »

X UJ

a l/>

"V

» X

4.1 * z OJ irt t. 3 u. u *1

-v 4 1 X J V

r> «1 c «• i> cv I o n - n a- E a) CJ »-I £J r-v CJ « C>ro O ao Ui ^ ui r» O o Q » X o x c* a » IAJ !> tr o a- » UJ 9

u r Ul IT'

11 UP

.1 1/1 1_> Ui »- "> fr -J" r* «i UJ • Ul r i> I ! L*t <1

u o-

Ui * n or

o o

Ul

Ul J/l

UJ

SA

M P

LE

P

RIN

TO

UT

,

SP

WD

C

DIF

FE

RE

NT

IAL

C

OR

RE

CT

ION

,

AL

TE

RN

AT

E

FO

RM

AT

PA R

T

I

$»?C

Itw

*

""

*I.U

!!§A

I.IM

5

-IT

« W

EIG

HT

ED

D

lff-

MII

TX

AL

C*"

9£B

TI0

*

Pfl

H'E

L^

IU s2

.

5^2

S

iTr L

LlT

E

Ni^

E'

62

B

-TA

ü 1

E

LE

ME

NT

SE

T N

O.

90?

MA

MH

31*

1144

TIM

E

OF

E

POC

H

"A

ll

4

•».9

69

:29

4

V

M

19

*4

ST

* T

i-£

R

v

- «

3"

X >

« ss.s

s

J

33

6

4 • j

26

?!

»2

45.4

c

• M

e

4 3

3 26

23

42

5

5.3

9

• 3

3e

i ,3

2

* 23

*3

5.3

6.

• it«

i

0 3

2*

? !

43

15,3

K

• 7

16

4

" 3

2*

23

A2

25.3

4

• ?

<6

- 03

2*

7 S

43

35

.3<

3 15

4

2

r 2*

23

5.2

4

* 3

X A

4

83

2*

3 3

44

15,2

5

* •» 1

*

i :3

2*

2 3

44

25.2

2

• 3

34

i J

3 2

* 23

4

«

35.2

1

• 33

6 i

33

2*

23

44

45 . l

fl

• 3

V. A

*

33

2*

- J

44

5 5.1

7

• 3

36

4

' i

2*

23

«r;

5.1

6

« 3

*A

4

3 3

2*

23

45

19,1

3

• iJ

ft

4 3

3 2*

23

4 =

25.1

2

9

DEI

T*

U#

K

M.

.1044*1

.

1112

1*1

.465701

-,

148835

-.

146465

-.9

41

75

8

-.158623

,6

30

94

«

.1166*1

.1

13

6*

1

.15

65*1

.1

48

6*

1

.18

34

*1

,1

*3

6*

1

DE

LT

A

V/

K

M.

.2«

35

*i

,22

54

*1

.1

09

8*

1

.19

65

*1

,4

61

57

*

.1239*1

.1

91

6*

1

,2363*1

.1

93

9*

1

.1290*1

,2

31

7.1

,9

28

3?

9

.13

03

*1

,l

*C

3*

i *-

i ? ft

! f_i _

. _*=

*££ M

i P

AR

T

DtL

T*

M,

KM

.

.14

62

*1

,8?5030

.2207*1

,1*20*1

.1266*1

.1792*1

,ll6l?3

,1246*1

.1869*1

.1478*1

.1939*1

,3P64«l

.2738*1

.1422*1

a

s'friiL »EHT-RBATISNS .ITH «EISHTED DIFFERENCIAL.CORRECTION PRG

S»rEl. 2T£ N2. 50? SATELLITE SAME« 62 8-TAU

1 ELEMENT SET

KO.

90»

MARCH 31. 16*4

»A9C

YIMI Of f»OC- 16.94*6294 YfAl 1944

62 OBSERVATIONS fCR STATION 336

SANQE

*'

*SCE^

DECL.

*ZI»yT*

EtEv.

RR. RES.

vE

**"S

. •<

-.

RFS. :E5. «FS» 5EG. WES, DE$. RES, 5E3. K«.'SEC

NAO

.1 63*1

.103887 ,1894*1 ,2772-1 "EANS

e1.15*2

:E-TA

J •

" -

.

.10

6 1-1

.2697*1

nELTA

V . ««.

.1599*2

. 16C5*2

.435975

DELTA

M,

KM.

.370493

.2160-1

.219095

.3*92-1

STANDARD DEVIATTQVS

MEAVS

S'A^DARB DfVlATInM

1

I

SPWDC

h May 1964 4-86 TM-LX-123/OOO/OO

4.3.10.4.2 Prediction Output

For prediction by time there are three output options which may be requested

separately or in combination- These contain in addition to time:

1. First option

a. Position (X RADII, Y RADII, Z RADII)

!>. Velocity (XDOT RAD/KEMIN, YDOT RAD/KHUN, ZDOT RAD/KMEN)

2. Second option

a. Osculating orbital elements

a (ARADIl)

e (E)

i (I DEG)

Q (NODE DEG)

m (OMEGA DEG)

U (U DEG)

3. Third option

a. Subsatellite track

0 (PHI DEG)

\„ (LAMBDA DEG)

h (H KM)

For prediction by station pass there is an additional option to output:

1. Time

2. Acquisition coordinates - p, p, A, h

4.3.10.4.3 Prediction Reliability Output (not currently used)

The optronal prediction reliability output will print at each prediction

point:

1. Standard deviation in predicted position.

2. Standard deviation in predicted velocity components.

Wiese values will be given referred to the cross-track, in-track, and out-

of-plane coordinates and also referred to the inertial x, y, z coordinate

system.

4.3.10.*+.4 Error Comments

All error printouts by the program are self-explanatory and need not be listed

S A

MP

L E

L

PR

INT

OU

~

,

S P

W D

C

TIM

E

P"R

1T

ü IC

TIO

N,

3

O

PT

ION

S

SHülAL »EpTjaB*TlQ.NS WITH HEIGH7ED DIFFERENTIAL CORRECTION PRO

SATELLITE. NO» 5G2 SATELLITE NA*EJ 62 8-TAU 1 ELE«EN? SET WO. 90

"ARCH 30. ltAA

PAQE 20

'XMf Of

tPQ

Zu

§8.3975*73 YfAR 196«

TIKI (OATS SINCE 8ESINMNQ OF YEAR)

k RADII

4 RADIX

PHI

DES

._ BA_i.mi3JQ.5

-.3*7368322254

«12QQ779743%1

•.3780058231*1

* RADII

E L.A"8*A OEQ

RADTI

DES

KW

.985*-S87ft7350 -.6897*97111.1

.135578883520

. 703«93l943*2

.17**121185*3 .30080087*^*3

<DPT RAO/«EM

TV "0OT RAO/«C«IN 7j0* *AB/KEMIN

vorr ncs P.«FS* DEQ

U

*.E3

. T^A359*0?*»3

• .11*9*5*229-1

•97Q985•736*1

,11C7598952*S

, 33393«

*. 2

?2*

3

- . 9 315963«

« 7

• 1

I 83

I

cn

i XROADS

4 May 1964 4-89 TM-LX-123/000/00

4.3.II ORBITAL INTERSECTION - XROADS

4.3.11.1 Purpose

The XROADS program computes the point of closest proximity between tvo orbits,

and operates in one of four modes:

a. "Primary" Mode - the program establishes a position and time of

intersection or closest approach of two orbits.

b. "Test Case" Mode - the program computes the elements of a second

orbit, given an initial orbit and the intersection parameters.

c. "Direct Entrance to Function Minimization" Mode - when the time

of intersection is known quite accurately, the program goes

directly to the final stages of proximity computation.

d. "Ephemeris Computation Only" Mode - the program computes

ephemerides in position and velocity for given element sets.

4.3.11.2 Input - Schedule Tape Mode only (Toggle 24 On)

Deck Column Position Card Type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

1-6 SPSJ0B

9-14 XRCiADS

IT 0 = Parameter cards and Element Set cards

input

1 = Parameter cards, Satellite Number cards

and E-file tape inputs.

18 0 = Hardcopy output

80 J = Card type

5 Parameter Card Number 1

7 1 = Parameter card number

4 May 1964 4-90 TM-LX-123/OOO/OO

Deck Column Position Card type Number Punch

5 (Continued) 8 0 = Primary mode case

1 = Test mode case

2 = Direct mode case

3 = Ephemeris mode case

9-12 Year of estimated intersection (if zero,

program computes value)

13-19 DDD.DDD ••= Days since beginning of year of

estimated intersection.

20-27 +.xxx+xx (hadians) = Convergence criterion 1

(typically = + .100-04)

28-35 +.XXX+XX (Dimensionless) = Convergence

criterion 2 (typically = + .200-01)

36-43 +.XXX+XX (Radians) = Convergence criterion 3

(typically = + .100-04)

44-51 +.xxx+xx (Days) = Convergence criterion 4

(typically = +.100-07)

52-59 +.XXX+XX (Dimensionless) = Convergence

criterion 5 (typically = +.200+02)

60-67 +.XXX+XX = Weighting factor (typically =

+.100+-1)

68-69 Maximum number of iterations in Loop 1 -

e.g., 10

70-71 Maximum number of iterations in Loop 2 -

e.g., 10

72-73 Maximum number of iterations in Loop 3 ~

e.g., 10

74-75 Maximum number of iterations in Loop 4 -

e.g., 20

80 P = Card type

«*e?«s=a

XHQADS

%

4 May 1964

Deck Position Card Type

4-91 TM-LX-123/OOO/OO

Column Number Punch

6 Parameter Card Number 2

7

8-15

16-23

24-31

32-39

40-47

48-49

80

2 = Parameter card number

+.xxx+xx (km) = Variance in x 0

+.XXX+XX (km) = Variance in y 2

+.XXX+XX (km) = Variance in z 2

+.xxx+xx (sec) = Variance in t

+ .XXX+XX (days) = Interval for emphemeris

output

Half the number of time points for ephemeris

output

P = Card type

Parameter Card Number 3 (Required only for Test Case Mode - Case l)

7 8 = Card number

8-14 DDD.DDD (Days since beginning of year) = Epoch

for which the second element set is to be

generated by the test case generator (case l)

15-21 DDD.DDD (Days since beginning of year) •

Time at which input perturbations are

applied by the test case generator

22-29 i'Xxx+xx (m/sec) = Tangential component

of velocity impulse

3O-37 +.XXX+XX (m/sec) = Normal component of

velocity impulse

38-45 +.xxx+xx (m/sec) = Transverse component

of velocity impulse

46-53 +.xxx+xx (ra) = x component of position error

54-6l +.xxxj;xx (m) = y component of position error

62-69 ^.xxx+xx (m) = 2 component of position error

70-77 +.XXX+XX (Sec) = Time error

80 P - Card type

XROADS

k May 196h 4-92 TM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

8 Data Cards

a. Case 0, Case 2 and Case 3*

(1) Input Option 0:

(a) Parameter card 1

(b) Parameter card 2

(c) Element set 1

(d) Element set 2

(2) Input Option 1:

(a) Parameter card 1

(b) Parameter cr.rd 2

b. Case 1

(1) Input Option 0:

(a) Parameter card 1

(b) Parameter card 2

(c) Parameter card 3

(d) Element set 1

9 End of Cas s Card

10 End of Job Card

11 End of Schedule Tape Card

12 Blank Card

3.H.3 Output

4.3.11.3-1 Normal Output

The primary output of the program consists of the position and time in each

of the orbits at the intersection as veil as the differential quantities vhich

describe the characteristics of the intersection. The specific values are:

1. Times in days (Tl, T2)

2. Position coordinates in kilometers (XI, Yl, Zl, X2, Y2, Z2)

3. Velocity components in km/sec (X1D, YID, Z1D, X2D, Y2D, Z2D)

k. Velocity magnitudes (SID, C2D)

• •15'WWr*x$MtiPi$

XRQADS

h May 19& 4-93 TM-LX-123/OOO/OO

5. Geodetic latitude at the intersection point with geodetic radius (GEOD

LAT)

6. Longitude (LONG)

7. Slant height (HEIGHT)

8. Time difference in seconds (DT)

9. Position coordinate differences in meters (DX, DY, DZ)

10. Velocity component differences in meters per second (EKD, DYD, DZD)

11. Velocity magnitude difference in meters per second (DSD)

12. Component of velocity along radius vector in meter's/sec (DRD)

13. Component of velocity impulse tangent to vehicle path in meters/sec

(TANGENTIAL COMP. OF DELTA RDOT)

Ik. Component of velocity impulse which is normal to vehicle path but in

the orbital plane in meters/sec (NOEMAL COMPONENT OF DELTA RDOT)

15. Component of velocity impulse which is normal to the orbital plane in

meters/sec (TRANSVERSE CCMP. OF DELTA RDOT)

16. F, E? - DG, A, D + G, B where

F = (*g - xxf + (y2 - yx)2 + (z2 - Z;L)

2 + (t2 - tx)2

o 2 02 02 a? y z t

D =

c)t2

3^2

-^ a tx2t2

0-^ at22

4.3.II.3.2 Ephemerides

The optional ephemerides output consists of the position and velocity in each

of the orbits for a number of times equally spaced about the mean time of the

XROADS

h May 1964 h-9k TM-LX-123/OOO/00 i

intersection. The quantities are:

1. Position coordinates in kilometers x'Xi, Yl, 21, X2, Y2, 72)

2. Times in days (Tl, T2)

3. Velocity componenets in km/sec (X1D, Y1D, Z1D, X2D, Y2D, Z2D)

4. True arguments of latitude in degrees (Ul, U2)

5. Separation in kilometers (SEPARATION

4.3.11.3»3 Error Comments

Six significant error printouts may also appear from the program:

1. Nl MAX EXHAUSTED - failure to converge on t (times at which u's

are equal).

2. N2 MAX EXHAUSTED - function F is greater than allowed value (see

input parameters) at converged value of t .

3. N3 MAX EXHAUSTED - failure to converge on the times corresponding to

the geometrically determined values of u.

k. NU MAX EXHAUSTED - failure to converge in the function minimization

loop.

5. SADDLE POINT - function minimization process yields times at a saddle

point.

6. REIATIVE MAXIMUM - function minimization process yields times at a

relative maximum.

In all six cases, the program continues processing, in the first four cases

using the latest values of t.

s^ J

fc

SA

MP

LE

P

RIN

TO

UT

,

XR

OA

DS

_

__

__

__

__

__

_

£

Tl 33ü\g4476

-12

l_k-_.i-±l_.

,

Ü i 3 5.6«. CE3

_LL_

._v.

*Ji«4?Q _

. **VS

T_

33u,C*«9C

D*VS

_j_i

3ft

. 312

-_£_

. s x

iD

-*07

.06

^5

KM

- 3

.•*

7 4

2

K

-/S

EC

-'

-

.1

0 7

3

K

H 5

.6

-3

KM/S

„-

zi_

s_

. .

X2

_16ü

._6*Q

KM

__

^2

D

-*--

-_ 1

?!?

.. _

__

*.'-- 3

* M/s

E:

12

_ «2

D

•4,0

72

*5

<«/S

E:

Z2T

___

HID

x2

K.2G

____

_

TC.«53 .EG

i-6.^491

K<

-3.720 24 *«/S_

»1

v. -

2111.2596

* » y?

«-1C033 KM/5_:

Y 2^

5___1__....__£_.

• PA->_

3 ' "

5 . 5

_ ,

* ?4ft K •*

916

«,

« 11

z_l

Zi

-• «

"-.0301

K Z2

Z2?

JOÄ'8.1-"

*"

? . 8 3 9 6 7 K M/S

E C

_5414,2263 <"

«.76*43 K-zsec

21S0,p684

<"

;.»:•_?

< « y 8 E C

5 5

1 C

. 9 « 9 1

**

4.6968* KM/SEC

S • _A

»i_!

L_>.

9190.335

A*

Tl 33C,C«PC« D_*S

_3fi.,*?_5

QAIS.

Ji

-».9H cEO

XI

J__

X2C

U2

6 317.560? KM

v i

-3.79251 KM/SEC v_r«

_t__

^9_

J__7

___J

__L

-4

.1.7

55

K M

/S £

C

y 2

-

51

.88

2

OfQ

L2

3'

1 -.

3 8

2 3

K

M

Zl

5.5

.1*

3

-VM

/5E

; Z

__ B

- ! 2i_

__l_

_____l

JL2

4.i« «

2 <

-/se:

z 2

?

2133.7

*26

<"

5..

6.9

09

5

K

" 4.6

2465

x-/

8>

::

Sf

PA

^A

TJO

S

92

1* « 9

*1

*«•

«5

S

S

XKüAL.

U May 1 Hk U- » ':y.-:*v-L?'i "''0 '0

• -

'S) a < 0 or X H

••

M

h D Z i 0 0

fr

h a 0

>- a

Q. a.

J j <

ü 5

2

< 0 Z

H|0

«j lo UJ a

<» « l»5 o ~> «i m » m o - • * o

r? •o

r: ?

o O <o t_l

M 1

*' «1 O

V)

o •- t~ »- * o o o a «3 O O

1 a a a « « ««

1 »- »-»- u _i _J _» w —. MM w» o o a >. X u .. u

° o o s . .»-

* ft a ^ « X X Ul r» o o ^ » (L> t> o ^ i a. « w _» x •4 w •* o • H u

w »- » * -J » -t « * O X

a -1 2 •' u» a •«1 o

° l < f" »- 2

X X

4 May 1964 4-97 TM-LX-123/OOO/OO

4.3.12 OTHER

de following programs in the Element Determination area are seldom used

by the analyst. A brief description of each program is given.

4.3.12.1 CCOE

The CCOE program calculates, from an input element set, the cartesian coordinates

(x, y, 2) and the components of velocity, (x, y, z) of a satellite for a

specified length of time at given intervals. The output can be expressed

in either kilometers or earth radii.

4.3.12.2 HANSEL

The HANSEL program produces a teletype tape for transmission to SCAF (Space

Track Center Alternate Facility). The tape contains the SPADATS object

numbers and element set numbers of all satellites whose elements were updated

during a specified time period (normally 24 hours.)

4.3.12.3 MSGV

The MSGV program produces, for transmission to specified field sites, a set

of teletype tapes containing newly updated element sets. The type of element

sets (seven or four cards) can be specified as an input option. The program

is normally run once a day.

4.3.12.4 SEAI

The SEAI program generates a new SEAIC tape from standard SPADATS data cards.

The program will build a new tape or update an existing tape by replacing,

adding or deleting records.

The files contained on the SEAIC tape are as follows:

1. Sensor file

2. Element file

3. Acquisition file

4. Information file

5. Communication file

k May 196k i^-98 TM-LX-123/000/00

k.3.12.5 SUM

The SUM program summarizes the contents of the SEAIC tape. All files or only

selected files (toggle option) can be specified for output in hard copy

format.

-MbMaULKWV.MuKlritVnilMSE- »»MHHWi—WffWlimMllimiUIIIWiaWBgffgW

U May 1964 4-99 TM-LX-123/OOO/OO (Page 4-100 Blank)

k. 4 OBSERVATION ACCRJISITI ON AREA

The Observation Acquisition area includes the programs that generate

acquisition coordinates (GLASGP, LAP, ENSCHED, OBSERV, XYZLA, ORPS and

POSE), the position and status programs (PSR, PREPINT, and GRNTRK) and the

bulletin programs (BLTNSGP and SYSBULL).

0

BNSCHED

4 May 1964 4-101 TM-LX-123/OOO/OO

4.4.1 BAKER-NUNN SCHEDULE - BNSCHED

4.4.1.1 Purpose

The BNSCHED program computes sets of predicted acquisition coordinates for

a group of satellites and specified Baker-Nunn sensors.

4.4.1.2 Input - Schedule Tape Mode Only (Toggle 24 On)

Column Deck Position Card Type Number Punch

1 Schedule Tepe Card

2 Job Card

3 Remarks Card

4 Program ID Card

1-6

9-15

IT

18

SPSJ0B

BNSCHED

0 = Parameter card, Sensor Number card,

S-file, E-file (all element sets)

and I-file tape inputs

1 =* Parameter card, Sensor Nvmber card,

Element Set cards, S-file and I-file

tape inputs

2 = Parameter card, Sensor Number card,

Satellite Number card, S-file, E-file and

I-file tape inputs

3 = Parameter card, Sensor Number card,

Sensor card, E-file (all element sets)

and I-file tape inputs

4 = Parameter card, Sensor Number card,

Sensor card, Element Set cards and I-file

tape inputs

5 = Parameter card, Sensor Number card,

Satellite Number card, Sensor card,

E-file and I-file tape inputs

0 = Hardcopy and TTY output

1 = Hardcopy output

BNSCHED

h May 1964 4-102 IM-LX-123/000/00 i

Deck Position Card Type

5 Base Time Card (optional)

Column Number Punch

NOTE:

7

NOTE:

8

1 Base Year (last digit)

2-10 Base Day

25-28 Base message number

79 J = Card type

80 P = Card type

The Base Time card is optional. If not used, the information is

taken from the last case executed.

Parameter Card

2-10 Beginning time (days since Base Day)

11-19 Ending time (days since Base Day)

20-21 Total number of sensors on the Sensor

Number card(s)

Minimum start track angle (deg.)

Minimum elevation angle (deg.)

P = Card type

29-33

3^-38

80

Sensor Number Card

1-3

k

Sensor number

1 - Secret

2 = Secret/NoForn

3 • Confidential

h = Confidential/NoForn

5 *= Unclassified

6 * Unclassified/EFTO

5 Y - Emergency

0 = Operations - Immediate

P = Priority

R = Routine

Cols. 1-5 may be repeated, once for each sensor, up thru col. 75»

80 P = Card type

Satellite Number Card

1-8 Satellite number (rt.-adj.)

I ^W^wjTO^-TM«^-^-»^*«*?« .

4 May 1964 4-103

BNSCHED

aM-IX-323/OOO/OO

Deck Position Card Type

Column Number Punch

9 Data Cards:

(1) Element Set cards (optional)

(2) Sensor cards (optional)

10 End of Case Card

11 End of Job Card

12 End of Schedule Tape Card

13 Blank Card

4.4.1.3 Output

Program printout consists of the following information:

Addressing information

Message identifier

Station number

Date — day, month, year

Acquisition data containing:

a. object number

b. time of start track — hours, minutes, seconds

c. star chart map number and indicator

d. azimuth in tenths of degrees

e- altitude in tenths of degrees

f. initial track angle in degrees

g. angular velocity in seconds per second

h. final track angle in degrees

i. right ascension in hours and minutes

j. sign of declination and declination in degrees

k. position angle in degrees

1. check word

m. time of start of next predictions

BNSCHED

4 May 1964 4-104 TM-LX-12 3/000/00

.

SAMPLE PRINTOUT, BNSCHED

VD DXA325DHB744 00 ENTA.FB JHNISL DE SPA TRK 4lH 20/1732Z ANR 0 2OI732Z ZEX m SCAF LG HANSCOM FLD MASS TO JHNISL/DET 4 2SURVILISQ JOHNSTON ISLAND IFO ENT AFB/lST AERO ENT AFB COLO BT UNCLASS/E F T 0 / 1AER0 OOPS 66617 40423 0732 CAMERA PREDICTIONS K)R STATION AT SAND ISLAND(B/N)

66617 40423 00162 00732 53450 34711 00162 00734 19340 34541 00162 00735 46030 34131 00162 00737 12150 33381 00162 00738 38260 32311 00162 00740 05350 31l6l 00162 00741 31350 30241 00162 00742 58400 29681 00162 00744 24380 29411

03380 00303 38007 02870 01304 37018 02440 02805 73035 02110 04907 28058 01960 07808 22088 02010 10807 79118 00260 13506 37142 02640 15^04 89160 03090 16803 76172

043Ö1 10344 04491 02349 04580 10353 04040 24357 05090 43001 05050 62006 04140 80023 20270 83144 19000 73171

28180 79599 51951 88582 28098; 74184 87255 66293 00523

NEXT PREDICTIONS START AT DAY 115.499-

EXPLANATIONS:

Line 1; 666fc.ll 14042 3l

Message ID •Station •Date

not used —ob j. number

not used time of start track —— Star map number Star map indicator Azimuth Not used Altitude

Line 2: fOCp^ JCE732 534301 E4

-Not used

TM EIS Pqfo 3öor>jl Epqil lich44] EST8Ö Initial trk. angl

Angular velocity- ;J

Final trk. angle — Right ascension-

Sign of declination- Declinati on——

Pass angle— check word

BLTNSGP

4 May 1964 4-105 lM-LX-123/OOO/OO

k.k.2 BULLETIN WITH SIMPLIFIED GENERAL PERTURBATIONS - BLTNSGP

4.4.2.1 Purpose

The BLTNSGP program computes an ephemeris (set of predictions) of future

satellite positions based on the orbital elements describing the motion of

the satellite. The program integrates the orbit using the SGP technique.

4.4.2.2 Input

4.4.2.2.1 Automatic Mode - in an OCS sequence

a. The satellite number from the SATTB tape.

b. The corresponding element set from the E-file tape, including

the number of the initial revolution of Part II.

c. OCS Toggle number On = Desired OCS sequrv:e.

d. Toggle 44 On = Non-addressed bulletin on tape 5 for printing/punching.

4.4.2.2.2 Schedule Tape Mode - (Toggle 24 On)

Deck Column Position Card Type Number Punch

1 Schedule Tape

2 Job

3 Remard (optional)

4 Program ID

1-6 SPSJ0B

9-15 BLTNSGP

IT 0 = Satellite numbers card, E-file and

I-file tape inputs

1 = Parameter card and element set cards

inputs

l8 0 = Hardcopy and TTY outputs

1 = Hardcopy output comments (alpha

number)

19-72 Comments (alphanumeric)

BLTNSGP

4 May 1964 4-106 TM-LX-223/OOO/OO

Deck Coluirn Position Card Type Number Punch

5 Satellite Numbers Card (optional)

6 Parameter Card (optional)

1 N = Non-addressed bulletin

- = Pre-addressed bulletin from I-file

2-24 Satellite Number

7 0 = TTY input

1 = No TTY input

8-9 Last two digits of year satellite

was launched

10-11 01 = er "X

01 = & IGY World Wide Code

03 = v j o4 = 6 y

12 Component (No. assoc. pcs.)

13-27 Radio frequencies, 5 digits each, in

lOOths of a megacycle

34-40 Initial revolution

41-47 Final revolution

48 0 = No grid

1 = Standard grid

2 = Special grid

49-55 Grid revolution

60-61 Grid increment (no decimal pt.)

62-65 Grid latitude

66-67 Bulletin year

68-70 Bulletin number

80 P = parameter card

Data Cards:

a. Input option 0: None

b. Input option 1:

(l) 7-card Element Set Cards

BLTNSGP

4 May 1964 4-109 TM-LX-12 3/000/00

PART III. REDUCTION TO OTHER LATITUDES AND HEIGHTS FOR REV LAT MINUTES LONG HEIGHT

N PLUS CORR KILQM LAT MINUTES LONG HEIGHT»

S PLUS CORR KILOM*

SN 00 SN 10 SN 20

.00 2.97 £25.

.00 359.24

1117.8V 1096.7V

NS 00

358.39 1079.ov NS 10 NS 20

?3-20 193.39 192.66 191.85 190.82 ifo-3? 187.18

1222.8V* 1246.1V* 1268.3V* 1288.7V* 1306.3V*

SN 30 SN 40

8^2 11.85

17.90

357.32 344,82

IO65.2V 1055.4V 105^ To4<

NS 30 NS 40

62.53 65.69

^09 SN 50 SN 60

353.54 349.60

^9.6V 104'7.8V

NSr50 N&60 72.15 183.34

1320.2V* 1329.6V*

SN 70 SN 80

21.02 24.79 26.36 27.93

341.25 309-.12

lW.h 7V 1056.9V

NS 70 NS 80

75.52 79.57

175.17 143.76

I333.5V* 1329.7V*

N PT NS 80

277.25 245.03

IÖ6.L.3V 1066.4V

S PT SN 80

8I.26 82.94

112.30 79.77

37.80 33.82 31^3

1325.5V* 1319.6V*

NS 70 NS 60

31.71 34.88

212.23 203.76 199.76"

108i,7V 1097.2 1114.6 "

SN 70 SN 60

"56T9T ?o-3i

1299.6V* 1277-4V*

NS 50 NS 40 NS 30 NS 20 NS 10 NS 00

37.95 40.99. 44^3 47.07

197.50 1133.7 196.02 194.96

K SN 50 SN 40

1154.4 1176 M

93.51 96.6

SN 30 SN 20

1252.2 * 1225.0 *

99.7 102.80

50.13 13^20

194.12 193-39

1199.4V 1222.8V

SN 10 SN 00

105.82 IOS.94

30.05 28.99 28.14

1196.9 * 1169.IV* 1142.6v*

27.37 1117.4V*

4.4.2.3.4 Part IV - The description of SATOR (modified Orbital Elements for

Prediction Purposes) is as follows*

Code word: SATOR

Symbolic form:

SAT0R aabbc

iiiii jkkkl

00000 PPPPP

RAFRE sssss

deeff ggggZ hhhhX N0WES

ARPER 11111 mnnnX PERI0D

ECCEN. qqqqq PERRA rrrrrr

(sssss repeated RATASC ttttt

as necessary)

Kev:

aa = Last two digits of year satellite launched

bb = Greek letter designation, 01 - Alpha, 02 - Beta., etc.

c = Component

d = Reference time (time of perigee passage closest to epoch):

last digit of numerical notation for month; i.e,, 1 = January

or November, 2 = February or December, 3 = March, etc.

BLTNSGP

h May 1964 4-110 TM-DC-12 3/000/00

ee = Reference time: date

ff = Reference time: hour

gggg - Reference time: minutes and hundredths of minutes

Z = Universal time, Greenwich Mean Time

hhhh = Inclination in degrees and hundredths of degrees.

If the orbit inclination is negative (satellite

launched vestward) group is preceded by NEGAT.

X = Always an X

PART IV 64o4"A 20718

5658Z 08315 01882 RADEG

SATOR 27906

20311 ARPER

8l48X 2186X

NOWES PERIOD 46036 394

RAFRE 00000 36.70

ECCEK 00000

PERRA 03279

GLASGP

4 May 1964 4-111 TM-LX-12 3/OOO/00

4.4.3 GENERAL LOOK ANGLES USING SIMPLIFIED GENERAL PERTURBATIONS - GLASGP

4.4.3.1 Purpose

'Rie GLASGP program computes sets of predicted acquisition coordinates for

a group of satellites and their associated sensors, using the anomalistic

data in an element set. The program integrates an orbit using the SGP tech-

nique.

4.4.3.2 Input

4.4.3.2.1 Automatic Mode - in an OCS sequence

a. The satellite numbers from the SATTB tape.

b. The corresponding element sets from the E-file tape.

c. The sensors associated with each satellite from the A-file tape.

d. The acquisition coordinates for each sensor from the A-file tape.

e. The Look Angle message parameters from the A-file tape.

f. OCS number Toggle On = Desired OCS sequence.

g. Toggle 44 On = addresses from I-file, not C-file

4.4.3.2.2 Schedule Tape Mode (Toggle 24 On)

Deck Column Position Card type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

1-6 SPSJ0B

9-14 GLASGP

17 0 = Satellite number card, S-file, E-file and

A-file tape inputs

1 = Sensor, Element Set and Acquisition cards

18 2 = Hardcopy and TTY outputs

3 = Hardcopy output

80 J = Card type

GLASGP

4 May 1964 4-112 lM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

5 Data Cards:

a. Input Option 0:

(l) Satellite Number card (max. = 4 per case)

b. Input Option 1:

(1) Sensor cards (max. = 31 Per case)

(2) Element Set cards

(3) Acquisition cards (max. = 31 per case)

NOTE: Initial and final revolution are specified only if N and N^ +15

on the 7th Element card are not acceptable to the analyst.

6 End of Case Card

7 End of Job Card

8 End of Schedule Tape Card

9 Blank Card

4.4.3.3 Output

The program printout is essentially a Look Angle message containing the

following information:

1. Addressing information

2. Satellite name and number

3. Element set number

4. Initial and final revolution of computation

5. Sets of acquisition coordinates containing:

a. Time

b. Angular quantities and/or

c. Ränge and/or

d. Range rate and if desired

e. Elevation angle of the sun and satellite illumination.

k May 19& *-113 (Pag« k-llk Blank)

GUSGP

BI-ÜC-123/OOO/OO

SAMPLE PRINTOUT. GLASGP

00 SPATR* OE RUWQALD 2611 ]7/l«2nZ INK 0 1719202 ZEX PH 1AÜ0SPCTLSC EN1 AFB COLO TO SPATRK/lAENCSfCTLSO ENT APB COLO AfORNC •T UNCLAS SPACETFACK CENTER 44 3317 903 CNT AFB COLORACC «6P 62B-UPSI 1 SAT, N* COMPUTATIONS STARTED AT REVOLUTION NO« 269ft

903 ELEN 17 VISUAL PASSES

PAQE i

REV ZEBRA im ettv AZIH RANOi RATE R,At DEC SUNS ILLUN1 NO. OAT MR *|ft9 AKO. ANO, KH, KM/REC DEG, DES ELE ¥ NATION

3317 44 1 6.4C 3916 170.9 2961 «i;i Al,126 •11,327 «7 »9 35,4 3317 44 1 7.4C 4413 162,0 2933 •.4 A7.071 «9,466 «7 .7 33,6 3317 44 1 6.4C 4611 151,6 2932 .3 73,043 .358 -7 .9 31,6 3317 44 1 9.4C so:* 139.1» 2975 1*0 79.001 5,939 .6 •1 30,1 3329 49 1 -67,4c 4019

4612 208.4 2967 «•2,2 44,130 •6,330 «19 •3 39,7

3325 49 1 46.4C 204.0 2871 •i;§ 49.623 «,594 «19 •5 33,9 3329 49 1 6«.4C 5919 197.7 2798 •.8 •15.631 9,396 «19 •7 32,2 3329 49 1 50.4C #214

A813 188,3 277? •.0 A2.139 11.307 «19 ,8 30,9

3329 49 1 U#«C 173.8 2791 • 6 A8.7U 17.013 «16 i0 28,8 3329 49 1 5«.*>C 7S19 1*2.4 2853 1,3 75.466 22.25U «16 i2 27,2 3329 49 1 53.4C 7214 127.4 2955 1.9 62.374 28,690 «16 |4 25,7 3333 46 2 32.4C «616 23V.2 2959 •.5 «1,060 20.914 -23 >• 29,1 3333 46 2 23,4C 46^6 240.0 2944 • 0 97,266 24.046 «24 >1 27,9 3333 46 2 24,4c 7612 241.7 2966 .7 A3,950 31,223 -24 i3 26,6 3348 46 0 41.4C 3919 184.1 2907 «2.2 46,178 •15,762 •! »9 43,6 3346 48 0 42,4C 4114 176.7 2797 •Ü4 94.442 •9,644 «2 il 41,8 3346 46 0 43.4C 4619 18/,* 2737 •.5 *Q,949 »3,647 «2 »3 39,9 3346 48 0 44,4C 51|4 155,4 2726 .2 «7.526 2.990 «2 i9 36,9 3346 «6 0 45,4t 54[2 141,8 2769 1.0 74,146 6,473 «2 i7 36,2 3348 46 0 46.4C 9911 127.6 2856 1.9 P0,732 13,663 .2 »9 34,9 3346 48 0 47,4C Mi4 114.4 2964 2.4 67,206 16,623 »3 »1 39,7

COHPUT ATIONS STCFPCD AT REVOLUTION NO t 3399 NEXT REVCLLTXCh STlRTS AT DAY 49,046 JAT , NO 503 ELEM 17

>»>>»NKNN

f

-•

GRNTRK

k May 1964 -115 lM-lJC-123/ooo/oo

h.k.h GROUND TRACK - GRNTRK

4.4.4,1 Purpose

The GRNTRK program computes a sübsatellite track of a satellite betveen two

specific revolutions at a given tiiae increment«.

k.k*k.2 Input - Schedule Tape Mode Only (Toggle 24 On)

Deck Column Position Card Type Number .Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

1-6 SPSJ0

9-14 GRNTR

IT 0 =- P

6

18

so Parameter Card

1-3

20-24

26-30

32-34

37-46

49-58

80

Data Cards:

a Input Option 1

(l) Element Set Cards

0 a Parameter card; E-file inputs

1 = Parameter card and Element Set cards

1nputs

0 = Hardcopy output

1 - Hardcopy and TTY output

J -- Card type

Satellite number

Initial revolution (without Start Time)

Final revolution (without End Time)

Delta time interval (min )

Start time, Y'YMMBDHHMM (without Initial Rev.)

End time, YYMMDDHHMM. (without Final rev.) D = Card type

GRNTRK

4 May 196*4 4-116 TM-LX-123/OOC/OO

Deck Column Position Card Type Number Punch

T End of Case Card

8 End of Job Card

9 End of Schedule Tape Card

10 Blank Card

4.4.4.3 Output

The output of the program is a printed ephemeris. The length is governed

by the starting and final revolutions or starting and ending times on the

input parameter card. The time interval between printed points is also

variable and determined by the parameter card. Quantities printed are:

1. Epoch time

2. Time (year, month, day, hour, minutes)

3. Latitude in degrees

4. East longitude in degrees

5. Altitude in kilometers

6. Revolution number

;RYTPJC

k May 1 >61* U117 lag© Ull6 Blank)

TM-LX-L^ «00

;:-

(Mi

> O w> ^

r» rv. e\ rv, (vo, r> N C 0 C -C <o < «o "; •OK)"': f, rO •»> »O

»or»

»- t

e*i

a.

0

ui fr- ei in

O _

if» **>!*> -^ >f>iX>«» •« KD G» » K, if» Kl C » »"TO V v 4 11 i,

<i Bo^ x » o r-

« a -* •*» f» » r* r>

IT) «if rtlOOin«

o »-« n i r u J> « O ^ »-< «". .,-(-,,, o <3<r« * « «1 c- r» r^ K ^ r^ r>- r- •».

0» «-^ IT' f>J "} C3 P»> O

tf\ •» o 1 r-~ o r*. »o

« -Ö « * O O r» fv.

J « If*

- 4 cv in, r «• <

X ION if» K> r-t •r* w^ I l > « > « J

rv 04 r\» r\j r\io< fM r«

* , I 1

- 2 a 0

«0 * -21 h M 3 *4

0 < h- J

z 3(

1 < CL CI

t-i Ui > J

"* if» O •-• O O e>4

O ^ i/\

ti i r 1 a e ^

> t\

r-

?3

«-« r-t U «1 «

I

Xi X *» X 1) G 00 I>!

J _, JüO u o j d

rl .. ^ •M • < *• J J%

• > > » • > < « --< - - C\J fu r\j f\»

r;H g - ••

1

3

LAP

h May 1964 4-119 TM-LX-123/OOO/OO

4.4.5 LOOK-ANGLE PROGRAM - LAP

4.4.5.1 Purpose

The LAP program computes a set of predicted acquisition coordinates for a

given satellite and each specified sensor, using the nodal data in an ele-

ment set. There are three sub-programs:

a. the General Look Angle Program - GIAP

b. the Baker-Nunn Look Angle Program - BLAP

c. the Special Look Angle Program - SLAP

4.4.5.2 Input - Schedule Tape Mode (Toggle 24 On)

Deck Column Position Card type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remfrks Card

4 Program ID Card

17-19 RUN

25-27 LAP

28-32 ,DATA

5 Element Set Cards

6 Alert Deck Request Card (optional)

1-3 Satellite number (right adjusted)

5-7 Element Set number (right adjusted)

20-24 Initial revolution for computation

26-30 Final revolution for computation

55 5 = Card type

7 LAr Request Card

1-3 Satellite number (not required if card is

for Alert deck)

5-7 Element number (must be -10 if card is for

Alert decx)

20-24 Initial revolution; or initial day number for

SLAP (not required if card is for Alert deck)

LAP

U May 1964 4-120 «IM-IX-12 3/000/00

Deck Position Card Type

optional for GLAP

and SLAP, not re-

quired for BLAP

Column Number

26-30

32-34

36

3T

38-42

43-45

46-48

49-51

52-54

55

56

56

Punch

Final revolution; or final day number for SLAP

(not required if card is for Alert deck)

Time separation between points (optional for

GLAP, SLAP; not required for BLAP)

blank - 2 minutes

0 or blank = All passes

1 = Visual passes

0 = Short output format

1 = Long output format

Maximum range, km (NM if GLAP and Col. 56 = l)

blank =1x10 km or N.M.

Minimum elevation

blank = 0°

Maximum elevation

blank = 90°

Minimum azimuth

blank = 0°

Maximum azimuth

blank = 360°

0 = All-point GLAP

1 = One-point GLAP

3 = Three-point GLAP

4 = BLAP

8 = P.LAP

GLAP range units for output (optional)

0 = Kilometers

1 - Nautical miles

BLAP Importance (optional

3, 2 or 1, where 3 is most important

LAP

k May 1961+ fc-121 TM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

57 BLAP Reply (Optional)

3, 2 or 1, vhere 3 is most urgent

58 BLAP Element Indicator (optional)

0 = New elements

1 = Old elements

66-72 Perigee distance (optional for BLAP, not

required for GLAP, SLAP);

q-term if q / a (i-e);

blank = q from element card

8 Sensor Card

NOTE: Pairs of one Request card and one Sensor card are required for each

sensor for which look angles are to be computed. These pairs con-

stitute the Alert Deck if card 6 is used.

9 End of Data Card

10 End of Job Card

11 End of Schedule Tape Card

12 Blank Card

k.k.5.3 Output

The exact output obtained from the program depends upon the combination of

options selected in the request card. The general output obtained depends

on which of the three major subprograms (GLAP, SLAP, BLAP) is chosen in

the LAP type option.

k.k.5.3.1 GLAP Output.

The printout for this portion of the program contains:

1. Station and satellite numbers of the prediction

2. Station and satellite names

3. Element number

k. Acquisition data ordered by revolution and time within revolution:

LAP

k May 1964 4-122 TM-LX-123/OOO/OO

a. Revolution number

b. Time of predicted poin: (GMT)

c. Elevation and azimuth in degrees

d. Range in kilometers

e. Optional elevation and illumination angles of the sun.

5- Day of next revolution, satellite number, and element number.

6. If computations were inconsistent, the residuals of time (min.),

right ascension of ascending node (deg.), and height (km.) are printed.

The number of data lines per revolution number is determined by the type

of GIAP requested.

1. One data line is put out for the point of closest approach in one-

point GLAP.

2. Three data lines are produced in three-point GLAP. The first and third

lines are for the points immediately above the minimum elevation angle

of the station. The middle line is for the point of closest approach.

3. A variable number of data lines is produced by all-point GLAP, starting

with the first po^t above the station horizon and proceeding by in-

crements of delta Lime to the last point above the other horizon.

• . • • - i

LAP

• 4 May 1964 4-123 TM-IX-12 3/000/00

SAMPLE PRINTOUT, GLAP

BBBBBBBBBBBBBBBBBB 300 444

TRINIDAD 300 62B-KAPPA COMPUTATIONS STARTED AT REVOLUTION NO.

REV ZEBRA TIME ELEV AZIM RANGE* NO. DAY HR MIN ANG. ANG. KM *

SAT. NO. 444 ELEM. 32 ALL PASSES*

2*

32 32 32 32 32

33 33 33 33 33 31 33 33 33 33 37 -2L

303 00 12.09 1.1 100.7 303 00 15.40 6.4 187.9 303 00 18.78 11.9 187.2 303 00 22o21 17.7 186.9 303 00 25.67 23.8 185.9 303 00 29.15 10-3 185.2 3Ö3 00 32.63 37.1 18^.3

32 303 00 36.07 44.5 183.3 32 303 00 39A7 52.4 181.8 32 303 00 42.81 60.9 179.3 33 303 00 46.07 70.0 174.3 ^ ^OT 00 49.24 79.4 159.1

"953^ 9139* 8723* 8290* 7844* 7389*

303 00 52.30 84.2 303 00 55-24 75.8 303 00 58.07 64.8 303 01 0,78 53.7 303 01 3.36 42.9 303 01 5.83 32.9 onrj m A T7 00 A

6482* 6048* 5643* 5280* 4974*

83.0 33.4 23.4 19.6 17-9 16.

30? 01 8.17 23.8 16. 303 01 10.39 15.5 16..2 303 01 12.51 8.1 16.2 303 01 14.51 1.4 16.3 303 11 34.54 1.5 57-4 303 11 35-60 2.5 79.4

4740* 4591* 4;35* 4572* 4695* 4893*

37 303 11 36.66 1.8 99.4 37 303 11 37.74 0,1 114.4

COMPUTATIONS STOPPED AT REV.-NO. NEXT REVOLUTION STARTS AT DAY 303 * MACHINE COMPUTATIONS CONSISTENT

5151* 5454* 5788* 6144*

1459* 2422* 1613* 1931*

40* 853 SAT 444 ELEM 2*$

300 300 300 300 300 300

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

300 300

LAP

4 May 1964 4-124 TM-LX-123/OOO/oo

4.4.5.3.2 SLAP Output

The Special Look Angle output is identical to GIAP output. Prediction points

are separated by the delta time of the request card. Minimum elevation is not

tested; instead, the iteration is continuous throughout the requested time

interval.

4.4.5.3.3 BLAP Output

Baker-Nunn Look Angle output contains the following information:

1. Satellite name and number

2. Station name and number

3. Eight words of packed coded data plus a code number, station number

code, and object number on the first line only. The eight words

contain:

a. year, month, day of culmination

b. reply code

c. azimuth angle in degrees and tenths of degrees

d. altitude setting in degrees and tenths of degrees

e. operational priority

f. angular velocity in seconds of arc per second

g. track angle of shadow entry or exit (hour of culmination,

angle in degrees)

h. time of culmination in minutes and seconds

i. height in statute miles

j. check sum word

4. Uncoded look angle data

a. time of prediction point (GMT)

b. elevation and azimuth in degrees

Co angular velocity in seconds of arc per second

d. slant range in miles

e. height in miles

5. Day of next revolution, satellite number, and element number.

6. If computations were inconsistent, the residuals of time, right

ascension, and height, are printed.

(

3

In 8 o o o" o »

*r ON o *

UJ o

ro O

CD

e

O

CD

ro o ON

r-

03 IM

B „ 3 n • rr a» c+ o <

. x a> H 09 0 • <+ 3

TO O H» C «>

c Q, CD

TO H

15

a)

$

3

UJ

v/i

ro ro UJ vn

ON

ro

co o

en co

co öVo

ro 4

00 CD 00 00 QUI UJ U) ro ro-^ Q ro Q>-J ^UJ CTWJ1

o o o o ° ° S.^ HW CD*" vo To e* o O O rO v/i

WWWUI o o o o 00 Q\^UJ

0\u> oovi

H Q O O H 00ONU) C! o H

3

o o o o OO H H vjiVß *"0\ -p- 00 VI vu ou) o ro

f mrovji ON 00 OW O Own NO \J1 —1 UJ VJ1 * * * *

*-> H *-> *-* o o o o UJ U) u> CO O O O O H

0DVJII

»-* UJ 00UJ >

. . • • i-3 o o ro ui

UJ UJ ro -tr- o ^t» > o ro ON-J N

•F-u> c^v^

CD ONN-" U) *-. wi rovüH w ONUJ CDvn \-<

CO i_. (_' H ro w to vn F ro •—N O ro CM.O 2 0> 00 fOvnlH

v.n s»j T l*N^- f COv'i ^ s

3

1

OO/OOO/SST-XI-WI. (nwra: 9^-1 •••<*)

ij96I **W tj J

OBSERV

k May 19& U-127 TM-LX-123/OOO/OO

k.k.6 OBSERVING SCHEDULE - OBSERV

k.k.6.1 Purpose

The OBSERV program computes sets of predicted acquisition coordinates for fan

and tracker type sensors. It is usually used for all satellites in the system

over a specified sensor.

^.4.6.2 Input - Schedule Tape Mode Only (Toggle 2k On)

Beck Position Card type

Column Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

k Program ID Card

1-6

9-lU

IT

18

SPSJ0B

0BSERV

0 = Parameter card, S-file and E-file tape

inputs

1 = Parameter card, Element Set cards and

S-fiie tape inputs

2 = Parameter card, Element Number cards

and S-file and E-file tape inputs

3 * Parameter card, Element Set cards and

Sensor cards inputs

k - Parameter card, Sensor cards, Element

Number cards and E-file tape inputs

0 « Hardcopy and TTY output

1 = Hardcopy output

OBSEKV

h May 19Ö+ I1-I28 TM-LX-02 3/000/00

Deck Position Card Type

5 Parameter Card

Column Number

1-k

6-12

13-19

20-25

26-29

30-33

3h

35

37

38-39

53-56

79

80

Fan Card (optional)

1-6

7-12

13-18

19-2h

25-30

Punch

Sensor Number (rt. adj.)

xxx.xxx (days) = Beginning time (days since

beginning of year)

xxx.xxx (days) = End time (days since beginning

of year)

xxxxxx = Maximum observable range

xx.x = Beam width

Year

0 = Fan number output (fans only)

1 = Elevation angle output

0 = Nautical units for range and range rate

1 = COS units for range and range rate

0 = Unclassified

1 = Confidential

2 = Secret

3 = Secret/NoForn

Priority (printed on output message)

Message number of first message to be

generated

R = Card type

P = Card type

xxxx.x = 1st fan elevation angle ^or azimuth,

if col. 77 is V-punched)

xxx.xx = 1st fan minimum azimuth (or elevation,

if col 77 is V-punched)

xxx.xx - 1st fan maximum azimuth (or elevation,

if col. 77 is V-punched)

Fan number (rt. adj.)

2nd fan (see cols. 1-6)

OESERV

4 May 1964 4-129 TM-IX-123/OOO/OO

Deck Column Position Card type Number Punch

31-36 2nd fan (see cols. 1-12)

37-42 2nd fan (see cols. I3-18)

43-48 Fan number (rt. adj.)

49-54 3rd fan (see cols. 1-6)

55-60 3rd fan (see cols. 7-12)

61-66 3rd fan (see cols. 13-18)

67-72 Fan number (rt. adj.)

73-75 Sensor number

77 V = Vertical fan indicator

79 F = Card type

80 P = Card type

NOTE: A maximum of seven fan cards may be input per sensor.

8

Tracker Card (optional)

2-6 -99*0 = tracker request

19-24 xxx.xx = Minimum elevation

25 3=3 points/pass

5=5 points/pass

7=7 points/pass

Sensor number

F = Card type

P = Card type

73-75

79

80

Address Card

1-32

67-72

79

80

Data Cards

a. Input Option 0:

b. Input Option 1:

(l) Element Set cards

Sensor address (32 BCD characters)

Sensor number

A = Card type

P = Card type

None

OBSERV

i 4 May 196k 4-130 IM-TJC-12 3/000/00

Card Column Position Card Type Number Punch

c. Input Option 2:

(l) Element Number cards

d. Input Option 3:

(1) Sensor cards

(2) Element Set cards

e. Input Option 4:

(1) Sensor cards

(2) Element Number cards

10 End of Case Card

11 End of Job Card

12 End of Schedule Tape Card

13 Blank Card

4.4.6.3 Output

Program printout consists of 4 parts.

4.4.6.3.2 Part 2

Part 2 contains a Satellite Summary for the receiving station and consists of

the following information:

1. Satellite numbers.

2. Satellite number of any which are decaying.

3- Satellite numbers of any 100 days past epoch.

4. Element numbers

I

I

OBSERV

h May 196U U-131 TM- IX-12 3/OOO/OO

SAMPLE PRINTOUT, OBSERV

PART 2, SATELLITE SUMMARY

SAT. SUMMARY FOR STA-850

059,369,503

DECAYING

OOO

100 DAYS PAST EPOCH

000

SAT.NO./SET NO.

059/120 369/018 503/016

k.k.6.3.3 Part 3

Part 3 contains the teletype heading with priority, station name, message

number classification, and current time.

k.k.6.3-h Part h

Part h contains the look angle schedule, sets of acquisition coordinates with

the following information:

1. Satellite number

2. Element number

3. Time in hours, minutes, and hundredths of minutes

h. Elevation in degrees

5. Azimuth in degrees

6. Range and range rate in nautical or CGS units

OBSERV

4 May 1964 4-132 TM-LX-123/000/00

SAMPLE PRINTOUT, OBSERV

PART 4, LOOK MGLE SCHEDULE

UNCLAS SPACETRACK 308 03l4.80 LOOK ANGLE SCHEDULE FOR POINT MUGU(FPS-l)

SAT ELB4 TIME ELEV AZMTH RANGE R-RAT] DAY 305 OI/II/63 (m)

369 18 1034.27 .9 58.1 1746 -I.5 369 18 1037.87 4.5 87.I 1569 -.0 369 18 1209.70 1.1 l6.1 1711 -3.5 369 18 1216.96 64.2 100.2 494 -.0 369 18 I349.OI 1.0 348.3 1713 -2.8 369 18 1354.70 14.8 296.3 1132 -.0 059 120 I.405.47 1.0 187.I 1966 -1.9 059 120 1411.18 7-2 147-3 1599 -.0

DAY 306 02/11/63 369 18 0102.21 10.8 266.5 1053 .0 503 16 0107.34 1.0 302.5 5962 -1.6 503 16 0147.65 67.6 130.2 1522 .0 503 16 0441.65 1.0 300.6 4265 -2.2 503 16 0501.24 10.4 230.0 2279 .0

PSR

4 May 1964 4-133 TM-LX-123/OOO/OO

4.4.7 POSITION SITUATION REPORT - PSR

4.4.7-1 Purpose

The PSR program computes satellite position information at a given time for

the Position Situation Report, and computes satellite status information at

a given time for the Satellite Situation Report.

4.4.7.2 Input - Schedule Tape Mode only (Toggle 24 On)

Deck Column Position Card Type Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

1-6 SPSJ0B

9-11 PSR

17 0 = Parameter card, I-file and E-file tape

inputs

18 0 = Hardcopy and TTY output

1 = Hardcopy output

80 J = Card type

5 Parameter Card (max. = 11 cards for Satellite Situation Report)

1 0 = Position Situation Report output

1 = Satellite Situation Report output

2 = Both reports output

2-3 Hour of report

4-5 Minutes of report

6 Z = Zulu time (CMT)

9-10 Day of month of report

12-14 Month of report

l6-19 Year of report

23 0 (or blank) = Suppress debris output in

Satellite Situation Report

1 = Output all satellite data in Satellite

Situation Report

-

PSR

k May 196k I+-I3I+ TM-IX-123/OOO/OO

Deck Column Position Card Type Number Punch

2k 0 (or blank) = Perigee and apogee in statute

miles in Position Situation Report

1 = Perigee and apogee in kilometers in

Position Situation Report

80 P = 1

6 End of Case • Card

7 End of Job Card

8 End of Schedule Tape Card

9 Blank ( :ard

.7. •3 Output

k.h.7.3.1 Position Situation Report

The printout of the Position Situation Report gives the following quantities:

1. Object name

2. Satellite number

3. Latitude in degrees

h. West longitude in degrees

5. Inclination in degrees

6. Period in minutes

7« Apogee and perigee in kilometers or statute miles (as specified on the

input parameter card)

8. Revolution number

9. T„, L^, Right Ascension^ for this revolution

10. Classification (blank if unclassified)

k.k.7.3.2 Satellite Situation Report

The printout of the Satellite Situation Report consists of the following

information:

Part 1 - Objects in orbit inclusive or exclusive of debris (option or

input parameter card)

PSR

h May 1961+ 4-135 IM-LX-123/OOO/OO

1. Time of report

2. Satellite name and code name

3 - Source

h. Launch date

5. Anomalistic period in minutes

6. Inclination in degrees

7. Apogee and perigee in statute miles

8. Transmitting frequency, if any

9. Comments from parameter cards

Part 2 - Objects removed from orbit

1. Satellite name and code name

2. Source

3. Launch date

k. Decay date

SA

MP

LE

P

RIN

TO

UT

, P

S*

NO

N-c

ussi

'inr

PO

RT

ION

S

ITU

AT

IV W

fP«R

T

PA

3I I

TW

rOLL

OU

XNö

INT

ö«

HA

TIO

N

CöM

PU

'ED

P-ö»

1

7W

r~lS

DEC

1**

3

NO

N

O

DC

O

NW

pc

a _.

fiEO

. P

ER

IOD

M

ZN

AP

OO

T?"

Pk-

RIG

PC

K

M

KM

«AL

EH

AI.

M

,cT

A

2 M

AL

Al,

9V

AL

PM

A3

lOA

Lg

gA

l T

oiC

TA

1

A0Ö

ÄM

MA

2

-ti

TA

1 60 ff

A

7

•»IT

A

.* m

m x

•c

daj

A

m MJOT

A ^

»B

IQT

A

* .

•ftO

TA T

ÜL

10

1

28

19

6 20

32

246

"IT

3

1.1

9

34.S

3 104.9

1

34

.1

195

148

6 34

14

4 14

g T

4T

73

27

323

31.8

8

TT

Ö

3T

r^

3.47

34

.26

~

W

3773*

3l3

»0

.31

1638.6

3936.4

3283.5

68779

4324.7

37

T47"

9~

1Q?3

.9

1Ö55

.7

3*

1.*

6<

S0.7

5*7.6

"

53»'

. 7

651.5

~~

4 >

279

5*2

.0

5^

0.A

128

A68

~3T

49

7T

14T

11

1 T

TT

10

0

TT

B—

ÜS.

31

nn

m

PO

SIT

ION

U

NC

ER

TA

IN

27r

«

T7

39

W,X

~

73

7.2

^0

7.8

226

48

.38

99

.2

748.3

694,0

T

75

5X

7*0"

?

471

*Ö*.

* "3

* ff

7 4

229

64

.98

91

.6

45

3.9

2*3

.9

RE

V-

_ N

0_

•<56

24

•>25

46

J02

l0

'«8

96

7

169/9

7

15

J

1665

-1

/01

T 1T

JB

~N

_

_&

AV

.S

347.26Q

347.237

347.273

74

7.2

44

347.2

61

3

47

.22

7

3<

7.2

29

"3

47

.22

3

OE

- L

5ÜB

N 0E

G

ICC

— e

LT

55'

0 21

94

"5

7"

13

T7

T

87

r47 1

~4

T

100

9"

103

33*.

0 4

*4T

* 61.6

9

101.6

•1

77

*9

66

.67

0~*7

T

1035.6

1051."

*'

1034.7

-36

•B

4/.

2J

1

11.3

NO

D

ATA

IN

C

FIL

E

16

80

.1

17Ö

0.B

« S

.e

61

1.2

- -

FT

i'.t

r 6

"1

.1

TT

*573

- *5

o9.4

"i

3n

4.6

9633

9622

Ö

1TÖ

0262

•7

B7T

7979

7983

8

02

1

5~uv

r 5121

T

8T

T

34

7.2

81

347.275

347.244

347.270

T

347.225

34>

728Ö

347.2

89

347.2

33

347.2

91

34

7,27

1

47.2

9

118.4

16

87

78

07

33

.4"

" 5

57

7"

34

7.2

21

1

07

.5

51

.3

.010

i

lAT

EtL

ITf

SIT

UA

TIO

N

Wth

flR

T

-TH

E

rOL

LO

wIN

fl

INF

OR

MA

TIO

N

CO

HP

UT

EO

F

_PJ

1ZO

JU

21L-

AP

H

1*6

4

OljfC

T

TU

MA

.PM

AI

tiia

iTA

1 1 1.

ft

ITA

A

lIfi

fA.

••9

MIO

TA

I

•17

Att

AL

PH

Al

•tl

6II

CT

A |

Ut

All

fTi

1

EA

ll

1 Q

ejE

CT

l I

N

QH

ilT

P-

JLfii

1

CflM

Mflt

t M

ÄHE

iOü

HC

E

LAU

NC

H

PEH

IOÜ

IN

HU

.P

LG

CL

K

£R1C

TR

AN

S!

fjjf

cU

UtL

OW

X -U

I_

VA

NtA

1

JtA

üft

AU

L

VA

N9A

RD

f

UC

K

ViN

lAlP

1

MB

US

_Uf_

i gq

M

VA

NO

AR

D

3 iM

UiU

7

US

17

17

JJL

MA

P 5

8

EU

3y

JJL

UX

. 134,

u _1

2S>4

4.3.

35

999

-k

lÄ.

PuO

RE

R

7 P

I0N

CE

fr_f

T

XR

OI

1 S0

M7

IHM

1

.Ut.

PE

I 5

9

HA

R

11

§E

P

59

O

CT

39

12

».7

U

M

34

,23

3

2,8

6

129,8

A

äIJ

32,9

1

34,2

0

2460

2i

'4Q

33

,34

30,3

1

2285

m

g

391

J47_

ln

8,0

?

23

12

688

333

31»

_3

_4JL

A

C

Ul

U

O

CT

59

1

00.*

»0,3

0

65«

348

-U

l 11

Kit

89

li

Us

fl

0li

J5

DE

9 tlf

i AU

tfO

jl

AU

19.ff

Ul

APR

60

A

PI t

fl

ttil

ff.«

46,s

y

48.1

1

443

487

J

lU.

g I R I ß

I

SYSBULL

4 May 1964 4-137 TM-LX-123/OOO/OO

4.4.8 NOnAL SYSTEM BULLETIN - SYSBULL

4.4.8.1 Purpose

The SYSBULL program corrects the orbital parameters affecting the time equa-

tion which describes the motion of a given satellite, and computes an ephem-

eris of future satellite positions with respect to the equator and other

latitudes.

4.4.8.2 Input - Schedule Tape Mode (Toggle 24 On)

Deck Column Position Card IVpe Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

17-19 RUN

25-31 SYS3ULL

32-36 ,DATA

5 Parameter Card

2 0 = Har<

1 = Hardcopy and TTY output

11 0 = Use nodal period in element set

1 = Compute nodal period

6 Element Lead Card

8 7 = Card, type

7 Element Set Cards

NOTE: From 1 to 25 element sets are allowed; there must be one for each

Bulletin Request Card.

8 Bulletin Request Lead Card

8 8 = Card type

9 Bulletin Request Card (all numbers right justified)

1-3 Satellite number

4-6 Element Set Lumber (only if elements are non-

current)

SYSBULL

4 May 1964 I+-I38 TM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

NOTE: Cols. 7-10 are used only if the elements are to be corrected.

7 Order of the least-squares equation

8-9 Number of least-square points

10 0 = Time equation correction

1 = Right ascension equation correction

11-13 Number of corrected element set

14-18 Epoch revolution number of corrected element

set

NOTE: If cols. 11-18 are blank, no element set will be punched.

19-25 Perigee distance (earth radii), only if

q ± a(l-e)

26-30 Initial revolution number for test bulletin

31-35 Final revolution number for test bulletin

NOTE: If cols. 26-35 are blank, no test bulletin will be output.

36 0 = Previous bulletin reference message fr~

Part I output

1 = List elements for Part I output

37-39 Bulletin number for output

40-1+4 Initial revolution for Part II output

4^-49 Final revolution for Part II output

NOTE: If cols. 36-49 are blank, Bulletin Parts I and II will not be

output.

50 0 = No grid (part III) output

1 = Standard grid output

2 = Special grid output

51-55 Grid revolution number

56-57 Minimum special grid latitude

58-59 Maximum special grid latitude

60-6l Special grid latitude increments

62-65 Any special latitude (optional)

NOTE: Cols. 56-65 are blank unless a special grid is requested.

SYSBULL

4 May 1964 4-139 TM-IX-123/OOO/OO

Deck Column Position Card Type Number Punch

66-67 Last two digits of the year for which

computations are to be made

68 0 = Hardcopy output

1 = Hardcopy and TTY output

69 0 = Unclassified output

1 = Classified output

70-72 Analyst number (optional)

76-78 Day number (optional)

NOTE: The Element Lead, Element Set, Bulletin Request and Bulletin

Request Card sets may be repeated as often as desired.

10 Least Squares Point Card

0 1-10 Delta t (days) or delta right ascension

(degrees)

11-20 Number of revolutions from epoch

NOTE: There is one least squares point on each Least Squares Point card,

and the number of cards (points) appears in cols. 8-9 on the pre-

ceding Bulletin Request card.

11 Trailer Card (follows the last of the input sets)

8 9 = Card type

12 End of Date Card

13 End of Job Card

14 End of Schedule Tape Card

15 Blank Card

4.4.8.3 Output

The contents of output are determined by the bulletin request card and the

option card. Maximum printed output consists of least squares correction,

a test bulletin, the three parts of the edited bulletin, and an unedited

f ) bulletin.

SYSBULL

4 May 1964 4-140 TM-LX-123/OOO/OO

4.4.8.3-1 Least Squares Option

A. Time equation correction

1. T. time at the node in days

2» P j nodal period in days/rev

3. C, rate of change of period in days/rev

4. d, rate of change of c in days/rev

5. least squares points from input (^t , AN)

6. N by (N+l) matrix representing the normal equations of least

square fit where N is the order of the curve

7« Computed increments for AT,AP,AC, Ad

8. incremented elements

B. Right ascension correction

1. P n

2. c

3. ft, right ascension of ascending node in degrees

4. ft, first derivative of ft

5. ft/2, half of second derivative of ft

6. least square points ( A ft , A N )

7- N by (N+l) matrix

8. Computed increments for Aft, Afl, Aft/2

9. incremented elements

If a nodal u term was input, an anomalistic equation correction is output with

the following quantities:

1. four points of (T. _, A N) where T is time of perigee in days

2. a 4 x 5 normal matrix

3. computed anomalistic equation with T , P (anomalistic period), TT a

C (anomalistic c- term), d (anomalistic d-term) a 'a

k May 196k *-l*l

SYSBÜLL

TH-ÜC-123/OOO/OO

SAMPLE PRHTPOUT. SYSBULL

LEAST SjjMAhfcs SBUTiCii

SATELLITE 764 LEAST SQUARES. O.75O72O6O+O02 0.6121941*0-001 -0.10992000-005 0.00000000+000

-O.OOOO7OOOO 0.^ 0.007640000 *• ) 0.008200000 10. ( 0.010370000 14. > input points (&t , tfl) O.OIO690OOO 15. 0.011280000 16. < O.OI2I3OOOO i8.y

H x fo.70000000+001 0.82000000+002 0.11820000+004 0.17776000+005 0.60240000-001

(H+l) < Matrix

0.82000000+002 0.11820000+001* O.I7776OOO+OO5 0.27611400+006 0.85511000+000 0.11820000+004 0.17776000+003 O.276II40O+OO6 0.43943920+007 O.I269441O+OO2 0.17776000+005 0.276111*00+006 O.4394392O+OO7 0.71241042+008 O.19524863+OO3

-< D.6986U588-004 O.II549697-OO2 -0.40158214-004 O.7588068O-OO6 0.75071990+002 0.62371*1*10-001 -0.4l2574l4-004 O.7588068O-OO6— —corrected

SATELLITE 764 LEAST SQUARES FOR ANOMALISTIC EQUATION elements

76.0821*55730 -2. 76.3287883350 2. T n 76.759835050 9. T ' 77.375571930 19.

/ ro. 40000000+001 O.280OOOOO+OO2 O.45OOOOOO+OO3 O.7588OOOO+OO4 O.30654665+OO3 4 x 5 I 0.28000000+002 0.1*5000000+003 O.7588OOOO+OO4 O.1369140O+OO6 0.2l6l4670+004 Matrix 4 0.1* 5000000+003 O.7588OOOO+OOI* 0.13691400+006 0.25351^80+007 0.3VT59773+005

0.75880000+001* O.I36914OO+OO6 0.25351^80+007 O.4757745O+OO8 O.58667894+OO6

< ). 76205621+002 0.61581912-003 -O.2726485O-OO6 -O.96OI7II2-OO9

BXPLAHA'. PIONS:

T.inp ?;

N

1 ± Ö.75072060+002 I I0.61219440-OO1I [-0.10992000-005

±- 0.00000000+000

Line 14: AT, AP,

1! 3— I-0.69864588-004] 10.11549697-002 *t "±

-Q.40158gl4-Q04l I O.7588068O-OO6 1

Line 25:

1 O.76205621+OQ2 ] lo.6l58l912-003l I-0.27264850-0061 |-0.96017112-009)

SYSBULL

4 May 1964 h-lh2 IM-IX-12 3/000/00

4.1i.8.3,2 Test Bulletin Option

revolution number (REV)

time at node computed from updated elements in days (TN NEW)

time at node from original elements in days (TN OLD)

difference between new and old times (DELTA T)

right ascension of ascending node from updated elements in degrees (RAN NEW)

right ascension of ascending node from old elements in degrees (RAN OLD)

difference in right ascensions (DEL RA)

SAMPLE PRINTOUT, SYSBULL

TEST BULLETIN SAT NO. 764 ELEM 4.

tfEV TN NEW TN OLD DELTA T' RAN NEW RAN OLD DEL RA 53- 75*07199013 75.07206000 -0.00007 172.786 172.771 0.015 54. 75-134324o4 75.13327834 0.00105 172.841 172.826 0.015 55- 75.19657999 75.19449448 0.00209 172.896 172.881 0.015 56. 75-25876253 75.25570842 0.00305 172.951 172.936 0.015 57* 75-32087621 75.31692017 0.00396 173-006 172.991 0.015 58. 75.38292559 75.37812971 0.00480 173.06l 173.046 0.015 59* 75,44491522 75.43933707 0.00553 173-115 173.100 0.01s 60. 75.50684965 75.50054222 0,00631 173.170 173.155 0.015 61. 7-5.5687331+4 75.56174517 O.OO699 173.225 173-210 0.015 62. 75.63057114 75*62294592 O.OO763 173280 173.265 0.015 63. 75*69236729 75.68414448 0.00822 173-334 173.320 0.014 64. 75.75412646 75.74534083 0.00879 173.389 173.375 0.014 65. 75.81585320 75-80653499 0,00932 173.443 173.430 O.OI3 66. 75-87755205 75-86772695 O.OO983 173.498 173.485 0.013 67» 75.93922758 75.92891671 O.OIO3I 173.552 173-540 0.013 68. 760 OOO88I+33 75.99010438 0.01078 173607 173.594 0.012 69. 76.06252686 75-05128964 0.01124 173.661 173.649 0.012 70. 76.12415972 76.. J1247281 O.OII69 173-716 173-704 0.011 71» 76a8578746 76.:7365378 0 01213 173.770 173.759 0.011

SYSBULL

4 May 1964 4-143 TM-LX-12 3/000/00

4.4.8.3.3 Edited Bulletin Option

4.4.8.3.3.1 Part I

1. Bulletin number

2. Satellite name

3- Epoch revolution

4. Epoch time in days

5. Anomalistic period in days/rev, (Pa)

6. First and second derivatives of the period (c, d)

7. Semi-major axis in earth radii, (a)

8. Eccentricity, (e)

9. Right ascension of the ascending node in degrees (ft)

10. First derivative and one half of the second derivative of the

right ascension of the ascending node, (Cl, Ö/2)

11. Argument of perigee in degrees (<a)

12. First derivative and one half of the second derivative of argument of

perigee ((i>, UJ/2)

13. Mean longitude in degrees, (L)

14. Inclination in degrees, (i)

SAMPLE PRINTOUT, SYSBULL

EDITED BULLETIN, PART 1

Bulletin Epoch

J| SL Sat. Name

time

00i 00 \ BBBBBBBBBBBBBBB 764 BLTN 04 1964'-I2A// IN/3 PARTS./PART I.*

,071 76.I8579 O.O615819 -O.273-OO6 -O.96O-OO9 1.03227 O.OÖ541* /173-770 0.884 0.002 116.498 -4..229 -0.0007 186.87 95-70*

0 Q

Epoch Rev ff/2 ® © S/Z (L) ©

SYSBULL

( 4 May 1964 4-144 TM-LX-123/000/00

4.4.8.3*3-2 Part II = For each crossing of ascending node

1. Date

2. Revolution number (REV)

3. Time in hours, minutes, hundredths of minutes (TIME Z)

4. Longitude west in degrees

SAMPLE PRINTOUT, SYSBULL

EDITED BULLETIN, PART 2

PART II. S-N EQUATOR CROSSINGS.* REV TIME Z LONG W REV TIME Z LONG W REV TIME Z LONG W*

16 MAR 64* 071 0427-63 66.91 072 0556.27 89.10 073 0725.02 III.30* 074 0853.T8 133.49 075 1022.56 155.69 076 1151.37 177.90* 077 1320.21 200.12 078 1449.08 222>34 079 I618.OO 244.58* 080 1746.97 266.83 081 1916.01 289.09 082 2045.10 311-37* 083 2214.27 333-67 084 2343.51 355.99*

17 MAR 64* 085 0112.84 18.33 030 0242.26 40.69 087 0411.78 63.07* 088 0541.40 85.49 089 0711.13 107.93 090 0840.98 130.39*

4.4.8.3«3-3 Part III - For a grid revolution

Direction of crossing

Latitude in degrees

Time in minutes \ since crossing

West longitude in degrees / ascending node

Height above earth in kilometers

Visibility indicator

Argument of perigee

Latitude at perigee

Direction at perigee

SYSBULL

4 May 1964 4-145 TM-LX-123/OOO/OO

SAMPLE PRINTOUT, SYSBULL

EDITED BULLETIN, PART 3

PART III. REDUCTION TO OTHER LATITUDES AND HEIGHTS FOR REV 83. LAT MINUTES LONG HEIGHT LAT MINUTES LONG HEIGHT •

N PLUS OORR KILOM S PLUS CORR KILOM* SN 00 0,00 0.00 254.8 NS 00 44.16 191.04 210.4 SN 10 2.49 1.62 245.8 NS 10 46.62 192.66 220.8 SN 20 4.97 3.31 237.6 NS 20 49.09 19^-35 232.8 SN 30 IM 5.14 230.4 NS 30 51.58 196.18 245-9 SN 40 9<93 7.26 233.9 NS 40 54.08 198.30 259.6 SN 50 12.42 9.89 218.2 NS 50 56.60 200.94 273.1 SN 60 14.92 13.62 213.1 NS 60 59.15 204.68 285.6 SN 70 17 .*5 20.17 208.4 NS 70 61.75 211.25 296.5 SN 80 20.15 39<25 203.6V NS 80 64.52 230.35 305.3V

N PT 22.17 95.55 2OO.3V S PT 66.62 286.66 309.8V NS 80 2k, 20 151.84 197.2V SN 80 68.71 3^2.97 312.3V NS 70 26.88 170.92 193-7 SN 70 71.50 2.08 312.4 • NS 60 29.40 177*47 191.1 SN 60 74.11 8.65 309.4 NS 50 31.88 181.19 189.8 SN 50 76.68 12.39 303.9 NS 40 3^ 35 183.82 189.9 SN 40 79.23 15.04 296.4 NS 30 36.80 185.92 191.8 SN 30 81.76 17.16 287.5 NS 20 39.25 187-75 195.8 SN 20 84.28 19.01 277.9 NS 10 41.70 189.43 202.0 SN 10 86.79 20.70 268.0 NS 00 44.16 191.04 210.4 SN 00 89.24 22.32 258.4

GRID SATELLITE 764 ELEMENTS 4. REVOLUTION NO. 8 3. DAY NO, 76.93

ARG OF PERIGEE = 166.49824 + (-4.22911 ) X ( 76.92658 - 76.18579 ) = 113-36535 = 66.N GOING N-S.

SYSBULL

k May 1964 u-ike 1M-LX-12 3/000/00

4.4.8.3.4 Unedited Bulletin (not optional)

1. Revolution (REV)

2. Time at node in days (T SUB N)

3. Time at node in hours, minutes., hundredths of minutes (TIME Z)

4» Right ascension of ascending node in degrees (RA SUB N)

5. Longitude west in degrees (LONG)

SAMPLE PRINTOUT, SYSBULL

UNEDITED BULLETIN

UNEDITED BULLETIN NO, 04 SAT NO. 7 64 ELIM 4.

REV T SUB N TIME Z RA SUB N LONG 071 76ol&479 0427-53 173-77019 66.91 072 76.24741 0556.27 173-82524 89.10 073 76.30905 0725-02 173-88019 III.3O 074 76.37069 0853-78 173-93503 133-49 075 76.43234 1022.56 173.98978 155.69 076 76.49401 1151-37 17]+. 04444 177.90 077 76,55570 1320 21 176009900 200.12 078 76c61742 1449*08 174.15348 222.34 079 76 67917 1618.OO 174=20789 244.58 080 76.74096 1746.97 174.26221 266.83 081 76.80279 1916.01 174.31646 289.09 082 76.86466 2045.10 174.37064 311-37 083 76.92658 22 ,1427 174.42476 333.67 084 76.98855 2343-51 174 J\ 7882 355-99 085 77^05059 0112.84 174o5328l 18.33 086 77-11269 0242.26 174.58676 40.69 087 77-17485 0411-78 174.64065 63.08 088 77.23709 0541.40 17]i,69449 85.49 089 77 299J«o 0711.13 174.74829 IO7.93 090 77 36180 0840,98 174.80205 130.1*0

4.4.8.3.5 Punched Card Out pat Options

Punched card output consists of.

1. Seven and four-card element sets when an element update is made

2. Look angle request card when an edited bulletin is requested

(see section 4,4*5.1> card number 7«)

3« Edited bulletin when requested

XYZLA

h May 1964 k-lkl TM- DC-12 3/000/00

k.k.9 X, Y, Z, COORDINATES LOOK ANGLE REPORT - XYZLA

4.4.9-1 Pur pose

The XYZLA program computes sets of predicted acquisition coordinates for a

given satellite and specified sensors, using ephemeris data from the MUNENDC

or Interplanetary programs.

4.4.9.2 Input - Schedule Tape Mode (Toggle 24 On)

Deck Position Card Type

1 Schedule Tape Card

Job- Card

Remarks Card

Column Number Punch

Program ID Card

17-19

25-29

30-3^

Parameter Card

1-4

5-7

8-9

10-11

12-13

14-17

25-3*4

44

RUN

XYZLA

,DATA

Year of predictions

Day of the year

Hour of the day

Minutes of the hour

Seconds

Starting time of predictions (thousandths of a

second , col. 14 contains decimal point).

Maximum time increment or range for predictions,

in minutes from the starting time (Cols. lU-17).

If blank, computations will cover all input

ephemeris data.

0 - Ephemeris data input by cards

1 = Ephemeris data input by tape

XYZLA

4 May 1964 4-148 m- LX-12 3/000/00

Deck Position Card Type

Column Number Punch

45 0 = Compute all passes

1 = Compute only visible passes

46 0 = Positive elevations only acceptable

1 = Positive and negative elevations acceptable

47 1 = Output punched ephemeris cards

48 0 - Topocentric output

1 = Geocentric output (incl. day, time, right

ascension, declination and range)

49 0 ä Topocentric output plus right ascension

1 = Topocentric output plus hour angle

6 Sensor Card

7 Satellite ID Card (required only when using ephemeris cards input)

l-l6 Satellite name (alphanumeric)

8 Ephemeris Card (optional)

1-12 x geocentric coordinate (in earth radii)

13-24 y geocentric coordinate (in earth radii)

25-36 2 geocentric coordinate (in earth radii)

37-48 x geocentric coordinate

I49-6O y geocentric coordinate

61-72 z geocentric coordinate

73-^0 Time increment (min.. ), from the starting time

of predictions (parameter card, Cols. 1.4-17)

NOTE: Ephemeris cards are ordered hy increasing time increment.

9 Blank Card (required for each tape or card input set)

10 Blank Card (required only i'or each card input set)

11 >1nd of Data Card

12 End of Job Card

13 End of Schedule Tape Card

14 Blank Card

XYZLA

4 May 1964 4-149 (Page 4-150 Blank)

TM-LX-123/OOO/OO

4.4.9.3 Output

The basic printout of this program is a schedule of predicted look angles for

a particular station at specific times. The quantities printed are:

1. Satellite name

2. Station name

3. Data

a. Day of year, hour, minute, and fraction of minute of the search

point.

b. Predicted right ascension, declination, azimuth, and elevation

in degrees.

c. Predicted slant range in kilometers.

d. Elevation and illumination angles of the sun.

SAMPLE PRINTOUT, XYZLA.

640402 VENUS *

LOOK ANGLES FOR BMEWS 3 FYLNGDALE*

DAY TIME Z

93 1124.73 93 1204.73 93 1244.7^ 93 1324.73 93 140*4.73

93 1444.73 93 1524.73 93 1604.73 93 1644.73 93 1724.73 93 1804.73 93 1844.73 93 1924.73 93 2004.73 93 2044.73 93 2124.73 93 2204.73

R.A. DEG 87.IH 87.19^ 87.225 87.215 87.175 87.113 87.037 86.954 86.870 86,791 86.721 86.664 86.623 86.600 86.596 86.612 86.647

DEC DEG. -1.045 -1.408

-I.725 -2.OO6 -2,254 -2.^76 -2.674 -2.853 -'.013 -3.158 -3.289 -3.408 -3.516 -3.615 -3.705 -3.788 -3.865

AZIM ANG. 94.060

102.422 111.020 120.007 129.520 139-665 150.478 I6I.896 173.731 I85.688 197.441 208.711 219.330 229.253 238.530 247.273 255.626

ELEV ANG. 1.620 7.053

12.362 17.397 21.995 25.978 29.160 31.366 32.450 32.335 31.024 28.605 25.221 21.043 16.244 10.984 5.406

RANGE KM. I28967 I38587 148121 157603 I67063 176524 186010 195536 205116 214758 224467 234243 244081 253977 263918 273892 283884

SUNS ELEV 39-9 40.7 40.1 38.2 35-2 31.2 26.6 21.4

15.9 10.2 4.4

-1.3 -6.9

-12.3 -17.2 -21.6 -25.2

ILLUMI NATION 103.5* 103.4*

103.3* 103.3* 103.3* 103.2* 103.2* 103.2* 103.2* 103.1* 103.1* 103.1* 103.1* 103.1* 103.1* 103.1* 103.1*

t

r

«:

4 May 1964 4-151 - TM-UC-123/OOO/OO (Page 4-152 Blank)

4.4.10 OTHER

The following programs in the Observation Acquisition area are seldom used by

the analyst. A brief description of each program is given.

4.4.10.1 ORPS

The ORPS program is used for predicting search times for observing satellites

at a given sensor. The program first computes the X,Y,Z search point coordinates

of a satellite, then computes the right ascension,, declination, azimuth, eleva-

tion, and slant range from these points in the same manner as the XYZIA program.

4.4.10.2 POSE

The POSE program computes a search ephemeris for a given station and a given

point in space. The program is used when a sensor detects an unknown object.

The assumption is made that if the object is a satellite it will come close to

the same point in inertial space on the next revolution. Therefore, the look

angles are calculated for the time, which is equal to the observation time

plus the smallest orbital period expected. If the point is visible at the

station, the quantities are written on the output tape,

The orbital time is then updated by a specified time increment and compared to

the largest orbital period expected. If this period is within limits, the

search ephemeris is computed for this new time.

4.4.10.3 PREPRINT

'The purpose of PREPRINT is to supply the subsatellite point and related data

of all satellites at a specified time.. The west longitude and time of the

last ascending node are also computed for each satellite. The following

information is contained in the output,

a. Satellite name; number and element set number

b. Latitude and west longitude at report time

c. Inclination a»~d period

d. Apogee and perigee

e. Eccentricity and height

f. Revolution number and time of ascending node, right ascension and

longitude of the node,

h May 1964 4-153 ^ üM-LX-123/OOO/OO (Page \-Y)k Blank)

4.5 INTERPLANETARY AREA

This section includes the interplanetary programs (HELIO, MUNENDC and NEAR)

HEL.K

4 May 1964 4-155 TM-LX-12 3/000/00

4.5.I HELIOCENTRIC - HELIO

4.5-1-1 Purpose

The HELIO program computes the heliocentric trajectory of a satellite given

the launch and target points, the launch date and the flight time.

4.5.1.2 Input - Schedule Tape Mode (Toggle 24 On)

Deck Position Card tyPe

Column Number Punch

1 Schedule Tape Card

2 Job Sard

3 Remarks Card

4 Prog ram ID Card

3-7-19

25-29

30-34

RUN

HELIO

,DATA

5

5-6

10-11

13-14

16-17

01 - Card number

Year of launch

Month of launch

Day of launch

6

5-6

10-17

02 = Card number

Name of launch planet

7

5-6

10-17

03 = Card number

Name of target planet

8

5-6

10-13

use COMET)

04 = Card number

xx.x (Days) = Time of launch increment

HELIO

k May 1964 4-156 IM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

9

10

11

12

13

Ik

15

16

5-6 05 = Card number

10-13 Number of time-of-launch increments

5-6 u6 = Card number

10-14 xxx.x (Days) = Initial time of flight

5-6 07 = Card number

10-13 xxx.x (Days) = Time of flight increment

5-6 08 = Card number

10-13 Number of transit time increments

5-6 09 = Card number

10 0 = Initial value of sigma only

1 = Long coast time only

2 = Short coast time only

3 = Short and long coast times

5-6 10 = Card number

10-l6 xxx.xxx = Initial sigma value

5-6 11 = Card number

10-15 xx.xxx = Sigma increment

5-6 12 = Card number

10-11 Number of sigma increments

KELIO

c h May 1964 4-157 QM-LX-123/OOO/OO

Deck Column Position Card type Number Punch

17

5-6 13 = Card number

10-18 xxxxx.xxx (km.) = The perifocal distance of

the escape hyperbola taken

equal co the earth-centered

radius of the parking orbit.

18

19

5-6 lk = Card number

10-16 9.0E+37 (km.) = Crossover factor in millions

5-6 15 = Card number

;.0 0, Blank = Standard output

1 = Special output - ephemeris tape (Logical 7),

hard copy of X Y and Z geocentric coordinates

of the probe (earth radii) and X, Y, and Z

heliocentric equatorial coordinates (A.U.)

2 = Same as Option 1 except: heliocentric

coordinates are ecliptic, not equatorial

9 = Same as Option 1 plus: separation distance

between target and present position on the

transfer ellipse, and additional values

describing the transfer ellipse and escape

hyperbola

12-l4 xxx - Start time (days past injection)

l6-17 xx = Start time (hrs. past injection)

19-20 xx = Start time (min. past injection)

22-24 xxx = Stop time (days past injection)

26-27 xx = Stop time (hrs. past injection)

29-3° xx = Stop time (min. past injection)

32-35 xxxx = Time interval (min.) between position

computations

HELIO

4 May 1964 4-158 TM-IX-123/OOO/OO

Deck Position Card Type

20

Column Numbe- Punch

37-38 xx B Launch date year (of selected transfer

conic)

40-4l xx = Launch date month (of selected transfer

conic)

43-44 xx = Launch date day (of selected transfer

conic)

46-50 xxx.x = Time of flight (days) of selected

transfer conic

52 1 = Long coast time

2 = Short coast time

54-57 xxxx = Maximum number of iterations (OOOO-

9999) which the program will go through

in calculating the eccentric anomaly

for the present position on the hyper-

bola; if blank, the program assumes 200

5-6 15 = Card number

10-16 XXX. XXX ">

18-24 XXX.XXX

26-32 XXX.XXX

34-4o xxx*xxx C

42-48 XXX.XXX >

50-56 XXX-XXX p

58-64 XXX.XXX

66-72 XXX.XXX

Selected azimuths to be

processed up to a max. = 8

HLLIO

4 May 1964 4-159 TM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

17 X

25 X

33 X

4l X

^9 X

57 X

65 X

73 X

21

5-6 17 = 10-18 zxxx.

22

23

24

One of these columns must contain

an "E" to indicate the last

azimuth on the card

True anomaly in the

hyperbolic orbit at

injection

5-6 l8 = Card numbc••-

10-l8 xxxxx.xxx (sec.) = Time from launch to

parking-orbit injection

5-6 19 = Card number

10-18 xxxxx.xxx (sec.) = Time of final burn

5-6 20 = Card number

10-18 xxxx.xxxx = The arc subtended at earth's

center during ascent from launch

to parking orbit

—<"-**«*«**• -rm

HELIO

4 May 1964 4-160 IM-LX-I23/OOO/OO

Deck Column Position Card Type Number Punch

25

26

27

28

5-6 21 = Card number

10-18 xxxx.xxxx - The arc subtended at earth's

center during final burn out of

the parking orbit to injection

5-6 22 = Card number

10-18 xxxxx.xxx (sec./deg.) = The inverse parking

orbital rate

5-6 23 = Card number 0

10-l8 xxxx.xxxx = Longitude of launch site

5-6 24 = Card number

10-18 xxxx.xxxx0 m Latitude of launch site

23-24 03 = This is last card in deck

Blank = This is not last card in deck

NOTE: Cards numbered 25-36 will only be used when Card 3 has been designated

as a COMET in cols. 10-18. Otherwise, Card number 24 is the last

card in the deck.

29

5-6 25 = Card number

10-24 .xxxxxxxxxxxxxx (km. /sec. ) = Mean gravitation

of the target body

I k May 1964 k-l6l

HELIO

IM-LX-I23/OOO/OO

Deck Position Card Type

30

31

32

33

3^

3r;

Column Number Punch

5-6 26 = Card number

10-l8 xx.xxxxxx (A.U.) = Semi major axis of

target body

5-6 27 - ?ard number

10-l6 .xxxx^.x - Eccentricity of target body

5-6 28 = Card number

10-17 x.xxxxxx (yr.) = Time change from 1950.0 to

present date, for eccentricity

(may be zero)

5-6 29 = Card number

10-l8 xx.xxxxxx = Inclination to the ecliptic of

the orbit of the target body

c-6 J'

10-17

5-6

10-19

30 = Card number

x.xxxxxx (yr.) = Time change from 1950.0 to

present date, for inclination

(may be zero)

31 = Card number Q

xxx.xxxxxx = Longitude of ascending node of

the target body

HELIO

h May 196-' 4-162 m-ix-12 3/000/00

Deck Position Card Type

36

37

38

39

ko

Column Number Punch

41

42

43

5-6

10-17

32 = Card number

xx.xxxxx (yr.) = Time change, from 1950.0 to

present date, for node

(may be zero)

5-6 33 - Card number Q

10-19 xxx.xxxxxx = Argument of perihelion for the

target body

5-6 34 ~ Card number

10-17 xx.xxxxx (yr.) = Time change, from 1950.0 to

present date, of perihelion

5-6 35 = Card number

10-l8 xxxxxxx.x (Julian) - Date of perihelion passage

of target body minus 2430000

5-6 36 = Card number

10-14 COMET

23-24 03 s This is last ':ard in de

End of Data Card

End of Job Card

End of Schedule Tape Card

Blank Card

HEUO

4 May 1964 4-163 m-LX-123/OOO/OO

4.5.I.3 Output

The normal program printout contains four parts. A special output option

also may be included.

4.5.I.3.I Part .1 - Input Conditions

This section contains the following quantities:

1. Greenwich hour angle in degrees (GHA)

2. Perifocal distance of the escape hyperbola in km. (PER)

3. True anomaly in the hyperbolic orbit at injection (TA)

4. Launch site latitude in degrees (LAA)

5. Launch site longitude in degrees (LOL)

6. Time from launch to parking orbit injection in seconds (T02)

7. Final stage burning time in seconds (T23)

8. Angle subtended at earth's center between launch and parking orbit

injection in degrees (P02)

9. Angle subtended at earth's center during final stsge burning (P23)

10. Inverse orbital rate during parking orbit coasting in seconds per

degree (ORB)

11. Crossover distance in millions of km. (RS)

12. A.U. to million km. conversion factor (A.U.)

13. Gravitation constant for launch planet, km /sec. (GML)

1<+. Gravitation constant for target planet, km /sec. (GMT)

4. -, 1.3' 2 Part 2 - tfel ioct ntr ic Con ic Group

The second part of the printout contains the following quantities:

1. Flight time in days (TF)

2. Pun-to~launch-pl*inet distance at launch time in A.U. (RL)

3. Sun-to-arr:val-planet distance at arrival time in A.U. (RP)

4. Heliocentric central angle in degrees (HGA)

5. Semi-major axis of transfer ellipse in A.U. (SMA)

6. Eccentricity of transfer ellipse (ECC)

7« Communication distance at arrival in millions of km. (RC)

HELIO

k May 1964 k-1.6k TM-LX-123/OOC/OO

8. True anomaly in transfer ellipse at launch time in degrees (TAL)

9- True anomaly in transfer ellipse at arrival time in degrees (TAP)

10. Inclination angle of transfer ellipse to ecliptic plane in degrees (INC)

11. Celestial latitude at launch time in degrees (LAL)

12. Celestial latitude at arrival time in degrees (LAP)

13» Celestial longitude at launch time in degrees (LOL)

lh. Celestial longitude at arrival time in degrees (LOP)

15 Speed at launch time in km-/sec. (VL)

16. Path angle at arrival time in degrees (GAL)

17 Speed at arrival time in km./sec. (VP)

18. Path angle at arrival time in degrees (GAP)

19. Launch-placet speed at launch time in km./sec (Vl)

20. Arrival-planet speed at arrival time in km./sec - (V2)

21. Departure angle at launch time in degrees (DA) 9

22. Arrival angle at arrival time in degrees (AA)

23. Angle between launch hyperbolic excess velocity vector and launch

planets orbital plane in degrees (GL)

2h. Angle between launch hyperbolic excess velocity vector and arrival

planets orbital plane in decrees (GP)

25. Sun-target planet-probe angle (Zeta P) in degrees (ZAP)

2.6* Sun-launch planet-probe angle (Zeta L) in degrees (ZAL)

27 Sun-launch planet-target planet angle (Eta) in degrees (ETA)

28. Distance of periapsis in km (RCA)

29- Distance of apoapsis in km. (APO)

30* Period in days for the transfer ellipse (PRD)

31. Time of last theoretical perihelion passage (TAU)

32. Longitude of ascending n_>de of transfer ellipse in degrees (LAN)

33. Argument of perihelion of transfer ellipse in degrees (AOP)

HELIO

k May 1964 h-165 m- ix-12 3/000/00

k.5-1.3-3 Part 3 - Planetocentric Conic Group

lie third part of the printout contains the following quantities:

Hyperbolic excess speed at launch in km./sec- (VHL)

Declination of launch asymptote in degrees (DLA)

Right ascension of launch asymptote in degrees (RAL)

Hyperbolic excess speed at arrival in degrees (VPL)

Declination and right ascension of arrival asymptote in degrees (DPA,RAP)

1

2

3

k

5

6

7

8

9

10

11

12

2 2 Twice the total energy or vis viva in km. /sec. (C3)

Eccentricity (ECC)

Distance from launch planets center at injection in km. (RAD)

Injection speed in km./sec. (VEL)

Injection path angle in degrees (PTH)

Component of unit impact parameter in (T Bar) and (R Bar) directions (BT,BR)

Component in T and R directions of impact parameter in km. (B.T, B.R.)

k.^.l.^.k Part k - Launch to Injection Conditions Group

The fourth part of tM printout is composed of the following quantities:

1. Launch azimuth in degrees (LAZ)

2„ Launch time in seconds past midnight of launch day (TL)

3. Injection time in seconds past midnight of launch day (Tl)

k* Injection declination, right ascension, and launch azimuth in degrees

(DEC, RA, AZ)

5. Parking orbit coast time in seconds (CST)

6. Time fvom launch to injection in seconds (TLI)

7. Angle between injection and the outgoing launch asymptote in degrees (CA)

8. Injection longitude in degrees (LON)

9. Latitude and longitude at start of final burning in degrees (LA2, L02)

10. Launch, and injection times in hours, minutes and seconds (TL, Tl)

HELIO

h May 19& h-l66 TM-LX-123/OOO/üO

4.5«1•3•5 Part 5 - Geocentric and Heliocentric Position and Time

The part of the program printout is optional (see input parameters) and

contains the following data:

1. Start time - year, day of year, month, day, seconds, and hundredths of

seconds

2. For each position:

a. Time in day of year, hours, minutes, seconds (TTME)

b. Time in minutes relative to start time (DELTAT)

c. x,y,z geocentric position of probe in earth radii (GEO)

d. x,y,z heliocentric position in A.Ü. (HELIO)

3. Position and velocity components of injection point vector

(X, Y, Z, XDOT, YDOT, ZDOT)

•-

n

SAM

PLE

PRIN

TO

UT

, H

ELIO

NO

RMAL

OU

TPU

T

LAUN

CH D

ATE

JU

L

1

3 19

62

DA

Y O

F Y

EA

R

19

4

JD

1858.5

A

RR

IVA

L

DA

TE

D

EC

? 1

96

2

INPU

T C

ON

DIT

ION

S G

HA

290.3

98

T

23

101.6

00

AU

14

9.5

99

00

PER

P

02

GM

L

65

64

.10

17.1

13

3

98

60

3.1

99

TA

P23

G

MT

3.7

00

8.2

40

3

24

12

3.6

68

LA

L

OR

B 28.3

17

1

4.6

89

0

LO

L

RS

279.4

57

0

. T

02

49

8.8

78

HE

LIO

CE

NT

RIC

CO

NIC

T

F

149.0

0

RC

52

.52

3

LOL

289.9

65

V

I

29-2

964

Z

AP

50

.79

^

PRD

2

92.8

14

RL

T

AL

L

OP

V2

ZA

L

TAU

I.O

I654

1

59

.90

1

91.9

23

35.2

066

52.9

3^

7

1.1

78

RP

T

AP

V

L

DA

E

TA

LA

N

EA

RT

H

0.7

19

51

3

21

.83

7

26

.78

45

134.7

88

33.6

65

289.9

70

TO

HC

A

INC

G

AL

A

A

RC

A

AO

P

VEN

US

16

1.9

36

2

.97

6

4.7

00

67.4

28

1

03

.87

7

20

0.0

94

SMA

L

AL

V

P

GL

A

PO

O.8

63O

-0

.00

0

37-9

204

22.1

85

1

54

.32

1

EC

C

LA

P G

AP

GP

0.1

95369

0.9

23

-5

.97

4

-42

.42

5

PLA

NK

TOC

EWER

IC

CO

NIC

V

HL

3.7

5^

2

C3

0.1

4094

B

T

-O.9

4278

9

DIA

E

CC

B

R

1.^

37

1.2

3209

-O

.333

390

RA

L

RA

D

B.T

243.0

65

6

57

1.6

6

-I6772.I

VP

L

VE

L

B.S

6.0

07

3

II.6

36

3

-0.0

DPA

PT

H

-59

^68

2

.04

2

RA

P 218.9

85

LAUN

CH T

O

INJE

CT

ION

CO

ND

ITIO

NS

LAZ

9

0.0

00

T

L

73210.5

C

ST

41

28

.52

T

LI

4

72

8.9

9

TL

2

020

10

TI

CA

T

I

77939.5

140.5

55

2138

59

DE

C

LON

16.3

55

2

02

.69

8

RA

L

A2

98.7

33

12.9

42

A

Z

L02

66.5

58

195.3

69

r 8

8

9

SAM

PLE

PR

INT

OU

T,

HE

LIO

O

PT

ION

AL P

OR

TIO

N

INJE

CT

ION P

OIN

T V

EC

TO

R

(IN E

AR

1H

RA

DII

AN

D E

AR

OH

RA

DII

PER

KB

4IN

)

X

-0.

0845

45

Y

0.

5503

97

Z

C

.866

897

XDOT

-

1.26

3499

45

1962

1942

1385

9.45

3

XG

EO

-O.1

5948

3

-10.

4265

84

-I7

.22

29

6I

-23.

6319

91

-29.

8687

19

-36.

0091

48

YDOT

-

O.6

6355

073

ZDO

T

0.3

6041

732

TIM

E D

ELTA

T

194

21

38

59

0.

195

3

38

59

36O

.O

195

9

28

59

720.0

195

15

38

59

10

80

.0

195

23

38

59

14

40

.0

195

5

38

59

1800.0

• 8 Y

GEO

Z

GE

O

XH

ELIO

Y

HE

UO

ZH

ELIO

0.9

74395

0.2

94229

5

4.0

59

90

01

3O

.3926II

I 5

6.5

46

80

80

-I4

.93

O6

59

1

.81

43

74

5

4.5

84

58

91

30

.28

50

46

0

56

.44

64

53

7

-28.

O64

536

2.2

45

88

1

55

.13

04

47

4

30

.15

75

10

2

56

.35

20

66

2

-40

.57

51

07

2.6

23215

5

5.6

77

79

91

30

.02

37

50

6

56

.25

70

30

0

-59.

7954

OO

2

.98

11

50

5

6.2

25

25

65 29

.88

58

55

0

56

.16

11

31

6

-64

.84

24

07

3

.32

91

71

5

6.7

72

34

14

29

.74

45

90

1

56

.06

43

13

3

f IS 8

MUNENDC

4 May 1964 4-169 •M-LX-^/OOO/OC

4. 5.2 UNIFIED ENCKE WITH DIFFERENTIAL CORRECTION - MUNENDC

U.5.2.1 Purpose

The MUNENDC program computes a satellite's predicted position and velocity

with respect to the Earth, Moon and Sun for specified time intervals given

the satellite's position and velocity at a starting time.

4.5.2.2 Input - Schedule Tape Mode (Toggle 24 On)

Deck Column Position Card Type Number Punch

1

2

3

4

Schedule Tape Card

Job Card

Remarks Card

Program ID Card

17-19

25-31

32-36

Parameter Card 1

1-4

5-6

7-8

9-10

11-12

13-18

25-40

Parameter Card 2

1-12

13-24

25-36

RUN

MUNENLC

,DATA

Year of epoch

Month of epoch

Day of epoch

Hour of epoch

Minutes of epoch

xx.xxx = Seconds of epoch

Satellite name

x geocentric coordinate of initial position

(in ea: t) radii)

y geocentric coordinate of initial position

(in earth radii)

z geocentric coordinate of initial position

(in earth radii)

MUNENDC

4 May 1964 4-170 TM-LX-I23/OOO/OO

Deck Position Card Type

Column Number Punch

37-^8 x geocentric coordinate of initial velocity

(in earth radii/k min.) \ / e /

49-60 y geocentric coordinate of initial velocity

(in earth radii/k min.)

6l-72 z geocentric coordinate of initial velocity

(in earth radii/k 1 min.)

NOTE: All quantities on this card are given in floating point format =

+XXXXXXXX+XX. The decimal point is assumed at the right of the

mantissa.

7 Parameter Card 3

1-10

11-20

21-24

25-26

27-28

29-30

31-32

33-38

39-^2

43-44

45-46

i*7-48

49-50

51-^6

57-67

68

69

70

Runge-Kutta error criterion for position

Runge-Kutta error criterion for velocity

Year of initial time of ephemeris

Month of initial time of ephemeris

Day of initial time of ephemeris

Hours of initial time of ephemeris

Minutes of initial time of ephemeris

xx.xxx = Seconds of initial time of ephemeris

Year of final time of ephemeris

Month of final time of ephemeris

Day of final time of ephemeris

Hours of final time of ephemeris

Minutes of final time of ephemeris

xx.xxx - Seconds of final time of ephemeris

Initial integration step size, At (min.),

(decimal anywhere in field)

0 - variable At

1 = fixed At

0 e Do not print moon satellite number

1 = Print moon satellite number

0 = Print every 42 lines

-

MUNENDC

h May 1964 4-171 TM-LX-123/OOO/OO

Deck Column Position Card Type Number Punch

8 Parameter Card 4 _ ***

1 0 = Do not correct Encke element M o

1 = Correct Encke element M o

2 0 = Do not correct Encke element l/a

1 = Correct Encke element l/a

3 0 = Do not correct Encke element c*

1 = Correct Encke element c*

4 0 = Do not correct Encke element s*

1 = Correct Encke element s*

5 0 = Do not correct Encke element a*

1 = Correct Encke element a*

6 0 = Do not correct Encke element 6*

1 = Correct Encke element 6*

20 Correction iteration (any number from 1 to 9)

25-30 Absolute maximum of observation residuals in kms.

31-36 Absolute maximum of range rate residuals in km/sec

37-40 Rejection parameter.

9 Observation Cards

10 End Card

11 Sensor Cards

12 End Card

13 2nd of Data Card

14 End of Job Card

15 End of Schedule Tape C;.rd

16 Blank Card

4.5.2.3 Output

The printed output for MUNENDC contains two parts.

4.S.2.3.1 Part 1, Ephemeris Output

4.5.2.3.I.I Page 1

The quantities printed on Page 1 are:

.'. t (TIME SUB 0)

c'. displacement error (DISPLACE ERROR)

MUNENDC

4 May 1964 4-172 TM-LX-123/OOO/OO

3. displacement rate error (DIS.RATE ERROR)

4. A t (DELTA TIME)

5. semi-latus rectum (PARAMETER)

6. e (ECCENTRICITY)

7. q., perifocal distance (Q)

8. K (M-O-TILDE)

9. l/a (ONE OVER A)

10- P components (PX; FY,, PZ)

11. ^components (QX-TILDE,QY-TILDE,QZ-TILDE)

12. Time (TIME)

13» x>y> an^ z components of position displacement from the

reference orbit (XSI, ETA, ZETA)

14. x,y, and z components of velocity displacement from the

reference velocity (LAMDA, OMEGA, PSI)

15. first 12 points from lunar and solar ephemerides tapes.

I+.5.2.3.I.2 Page 2

The quantities on this page are a printout of the elements identical to Page

1. Since the first page appears only after initialization, this page is

necessary to show the elements after rectification.

4.5.2.3.1.3 Pages 3 and 4

These pages describe the first two time points of the ephemeris. The

items printed are:

1. geocentric position, velocity, and distance for the reference orbit

2. same for the vehicle in its actual trajectory

3« geocentric position vectors of the moon and the sun

4. position vectors and dista'.jes of the moon and the sur. iron; the vehicle

5- position and velocity deviations from the reference orbit

6. magnitude, radial, and tangential components of the velocity vector;

1,fcie time interval

7- perturbative accelerations; distance of the vehicle above earth's

equator; other intermediate quantities

. •

MUNHIDC

4 May 1964 4-173 TM-LX-123/OOO/OO

8. position and velocity of the actual vehicle from the earth in

laboratory units.

At the point of closest approach to the moon the full page output will again

be printed for that point. The comment "THIS PAGE CONTAINS A POINT OF

CLOSEST APPROACH TO THE MOON" is printed at the bottom of the page.

At the point at which rectification occurs the full page output appears

twice. The first page will have the points before rectification. The

comment "THIS IS THE POINT AT WHICH RECTIFICATION OCCURS" will appear at

the bottom of the page. The second full page printout will be the first

point of the new reference orbit.

This type of output will also be given after 42 or 10 integration steps

(input option).

1+.5.2.3.1.4 Page 5 and 6

For the remainder of the ephemeris computation, only one line per time

point is given containing:

1. time (TIME)

2. geocentric coordinates of position (X,Y,Z EARTH-ROCK, G-RADIl)

3. coordinates of velocity (X,Y,Z DOT ER)

4. geocentric distance (R EARTH-ROCK, G-RADIl)

If the option to print moon-satellite coordinates is used, the next page will

be one line per point consisting of:

1. time (TIME)

2. coordinates of moon-satellite position (X,Y,Z MOON-ROCKET, G-RADIl)

3- coordinates of sun-satellite position (X,Y,Z SUN-ROCKET, G-TADIl)

4. distance of object from moon (R MOON-ROCKET, G-RADIl)

MUHENEC

h May 19Ö* k-nk 34-UC-123/000/00

1

Ml w O •©

o a

• « «_> f- ui <r\ €T>

» o •» O in -J r* C3

•# »-4 Of •H e> o »-I 10- to tm o

o • r* ft «3

Z • •• • • • < • *-J t, CJ . JO

O ••» « «- •» wl •» ooQoa o « > »-« .V r > < . « «,« i «,,<..- . y «r» •* o« •» »o •» lotjoo cs

«• »n r» . i .-« g\ aci o o «o o

o •*"- Of «B» o «r-« »o o o r> C~ O €3 O<o*r-» o •» t> aooVJC3,c» i »nr < c « at. cjooo

• •••«•• • • * # •

2S •» r* WO» «^U(V«N(M(M(>l(V <\* IT» <> 2> « * « • * « aodoa *3

•HfCV CJ O •* ** «] • « « aocacaa o "O ro Mi ••» «> rfaodoci

Ci

«•» O »-« c> a *-«<*- -S • ••#• c jr oi » -o •» •» .4ao<soc C5

Or »•» (HI C» a c> •O co * m a .> a D ,) o o c* tH o »- »*> l»/ c.i ^ O- Ol "»)•*• «Tt Hi ' clfiu

o •** ri •«•{ <« «- «H o « o c» a c^

21« r ro Jri O O l>> .-> m o «( « tr> o o» •*< ao «*. <*>. aorjoo <r> Ulf» a •• •r» i O * •-- r-i IM •*•) <» CJ ai *-» o c»

a°i •w 1 ° fc> • i «. v..«.....^.. «

!• iX «

»HO Ui (Tt

a •»

-r

2;« ••• • « a o ci 0 o o CHHvJKH na O * « «O W go r» a o o] ?M«\ ' * « * • a o

« «> r» ( «-tr- a no c^ z «N « d HM* m «a o » P*> •< » *" > » crao«^

j *->r^ oo> N cs a d J^mO-O-i^m a o a

J K 0 uJ

h 5 / LJ

ar I

u. a. ÜJ

UJ

J 1 7. < <n

k M « «s X » IV

« 2 [>

• or 9- r»- Uf 4 « >- OD o t- t> a •O ? -J o <M •« Ul f> c* a o **

- or * * o lv a

o « "1 i? a • O* o f*r »• G* t-l w o » f- r> ^ o Ui o W> ul 1— t> K » a- « » a •a •x z o c o »-• V o u»i o o

•'»

#- • • * »

MOO«

X »— UJ t> u. a u. »— I-« t> Q O

tr * o I tr o ar » uila

o Ui o u »

•r »

o rt Ui c^»

2- O O i

«• «4 •* o« <* o4

M a « o o «a «Nnaoa r< «4« e» o c o •*> fm üoa •s c- « aaa «« (V> OOOo v> 4M *r a o « *4>o «a o ci

« • » » « «

a««

«• 2T 3»J r» r« o «

fV «

ip«» »« r« M I-» s> rv T o o (V »

• •

Ifl CD

T V« a ea o o* o » V «» •• » t-i O M • » • X z a

Ul Ui IT» <\i li^ •* o o 1" « •o (> ut • .1 >l - z »-« OI « I- ir i Ul U '"» .n 1 o •r

•-« (/» or • -» o ,.J -1

Q T o »- '> Ui ^ Ul •-* t *• »•*»'• •-* •-:-> > •*» 1—]V)

u M »-4 1 J> -H

»- rv .-« oi z • • • DO- O •« H O II» I C: a *4|

r> »-«-o Z Oi « r-. 0 "» "O ^ Ö «*"• KJ »H 1 O "• >

•»ir»ir w • •» •

i • •

cv oj r\t fvj c\4 «

«r* OC

o a «r. O C-> O o ol 43 o o c: c a O «o o a c» c» a

;:

O o- •a z O cm c» rr o «* c» «» O c» e» «Cl CM a u o o o o O C3 o O Ol a *«* O Ol o

I

oao «ajc» . J« «4 *^ oi o <a|«» oi o

doooq* .»_»_,„. ^ n ^ « o o a(«» i«^* »^0» r^ «ojooa cat«* Jofr^ioi »»o« o|«»oi«a. a«»

|o»[fl NWdoao ca)«=» I*" •<* •€>•.•• o< e» ca. ca «d •»

ft «j» «•«{•• «««

aodoao ooaao|o aoeoa|o

•> do«»j

Oaaao{o OiO o 3»C| c» onaooj >o aoo("o o

lOllT. *

m •«

if» it*

t««i

i • t it

*» «r. o« «I« a •{<» «a

W »o Uno Hi!» e» "r|«4 o «» * o

• I* •

H»«X irtiir H\ Afu • • • « • o

» <• c*ool

f"- Ol c.» o O* «n 0>V- oOo

«4 HI

• «\B\ «<« o

* » « * • •

UJ

JNM>« H*

Ul

io^^iM>n«iri<o K|ä Oo WQ

»-!•-•»< fvjojoi ojrvrv culrv rv CM •-« »4 K ooojonooooioo, o r-o

O O «Oi <C •© <l «t> J <o>-c <4>o <o

•*> O 13 C* O vl> •^OJ Of Of £*oi O o o o «» o * •»•» « * ° <c a, o <• o

t* ***** §*•• O OJCK OjO

o ojo qe o«a»o oca ado do

O o c» a "C» o o,o ojo o ojo e» o o ojo «i ° • i • H • * * • » •

* K « »• rJ o ojo Ol »* o. oioi o»f>* o o<o o *> • * « « « •O <• «O O "*»

h May 19t9* 4»

-175

MUNrimC

IM-LX-123, 000, 00

4

Ü Q <*> Z Ul Ul C Z < 3

Q. 5 . tf)

h — D K

0 Ul

h 2 z iij — i ft (L G. 111

tii

J a. 2 < <fi

5 M «A MX* lo m

Ul •* «1 ac;ac «

• r» la «

«x

2 m

* rv o • O M #-\ «•"•XX • Oft X 4i a» *-<x « a • i- « a « u* <>

M or -

«

IN 1»* •

r • ac 4i»

I* tx

4T «

• -< •* «0

MOT «V

4i

Mx

-.

c» 53 * a » •>

* ö Mi *

]K «TV q\« cjia -r»

••• • o« o -

•I

• |M a M n ox», * «

4 •I

Q *

* »4

13 C*

Of * ,

a •« . > yiNi

ox «|

•• cd » nr at

• r>i

x ol » ^ o

UJ X CO ue

K * If OX« Q| C»X>

4t» « w m

o J

u « OJM Ol

X- •«** MOKa> at • o|

u mi a Man or M « i a.* X -« »* t- « ^ « * »-4 < J ry Ul

•H »^ S3

tu u« X M

1*2 !v r» :-*

••»

»I

ii

t -« f9 45

o

Ml

1

X| IM O' • OjW o •riM » • I oe» i -*» *-« «* ac • «t « o«

IT

«# <_> u« s

Ul fv

O V « r> o v«

41 W a > nt

» «v o -

W » • r> • » < .« »do • <N a an *. • «r Ul O *>

3 «\ t» n « • IM mi % o«v

»• •+ n ac or a « • •« w at o

2T • 3 IT ID *-« 1

t •-* v* I a »^ »- 41 »< a B t> < • =>

rl

2 ev. o • o »•-» r»

ac 0 o 4i a o

Z rw O * 0»H) «31

t oo X «• —1 »- •« m ac » a» « C3 >. Ul *>

Z' I'M o; •

I'M* • OC» X •«• fr- «• «V K'lai 41 C9 tf> Ul •**

' <M K: •

» » 4 * SO« • 4i r» .'JO r ' I <•

UO<J » o

a

• 41 •> • O . t ~» • «> •n «• r>

H * en»-* « oi»-t «> Of I a ca •j*, w ^ a u '_•>! • -^

WC9 O

ui;

o o

CM •

IM« 0C,Ofl« W 41»*- zloc« O; • • 0|« <• X,

CM *

oM «c* Q «-I

«/I •-< t> »-«•-« c» U C3 cj !<"

T I • • 31 • Ol

»- a ca or a u, a a 1

IV

•- 4i a

nuj M

4ix d

"I 4

« a •- X § aw ^

—.a C9 4

»- X uu Q *

no us < K or

• C3

m- « w)«t

32 <3

»r.

*

c» r«

[ac rt c» * » ojas X «u

C9

3

cv ->• 4> * x» • * » UIA • 'X M" ~4 ou.<

*+z *\ -« r < - ' ••>• I JN Q ^a a t»*» c* ^> !•*«»-

•-» ~ -•• J 41* u «X r X a

H Qfl. »-•« oi r> r* »- • X»

;«<; •-t • «= u. •• a • o

o « T» 4i 3 at x «. :» «> .^ 1 UJ 41 «-* p» <o ^ o - « - or • • • •

X 0« - <? or K o

a~ 4

Z CM a « a o x «J •^« X Q*V

ac a «a

ac • *

Ul J! « •4 41 «^ 44X <* ii w5

a

Jar a M • '» aJo *

W 1

a • Z OM o •*

Ho"*

»- K

sä S5r 3^1 5 MC *•"

9 3

I" M( «l

-j 1

ar,^1-«»

«V

xv

zov

x.x\

123

15 ^5

S^

Ul a

a«»n>

I IM * x a w4

•i'«4

«:3 «

•V

^3 «i 3

MUNENTX

k May 196U U1T6 TM-rjc-12 3/000/00

a 4. a

1» • ••»«.*«.»». 0|»-4 « r 9 «' . < • • ' M\ M 0 CiHAMr. *4 fM0 ' -» •» ^ t|Q« rw « • or Name 1 « -«<n •«> «n », r no« «Man •~l(i: 9 ivr r « r* an« m « • a o tf» f- «W«>»> (M« 4 1 •» < Ti K> r\ r- i> HNn« « w «> » . 1 .< m « in «j ' »

CM CM r-> n f> »O n »•» n n

o »«* '••••» »"»0 "4.0 .»0 .4

P» o • «* 00

.4 .-«• .4 .4 ,* .4 . « .« .« .4

0

yiVN«» r N K CJ r« H

()« C.l.lf o» e H0

Mo

1C

o er

0 z

Ü < a z in

u tf) z U D Ü

I <

x o

tr H u ~* u a.

Q Q

X Ui »- M! *-* u

u» Ui

Z M uf u

•-i o z Ui !>

a» *4 0 » CM «|o« oNM

• »4 ,4 »4 -4 .-, ~« .-* . • -4 .-•.

« «« .-« «> ' « a * •"> « i »< 0 #»j n K^ •-• 00» <o «o ha •> • « K> dn f4 r- «a * * » « «) t « r. •< « •'• 4 x n »>. C3« •no »4 CM «n n

4Bl«tM* 4>j CM AT» 4r O 49

m 41

3

n «»'im nlAi MCM 4JM

n« »v ,«n «q Ndonr *•• . • o •-

»4 « «> m

n n n »»»n m«M ^nn

0 0 0 n «•» »n 0 o- « 0 -*•* 4r 4M O 014» »> «Q 4» n rl « « rt '-> « KI*D »a •» 4M 0 «J « -N O «#•• M

f» r 4) »f. tf •• v « KS .-^ fM

4> 4> 4D 4> 4) 4> 4.J 4) 4D 4.1 • 4»»*»4-4.»4 *«•«»#«'•»•«•

o - 4 -

rv v4 o M v »"ST-» 43 nr>ip MJ ••> rtco n •-in»'. »H «- 0 »• 0

i-v c» M HO « wn CM «4 «4 i! 'JO»» <D o» •» i>«C M" O a 4- 0 r- «- »- •"» IT 42 « « r» ^»ot «4 -» 4' • > 4> a» 0 <34» •«OOOuC AON

I -M»fM w4

« * • «j • Hnin«o 0 • *> HNr aopj» O arv an ««0 •« BV »v o« *M • »^ at »« «o o» «• OD «-» • * 4 otia» m»-^ 0 qH « 0 r a»

010 <r n CM ^* f4H>if4^H

« •

•>« "• mi a» o o a»

r» «4

too » 0

» 0

M ••«•<•« •x io«> « m o uMm «^. ««•» o H*" «• •" *• * ax olr>«0 c*M • • •*;• «|^«« y mm P*- « 0 » -3 • o q 0 «a o »ni« 0*0 00

I w* wi *4 H «4 • 4 • • • • •! • • •

Ql

> «v» (ft m wv0 • • • 4 44 «I «C w^ « Of n» 4 » „ r« -4 ~* t~- r- H«t «4 ^N OIC^ 0i<> <* 0J « vn •») M

K««isaM4 *C3C3iO«4«««4i«4 a|«A «V» «V0 Win

•4 «« «4 «« «4 <F« «4

•-••••• »-4 0 O Öl art «4 M »V »O €T»iTJ » 0 «a- ,: O o •4 Haf\ •» 0 tt (Ml« * M •» r\ 1 N|4 9 H H,» 4>0 ao'in «

ITV; onO

O Of(V m 0 t»»

* « I^IM

* •) Ma» 0 .»* fU a«J rv • r HIM Ol "M

. - - - -

» • 0« 4- .-~ fs. « M r4 a» rvi 4 «3rO n»»>

• 1

IM(M(VW f\aicV (4 (SJ fvj rw • .••.«••*.

HiniNoirn« «< BMT ^4 a»-s 4> rv M N d (VN N r_4. om»o»-«o»43<»^ 4" J) <X) r- 'l jMfjO c-.r-.4D a M r) »it. fl 1». t»J^ »4fv • If»«* ^«JlOi»^»«« 00 r\j»r^ a>. o H fv) t^f)

"«. > -j • , M| « i% «O -v ft)

an*\»(v«nip>ari lointnm f»>"»>»^tO »•!.'*> KJrO»»>K> -....J.-...

* x a <r ^r ff «1 <t flow H«*>tf\ wKiitr» »4»o«\^» cTi^«fV'»afN'4"«>o ra*v rlHHH H^^ «4CWO* r4«4r4<4 »4 »-* »4 HWTV

»»> fO ••»>•»»•» fl] «fl •*» "> "» ••> .-i . . . i . -i ^l »•• »4 ^-: aH ^«

•O O 4» « 04900043

a?

Or

or o

O l

r o o

• a«

o ac Q

u a < M4 a? X or o • K o ij O X u

o« <vio4 or • «| • • r«0 4- 0- i>» «q« «4 HWN £ • *;« •>-

I - O O r-t «C 01 r4 f»| to a\;0 « *4 *«a|*4 ««I

aC O M O r4 Or ; .i

15 o » o a at

Ui I

«um r* 4> • 0 0 OVOJ0J r- c» BV

4> « 049 rN «

ON« 00 (*J0 « Ok NO «•-O» W\|

men «>• «4 H

«4»*

«2

« *•

«4« aO I C» rO 0 4OI 0 0 •4 H n o- 0»

iH! •-« -4

*« MM« • • • 4» 0 0 « f*..

€»*«••< «. O» »•>

O0» m

•4 »., c» a

* 4» 4 * -« H-4B-» «o •*•- — <a •» 43!<C fOi o -» r» r«i O 0irv ne »* u» 0 X« H43 (Ml ^ «i P« na

•< H»«H

•1;.1 • •

o» M ~» irV CM O 4 0 4- <3 * o

CM «M| CM CM» CM CM) CM • 4> • # «• •

4D Nil »A O In an ao « M |0 4> .^4 «HI CM Dai.» Ot^ O CM0 43 .-it M- 4» «D|CM •O CM n 0 0 *"|0 0 0 0 0O IS »v • O 0 M CM CM' CM CM- CM

- - • "i » 44 • « »

r\ »r> „--, 0 «r. 4-v, ^ ^ »r. ,f, n •», K» n »o »J>j»r> mn n

•" ***•!*•••- « r 1 1 ctxne«

n rl n 4 IT 4Dj 3D o o CM '-»-•-.«-' -4 r^r4 ^CMCMI riHrlrfrttiH H*<«41 •^ -^ an »O »-» ">l-, -» ^ m H r*H HH Wr. H«^«"* ocitocjt 43cr-0c>a

«4-44-W-4.**--* 00 04>00|04al0^

MUNENDC

k May 196k 4-177 TM-lÄ-323/OOO/OO (Page U-I78 Blank)

4.5.2,3.2 Fart 2, Differential Correction Output (not currently used)

1*.5.2.3.2.1 Section 1

This section contains the residuals printed in tabular form. The quantities

are:

1. sensor (STAT)

2. time (TIME)

3- range residual (RHO RES1D)

h> range rate residual (RODOT RESID)

5- right ascension residual (R.A. RESID)

6. declination residual (DECL RESID)

1, azimuth residual (AZIM RESID)

8. elevation residual (ELEV RESID)

An asterisk appears next to residuals which are rejected.

k.5«2.3.2.2 Section 2

This section contains corrections made to auxiliary quantities which are

translated by +he program to element corrections;

1. RMS value of residuals in position (SUM)

2. AM (DEL M-O-TIL)

3o A (l/a) (DELTA I/A)

h, Ac* (DELTA C*)

5. Ls* (DELTA 3")

6. Aa* (DELTA ALP'IA*)

7. A6* (DELT DELTA*)

1+.5.2.3.2.3 Secti_cn_^

This section contains the corrected elements and the position and velocity

coordinates (at t ) listed as fellows:

1. M (M-0-TLLDE)

2. l/a (ONE OVEP A)

3. P components (?X,PY,PZ)

h. Q components (QX-TILDE. QJC-TILDE, QZ-TILDE)

NEAR

4 May 1964 4-179 W4-LX-123/000/00

4.5.3 NEAR-EARTH CONIC - NEAR

4.5* 3*1 Purpose

The NEAR program computes possible trajectories for lunar flights and other

missions in which the probe remains within the Earth's sphere of influence-.

The powered flight phases are based on a configuration involving an initial

burn time, a circular intermediate parking orbit coasting phase and a final

burn time terminating in injection into the transfer conic. The transfer

conic solutions include escape trajectories of both elliptical and hyper-

bolic form depending upon the magnitude of the energy expended during the

final burning stage.

Given launch point, launch azimuth and arrival date, the program computes

launch time, injection point into the transfer conic, time of flight,

coast time and other trajectory properties.

4.5.3.2 Input - Schedule Tape Mode (Toggle 24 On)

Deck Column Posit ion Card Type

Schedule Tape

Number

Card

Punch

1

2 Job Card

3 Remarks Card

4 Program ID Card

17-19 RUN

25-31 NEARBBA

32-36 ,DATA

Deck Scaling Column Posit ion Factor Number Punch

5 F2.0 5-6 01 = Ca

F2.0 10-11 Last 2 digits of year of launch (optional)

F2.0 13-14 Month of launch (optional)

F2.0 16-17 Day of launch (optional)

NEAR

4 May 1964 4-180 TM-LX-123/OOO/OO

Deck Scaling Column Position Factor Number Punch

F2.0 5-6 02 = Card number

F2.0 10-11 Last 2 digits of year of arrival

F2.0 13-14 Month of arrival (optional)

F2.0 16-17 Day of arrival (optional)

F2.0 5-6 03 = Card number

F2.0 10-11 Time of flight (optional)

12 13-14 Number of arrival dates (optional)

F3-0 l6-l8 Minimum allowable coast time (optional)

F2.0 5-6 04 = Card number

F6.2 10-15 Initial launch azimuth

F5-1 17-21 Perigee distance (km.) (optional) (if given,

the program will compute eccentricity)

05 = Card number

Azimuth increment

Azimuth used to compute the energy term

(optional) (if 7777-, program assumes = 102 )

10

F2.0 5-6

F3.1 10-12

F5.1 14-18

F2.0 5-6

12 10-11

11 13

06 = Card number

NUsibcr of azimuth increments

1 = Use short coast time

2 = Use long coast time

3 = Use both coast times

F8.2 15-22 Distance from earth's center to injection into

transfer conic (meters) (optional) <

h May 196U 4-181

NEAR

TM-LX-12 3/000/00

Deck Scaling Position Factor

11

12

13

Ik

15

16

IT

F2.0

FT- k

F2.0

F8.3

F2.0

F8.3

F2.0

T8.h

F2.0

F8.1+

F2.0

F9.6

F2.0

FU.O

F2.0

F^.2

Column Number Punch

5-6 OT = Card number

10-l6 Angle between perigee and injection

5-6 08 = Card number

10-lT Time from launch to injection

5-6 09 = Card number

10-lT Time during final burn

5-6 10 = Card number

10-lT Angle from launch to injection into parking

orbit

5-6 11 = Card number

10-lT Angle made during final burn

5-6 12 = Card number

10-18 Inverse parking orbital rate (sec./deg.)

5-6 13 = Card number

10-13 Longitude of launch point (deg.)

15-l6 Longitude of launch point (min.)

18-21 Longitude of launch point (sec.)

NEAR

4 May 1964 4-l82 IM-LX-123/OOO/OO

Deck Scaling Column Position Factor Number Punch

16

19

20

21

F2.0

F4.0

F2.0

F4.2

F2.0

F3.0

F2.0

F4.2

F2.0

F3-0

5-6 14 = Card number

10-13 Latitude of launch point (deg.)

15-l6 Latitude of launch point (min.)

18-21 Latitude of launch point (sec.)

5-6 15 = Card number

10-12 Lunar longitude (deg.) (optional)

14-15 Lunar longitude (min.) (optional)

17-20 Lunar longitude (sec.) (optional)

5-6 l6 = Card number

10-12 Declination of outgoing asymptote (deg.)

(optional)

F2.0 14-15 Declination of outgoing asymptote (min.)

(optional)

F4.2 17-20 Declination of outgoing asymptote (sec.)

(optional)

F2.0 5-6 17 = Card number

F3.0 10-12 Greenwich hour angle at launch (deg.)

(optional)

F2.0 14-15 Greenwich hour angle at launch (min.)

(optional)

F4.2 17-20 Greenwich hour angle at launch (sec.)

(optional)

I k May 196k ^-183 TM-LX-123/OOO/OO

Deck Scaling Column Position Factor Number Punch

22

23

2k

F2.0 5-6 l8 = Card number

F2.0 10-11 Right ascension of outgoing asymptote

(hrs.) (optional)

F2.0 13-lU Right ascension of outgoing asymptote

(min.) (optional)

FU.2 16-19 Right ascension of outgoing asymptote

(sec.) (optional)

F2.0 5-6 19 = Card number

FT.6 10-l6 X-component of outgoing asymptote (optional)

F2.0 5-6 20 = Card number

FT-6 10-l6 Y-component of outgoing asymptote (optional)

25

F2.0 5-6 21 *s Curd number

FT.6 10-l6 Z-component of outgoing asymptote (optional)

NOTE: If the declination and righc ascension of the outgoing asymptote

are given, the X-, Y- and Z-components will be computed.

26

2T

F2.0 5-6 22 = Card number

F9-T 10-18 Energy term (km. /sec. ) (optional) (if TTTTT.,

the program will compute this value)

F2.0 5-6 23 = Card number

F6.6 10-15 Eccentricity (optional) (program computes

this if perigee distance is given)

NEAR

KEAR

k May 196h 4-184 TM-LX-123/000/00

Deck Scaling Column Position Factor Number Punch

28

F2.0 5-6 2k = Card number

F7.2 10-16 Semi-latus rectum (meters) (optional)

(unnecessary if eccentricity>1.0, energy

term> 0 or is to be calculated)

12 18-19 03 = Last input record indicator

29 End of Data Card

30 End of Job Card

31 End of Schedule Tape Card

32 Blank Card

4.5.3.3 Output

The program output printout shows the input items for a case followed by the

outputs. The input section contains 24 lines, one line corresponding to

each of the 24 input cards. The output section contains the following

quantities:

1. Components of S, the outgoing asymptote (SX, SY, SZ)

2. Declination and right ascension of the outgoing asymptote (DAO, RAO)

3. Earth moon distance at encounter (Rl)

4. Launcher latitude and longitude (LAT, LON) 2 2

5. Twice the total energy per unit mass, km. /sec. (C3)

6. Eccentricity and semi-latus rectum of the conic (ECC, PAR)

7» True anomaly at injection (TA)

8. Distance to perigee (RCA)

9. Inverse parking orbit rate (KPD)

10. Time of first and final burn (TLP,TFB)

11. First and final burn arcs (PLP, PFB)

12. Greenwich hour angle at encounter (GHA)

13' Lunar phase angle (LPH)

NEAR

k May 19ÖI 1+-185 TM-LX-12 3/000/00

14,

16,

11.

18,

19.

With

Longitude of the moon at encounter (LOM)

Distance to injection (RAD)

Injection velocity (km./sec.) and injection path angle (VEL, PTH)

Launch date - month, day, year (LAUNCH EATE)

Time of flight in hours (TF)

Arrival date - month, day, year, hours, minutes, seconds (ARRIVAL DATE)

each launch azimuth the following quantities are printed:

Launch azimuth (LNCfi AZMTH)

Launch time - hours, minutes, seconds GMT (LNCH TIME)

Time from launch %o injection in seconds (L-I TIME)

Injection latitude and longitude (INJ LAT, INJ LON)

Range along the earth's surface (RANGE)

Inject-or. right ascension and azimuth (INJ RT ASC, INJ AZMTH)

Injection time - hours, minutes, seconds, GMT (INJ TIME)

Parking orbit coast time (PO CST TIME)

Latitude and longitude of second stage ignition (ING 2 LAT, ING 2 LONG)

NEAR

1* May 19Ö» U-lS* TM-UC-12 3/000/00

.5 ^r>«>

« HOC z .;. . . . OOtOH a r«. -•> Z I «~> K> • > a« «i n Mv o> «< .•

•> l") f»)

•-t » «>

19 -* i f -« a i» * -1 W .« W w* »•

I» • • t i»

JO>O« »^ ir> r* * _»»>» m f> c* »*

•- o

^' «I C9 4 l>

Hi K-, a r\. at

»- r» kr «1 'X «

OX* »- r

o tv « ft «

•» c •© Ci

M •»> •"> n

|r> » f f.

-» x »* - * .

tMIVO*

m HO«

t» y* .| • • . T

t* t- r-» «

c

CJ>

3

5 X >-•

3

sis

ir « . «« •* • CJ ft N

r» «i «l z «-kft JU

•> WS •» — fM «•• 1

w4\em • •*! - w. . «.• >

<> I« o n « - •© rr

" a <• a v •

ft o«\ ^ kn •-# ©•I • - •jm w CO % »im «i

iv w IT- tr «» * »wl u * k\i m • K) K>

t> r »• • >» i» o *- k> «\ o* «*

|r « r or*

TI i* n to « « 2 • p» •••>* ;t»

I w ft. « •» «h

•-1 «• • c. sr «

r^ H ,< r4IX

->«« .r. . . . Z O c . r, ( j i> <J •« x

4{UUI OT fir J«

•» •- «o «t in r « • c

HHHOO

MO*»» r» « r» C9 a*\j » «4 rv Z rtln IT C <C •« (\i |ro « tr -o a

»-tjo *4 •

» <• m « »I • •

•|r-,OU

0 h Z

c a. UJ

J 0. 5 <

H c; r^ « ^ oo •« «> * *\

~J ? • • .. • • z o o> ^« ^ » o •- _ m >• » « •«

rM MC« H rt

o « <j nr —

-> K- rvj o «Mr- m z •< • • •- • •- »-« _» o o c^ .-. r>

(V r-t

f» <r e rv»

»••• X «3 w-> « ' o « » »-« r^ r- •r o- * _Ti- »o »H MOW

«r (O «• » »

o * *-« < O

»o i-« aOiO K>

2 1,1 O I o* r4 r* r»- t^ ^ ^-4 « ^ -> x\ _Jt»-

r- o

X »- c- c c> c r

X 3 a t_. O C3 CM

^MO cr> t > c ; < .

-J »* a t> C» «4 AM

4 »-• »-4 .H

•O o O OIM r~ o « f\ « If* f) Ot t>l Tl

Si .1 a

« « «. f » ir

• IT l«n -

I o O». r>*

VM •« x a CT

• • o »O ID C

o a o>l* en ^r- »o •© »^|o w-( o

It*

o "12 z o

z •«

»-« X

o rn • U Q «

a « o sou

U X

«.«.»- «•.•»••

§ «V I o

>5»o _i •« tr^ij a i

rw « rv o»

l <3 ' J »»O

f^ r^ r^ «J h*

•i j rf -j -.-

r- r* K) If IT •<) f. *•- «, J.

r- » O t\, »O "M t *-•

O *4 O » CM

c cv, r »» ir

»-• «c «:i «3 o c I , n m, u i i UI| • - • • • z %-*;es oaoo

I tr r> <:. ,. rw »-< -• ^«

ZMl.

•jap

<r« O •»

e> » ^ » » o|> •

« < • <1 .4

t

r«.

«>»«»•

rs.

u I-

Hom rt k* o -« • r> «> •<» r^ « « • o f« k • • I • « 'C . • »o tr\ -w* x'

•- ft -J« M JU »-

o «% •»

|v«Mft ^'

I» •*> r» »4 K»*»£f ft

Hß •«• m

w

? ft«« • «

k <A «4 o ... •nb

<• US «M •o •

0< X

»•« ft» m <1> «TO •*

*OlC3 |fc

O .'X •« •«• ft lO IV _»

*r-.»n * •-» r* w* •» Oft; .

• ok\j

or * l»-4 -ftiX w> ft. o \c >C 'CD

[r- o es (• » «=»•!

»-< « f «ft

!• •[••«I

»» '_> L» X WUJO <«,

->' oo.

'%J -o t> i» m a

o *> ui » «J ««

I • • -«si «i c i ^r

• tv X;

O1

XI a 3 |woa _*

k May 1964 4-187 QM-LX-123/OOO/OO (Page 4-188 Blank)

4.6 SPECIAL PURPOSE AREA

This section includes special purpose programs (DUPE, MAKETAPE. TELTYP,

WRTSENT, RESPLT, DUMP, RPTGEN, ICONDIS, TAPEOP, KISPRO, MESNO and TAPEGEN).

RESPLT

4 May 1964 4-189 TM-IX-123/OOO/OO

4.6.1 RESIDUAL PLOT - RESPLT

4.6.1.1 Purpose

The RESPLT program reduces observations against specified element sets and

outputs the residuals on punched cards which can be used in the EAI Data

Plotter.

4.6.1.2 Input - Schedule Tape Mode only (Toggle 24 On)

Deck Position Card Type

Column Number Punch

1 Schedule Tape Card

2 Job Card

3 Remarks Card

4 Program ID Card

1-6

9-14

IT

18

SPSJ0B

RESPLT

0 = Observation cards, S-file and E-file tape

inputs

1 = Observation cards, Element Set cards and

S-file tape inputs

2 = Observation cards, Element Number cards

and S-file and E-file tape inputs

3 = Observation cards, Sensor cards and

E-file tape inputs

4 = Observation cards, Element Set cards and

Sensor cards inputs

5 = Observation cards, Element Number cards,

Sensor cards, and E-file tape inputs

0 = Hardcopy and punched cards output

RBSPX/3

h May 1964 4-190 TM-LX-12 3/000/00

Deck Position Card Type

Column Number Punch

5 Data Cards:

a. Input Option 0:

(l) Observation cards

b. Input Option 1:

(1) Observation cards

(2) Element Set cards

c. Input Option 2:

(1) Observation cards

(2) Element Number cards

d. Input Option 3=

(1) Observation cards

(2) Sensor cards

e. Input Option h:

(1) Observation cards

(2) Element Set cards

(3) Sensor cards

f. Input Option 5*

(1) Observation cards

(2) Element Number cards

(3) Sensor cards

6 End of Case Card

7 End of Job Card

8 End of Schedule Tape Card

9 Blank Card

RESPLT

h May 1964 4-191 TM-LX-123/OOO/OO

4.6.1-3 Output

4.6.1.3.1 Printout

The printed output of RESPLT consists of reduced observations sorted by

revolution number. Quantities are:

1. Satellite number

2. Observation number

3. Revolution number

4. Time (min./lOO) since epoch

p. Vector magnitude (km.)

6. Revolution number (N/lOOO) since epoch

7. Element number

8. Association status

9. Sensor number

SATNO OBSNO 034 034 034 034 034 034 034 034 034 034 034 034 034

43334 43335 43336 43337 43338 43339 43340 433^1 43343 43344 433^ 43346 1*3347

REV

10731 10731 10731 10731 10731 10731 10731 10731 10731 10731 10731 10731 10731

DT(MIN) -.0012 -.0010 -.0010 -.0011 -.0010 -.0009 -.0009 -.0012 -.0010 -.0012 -.0011 -.0013 -.0012

VMAGN

48 48 52 48 41 43 5* 49 54

51 62 53

NREV .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007 .007

ELNO ASTAT 119 119 119 119 119 119 119 119 119 119 119 119 119

STA

039 039 039 039 039 039 039 039 039 039 039 039 039

SAMPLE PRINTOUT, RESPLT

RESPLT

h May 1964 4-192 TM-LX-123/OOO/OO

h.6.1.3.2 Punched Card;

The punched card output of the reduction is used as input to the data

plotter. The output consists of:

1. Stop card (to allow operator action)

2. Axes cards

3. Graph labeling cards (characters S, E, R, T)

h, Deta (satellite number, element number, epoch revolution number,

epoch time in days)

I

I 4 May 1964 4-193 TM-LX-12 3/OOO/CO

I

4.6.2 OTHER

The following programs in the Miscellaneous area are seldom used by the

analyst. A brief description of each program is given.

4.6.2.1 DUMP

The purpose of the DUMP program is to dump the contents of core memory, in

mnemonic and octal format, onto the system output tape. The DUMP program

can be initiated by a console interrupt or by manually executing a jump at

the computer console. In either case, the program is read in and operated

by EXECM0D1.

4.6.2.2 DUPE

The DUPE program provides the means for duplicating tapes in the B-2 System.

The program will duplicate a specified number of the blocks or until a

sentinel block on tape is reached. The program automatically rewinds both

tapes and checks the identification blocks before duplicating.

4.6.2.3 HISPRO

The purpose of the HISPRO program is to reduce the EMEWS historical data on

the system output tape to a readable formet.

The program will process the following types of EMEWS input messages and

indicate either test or real mode:

a. Individual impacts

b. Equipment status at sites 1, 2, and 3

c. Radar status at sites 1, 2, and 3

d. Threat summary

e. Manpan Threat summary

I

4 May 1964 4-194 TM-LX-123/000/00

4.6.2.4 ICONDIS

The purpose of the ICONDIS program is to produce a teletype tape of sub-

satellite tracks for input to the ICONORAMA display equipment in the NORAD

COC. The maximum number of satellites which can be displayed simultaneously

is twelve if the updating time interval is two or four minutes^ or eight if

the updating time interval is one minute.

The geographical background for the display is a Mercator projection with the

following limits:

78 north latitude, 69 south latitude with the east-west break of 60

east longitude. There is no overlap in longitude.

4.6.2.5 MAKETAFE

The MAKETAFE program produces, from cards, an input tape in a format acceptable

to the TELTYP program. The program has an option to break up the message into

90-line segments.

4.6.2.6 MESNO

The MESNO program types on the console typewriter the current message number

of the SEAIC tape and provides the operator with the option to change this

number via the typewriter.

4.6.2.7 RPTGEN

The RPTGEN program produces a hard copy report in a specified format from

input cards.

4.6.2.8 TAPEGEN

TAPEGEN is a utility program run under SYS (Philco 2000 operating system)

control to generate binary master tapes for the B-2 System. The program has

the following seven modes of operation:

a. Mode i - generates a new binary master from an RPL (Running Program

Language) tape..

% 4 May 1964 4-195 lM-LX-223/OOO/OO (Page 4-196 Blank)

b. Mode 2 - same as Mode 1 with the added feature of allowing octal

corrections to be inserted in the specified programs.

c. Mode 3 - updates the old binary master with new RFL programs.

d. Mode 4 - same as Mode 3 with the added feature of adding octal

corrections.

e. Mode 5 - updates the binary master with octals only.

f. Mode 6 - updates the old binary master by deleting all

program, specified by the operator on the console flexowriter.

g. Mode 7 - converts a Philco 2000-211 binary master to a 212 binary

master.

4.6.2-9 TAPEOP

The TAPEOP program provides the B-2 System with the following tape maintenance

capabilities.

a. Write a sentinel block

b. Rewind any system tape

c. Skip a specified number of blocks or to a sentinel block

d. Copy a specified number of blocks or to a sentinel block

e. Compare two tapes for a specified number of blocks or to a sentinel block

4.6.2.10 TELTYP

The TELTYP program is used to convert an output tape, written by other

programs such as MAKETAPE, to teletype format (Baudot code). The program

searches for a particular start sentinel and then converts all of the message

until an end sentinel is located. It then writes all of the converted data

back onto the system output tape for off-line processing.

4.6.2.11 WRTSENT

I The WRTSENT program provides the means for writing sentinel blocks on tapes

or rewinding tapes in the B-2 System.

* 4 May 1964 4-197 TM-UC-123/OOO/OO (Page 4-198 Blank)

4.7 1620 COMPUTER PROGRAMS

This section includes the 1620 programs used by the analyst (Jacchia,

King-Hele/Findley and Launch).

r

i

JACCHIA

k May 1964 4-199 TM-LX-I23/OOO/OO

4.7.1 JACCHIA II SATELLITE DECAY PREDICTION - JACCHIA

4.7.1.1 Purpose

The Jacchia program computes a predicted satellite decay revolution up to

100 revolutions after the input revolution. The computation may be

performed by either or both of two methods:

4.7.1.1.1 Method A uses an equation whose solution approaches zero as the

stepped revolution number in the equation approaches the decay revolution

of the satellite.

4.7-1.1.2 Method B is essentially a plotting method.

4.7.1.2 Input

4.7.1.2.1 Input Mode A (legal only using Method A)

Deck Column Position Card Type Number Punch

1 Satellite Number Card

1-10 Satellite number (right adjust)

2 Data Card

1-10 x.xxxxxxxx (days) = Period

11-20 xxxxxxxx.x = Revolution number

3 Data Card 2: same as Data Card 1

4. Data Card 3: same as Data Card 2

NOTE: Data cards must be in ascending order by revolution number.

4.7.1.2.2 Input Mode B

Mode B uses one Satellite Number card (see Mode A format) and from 6 to 100

Data Cards (see Mode A format). Data Cards must be in ascending order by

revolution number.

JACCHIA

h May 1964 4-200 TM-U-123/OOO/OO

if. 7.1.2. 3 Input Mode C

Mode C requires from 6 to 100 seven-card element sets. 'The element sets

must be in ascending order by element set number.

4.7.1.3 Toggle Switch Settings

Switch Position Input Method

1 On A only A only

1 Off. Program tests switch 2

2 On B B

2 Off C B

3 On see SW 2 A in addition to B

3 Off: No effect

k On: Input, data not printed on typewriter

4 Off: Input data printed on typewriter

4.8.1.U Output

The printed output consists of the following information:

1. Satellite number

2. Number of input points (Method B)

3- Period in days and revolution number (input data)

4. Decay revolution

I

I

JACCHIA

k May 1964 4-201 (Page 4-202 Blank)

TM-LX-123/OOO/OO

SAMPLE PRINTOUT, JACCHIA II

„Satellite number

number of points

Rev J. — 713

.06293789

.. 06290442

.O6280657

,06264376

.06257386

-O624C596

- 06240441

.06220669

,06202944

.061T7842

.O6I643O3

7-0

28.c

85.0

191.0

235.0

300.0

31^.0

393-0

455.0

512.0

535*0

DECAY ON THIS REV -

.06293789 7.0

.O6257386 2 35-C

.06164303 535.0

DECAY ON THIS REV -

> Method B

591.0

Method A, points selected by the program

601.0

r k May 196k 4-203 (Page 4-204 Blank)

KING-HELE

TM-LX-12 3/000/00

r

4.7.2 KING-HELE/FINDLEY DECAY PREDICTION

4.7.2.1 Purpose

The King-Hele and Findley programs both compute a predicted satellite decay

day using the same input but different formulas. The two programs are run

together.

4.7.2.2 Input

One seven-card element set is the only input required.

4.7.2.3 Output

The printout consists of the following quantities:

1. Satellite number

2. Element set number

3. Predicted day of decay from January 1, and day and year if before 3

years. The output contains both King-Hele and Findley methods.

SAMPLE PRINTOUT, KING/HELE FINDLEY

DECAY PREDICTIONS

DAYS FROM JAN 1 DAY AND YEAR,-IF BEFORE 3 YEARS

SAT EL KING HELE FINDLEY KING HELE FINDLEY

713 11 29 25 29 1964 25 1964

i

1620 LAUNCH

k May 1961* 4-205 TM-LX-123/OOO/OO

4.7-3 1620 LAUNCH

4.7.3•1 Purpose

The 1620 Lauren program computes a set of nominal elements given nominal

input data.

4.7.3.2 Input

Deck Column Position Card Type Number Punch

1 Parameter Card 1

1-3 Satellite number

4-6 Element. Set number

9-20 Satellite name

40-50 Eccentricity

51-64 Inclination

2 Parameter Card 2

1-9 Day of launch

10 0 = Launch direction south

1 - Launch direction north

11-24 Anomalistic period

25-36 Time (sec.) from lift-off to injection

37-50 Latitude of injection (4 is north and - is

south)

51-64 Longitude of injection (+ is west and - is

east)

65-78 Perigee (ir earth radii)

1620 LAUNCH

h May 196i; 4-206 Tft-LX-123/000/00

4.7-3-3 Output

The printout of the program is the same as the punched card output, that

is, a standard T-card element set. L , C , and C are omitted. Specifically

the quantities printed are:

1. Satellite number.

2. Element set number.

3« Satellite name.

k. Epoch revolution (o).

5- Eccentricity, e.

6. Inclination, i.

7. Epoch year (always current year).

8. Epoch time. T . o 9. Anomalistic period, P (days/rev). a

10. Right ascension of node, Q (deg.). ^

11. Argument of perigee cu (deg.).

12. Perigee distance (earth radii).

13- Change in right ascension, Cl (deg./day).

Ik. Change in argument of perigee, w (deg./day).

15. Semi-major axis, a (earth radii).

16. Nodal period, P (days/rev).

IT« Bulletin expiration time, always current year, first month,

first day.

l8. Ele me nt card numb e r s.

k May 1964 4-207 (Page 4-208 Blank)

1620 LAUNCH

TM-LX-12 3/OOO/OO

SAMPLE PRINTOUT 1620 LAUNCH

I

Satellite no.

—"Element set no.

•Card No.

1—Satellite name

I—Epoch Year

SOI 0 1 SAMPLE 1

SOI 0 2 1964 (Pa)

soi 0 3

S01 0 4

SOI 0 5

soi 0 6

SOI 0 7

.06265722

(a) 1.044662

(Epoch rev) (e)

0.0155 x (t0)

41.97791 (O)

214.67115

(ft) , -2.92204

M 155.14981

W , -1.77324

(Pn) .O6266655

(BLTN Date) 2040101

(i) 70.0

(q) 1.02847401

E

E

E

E

E

E

E

#

r

*

k May 1964 4-209 TM-LX-123/OOO/OO (Page 4-210 Blank)

4.8 STANDARD SYSTEM INFORMATION

This section includes the following standard items of system information:

a. OCS Sequences

b. Schedule Tape Operation - card and tape requirements

c. Observation Card

d. Satellite Number Card

e. Sensor File Card

f. Element Set File Cards

g. Acquisition File Card

h. Information File Cards

i. Communication File Cards

j. SEAI File Deletion Card

4 May 1964 4-211 (Page 4-2:2 Blank)

OCS SEQ

TM-LX- 22 3/000/00

OCS Number:

Toggle Control

Programs:

0CS4 0CS5 (Zics6

4-Up 5-Up 6-Up

ORCON ORCON ORCON

RASSN RASSN

SGPDC

4.8.1 OCS Sequence

4.8.1.1 Group 1: Must also have accompanying indication as to source of

observation input,

jfcsi** 0CS2 0CS3

2-Up 3-Up

ORCON ORCON

RASSN RASSN

SGPDC SGPDC

BLTNSGP ELTNSGP

GLASGP

4.8.1.2 Group 2: R Tape must be mounted prior to initiation of sequence.

OCS Number: 0CST 0CS8 0CS9 0CS1O 0CS11**

Toggle Control: T-Up 8-Up 9-Up 10-Up

Programs: RASSN RASSN RASSN RASSN

SGPDC SGPDC SGPDC

BLTNSGP BLTNSGP

GLASGP

4.8.1.3 Group 3: After initiation, Executive program will request a table

of satellite numbers (SATTB) to be entered.

0CS12 0CS13 0CS14 0CS15** 0CS16 0CS1T

12-Up 13-Up 14-Up

SGPDC SGPDC SGPDC

BLTNSGP BLTNSGP

GLASGP

OCS Number:

Toggle Control:

Programs:

l6-Up 17-Up

BLTNSGP BLTNSGP

GLASGP

** OCS Number: 0CS18

Toggle Control:

Pi ograms: GLASGP

JÖCS19

18-Up

0CS2O** 0CS21**

**currently not used.

SCHED TAPE

4 May 1964 4-213 TM-IX-12 3/000/00

4.8.2 Schedule Tape Operation

4.8.2.1 Standard Card Formats

Card Type

Schedule Tape Card

Job Card

Column Number

1-8

9

8o

17-19

25

Punch

TO SCHTP

11, 8 and 2 = * = end of block

J = card type

J0B

1 = first schedule tape program run

2 = second schedul tape program run

etc.

Remarks Card (optional)

17-19 REM

Program I.D. Card (see program)

Parameter Card (see program)

Data Cards (see program)

End of Case Card (optional)

1-8

9

8o

End of Data Card (optional)

17-23

End of Job

1-8 END0FJ0B

END CASE

11, 8 and 2 = * = end of block

J = card type

ENDDATA

SCHED TAPE

4 May 1964 4-214 TM-IÄ-12 3/000/00

Column Card Type Number Punch

9 11, 8 and 2 = * = end of block

80 J = card type

End of Schedule Tape

1-8 ENDSCHEB

9 11, 8 ana 2 = * = end of block

80 J = card type

Blank card

4.8.2.2 Deck Format

10

9 / L ank flnrri

7

8 iBnfl nf SebfiflJto

fend nf Job h |End of Case/Data

i £

6

2 .' Remarks

Program ID

x JS. Schedule Tape

3

4.8.2.3 Input Tape Requirements

See Figure 4-1

Program

Logical Tape Unit ID

ID

0 1

2 3

k 5

6 T

8 9

! 10

U

12

BLTNSGP

X X

X X

BNSCHED

X X

X

X EsPÖD

6LA&5P

X X

X X

GRNTRK

Input

X X

HELI

Ö In

put

X X

EPHH

4ERI

Ö (XYZLA)

EPHQ4ERIS

10ANULE

^U B

UKA

A

X X

T

IOHG

X X

X X

I ORF

X X

X X

LAP

Blank

X X

X LOCVEC

Input

X X

X X

MUNENDC Input

X EPHEMERlS

SCRAM

SCRATCH

SCRATCH

X NEARBBA Input

3PHB

4ERI

S X

OBSERVE FANCARDS X

X X

TO SCRA

TO SCRA

JO SRADUN

X OBSSEP

X fOR TAPE

TO SCRA

(Hi-pri)

TO SCRA

(Lo-pri)

PSR

X X

X TO SCRA

X RASÖ

M X

TO SEAI1

(SRCHEK)

X fOR

TAPE 70 ÖR

ADU

(SRTMRG)

TO SCRA 70 SR

ADU*

X

REDUCT

Input

X X

X STELTAPE

SCRATCH

*

RESPLT

X X

X X

ROC

Input

X X

X TO SCRA

X SEAI

Input

X SCRATCH/

old

70 SEAI1

X

lev

X

SGPDC

X

i TO SEAI1

(backup^

X TO SRADU

TO SCRA

X

SPIRDECI

spvm

c X

X X

TO SRADU

TO WEIGH1

X r

SYSB

ULL

input

X

X X

70 S

CRA

X

XRQADS

X X

X X

XYZLA

Input

X X

Blank/

EPHEMERIE

Blank

X

NO

TE:

T

ape

#1 -

TOB

INM

ST,

Tap

e #2

=

TO

SCH

TP,

T

ape

jfb

= TO

SE

AI1

, T

ape

#1

1

= T0

OU

TPU

T

Fig

ure

4-1

In

itia

l T

ape

Set

up

3

'<

»-0

03 C\v

n

03

as

i O

o

o

o~

o

CO

w

k.8.3 Observation Card Format

Column Card Type Number Punch

OBS CARD

4 May 1964 4-217 TM-LX-123/000/00

Observation Card

1-3 Satellite number. Column 1 contains a

minus sign if this is a classified ob-

servation; + or - are not allowed o o

4-5 Equipment Type

6-9 Sensor Number

10 Accuracy or Signal Strength

11-15 Date

16-24 Time (Z)

25-30 Elevation/declination. Column 2; can

be overpunched + or -.

31-37 Azimuth/right ascension. Column 31 can

be overpunched + or -.*

3S-UU Slant range (km.)

4.5-53 Range rate (kin./sec. ) with implied

decimal point between columns 46 and 47;

or f'iaximum frequency shift (cycles/sec. )

with implied decimal point between

columns 52 and 53«

* A minus overpunch in col. 31 indicates cols- 25-30 and 31-37 are declination

and right ascension respectively.

OBS CARD

May 196k 4-218 fnri TM-UC-323/000/00

Card Type Col'.jmn Nunber

5^

Punch

0, Blank = Range rate in cols. ^5-53

1 = Maximum frequency shift in cols.

1*5-53.

Brightness at observation time (see

paragraph k.8.3*2)

Max irr. \n brightness

Minimum brightness

Time interval of brightness

Date or line number

Message number

Equinox (see paragraph h.8.3«3)

Observation number (assigned by 0RC0N)

Switch indicator used by manual system

Card type (code type = Any numeric be-

tween 0-9) identifies an Observation

Card. 0 = Unknown, 1-9 coded accord-

ing to the Association Status as deter-

mined in RASSN.

I.8.3.I Column 10: Accuracy

Either accuracy or signal strength may be indicated in column 10.

If entry in columns k and 5 is 31 ör greater, column 10 contains signal

strength. If entry is 30 or less, column 10 contains accuracy.

33-57

58-59

60-61

62-63

6^-65

66-69

TO

73-78

79

80

OBS CARD

May 1964 -219 TM-LX-123/000/00

Code Figure

0

Accurac" Q-i <T ignal Strength

k

Signal weak, results

poor.

Signal questionable.

Normal observations made under fair Signal strength good,

conditions. reliable measurement.

Observations slightly under par due Signal fair.

to outside interference (e.g. some

clouds, reduced visibility).

Observations only poor due to out-

side interference.

Only estimates possible (malfunction

of instrument. Too short time of

object seeing).

Doubtful observations, unable to

verify either object or instrument

behaviorc Observations should be

considered only as tentative«

Ue8o,2 Columns 55-63 Cross Section, Frequency - for manual runs only

The block containing columns 55 through 63 is a dual purpose block where

cross section and frequency, or magnitude and time interval are indicated.

In order to specify cross section ana frequency, a minus is used in column 5$.

No sign is used in column 58 when this block contains magnitude and time

interval

Cross section, given in square meters, is listed in columns 55 through 57«

To indicate less than one square meter cross section, use appropriate numbers

and a minus in column. 55» thus in effect, putting, a decimal point before

column 55- For larger values where three digits would not be sufficient,

use a plus in column 55 to represent ten times the indicated value (adding

a zero to the value listed).

OBS CARD

h May 19#+ 4-220 OW-LX-123/OOO/OO

Frequency in megacycles, is listed in columns 58 through 63 with the decimal

point understood to be located between columns 60 and 6l. In rare cases it

might be desirable to increase the range of frequency given either side of

the decimal point. To do this, use a minus in column 63 to move the point

one place to the left, or a plus in column 63 to move the point one place to

the right.

4.8.3.3 Column 70. Equinox

Column 70 contains year of Equinox as specified by the following:

0 = year of date

1 = 1900

2 = 1925

3 = 1950

k = 1975

5 = 2000

6 = 1850

7 = 1855

8 = 1875

9 = to list actual year, if not provided above, list last two digits

of year in columns 71 and '[2 and use a minus in column 70 for 18

and a plus in column 70 for 19- Example: Equinox of I961 would

contain "+6i" in columns 70, 71, and 72.

SAT NO CAFD

h May 1964 4-221 IM-LX-12 3/000/00

(Page 4-222 Blank)

4.8.4 Satellite Number Card Format

Column Card Type Number Punch

Satellite Number Card

1-8 Satellite Number (rt. adj.)

NOTE: Cols. 1-8 may be repeated, once for each satellite, up through

col. 72.

80 R = Card type

V

SENSOR CARD

( k May 1964 4- 223

(Page 4-224 Blank)

TM-LX-123/OOO/OO

4.8.5 Sensor File Card Format

Column Card Type Number Punch

Sensor File Card

1-4 Sensor Number

5-11 0° (+N) = lat

between sols. 7-8)

12-19 X (+W) = longitude (decimal assumed

between cols, 1.5-16)

20-25 H (meters) = altitude (decimal assumed

after col. 25)

33 Classification (U, C, S)

37-5^- Location (descriptive)

60-76 Remarks

79 # = this sensor is in S-file

80 S = Card type

ELEMENT 7 CARD

k May 19& 4-225 TM-LX-12 3/000/00

h.8.6 Element Set File Card Formats

4.8.6.1 Seven-Card Element Set

Card Type

Element Card 1

Element Card 2

Column Number

1-3

k-6

8

9-18

23-36

37-50

51-614

80

1-3

k-6

8

9-12

23-36

80

Punch

Satellite number (rt. adj.)

Element set number (rt. adj.)

1 = Card number

Satellite name for Element File Update

N = Epoch revolution

e = Eccentricity

i - Inclination (degrees)

Card type (Code type = E, F, G, or H):

E = Nodal Elements

F = Nodal Elements from Lockheed

G = Nodal Elements from NASA

H = Nodal Elements from N M

Satellite Number (rt. adj.)

Element set number

2 = Card number

Year of T o T = Time of Epoch (day and fraction

of days in year)

Card Type (Code type = E, F, G, or H):

E = Nodal Elements

F = Nodal Elements from Lockheed

G = Nodal Elements from NASA

H = Nodal Elements from N M

ELEMENT 7 CARD

h May 196h 4-226 TM- IX-123/000/00

Card Type

Element Card 3

Element Card k

Column Number Punch

1-3 Satellite number (rt. adj.)

k-G Element set number (rt. adj.)

8 3 = Card number

9 -22 P. = Anomalistic Period at Epoch (days/

rev.)

23-36 f* - Right Ascension of ascending node

(deg.)

37-50 jo - Argument of Perigee (deg.)

5.I-6U Q - Perigee (earth radii)

80 Card type (Code type = E, F, G, or H):

E = Nodal Elements

F = Nodal Elements from Lockheed

G = Nodal Elements from NASA

H = Nodal Elements from N M

1-3 Satellite number (rt. adj.)

h-6 Element set number (rt. adj.)

8 k = Card number

9-22 C = Rate of change of period in days/

(rev.)

23-36 '< = Time derivative of Right Ascen-

sion of ascending node (deg./day)

37-50 i = Time derivative of Argument of

Perigee (deg./day)

80 Card type (Code type = E, F, G, or H):

E = Nodal Elements

F - Nodal Elements from Lockheed

G - Nodal Elements from NASA

H = Nodal Elements from N M

k May 1964 4-227

EiaffiHT 7 CARD

TM-DC-12 3/000/00

Card Type

Element Card 5

Element Card 6

Element Card 7

Column Number

1-3

4-6

3

80

1-3

4-6

8

9-2*

23-36

37-50

51-64

80

1-3

4-6

8

23-29

Punch

Satellite number (rt. adj.)

Element set number (rt. adj.)

5 = Card number

Card type (Code type = E, F, G, or H):

E = Nodal Elements

F = Nodal Elements from Lockheed

G = Nodal Elements from NASA.

H = Nodal Elements from N M

Satellite number (rt. adj.)

Element set number (rt. adj.)

6 = Card number

a = Semi-major axis (earth radii)

P = Nodal period (days/rev.) rt

C = Rate of change of nodal period 2

in days/(rev.)

C = Phase angle coefficient (optional)

Card type (Code type = E, F, G, or H):

E = Nodal Elements

F = Nodal Elements from Lockheed

G = Nodal Elements from NASA

H = Nodal Elements from N M

Satellite number (rt. adj.)

Element set number (rt. adj.)

7 = Card number

Initial Revolution, decimal may be

punched in column 29

ELEMENT 7 CARD

k May 1964 4-228 TM-LX-123/000/00

Card Type

7 (Cont'd)

Column Number

30-36

37-50

51-58

59-66

67

Punch

Final Revolution, decimal may be

punched in column 36

YMMDDHHMMSS.SS = Expiration date of

Bulletin

XXXXX.XX = RMS

Number of observations used in obtain-

ing RMS

Blank or 0 = Correct all elements

1 = Do not correct the inclincation

2 = Do not correct the drag term

3 = Do not correct inclination or

drag term

h - Correct time equation only

8 = Do not rerun if drag term becomes

positive

9 = Do not correct the inclination or

rerun if drag term becomes

positive

+ = New epoch is time of last accept-

able residual. Initial revolution

of the new bulletin is the revolu-

tion which the satellite is on at

the time of program run. New

bulletin time = operational time

of old bulletin, which stops at

time of program run.

- = New epoch is time of last accept-

able residual. Initial revolution

of new bulletin is the final rev.

ELEMENT 7 CARD

k May 1964 4-229 TM-LX-123/OOO/OO

Column Card Type Number Punch

minus 1 of old bulletin. New bulle-

tin time = 4/3 old bulletin.

E = Used only when elements are good but

bulletin is expiring or epoch is

greater than 100 days.

NOTE: +, -, or E used only for OCS runs.

ELEMENT 4 CARD

4 May 1964 4-230 m-LX-12 3/000/00

.86.2 Four-C'-rd Element Set

Card Type

Element Card 0

Column Number

4-6

8

9-11

13-14

16-24

26-28

30-31

32

Punch

0 = Card number

Blank = SPADATS number

4-9 = SPASUR number used prior to

SPADATS number

Satellite number

Blank = SPADATS elements

9 = SPASUR elements

Element Set number

Last two digits of year

Greek letter designator

Piece number

US = United States"

SR = Russia

FR = France

UK = England

CA = Canada

JA = Japan

0 = Unknown

1 = Scientific

2 = Weather

3 = Navigation

4 = Communications

5 = Manned

Country of Origin

Functional Type

ELEMENT h CARD

h May 196k 4-231 IM-lÄ-123/OOO/OO

Column Card Type Number Punch

33 0 = Silent

1 = Transmitting

2 = Rocket body silent

3 = Rocket body transmitting

h = Metal or other fragment

9 = Unclassified elements of all foreign

launched vehicles

35-36 Last two digits of epoch year

38-39 Month of epoch

1+1-^2 Day of epoch

kk-k6 Bulletin number

48-^9 Month of bulletin issue

51-52 Bay of bulletin issue

5I4-56 Number A revolutions covered by

bulletin

Element Card 1

1 1 = Card number

2-12 Sam- as cols» 2-12, Card number 0

13-26 xxxxx.xxxxxxxx = Modified Julian Day of

epoch

28-38 xx.xxxxxxxx (e.r.) = a, semi-major axis

iiO-50 +.XXXXXX+XX (e.r./clay) = da/dt, the first

time derivative

of a

ELEMENT k CARD

h May I96U •'1-232 m-Lx-12 3/000/00

Card Type

Element Card 2

Element Card 3

Column Number

52-62

6k-66

l

2-12

13-20

22-29

31-38

ko-kj

1+9-55

57-62

6k-66

1

2-12

13-20

22-29

Punch

2 2 +.xxxxxx+xx (e.r./day/day) = d a/dt ,

the second

time deri-

vative of a

Check Sum - the arLthmetic sum of digits

in each line, plus one for

each minus sign

2 = Card number

Same as cols. 2-12, Card number 0

xxx.xxxx = Inclination

xxx.xxxx = Argument of Perigee

xxx.xxxx = Right Ascension of the

ascending node

.xxxxxxx. = Eccentricity

xxxx.xx (min.) = Anomalistic Period

xxxxxx (km.) = Height of Perigee above

Earth's Equatorial Radius

Check Sum

3 = Card number

Same as cols. 2-12, Card number 0

xxx.xxxx = Mean longitude

+XX0XXXX (deg„/day) =du>/dt, first

time derivative

of the Argument

of Perigee

4 May 1964 ^-233

ELEMENT 4 CARD

TM-LX-^ 3/000/00

Card Type

3 (Cont'd)

Column Number

31-38

40-47

49-55

57-62

64-66

Punch

+XX.XXXX (deg./day) = dp/dt, first

time derivative

of the Right

Ascension of the

ascending i ode

+.XXX+XX (per day) = de/dt, first time

derivative of eccen-

tricity

+.XXXXX (min./day) = dP /dt, first time

derivative of the

Anomalistic Period

Revolutions from launch

Check sum

ELEMENT HM CARD

4 May 1964 4-231* TM-LX-123/000/00

4.8.6.3 N M Element Set

Card Type

Element Card 1

Column K*. Ji>er

1-12

13-21+

25-36

37-^8

Punch

t = Initial time point of integration

(min.), (floatingpoint)

A t = Integration time step interval

(min.), (floatingpoint)

tf = Final time point to "be integrated

(min.), (floating point)

d = The caliber or reference diameter

of the vehicle (meters), (floating

point)

49-60 m = The weight of the vehicle (kilo-

grams), (floating point)

79 1 = Card number (not used in manual

programs)

80 Card type (not used in manual prograns)

NOTE: Floating point numbers are given in the format: _+.xxxxxxx+xx

Element Card 2

1-12

13-24

25-36

37-^8

49-60

L - mean longitude at initial time o

(radians), (floating point)

axN, (floating point)

a N, (floating point)

h = x-component of angular momentum,

(floating point)

y-component of a:

(floating point)

h = y-component of angular momentum, 1/

ELEMENT m CARD

k May 196k (Page ^-236 Blank)

m- Lx-12 3/000/00

Card Type

2 (Cont'd)

Column Number

61-72

79

80

Punch.

hr = z-component of angular momentum,

(floating point)

2 = Card number (not used in manual

programs)

Card type (not used in manual programs)

MOTE: Floating point numbers are given in the format: +.xxxxxxx+xx

ACQ CARD

4 May 1964 4-237 TM-LX-I23/OOO/0O

4.6.7 Acquisition File Card Format

Card Type

Acquisition File Card

Column Number

1-3

15-18

20-24

26-1 ju

32-34

36

37

38-42

43-45

46-48

Punch

Satellite number (rt. adj.)

Element set number (rt. adj.)

Sensor number (rt. adj.)

Initial revolution = first revolution

for which Look

Angles are com-

puted

Final revolution = last revolution for

which Look Angles are

computed

Grid size = interval between successive

Look Angles (min.)

1 a Look Angles are desired for visual

passes

0 = Look Angles are desired for all

passes, whether visual or not

0 = Short output format

1 = Long output format (includes sun's

elevation and illumination)

Maximum range that the sensor can read

(km.)

Minimum elevation that the sensor can

read (deg.)

Maximum elevation that the sensor can

read (deg.)

ACQ CARD

k May 1964 4-238 TM-LX-12 3/OOO/OO

Column Card Type Number Punch

U9-51 Minimum azimuth that the sensor can

read (deg.)

52-5U Maximum azimuth that the sensor can

read (deg.)

55 0 = Generate all-points look angles

(rise to set)

3 = Generate CPA (i.e., generate first,

last, and point of closest approach'

look angles

k = Generate BAKER-NUNN look angles

6 = Generate all points-scheduling

(i.e., write Look Angles on Schedule

Type)

9 = Generate CPA-scheduling

56 1 --- Hardcopy and TTY output

0 = TTY outputs

57 C-type Output Coordinates (see Figure k<

80 A » Card type

INFO CARD

h May Y)6h ^-239 TM-LX-123/OOö/GO

U.8.8 Information File Card Format

Card Type

Information Card 1

*)

le

t-3)

Information Card 2

Column Number

5 6-8

9-10

11-12

11+

17-21+

25-U0

hi-kz

^5 J+T-U8

»»•9-72

75-77

78-79 80

1-8

9-16

17-3-

Punch

0 = Geocentric elements in cols. 51-55

1 = Cols. 51-55 blank

2 = Heliocentric elements in cols. 51-55

3 = Barycentric elements in cols. 51-55

Classification (U, C, S)

Satellite Number (rt. ad,).)

Last two digits of year of launch

Greek .letter-number designator: 01 = a ,

etc.

Component no. A-Z

Satellite name - alphanumeric

Common name

Launch day

Launch month

Launch yea: (last 2 digits)

Launch site

SPADATS number

01 = Card number

I = Card type

Booster country

Payload country

Mission or Description

Weight (kg.)

#

INFO CARD

k May 1964 4-240 TM-LX-12 3/000/00

Card Type

Information Card 3

Information Card 4

Column Number Punch

4l-48 Shape

49-56 Length (meters)

57-64 Height (meters)

6S-72 Width (meters)

75-77 Satellite number (rt. adj.)

78-79 02 = Carl number

80 I = Card type

1-3 Diameter (meters)

25-32 M = Radar Cross Section

4l~56 Type Transmission

57-bl Tumbling date

62-64 Tumbling rate (rev/min)

75-77 Satellite number (rt. adj.)

78-79 03 = Card number

8ö I - Card type

l-l6 Stabilization

17-24 Maneuver characteristics

25~32 xxxxxxx = Transmitting frequency

NOTE: Cols. 25-32 may be repeated, once for each frequency, up through

col. 64.

75-77 Satellite number (rt. adj.)

78-79 04 = Card number

80 I = Card type

INFO CARD

h May 1961+ 4-241 •-LX-12 3/000/00

Column Card Type Number Punch

Information Card 5

1-8 Anomalistic Period (days)

9-16 Inclination

17-24 Apogee

25-32 Perigee

33-^0 Eccentricity

75-77 Satellite number (rt. adj.)

78-79 05 = Card number

80 I = Card type

Information Card 6

21 Classification

25-26 Country code (US, SR, JA, UK, CA)

31-32 Box score code

U. S. EARTH PAYLOAD 00

U. S. EARTH DEBRIS 01

U. S. SPACE PAYLOAD 02

U. S. SPACE DEBRIS 03

USSR EARTH PAYLOAD 04

USSR EARTH DEBRIS 05

USSR SPACE PAYLOAD 06

USSR SPACE DEBRIS 07

U. K. EARTH PAYLOAD 08

U. K. EARTH DEBRIS 09

U. K. SPACE PAYLOAD 10

U. K. SPACE DEBRIS 11

OTHER EARTH PAYLOAD 12

OTHER EARTH DEBRIS 13

OTHER SPACE PAYLOAD 14

OTHER SPACE DEBRIS 15

INFO CARD

h May 1964 1+-242 TM-LX-12 3/000/00

Card Type

Information Card 7

Column Number

75-77

78-79

30

25-72

75-77

78-79

80

Punch

Satellite number (rt. adj.)

06 = Card number

I = Card type

Address codes (zero prior to 3 letter/

number codes) e.g. OSCA, 0659

Satellite number (rt. adj.)

07 - Card number

I = Card type

COMM CARD

k May 1964 4-243 TM-LX-12 3/000/00

4.8.9 Communication File Card Format

Card Type

Communication Card 1

Column Number

1-4

5

6

7

8

9-15

16

17-64

73-79

80

Punch

Sensor number (rt. adj.)

1 - Second card follows

0, Blank = No second card

0 - Unclassified

1 - Unclassified/EFTO

2 - Confidential

3 - Confidential/Noforn

4 - Secret

5 - Secret/Noforn

R - Routine

P - Priority

0 - Immediate

Z - Flash

A - Aircomnet

R - 1 Aero

S - SSO

Unclassified routing indicator (ift. adj.)

"From" line indicator:

0 = NORAD SPADATS

1=1 Aero

5 = SSO CONAD

"To" line

Classified routing indicator (ift. adj.)

C = Card type

COMM CARD

4 May 1964 4-244 TM-LX-123/OOO/OO

Column Card Type Number Punch

Communication Card 3 (for information and pass lines only)

1-40 Information line, including routing

indicator (lft. adj.)

41-72 Pass line

80 C = Card type

SEAI DELETE CARD

4 May 1964 4-245 (Page 4-246 Blank)

TM-LX-123/000/00

4.8.10 SEAI File Deletion Card Format

Card Type Column Number

SEAI File Deletion Card

1

2-5

6-8

80

Punch

D = Card type

Satellite Number (rt. adj.)

Sensor Number

Card type (S, E, A, or I)

1 July 1964 5-1 lM-LX-123/OOO/OQA

(Page 5-2 Blank)

Section 5

APPENDICES

The following information is included in the Appendices section:

a. Forms

b. Miscellaneous - constants, conversion factors, charts, etc.

I c. Observation formats.

I d. Glossary

1 July 1964 5-3 1M-LX-123/000/00A (Page 5-4 Blank)

5.1 POFMS

The following 1st Aerospace Squadron forms are used by the analyst:

a. Analyst Launch Checklist (Page 5-5)

b. Bulletin Input Data (Page 5-6)

c. Data Request and Routing Sheet (Page 5-7)

d. Least Squares Points (Page 5-8)

e. Look Angle Request (Page 5-9)

f. Satellite Observation Conversion Sheet (Page 5-10)

h May l°6i* 5-5 TM-LX-123/OOO/OO

ANALYST LAUNCH CHECKLIST

PRE-LAUNCH: I nrnoTflm/FTV- Nominal No: PMR Not

1 'aunch Site: No. Pieces Expected:

Transmitting Frequencies:

Size and Weight:

NOMINAL DATA. Injection: Latitude: _ Longitude: rime(L/0+Sec)

ELEMENTS

O To ^n(days)

i p n(min) h)

c R*A A

RA U q e

POST LAUNCH

Launch Time: Obj No: Int'l Desig:

SENSOR LOOK ANGLE SCHEDULE

\ ..EV 315 316 328 329 330 036 337 339 340 34C NAV Other r i

Remark •:

lACi > Forn x 31, ! -lar 6 4

h May 10 61* 5-6 ÜM-IX-123/OOO/OO

BULLETIN INPUT DATA (Right Adjust All Fields)

ORIGINATOR DATE

FIELD DESCRIPTION COLUMN

1 SATELLITE NUMBER 1-3

? ELEMENTS NUMBER (give only if non-current) 4-6

_1 , 1

3 LEAST SQUARES ORDER OF EQUATION 7

4 LEAST SQUARES. NUMBER OF POINTS (see following sheet) 8-9

5 LEAST SQUARES: IN, PUNCH "0" RAH, PUNCH "1" 10

— ; 7

UPDATED ELEMENTS NUMBER 11-13

UPDATE TO REVOLUTION NUMBER 14-18

8

9

PERIGEE IN EARTH RADII (give only if q F a. (1-e.) 19-25

TEST BULLETIN STARTING AT REVOLUTION NUMBER 26-30

10 TEST BULLETIN ENDING AT REVOLUTION NUMBER 31-35

11 IF DESIRE BULLETIN, PART 1 LIST ELEMENTS, PUNCH "1". IF DESIRE REFER TO PREVIOUS BULLETIN, PUNCH "0".

36

12 BULLETIN NUMBER 37-39

13 BULLETIN FROM REVOLUTION NUMBER 40-44

14 BULLETIN TO REVOLUTION NUMBER. NO: PUNCH "O" 45-49

15 rpn STANDARD: PUNCH "1" bKiU- SPECIAL: PUNCH "2" {see Items 17-20 below)

50

16 GRID AT REVOLUTION NUMBER 51-55

17 SPECIAL GRID: LOWEP LATITUDE (generally 0) (only if "2" punch for item 15)

56-57

18 SPECIAL GRID: UPPER LATITUDE 58-59

19 SPECIAL GRID: INCREMENT 60-61

20 SPECIAL GRID: SINGLE LATITUDE 62-65

21 YEAR (last 2 digits) 66-67

22 PRINT ONLY. PUNCH "0" PUNCH (for transmission). PUNCH "1".

68

23

24

CLASSIFIED, PUNCH "i" UNCLASSIFIED PUNCH "0"

69

ORIGINATOR'S NUMBER 70-75

25 DAY OF YEAR 7fi-80

1st AEROSPACE SQ »O C FORM

k May 19& 5-7 TM-D:-123/OOO/OO

DATA REQUEST AND ROUTING SHEET

srcu«;TV CLASSIFICATION INPUT

Q J UNCL ASS [ ] SECRET

OUTPUT j

• UNCLASS [_} SECRET |

PATF JOB NUMBER PRIORITY

1 DELIVER INPUT TO ORIG

i

ELEMENTS

1 OBSERVATIONS

SATELLITE AND ELEMENT NUMBER ROU

ROUTING INSTRUCTIONS

TING TIME OUTPUT COPIES DELIVER TO OTHER

DISPATCHER PRINTOUT ORIG

DATA CONVERSION

CARDS

PAPER T AND PRI

ORIG

COMPUTER APE *TOUT

ORIG

DD 1

ORIGINA ....

PROGRAM*

TOR

ANALYST DSSO

• -

«ER j DISPATCHER

\ i ! DATA 1

OTHER AGENCIES TELEPHONE NUMBER SIGNATURE

JOB TYPES REMARKS

\ ocs

RFO

NUMBER

JCTIONS

DC

SEAI

SUM

6UL

GLA

FAN

— "

C UPDATE

wETINS

o

T PUNCH

NGS

=MLE

RUN

PRE

PRIN

LIST

COM

TEST

< • >

USE CODI

ACS A '. ' v 'OHM 11

FtBf?

k May 19öfc 5-8 TM-LX-I23/OOO/

COLS

LEAST SQUARES POINTS

1 2 3 4 5 6 7 8 9 10 Ü 11 12 13 14 15 16 17 18 19 20

•vXv XvX;

•:£:§:

•.•.-.•.-. •.-.-.•.•.

1

1 .•:••'•'-

1

A t orARA n n AN

#%

«t

LOO

K A

NG

LE R

EQ

UE

ST

Hin

hl

Ad IH

M A

ll \u

me

rica

l D

ata

WB

imX

TWI

I O

AT

C

I S

AT

j

CLE

M

NR

1

M

R

No

S

TN

NR

INIT

IAL

RE

V N

R

riN

AL

RE

V N

R

A*

u

o

o

u

VI <

t 0.

r- < I o

u.

MA

X

RA

NG

E

MIN

EL

EV

MA

X

EL

EV

fDe«)

MIN

AZ

(Del)

MA

X

AZ

hi

a >•

>•

u

0. >• r-

U

ST

AT

ION N

AM

E

A

1 3

5

7 *

13

15

1

1 20

2

4 2«

3

0 32

34

37

4

2 43

45

44

40

S

I S

2

y.

55

5

4

57

so

n

73

7*

•0

A

1

1

A

A

-

A

A

H

A

A

- A

A

A

'

.

' -

Inse

rt

(»10

) if C

ol «

Col

32 -

34 - P

unch

decim

al

poin

t in

C

ol

S5>

- T

ype

Co

l S

6 -

TT

Y t

ap

e (

GLA

SG

P o

nly

) :s in

dic

ate

d w

ith a

(S

)

At

held w

hen

A

t n

ot

in

U

= A

ll p

oin

t G

l.A

P/G

LA

SG

P

0

= Y

i'_

Ar- o

nly

.

Oth

erw

ise

wh

ole n

um

bers

.

>

- O

ne p

oin

t G

LA

P

1

-

No

1 .s

e e

lem

en

ts n

um

be

r.

C

ol

36

.

PaM C

<H„

2

* F

'l-A

P

Co

, „ . C

-Typ

e (

GLA

SG

P o

nly

) ..,.„,

n

«••

-

»>

3

=

3 poin

t G

l.A

P/G

LA

SG

P

1 - F

I

A7

:

-.r

i .

/-.I- L

ea

ve S

tation :

.r B

lank.

0 -

All p

asse

s (

A)

D,,n

-

E*-

. A

Z

...

1

=

Vis

ua

l p

asse

s (

V)

;

2

= E

L.

AZ

. R

NG

.;

V.A

J-

! i.l

it. S

AT N

H.

ELLV N

R

"^

p

'

S -

Ale

rt D

eck «

ollo

ws

(GLA

P)

3 -

EL

A

Z R

NG

R

GR

AT

E

::::

-:.A

..w

wm

:.A

LR

EV

Nn

C

ol

37 -f

orm

at

6

- A

ll p

oin

t G

LA

P w

ith *

tn

4

= E

L!

Az!

RN

G^

RG

RA

TE

. R

A.

DE

C

:.--

•-

, •

« ,r

..lia

l and (m

al

day

°

= J

-1 f*"?

(S

> ,„

-

ch*d f

*1-1

- S

CH

E°>

5

= R

A.

DE

C

...

-r.

t.e

l-JB

lo,

INIT

IAL a

nd

l

' C

om

plR

t. F

orm

at

(C)

7

= O

n.

poin

t G

LA

P w

ith s

tn

6 ,

RA

D

EC

R

NG

• /•.

. H

E/.

U

t punch

(D

DD

.D;

"cn*

d (1

SC

HE

D>

7

s C

HA

. D

EC

se

- irfo

l r-

oin

t m

ust c

ppear

in

8

= S

LA

P (

SY

S O

NL

Y>

B s

LH

A.

DE

C.

RN

G

l.e

.d.

* =

3 P

01"« G

LA

P w

l,h »

,n

9

= R

A.

DE

C.

RN

G.

RG

RA

TE

sc

he

d (

3 S

CH

ED

!

„ ,

RG

RA

TE

C-4

tt

vn

i VO

1AC

S

»^'.

r-.

*M

5 O

o

1 July 196U TM-LX-123/000'y

• !.<*•* 1 1 1 1 I I ' 1 1 ! : 1 ! T 1U3HIH i 1 j 1

1 I 0t>3IM3 1 ' 1 1 '

n T ! 1 ! 1 1 i

R 1 ! ' . I 1 P 1 1 i 1 i ! | * M 1

£

— 1 1 ' !

. : 1. - i _ • 1 L . t

1 C _ 1 R i i 1 C ...{ 1- s r 1 1 r

a « i h a

8

s I 1 a 4- j—

i ... i_ '._ i i & I i • 1 1

* J 1 !

l 1 i $ 1 1 ) s 1 I ! 1

Z a 8

Lnj« 3 1 1 1 !*« 3 ! 1 1 1

II a g i 3

• S

X *

a x ft ! 1 i ft 1 1 ; 1 i

• x • " . «!x »- P « X

£ ! | • 1

* 1 ! | 1 1 i $ | j j 1

* 4 S O s S

0 s - X K

K

P » €

ss» si

5 * X

X

« 0 u

» u

5 u 0

s ° fc Ü

u

r» 1«

£ 1 : ! 1 ! 1 fi 1

H

• s J J •

9 1 5 1 t» • i 1 | 1 » •e 1 I 1 1

X

X "

i « H - » X « J

X

? 5

1 et i !

^ i 1 . R . • ! ' i 1 S | | ! i 1 j

M

1 • M

J

m »•

:

0

0

5 •

I • e •

1; 3 " a

s. i" i * - tx

fi 1 i 1 I ! ! 1

s 1 K I 5 ] I

! ! 1 1 a « 1

e

I ° i • • • 0

0

5 0

2 » d • 8 0 - o

8 K S fi | 8 I m

• • *

S M

1 - a a X

X

X s a 1

1 1 8 1 2

- m

- -- - t-

« 0

0

5 " 3 a

>•

m

— 1

- » m

rt

2 1 <uu 0

M a» *

o- - •

10 — t- —, — —

m 1 - 1

1 »- _ Si

>»> 1 - — w

- 1 1

I

1 July 1964 5-11 TM-UC-023/OOO/OOA (Page 5-12 Blank)

5.2 MISCELLANEOUS

The following information is used by the analyst:

a. Conversion Factors

b. Modified Julian Days

c. Oblate Spheroidal Earth Model Distance

d. Right Ascension of Greenwich

e. Satellite Elevation and Slant Range

f. Semi-major Axis vs. Period

g. Mathematical constants

h. Formulas

i. Minutes and seconds to degrees

4 May 196k 5-13 TM-LX-I23/OOO/OO

5.2.1 Conversion Factors

TO CONVERT INTO MULTIPLY BY

D

days minutes 1,440.0

days seconds 86,440.0

degrees (angle) minutes 60.0

degrees (angle) quadrants 0.01111

degrees (angle) radians 0,01745

E

earth radii kilometers 6378.165

earth radii miles (naut.) 3443.93^

earth radii miles (stat.) 3963.2O8

F

feet centimeters 30.48

feet kilometers 3.048 x 10"

feet meters 0.3048 1

feet miles (naut.) 1.645 x 10"

feet miles (stat.) 1.894 x 10"'

feet/min cms/sec O.5080

feet/min feet/aco 0.01667

feet/min kms/hr 0.01829

feet/min meters/min 0.3048

feet/min miles/hr 0.01136

feet/sec cms/sec 30.48

feet/sec kms/hr 1.097

feet/sec knots 0.5921

feet/sec meters/min 18.29

feet/sec miles/hr O.6818

feet/sec miles/min O.OII36

4 May 1964 ,-l4 TM-LX-123/000/00

TO CONVERT INTO MULTIPLY BY

feet/sec/sec cms/sec/sec 30.48

feet/sec/sec kms/hr/sec 1.097

feet/sec/sec meters/sec/sec 0.3048

feet/sec/sec miles/hr/sec 0.6818

H

hours days 4.167 x 10"2

hours seconds 3,600.0

K

kilograms pounds 2.205

kilometers earth radii I.56785 x 10"

kilometers feet 3,28l.

kilometers miles (naut,) 0.5299569

kilometers miles (stat-) 0.6214

kilometers yards 1,094.

knots feet/hr 6,080.

knots kilometers/hr I.8532

knots nautical miles/hr 1.0

knots statute miles/hr 1.151

knots yards/hr 2,027.

knots feet/sec 1.689

M

mean solar day sidereal day 1.00273791

mean solar day sidereal time 24h03m56s.555

meters feet 3-281

meters kilometers 0.001

meters miles (naut.) 5.396 x 10"1*

meters miles (stat.) 6-23.4 x 10" *

h May 1964 5-15 TM- IX-12 3/000/00

TO CONVERT INTO MULTIPLY BY

meter s yards 1.094

meters/min feet/min 3.281

meters/min feet/sec O.C5468

meters/min kms/hr 0.06

meters/min knots O.O3238

meters/min miles/br 0.03T28

meters/sec feet/min 196,8

meter s/sec feet/sec 3.281

meters/sec kilometers/hr 3.6

meters/sec kilometers/min O.06

meters/sec miles/hr 2.237

meters/sec miles/min 0.03728

meter: s/sec/f sec ft/sec/sec 3.281

meter; s/sec/j sec kms/hr/sec 3.6

meters/sec/t sec miles/hr/sec 2.237

miles (naut. •) earth radii 2.9036 x 10"

miles (naut, •) feet 6,080.27

miles (naut, .) kilometers 1.853

miles (naut. -) meters 1,853.

miles (naut, .) miles (statute) 1.1516

miles (naut. .) yards 2,027-

miles (stflt. .) e.urth radii 2.52321 x 10

miles (stat •) feet 5,280.

miles (stat. ) kilometers 1.609344

miles (stat. ) meters 1,609.

miles (stat. .) miles (naut.) 0,8684

miles (stat. ) yards 1,760.

milesy /hr feet/min 88. miles/hr feet/sec 1.467

miles, 'hr kms/hr 1.609

miles. 'hr kms/min 0.02682

-4

4 May 1964 5-16 TM-LX-123/OOO/OO

TO CONVERT

miles/hr

miles/hr

miles/hr

miles/hr/sec

miles/hr/sec

miles/hr/sec

miles/min

miles/min

miles/min

miles/min

rounds

R

radians

radians

radians

radians/sec

radians/sec

radians/see

revolutions

revolutions

sidereal day

sidereal day

Y

yards

yards

yards

yards

INTO MULTIPLY BY

Knots 0.8684

meters/min 26.82

miles/min 0.01667

feet/sec/sec 1.467

kms/hr/sec I.609

meters/sec/sec 0.1+470

feet/sec 88.

kms/min I.609

mile s (naut.)/mi n 0.8684

miles/hr 60.O

kilograms O.4536

degrees 57.30

minutes 3,438.

seconds 2.063 x 105

degrees/sec 57.30

revoluti ons/min 9.549

revolutions/sec 0,1592

degrees 360,0

radians 6.283

mean solar dayj 0.99726957

mean solar time 23h56V.091

kilometers 9-144 x 10"'

meters

miles (naut.)

miles (stat.)

0.9144 -4

4.934 x 10

5-682 X 10" '

4 May V)6k TM-LX-12 3/OOO/OO

5.2.2 Modified Julio; Days - 196*1

DOM JAN FEB 1 MAR APR M AY JUN ! DOY MJD DOY MJD DOY MJD DOY MJD DOY MJD IDÖY MJD

1 : 1 38395 32 38426 61 38455 92 | 38486 122 38516 153 385W 2 p 96 33 27 62 56 93 j 87 123 17 154 48

3 3 9T 3^ 28 63 57 94 88 124 18 155 49 4 1* 98 35 29 64 58 95 89 125 19 156 550

5 5 99 36 430 65 59 96 490 126 520 157 51 6 6 400 37 31 66 ^60 97 91 127 21 158 52 7 7 01 38 32 6T ' 61 98 92 128 22 159 53 3 8 02 39 33 68 62 99 I 93 129 23 160 54 9 9 03 40 34 69 63 100 94 130 24 161 55

10 10 04 4l 35 TO 64 101 95 131 25 162 56 11 11 05 42 36 71 65 102 96 132 26 163 57 12 12 06 43 3T T2 66 103 97 133 27 164 58 13 13 0T 44 38 T3 67 104 98 134 28 165 59 14 14 08 45 39 T4 68 105 99 135 29 166 560

15 15 09 46 440 75 69 106 500 136 530 167 61 16 16 410 4T 41 76 470 107 01 137 31 168 62 IT IT 11 48 42 77 1 71 108 02 138 32 169 63 18 18 12 49 43 78 72 109 03 139 33 170 64

19 19 13 50 44 79 73 110 04 l4o 34 171 & 20 20 14 51 45 80 74 111 05 141 35 172 66 21 21 15 52 46 81 75 112 06 142 36 173 61 22 22 16 53 4T 32 76 113 07 143 37 174 68

23 23 IT 54 48 83 77 114 08 144 38 175 69 24 24 18 55 49 84 73 115 09 145 39 176 570 25 25 19 56 450 85 79 116 510 146 540 177 71 26 26 420 57 51 86 480 117 11 147 41 178 72 27 27 21 58 52 87 81 118 12 148 42 179 73 28 28 22 59 53 88 82 119 13 149 43 18C 74 29 29 23 60 5^4 89 83 120 14 150 44 181 75 30 30 24 90 84 121 15 151 45 182 76 3J (31 25 1 91 85 152 46

.„_..

k May 1964 5-18 TM-LX-I23/OOO/OO

5.2.2 Modified Julian Days - 1964- (Continued)

DOM JUL AUG s EF 0 CT IVOV DEC DOY MJD DOY MJD DOY

245~J MJD DOY MJD DOY MJD DOY MJD

1 id 3 38577 214 386O8 38639 275 38669 306 387OO 336 3ÖT30 2 184 78 215 09 246 640 276 67O 30T 01 337 31

i 3 185 79 2l6 610 24T 41 277 71 308 02 338 32 k 186 580 2 IT 11 248 42 278 72 309 03 339 33 5 18T 81 218 12 249 43 279 73 310 04 340 34

| 6 188 82 219 13 2 50 44 28O 74 311 05 5*1 35 7 189 3< 220 14 251 45 281 75 312 06 342 36

1 8 190 84 221 15 252 46 282 76 313 OT 343 37 9 191 85 222 l6 253 47 283 if

1 ( 314 08 344 38 10 192 86 223 IT 254 48 284 78 315 09 3^5 39 11 193 8T 224 18 255 49 285 79 316 710 346 740 12 19^ Qd 225 19 256 650 286 680 31T 11 347 41 13 195 89 22b 620 QC7 51 287 81 318 12 348 42 14 196 590 22T 21 256 52 288 82 319 13 349 43 15 197 91 228 22 259 53 289 83 320 14 350 44 16 198 92 229 23 260 54 290 84 321 15 351 45 IT 199 93 2 30 24 26I s^ * 29i ^ 322 16 352 46 18 200 94 2 31 2p 262 50 J92 66 323 17 353 47 19 201 95 232 26 263 57 293 8T 324 18 354 48 20 202 96 2 33 2T 264 58 294 88 325 19 355 49 21 203 97 234 28 265 59 295 89 326 T20 356 750 22 204 98 25^ 29 266 660 296 690 32T 35T 51 23 205 99 236 63O 26? 61 297 91 328 2? 3JÖ 52 24 206 600 237 31 268 62 298 92 #9 23 3>9 53 25 20T 01 1 y~ 269 I 6 *! 299 93 330 24 360 54 26 208 02 239 270 t'i 300 94 331 25 361 55 27 209 03 240 3^ 271 ! J? 301 95 332 26 3'-'2 56 28 210 04 241 35 272 66 302 96 333 27 57

29 '11 05 242 36 2T3 f-p

303 97 334 28 364 58 212 06 24 3 37 274 68 304 98 '>i'.j 29 365 59

31 213 07 244 305 99 _

366 760

k May 19& 5-19 (Page 5-20 Blank)

5.2.3 OBLATE SPHEROIDAL EARTH MODEL

( * I /^GEOCENTRIC 6379

6378

6377

6376

6375

6374

6373

6372

6371

6370

6369

6368

6367

6366

6365

6364

6363

6362

6361 —

6360

6359

6358

6357

6336

•m-uc-123/ooo/oo

£— | EQ UATO 1 "I 1 *

1

|

CU •= 6378. 165 KM

/ ä 1/498.3 #p= 6356.783 KM

p = ded/tf SIN2 ^ +

A» cos2 /)*

GE

TJ-

.OCEN

F 5UI

TRIC DISTANCE TO

»FACE OF AN OBLATE -

— —

SPHEROIDAL EARTH MOD EL

N. OF s. wu L

0 + 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 OB

/(GEOCENTRIC

i 4 May 1964 5-21

(Page 5-22 Blank) TM-LX-12 3/000/00

5 2 .4 Right Ascension of Greenwich, 0 Jan, 0000Z

1957 99-3902 1958 99.1514 1959 98,9127 i960 98,6740 1961 994209 1962 99-1822 1963 98 9^35 1964 93 7048 1965 99-4517 1966 99.2130 1967 98 9743 1968 98 7356 1969 99.4825 1970 99-2438

OEG.

k Mty 19& 5-23 (Rige 5-2U Blank)

TM-IÄ-123/OOO/OO

5*2.5 SATELLITE ELEVATION AND SLANT RANGE

CHART FOR DETERMINING ELEVATION a SLANT RANGE OF SATELLITE

AO. »STANCES ARC IN STATUTE MILES- 3 STATUTE MILES EOUAL APPROXIMATELY • KILOMETERS

SO» ALTin

f* *****

TO CENTER OF EARTM

TO CENTER

h May 1 )6U 5-25 TM-LX-123/000/00

5.2.6 L'EMI-MA.'. :< AXI. 7i . li-ia«

K)

y Of

to 3

ID ') — jw)

$ B5J3 o

CM 3 3 3

fM CM CM —

pX (?> ps JS

po po I !

r- r»- |r> o vt + *• fo

vi P pi O pN O p> C"fc

o o o a i i

h p- m o

»o r- po o O O o c«

pODO I

ID ro »- O lor«- a» <»

O b O h O O O O J

I I iO CO to — O O Q O ID r*> •- o

D O O O I I

in co in -

SPSS cr» <F* 0* o* I • . > • « b ob o

»*>P» CO

o£o •i • • T

»

a> w T Of- rj O 0 O

• I * •

ii o

I p? •*)

ro o i • •

NO P <SI o m o r- |i"> fo

8{58 r* - P-O

88

r*- CM •* — O 0>

b£a o p o

h fO PO

i i

f~ 0» p* vi» "? IN V?

O p- M • •• Q O O

8

i i m -

CM PO PC' I • .

I

h- *n r •> — o *- CM o b o

i i

D CO O ^ IM to bo

N ? P-

O p O p I

T - r i i

co in G* f- m CM CD ]n • (NO f-

ss^äps

- ~ to r-> L - co r* - h

r-j P\ (.*•• p

o p o p

ttNh CO

8 t H £ fi i*} |_» C'J j».' R) T ID p NO r- CO 3 O P O p O

.1. .1. .

D i") L)-Uc r u>>• io w — j r» In H jo i"

KP Tin NOP P-

I I

- olr cob» r* - O j-» P- p fi

i>$fnoߣ

I i o jo cok P*-

So o

I I et jp <y» In to -h- -p a o h in jN o

i

copr CO |N t»N

H »li") -r

pi

k i

f; CP> P Ot p O

- -' B* JA t £ - c> |i' •*) p- CO O p *» ^'-4 <N CD p- -p- - .1. .1. .

«• f;- |p Q M ^i i • \4 e^ >» N co

»in m v> p>- co o b o b o

0 C^ ft 3 p- in M O P- MCK D «- KM M :. o u - h -

> •— r> o c» so ^ co it- in r>4 o to u p»TlNOE0Nii ^ —

b i«^c8o«:^Sfe8ÖSfe;c5

ro p. ^ O CO P-

O D O

P- CO I/) M

o o p o

>4 » I-

8Q be —

IS!«

O — N f*> CO CO CO CT'

«#• m <o P*- CD 0- CO CO

bo C* 3 — to co

i i i i P-" * to <•" •- CO w _. t?» NO W CM

i• «i« • p- — r-—

i i

co D p - r-> ?• P- M- s e> P

•"• LJ P- • I >

8

i i i H CO o o M- o p- ro

PODO

I U - I I I I I I I I I. .1. . N ro *r m '?• &> |JN ON

j

I I

M in *tr8

i i

OI-- CM P *• CM C' t^ -U-CM — P- — . | . .

I I

0 f*> \f> X> •* G<

8c^3 sop-

I I

m CM p- •$• c- I*)

::P8

o p- to CN b.

o» o — ON Po

I— — j— CM |CM CS

cop

I

cop in ^ op u>P - p-

-r -r in •* U mr-

— In co K- 9<*t>lK|ä

- o \- — r> PO

BrtfecöjSrM «J -4 |f) |fj p ,^

- p- - p- «- .1. .1 • •

i i

|n CM o r- pr » •• IJ"? ID U>

I I I I

KN W) D U-> i- n o r--j NO F» » — c> NO ri "0 T Vt IT.' P

I

I i i i

> ON KO — W * » li c n

in IT'p

O POO

h

i»M-'0 O »M NO w -JN.) 0|0 -,-

I colo coj-

NOI<*> CI

JIJ J

j ojr- "< N)f» NO ID rN O

- oL «• IDJNO

li*- * I«- w) in IM

ofT.

r co Jo «~

It? (M JCM CN

*"f" ** I I

to I— CO oh-- C-^pN CM

-h P-KT- CORD CO 10»

I

«IN COIN — |i") •» »0 foio r>- "

CM|CM Cvj SJ

-r- i

C0|- o<^ p- llJ~* C0|O -p- •I •

! CMjO P- VNJ p- CjjjCA NO op — CM |CM CM •I • •

sk

i

cor- C0|O

CMJ.N 'I '

•i • • -r - i

«•jo tf Oro-

CM f-4 CM

I

NO NO

^^ P^j* CM }CM •I • -r

mir rife*

M|T 4

I

f, "> * I- » »- •* n NO CM N CM

)

•cJ p r-

<p jn NO C-4 |N 01

I

*Pt P-f03 -|C0

Mh CM,N

•I * -h-

i

-- r--) M

i*l -too CM row N OJ|Ci

•I •

I CM p 04 opy« o injN o

ftlßft •I • •

i i

MJIO

piS5 CO P

I r

i i

o io in

0|0 »- CM |CM CM

• I . .

i

lO CM |CM — I- — N rohj ID In '-v <> >->f- * P- •.•.' N r<< fff <r \T> li"' M CM KM CM IN CM

SOW C0IO - u

• I •

I I

es |— NN oico in OK3 — CMjfM CM

co — k^ Qc s- -t NO?- 5'»» C« N o\ pr-1*> io r- IN CM r-:- •* i»-^ ui CM CM|CM CM CM CJ

X'

I I

-In co io ir< w CO fcr. '— p-

• I «

I I

•v:-m CM HP Ol-

SIR • i •

i i

CMTM oro ir>r-

öfeg !S^ u i i i i

ii

CM N

P>tocs^P — lNr*>r»WtNOr-coo» O D O ^ — I— —

II (I I I

— P CM CM UM P0

CN pi C>J

r p- i i

i i

Ol- CMO CC.K0

f>

I • W5

i

OK CM •o p r-

• I • •

O i> o o

I 0N|O — ro

FiSKi CMITM

I

I I

CO |T' O fop* tf) CM lO NO •«• P» in CMpM CM •I • • -u -

h May 1h h 5-Jt' '34-LX-123/000/00

5.2.6 Saa-MAJCR AXI; VE. PERIOD ;Continued}

#

ID

r £

b in 5b • !o

H u. u.

d

jso r»jco co KM CM fM o-t • • *i • •

t : i i (• «UN CO popcA f- *i-r-

i • »i t- -i- - » i r»- ^ITM c»

fe r^iS co

I I I I r* «• r>

iso r^r- k"M CX UN I . .1 . I- — I- I I I I •* -*»0 «?> 0> o r«- —UD NO l*-l"- »CM CMJCM

IS

I •« ro o — ICO to

skcM1

h- -1-

*fOO

u _u ..

SGJ.

ge •I •

O >-. r* — iD *M

ft*

jr- CM 'in *

*R !l"0 I")

]CM '0

rofo i

-l- l

mjso «ir»

-CM ro H,fO t.;

Hjft -S5

i to }«r>4 r- VJ in") M if) |CM a-.

i -1— i— -

i i vO »-. sc, ii«> CO - lO c> ice- SO -T IC£- -» t— 1ft Op •- ICM CM f> f*P NJ |f»> *) •I • «I • '

r~ ico r-

op — ro JO I»)

.1 -I- -

I I

CO lö ;co F- M.' ffi CT> fc) t.-, CMO —

ES «"•4 CM

• I I- - I I

o r- KN CM

I I

coc CO CMsO

n >i •

(D

i

CD I- sfl CM Kr» so

.- b Ö

I I

o>» ID in m I«- f"»ro

cMicMCMltMCMrotoroiofro

i i

O» NT MIO C

2£K

— ICMf)kf-|f>^Or-ICOC* D CM KM CM >t CM IN M KM CM fro

i- 1.0 to LJ 1.0 H M CN jö

SjBGp*

I ; so|söf)p O|C0\0f*

* So In S3 i jto to jo

> jee- o ICM

*fcfc(j ao job

ijr») rop

r T

-t miDW)

r i

M WOKN

•*) |7. OflO

f'if>) •I • "I -r-f

i I <t U ro jo h"' I— F> fvD

0 jr :• r.> ^j ?iy i

i i «/> NJ w-) r^

¥^ •±HtfS> ICC Ü"' H

i*) f«> to r*>

i I

z> r- •* i— co

I I I I

O P c> Id '•-; H- CO k? O »^ K; C..

4KKM

IN if) iSJC\ 10 US C^ sOjH C*I so

rt «- Cs vO

- -I- I

r- co!r^ Co tojci

I I

1^* l/\i

S'8fJ

o «- C?> If»

o-~

rs- co »• N> rojro

•"I

— i— I

cr-Jif)

ekki to Mr

•i •

I ID h-|T- 03 IT (CM O N> |0

i i

VD!CM

.(7> p

•I '

sOJfO

»J8

_ rojf»? N) o \Q B> tf> I— N I *) 03 \0 n) jo v5 j^i OS

^ c^K2 K*t5 1 hr M- •* •<*• * 'S-

I Co Op

t-- WJ |«.tJ N) f-., p

•I J

i — Kj |l*>

t- COKO

CC-iW' CM |G>

«18 h>js»

— -r- i i

'*:• ¥J bs M K |N * —ICO t- 03 ICO N-, tO lf"j

— — I— I I

\i- 'j£> 10^ — CO IT) * o ir-

•I -i-

i CM |0>

ii?|CM e?s|0 i*j | *

I •

i i

s. ••• |S_'

C*IO

•I

I I

— KM

AM I*) f»)

I — «7> Ü".' CMI> r-

in i -1 . .

i i i i

CS — KM — IOS Ü") V CM IC> vO ICM C

fO i") fö *0 Nr •* .1. .1 . .

-KM

I i

ro >«• u") N) K, ro

;^F>;

i i

OJ lü'.' CM IO> ^T tO

(y>\4

«3 fw tro C* lO — I« TO l"> '«1 It •*

i. U - I

i i i 1 i i !i^ M> W)

»Mc>£n

y) iM

!-o^

ME

- CM •«• MT

! * "I l— — I— I I

Eis ro if*

•* If) r* M-

CO «fl

I

ifJJO w> p

C0|t

5|5

i i

oles OS p

i

«^ M?5 so r*

•«•'«••«•

•CO I I It-

<?< OS O C - v mm

i i i

cvK* o-r- a> it o N;- o ir- •» p CMKN r.H- *itt r *"

I-

CM1"> t'>|»- CO (M ICO * tZ< \il

ft ICM R |t ^ MT |MT f |MT *

MTf*

I I

vOp r- co

•i •

i

<r |ü") osf* CMj<r>

Oirf Osif injtN

r

Osp

CM ICC sSKö

-i— i

-|o 1*3 jCC1

srjV

sdl»- — (CC •••:• |sc-

(-'|i" sgl- fl-|T- I-l"-'- ft\<t

•I

I I

»IP Cs ill .> on- Si'lSi' M-l?

•I •

I I

r*Q *-• t j • *|0 F--1 Co <rl*

i l

f..|CC' Olsü sOKO

— I — 1 1

swim M,C© tote- i- ir- • i*

I i i i

•* l"-|0 —10 Ojjb") — vOKS r-ICM M>

BRIS PIP 8 Mr x> r* •IMF Mr

to I* miso Is-

i i I I i I i I

.1 . .1 • . CO Cf> lO — ICM tO <r <t v. m im m

,. c ^ u «. I i I 2

I I

so OK*J Cs tju; - *,o 4 B!m

*W) *M IMKO O l^kO O

- JC -C J

- m co

OA3J° MT mm

8^!S so N|C0 OS O t mjm

"i • -

CO CM If) IO COiCM m —ico

•« mjiii I • I"- i

to col— r- ^-jo $.Efc ft mim

r-ico f- sop •» *i-p-

Cv f; |P- o BJIO' -* '-..'i'i' i^ ojo «• mjm • Jj

i

f> O^isO IO

«J- tij-l I " I— I I

c> mi co r- CM i so »N o> im o\ c-.iQ •» fim

l ftrfr W 0|<f co •«•IO -Ä — jus) CM u" jm m

I 0>|O IT»

n& so -|- CM

m m

•<ic^ m —1~ CM

mar» m

i i

-KM - — im >y. CM ico •« -I- CM

O W so ico r- ^ so IO •«• |C0 CM

•* * im m Iü^ in

i t i . .i . .

•«• in iso r- wo os m m im m No m

i i i i f

1 Julv lo,". »°'V TM-LX-123/OOO/OQA

Q O

i: 0_

:>

w >-• X a 0t o -i

g I

•-<

p in L» *•> o o b * U o

jsO Vi p If) - «> J-* O JNO *>

fr?ifipRftißF>»|8& I * _! i *

ft 9ft X jo in |^ir

i i

NfoSfM — Ico * » *•• r* o JN iß

o io jo io io io •i • 'i• •

I I 7* o b co io • i VB h ^ p : o K N co o io ioio So

r-

52 ICG E (<»• CO äN 10 S» ON n F> « fa 10 IO IT. IO IO I • • I • •

sr:b»ch ^ O N CO JO o o f-- f- to O IO I»"; IO IO

|o - p o W CM JO <?>

I • 'I •

i i

h- h f- fM IO (C* M

Rftfcfil IO 10 IO 10

I I I I f*- T 17« ro

Rfcb* IO IO IO IO I. • I« • r — r- — i i t i

p8S8 •*-»»«• — ro •*> »rio IO IO JÖ 10

r- N r- Nü D r«) i^ *• o

RISK H -

.«•' cr. f> o rois

IO IO IO

- «kt.

^ i"

oh »o

fe?feS O SO O O

p o 0 Si.i

-r- *-t- i i

IN •«• pf N p M IO CO «- f* ~ IO *- CO ftf

c- CM lo r-

o io 10 lo jo

I I I I

CO CO f-- |0

vo r- N w IO IO IO IO

I. - f - r

i i

sb'cuifi ro e* so W NO IO r- co io lo io jo

o p »•>

i i i i N - e* M NO CO tMO t-

0 CO

P)IO

I I I I P» <0 L> »O (T> rM

to in r> m Jo i. . i .

10

CO

z o M <0 er

- N "> SO SO \0

D —p)

Ä SO,NO

r-

3c3

P-Op

7» SO

M •O

04 O XT ") -> IO

O") pMOr Bsp

ftoh •o •* fr IT' Jo O A vii |sC« O t£> SO

"I • * -r -

i (NpO CO oK co

V\9$

^ 10 fcst JO vO p

I I

io o r> io |o

O D *- (N vO l£- ^ p

I I

- — f. ro ps

b so |o o

I I

NO t?. M* tu

3 8 S

i i

•*) IO O M

80 o to

• I. -1.

I I I

I I

o fr» — -K« IT- rr. pv io

OS <o to SO

!• •

Co C» C^ « io co

NO 10 NO • I < • - i- -

T IO J3\0

P r- to NO\0 lO

^L_^ _^U-U^ h- K r- »-K K

") c^k-

33fS

t I

*»> r-

NO,VO >0

•I ' *

r ~r i

S o Noro \oro

i VO "J ft'

O |kO

Nyp •I • • -r-

i — w- r-

|o N ico o r- W

NO fC' Ö I« '

• NO f£i •I

M & ||1

I

IO jo NO ^90 0I*)KT 0 NO >0 Nop NO

I

i

£< NO lo

-M- r- v» <_>

IOIO NO NOf-I' NO

NO P CO - N

Is- P "T- — r*> * o io CM

^ \0 3 -2 »3 NO i • •

D r\J

oft» 0 NO

I 10 OS IOIO

NOKO «I.

IOFO osL") 2b

NO U UJ v) p> V)

. . .,. .

J> i- A) LO

I

•r-f-r- I i

CSf- IO (- Of CMfO r-fo cftpo lo^3^

j i co[o •«•1- •4-IO Nor-

NOp NO p •I •

83

I J r-p f)p

i*-*» coic^ sOKO sop

NO

i i

*K9S io (- h- f* J NCÖ CO ICT^ vOfc NO JO

* IO •«• CM C- IT' ; NO r- a> K> c> »•tf ID NO KM CO

O NO p S KO NO

I I I I

h*n-ixi*

0 f*- W w t^ * SO O NOP NO NO NO

. I . . i < .

r^ fc co r^f«)}» io JA r-» co co to co loo co ,- ^ u ^ u ^

I I

io}^ CO

^fsrcsiro

IO -

?|CG^f5F:

o - N CM

O CM

cig^js r») «• IO O

o y) o (O

(OS LO

o

O CO S cr»

o ft

co

•*\- col» CO ICO CO ICO CM to Nj- b

r- r- Is-

I ^•K cojoo

~ r- M P> r^ j-«. r^ ^

i Kd to p id p M

OP ß «•>l*

i i i i

\0 ib NO p — N «*)IC7> «- ^- CMITM

-•^M^

p»«) ^ o o *-

I I I I ki> co to D OC r- ">«7»

r:^^^

*) *• t °

I I I I IO CO ro CO |*- MT •- t* •* I*

f* h h

0 0^ O CO

-- h IT. <J> $•,

O C^

^o r-

83 - f-ro r MMO

Kp5 OS jo — io P r-

00 O «ID 3,OD ^ r-ro

i I

SOD « c>p> CO CO wo

I i

NO <- •«• "» fO CM

h- r- r»-

IOP o> ^ ff» en

*•' to ON

a» CN<5»

ljuly 1964 5-28 TM-LX-123/OOO/OOA

5*2.7 Mathematical Constants

5.2.7.1 Earth Constants

The gravitational potential of the earth for general perturbations calculations

is defined by:

U = 1 - Zl J ( Jf ] P (sin 0) n=2 n r J n r'

(1) , where

GML, the geocentric gravitational constant, (2)

= 3.986032xl020 cm3/sec2. (3)

a , the mean equatorial earth radius,

= 6378.165 km

r = the radial distance from the dynamical center is a units

0 = the geocentric latitude

and P (sin 0) is the Legendre polynomial.

The zonal harmonic coefficients are •

J2 = 1082.30x10" '6 (3/2 J2 = J)

J = -2.3x10 (5/2 J3 = H)

J, = -1.8x10 (-35/8 Jh = D)

and(-15A Jk = K)

J . are not considered.

f, the flattening of the earth (implicit in all calculations for U values,

and used in all geometrical calculations),

= 1/298.30 = O.OO33523.

lJuly 1964 5-29 TM-LX-123/OOG/0OA

5-2.7-2 Sidereal Constants.

u), the earth sidereal rotational rate,

= 1.002T3T9093 mean sidereal rotations/mean solar day

Qn, the mean right ascension of the Greenwich meridian at VJ

0 U.T. on 0 January,

= 98.70478 degrees (1964)

= 99.45171 degrees (1965)

= 99.21298 degrees (1966)

(1) The special perturbations programs used for precision satellite position

determination apply geopotential functions which are both longitude and

latitude dependent. The Kozai zonal coefficients (SAO Special Report

No. 101, 31 July 1962) are generally used.

(2) The values of GM^, a , f, J , J~, and Ji are those recommended by

Kaula (NASA TND-1848, May 1963).

(3) In SPACETRACK computations, k is used, where _i

kg = (GMj2 = O.O7436662 earth-radii/minute.

(The value 0.07436574 was used prior to March 1964.)

In general perturbations programs k Ai and k are assumed to be equal.

ljuly 1964 5-3O TM-IOC-12 3/OOO/OQA

5.2.8 Formulas

5.2.8.1 Definition of Symbols

a semi-major axis (units of earth radii unless otherwise specified)

b semi-minor axis

ß difference between orbital plane as defined by elements and orbital plane defined by ovservation

C. anomalistic drag term (days/rev )

CN nodal drag term (days/rev )

D. anomalistic drag acceleration term (days/rev )

D nodal drag acceleration term (days/rev )

e eccentricity

h apogee height

i inclination

k geocentric gravitational constant (k = 84.48932 or 205.82)

L mean longitude at epoch o

Xy injection longitude (west) i

\y longitude of the theoretical ascending node on revolution zero o

M mean anomaly

Q right. ascension at any time t v

Q right ascension at ascending node G

Uj argument or perigee

(jü, argument r? perigee at time T * At.

ID nou.ii.ai argument of perigee c

uo time derivative of u>

1 July 1961+ 5-31 TM-LX-123/OOO/OOA

p semi-latus rectum

P. anomalistic period

PN nodal period

0. injection latitude

q perigee height

r distance from center of earth to satellite

r observation position vector of satellite

R revolutions

AR revolution from T to T o

T time at &R revolutions since T

m -L .

1

C a

time of injection (days)

T epoch time

G_ rieht ascension of Greenwich at T TV o 0

v angle between perigee point and some specified point in the orbit

V velocity at apogee a

(V ) circular velocity of a satellite at a height equal to apogee height

(V ) circular velocity of a satellite at a height equal to perigee height C P

V velocity *t perigee

w unit vector normal to orbital plane

1 July I9ö4 5-32 TM-LX-123/OOO/OOA

5.2.8.2 Miscellaneous Formulas

a = - h * 9

ß = sin - (r.w)

e = a

q (v )- (vay 1 h - q . p'

e = x - a = TTh = WT2 - *> or 1 ' WT2

L = M + m + Q ; + Q , if 1 * 90

Q+ = Q + h (At) + i 5 (At)""; 0° £ Q < 360(

o O O

o = - 9-96 a ''cos i

(1 - e2)2

,2 0) = <j) + d) (At) + i ul (A4

"-)"; where 0 £ u) < 36O GO O

u>, = u) + d) A

. = 4.98 a'T//2(5 cos2 i-1)

(1-e2)2

ra ^ 3/2

P =(-p—); PA is in minutes; if a is in ER, let k = 84.48932

if a is in Stat. miles, let k = 205-82

or PA - .05867294? (a)3'2 (P is in days, a in ER)

r 360 N PN l 36O + X pi PA

q = a (l - e)

r == 1 + e cos v

T»To+ PN (AH) + CN (AR)" + 0N (AR)

PM; (2rr= 6.2831853)

V h - V q G p

July 1964 S-33 (Page 5-34 Blank)

TM-LX-123/oOO/OOA

5-2.9 Minutes and Seconds to Degrees

Minutes to Mins Seconds to Minutes to Mins Seconds to Decimal of or Decimal of Decimal of or Decimal of Degree Sec.

00

Degree

.00000

Degree

.50000

Sec.

30

Degree

.00000 .00833

.01667 01 .00028 .51667 31 .00861

.03333 02 .00056 •53333 32 .00889

.03000 03 .00083 •55000 33 .00917

.06667 04 .00111 .56667 34 .00944

-08333 05 .00139 .58333 35 .00972 .10000 06 .OOI67 .60000 36 .01000 .11667 07 .00194 .61667 37 .01028

.13333 08 .00222 I .63333 38 .01056

.15000 09 .00250 .65000 39 .01083

.16667 10 .00278 .66661 40 .01111 j

.18333 11 .00306 .68333 41 .01139

.20000 12 •00333 •70000 42 .OII67

.21667 13 .00361 .71667 43 .01194 |

.23333 14 .OO389 •73333 44 .01222 j

.23000 15 .00417 .75000 45 .01250 i .26667 16 .00444 .76667 46 .01278 |

.2833: 17 .00472 .78333 47 .01306

.30000 18 .00500 | .80000 48 •01333

.31667 19 .00528 .81667 49 .01361

.33333 20 .00556 .83333 50 .01389

.35000 21 .OO583 .85000 51 .01417

.36667 22 .006ll .86667 52 .01444

.38333 23 .00639 .88333 53 .01472

.40000 24 .OO667 .90000 54 .01500 1

.41667 25 .00694 .91667 55 .01528

.43333 26 .00722 •93333 56 .01556

.45000 27 .00750 .95000 57 .01583 ,46667 28 .00778 .96667 58 .0l6ll .48333 29 .OO806 .98333 59 .01639

2i-

%

i July 196U 5-35 TM-LX-123/oOO/OQA

5.3 OBSERVATION REPORT FORMATS

Observations are received in the following formats:

a. Standard A

b. Station 315 old format

c. Holloman

d. Moonwatch

e. SAO Baker-Nunn

f. SATEV (Muedon)

g- SATOF

h. SATUG

i. Trinidad

0- Synccm

k. 681/682

1. Millstone

Each format is given, and the procedures for handlogging the information onto

standard Observation cards are described. (See section 5-1 for appropriate

form).

5.3-1 Standard A Format

The following stations use the Standard A Format:

a. Shemya 3U5

b. Shemya 316

c. Turkey 337

d. Turkey (new) 315

e. Laredo

f. Moorestown

g. SPASUR

h. Minitrack

i. Prince Albert

j. BMEWS

k Trinidad

1 July 196k 5-36 TM-LX-123/OOO/OQA

5.3.LI Example

tSTAa OBJEC YMoDa HHMMSSsss DDdddd DDDdddd NNNNNnn NNnnnnS HHccc

)))))

Line Code Meaning

Connecting call code

Observation type (see figure 5«l)

SPADATS sensor number

Observation accuracy/signal strength

SPADATS object number

Date of observation

Time of observation

Elevation

Declination (O = north, 1 = south for last digit)

Azimuth

Right Ascension

Slant range (nautical miles)

Range rate (nautical miles/second), sign (S): 0 = +,

1 = -, 2 = unassigned

Hit count (HH) and check sum (ccc)

Disconnect call code

5.3.I.2 Handlogging Procedures

1. First line is the connecting call code and is not used in manual

processing.

2. Second line:

a. First digit of the word is the code for the observation type.

See figure jj.l for the associated two-digit code to be logged

in cc U-5. The next three digits are the SPADATS sensor number;

log zero in cc 6 and the number in cc 7-9« The last digit, accuracy,

is logged in cc 10.

b. Second word is the SPADATS object number; log the last three digits

in cc 1-3-

c. Date of observation is the third word and is logged in cc 11-15.

1 •bi)i>J)i)

2 t

STA

a

OBJEC

YMoDa

3 HHMMSSsss

DDdddd/

(DDdddS)

DDDdddd/

(HHMMSSs)

NNNMnn

NNnnrmS

HHccc

k )))))

1 July 1964 5-37 TM-LX-123/00O/OQA

3. Third line (first data line):

a. Log the first word, time of observation, in cc 16-24.

b. The second and third words represent elevation and azimuth unless

the observation type is zero or two (ist digit second line). In

that case, they represent declination and right ascension.

(1) Log elevation, second word, in cc 25-30. Log azimuth, third

word, in cc 31-37.

(2) Log the first five digits of declination in cc 25-29 and add

a zero in cc 30. If the last digit of this second word is a

one, an eleven punch is needed in cc 25« Log right ascension,

third word, in cc 31-37« An eleven overpunch is always

necessary in cc 31 when the report is in declination and right

ascension.

c. Slant range, the fourth word, is reported in nautical miles which

must be converted to kilometers. Multiply the digits by I.852.

The decimal point falls between the fifth and sixth digit of the

message. Range rate, fifth word, is reported in nautical miles

per second. The first six digits are multiplied by I.852, the

decimal point falls between the second and third digit of the message.

The seventh digit is a sign -- if it is a one, an eleven overpunch

is needed in cc 45; if it is a zero, plus is understood and no

overpunch is needed.

4. The classification (U or C) as indicated in the message text must be

logged in cc 71«

Figurc 5•1

Observation Type Code for Standard A Reporting Format

INSTRUMENTATION/FIELDS REPORTED

Optical-right ascension/declination Optical-elevation/azimuth Baker-Nunn-right ascension/dec. Radar-el/az/slant range/range rate Radar-el/az/slant range Rad iometric-el/az BMEWS-Site 1, Site 2 SPASUR FPS-17-el/az/slant rante/range rate Doppler-range rate

INPUT OUTPUT (1st digit, line two) (cc 4-5)

0 01 1 01 r, C 16 3 25 4 22 5 51 6 25 7 51 8 21 9 41

1 July 1964 5-38 TM-Lx-123/ooo/octA

5.3.2 Station 315 Old Format

5.3.2.1 Example

SYrMo MessgNr XXX OBJ XXX bt

Line Code

1 S

YrMo

MessgNr

2 XXX

OBJ

XXX

DaHHMMSSs

mm X

XX

3 bt

DaHHMMSSs NNTOC XX

Meaning

Station indicator

Year and month of observations

Message number

Line number of observation

SPADATS object number

Elevation and azimuth

Day and time of observation

Slant range (nautical miles)

End of line (for handlogging purposes)

Doppler channel

End of message

5.3'2.2 Handlogging Procedures

1. First digit of first line is station indicator, and in this case vould

be logged as station 0315 in cc 6-9- The second two digits are the

year of observation, and the last digit is logged in col 11. The last

two digits of the first word is the month, and is logged in cc 12-13.

a. The second word of the first line is unused for logging purposes.

2. Second line (first data line).

a. First word is unused for manual processing.

b. Second word is the SPADATS Object number and is logged in cc 1-9«

c. Third word is elevation and azimuth, and is logged in cc 25-30,

3I-37. (See 315 Handbook).

d. Fourth word is day and time of observation. Log the first two

digits in cc 1^-15• Log the time of the observation (next seven

digits) in cc 16-22, adding zeros in cc 23-2^.

f lJuly 1964 5-39 TM-LX-123/OOO/OQA

e. Slant range, the fifth word, is reported in nautical miles which

must be converted to kilometers. Multiply the digits by .'..852,

and log in cc 38-44. The last character of the fifth word is not

logged.

f. Sixth word (two digits) is not used at SPADATS.

3. The type is 21, and is logged in cc 4-5, if slant range is omitted,

log type 01 in cc 4-5«

I

1 July 196U 5-1*0 TM-LX-I23/OOO/OOA

5.3-3 Holloman AFB Format

5.3.3.I Example

DAY OBJECT HH MM SS.s DDD.dd DD.dd

Line Code Meaning

1 DAY Zebra Day of Observation

OBJECT SPADATS Object Number

HH MM SS.s Time of Observation

DDD.dd Azimuth (degrees)

DD.dd Elevation (degrees)

5.3«3*2 Handlogging Procedures

1. SPADATS sensor number is reported in the message text. Sensor number

is 050. Log in cc 7-9« preceded by a 0 in cc 6.

2. Log type 01 in cc h-5, and 0 for accuracy in cc 10.

3. Zebra day is reported. Convert to current date using calendar, and

log in cc 11-15«

h. The remaining fields are described in the message. Log in appropriate

columns.

5. Classification (U or C) as indicated on the message is logged in cc 71«

lJuly 1964 5-4l IM-LX-123/OOO/OOA

5.3.J+ Moonwatch Format

5.3.4.1 Example

SENSORNAME RSTAT OBJEC

Line Code Meaning

YMoDa EHHMM SSsss DDDmm UDDmm CCCCC

SENSOR NAME

R

STAT

OBJEC

YMoDa

E

HHMM

SSsss

DDDmm

U

DDmm

CCCCC

Reporting Method

SAO Sensor Number

SAO Satellite # International Designation, Yr. of

Launch, launch number, and piece #

Date of Observation

Epoch of Star charts

Time of Observation (hours and minutes)

Time of Observation (seconds)

Azimuth or Right Ascension (if R.A. HHMMm)

Unused digit if elevation

Elevation or Declination (if Dec. SDDmm, 0 = north,

1 = south in first digit)

Check Group. Sum of all digits in corresponding column.

Units digit only, tens digit not carried forward.

5.3.4.2 Handlogging Procedures

1. The first word is the alphabetic sensor name. It is not logged.

2. The first digit of the second word is the reporting method. If the

digit is zero, the observation is in elevation and azimuth. If the

digit is one, the observation is reported in right ascension and

declination. The next four digits is the SAO sensor number, this

must be converted to SPADATS station number. Log in cc 6-9«

3. The third word is the object's international designation. Convert

to SPADAT object number, and log in cc 1-3•

h. The fourth word is the date of observation and is logged in cc 11-15.

1 July 1961+ 5-1+2 lM-LX-123/OOO/OOA

5. The first digit of the fifth word is Epoch of 3tar Charts.

0 - Present

1 - 1855

2 - I875

3 - 1900-1920

4 - 1950

Epoch of Star Charts is logged in cc "JO. The remaining four digits and

all the digits of word six is time of observation, log in cc l6-2h.

6. The seventh word is azimuth or right ascension. If right ascension,

log the first four digits in cc 31-34> multiply the last digit by 60

and log the result in cc 35"37* (Right ascension is always indicated

by an eleven punch in cc 3-0« If the first digit of the second word is

0, the observation will be in azimuth, log the first three digits in

cc 31-33» Convert the next two digits to decimal of degree by using

the table in section 5»2.9> and log in cc 3^-37«

7. The eight word is elevation or declination. If elevation is indicated

by reporting method, the first digit is unused. Log the n xt two digits

in cc 25-26. Convert the last two digits to decimal Ox' cu.0ree by using

table five, and log in cc 27-30. If declination is indicated, first

digit is sign (l indicates an eleven punch in cc 25, 0 is plus and is

understood). Log next tvo digits in cc 25-26, and convert the last

two digits to decimal of degree by using the table in section 5«2.9>

and log in cc 27-30.

8. The ninth word is the check sum and is not used in handlogging.

9. The type is 01, and is logged in cc k-5.

10. The accuracy is zero, and is logged in cc 10.

11. The classification (U or C) as indicated in the message must be logged

in cc 71.

July 1964 5-43 TK-LX-123/OOO/OCA

S.3.5 SAO Baker-Nunn Format

Baker-Nunn Sensors are as follows:

B-N Sensor Number Name

01 Organ Pass 02 01ifants Fontain

03 Woomera 04 San Fernando

05 Tokyo 06 Nainital

07 Arequipa 08 Shiraz

09 Curacao 10 Jupiter 11 Villa Dolores 12 Maui

13 *Edwards Ik *Cold Lake

15 *Harestua 16 Santiago

17 *Sand Island

* Non-SAO station

5-3-5-1 Example

•ptbtbipu) YrMoDaXXXX 222St YMoDa OBJEC PIECE WHHMM SSsss HHMMm SDDMM CCCCC

WHHMM SSsss HHMMm SDDMM CCCCC YMoDa OBJEC PIECE WHHMM SSsss HHMMm SDDMM CCCCC

)))))

Line Code Meaning

1 $$$$$ Connecting Call Code

YrMoDaXXXX Message Date/Control Number-

2 222 Format Cod d Indicator

St B-N Sensor #

YMoDa Date of Ob servation

SPADATS Sensor Number

0033 003^ 0035 0036

0037 004l 0038 0042 00^5 0044 0046 0047 0030 0032 0029 inactive

0031

OBJEC PIECE Satellite # International Designation (Year of Launch,

Launch § or Greek letter, and piece in group)

W Value of culmination time difference

HHMMSSsss Time of Observation

1 July 196^+ ykk IW-LX-I23/OOO/0OA

Line Code Meaning*

HIIMMm Right Ascension

S Sign (0 = +, 1 = minus)

DDMM Declination

CCCCC Check group. Sum of all digixs in corresponding column.

Units digit only, tens digit not carried forward.

h Additional observation.

5 YMoDa Designates change in date.

6 Observation (see line 3)

7 ))))) Disconnect Call Code.

5.3-5*2 Handlogging Procedures

1. The first line of five dollar signs and the message date/control number

is not used in manual processing.

2. Second line:

a. First word is the format code indicator, followed by the Baker-Nunn

sensor number. Convert the two digit sensor number to the SPADATS

sensor number shown on the preceding page and log in cc 6-9«

b. The second word, date of observation, is logged in cc 11-15.

3. Third line:

a. The first two words are the object's international designation;

convert to SPADATS object number, using Satellite table, and log

in cc 1-3.

b. The first digit of word three is not used. Log the remainder of

the word, and word four, time in cc l6-2h.

c. Right ascension is the fourth word. Log the first four digits in

cc 31-3^« Multiply the fifth digit by 60 and log the result in

35-37• An eleven overpunch must be logged in cc 31«

d. The first digit of word six, declination, is the sign; n" it is a

one, an eleven overpunch is needed in cc 25, but if it is a zero

no overpunch is needed. Log the next two digits in cc 2^-26.

Convert the next two digits to decimal of degree (section 5»2«9) and

log in cc 27-30.

e. The last word is unused In handlogging.

x. Baker-Nunn is type l6, and is logged in cc h-cj. Log (U or C) as

classification in message indicates in cc 71.

1 July I96U i-*5 TM-LX-123/000/00A

5.3.6 SATEV Format

The following is a list of COSPAR Station numbers with the corresponding

SPADATS Station numbers.

COSPAR SPADAT

3101 0075

3102 0076

3103 0079

3,10k 0080

3129 008l

3130 0082

3131 OO83

5.3.6. 1 Exampl e

SATEV STATt 03JEC rMoDa HHMMS SssDD DMM// DDMM/ bt

Line Code Meaning

3

SATEV Format Code Indicator

STAT COSPAR Sensor #

t Observation type (See figure 5-2)*

OBJEC International Designation (sat. #) Yr of launch, launch

number, piece in group,

r Data Type Code (see figure 5-2)**

MoDa Date of Observation

HHMMSSss Time of Observation

DDDMM// Azimuth

DDMM,/ Elevation

bt end observation

5o3.6.2 Handlogging Procedures

1. First word of line is format indicator and is not used in handlogging.

a. The first four digits of second word is COSPAR sensor number.

Convert to SPADATS sensor number using COSPAR sensor listing, above,

and log in cc 6-9. The last digit is observation type code,

(figure 5-2). Log 01, type, in cc I4--5.

i July 19bh 5-k6 m-LX-123/OOO/OQA

b. Convert the third word, satellite number, to SPADATS object

number using satellite table.

c. The first digit of word four is data type. (Figure 5.2) The

last four digits are month and day of observations. Log in cc 12-15.

The year is understood to be the current year, and is logged in cc 11

2. Second line:

a. Log the first five digits of word one and the next three digits of

word two, time of observation, in cc 16-23 adding 0 in cc 2k.

b. Azimuth is the last two digits of word two and the first digit of

word three, log in cc 31-33- If the data type is 2 the next two

digits should be converted to decimal of degrees using the table

in section 5*2«9> and logged in cc 3^-37«

c. Elevation is word three, log the first two digits in cc 25-26.

If 2 is the data type, convert the last two digits to decimal of

degree using the table in section 5*2.9, and 1°6 *n ^7-30. ^ I

is the data type, log the digits in cc 27-28 adding 0 in cc 29-30.

3. If reporting type is 1, SATEV may omit the last digit of azimuth and

elevation, in which case the minutes are in decimal of degree. Slashes

are between and at the end of observation parameters.

h. Log 0 in cc 10 for observation accuracy, and the classification (U or C)

as indicated on the message in cc 71«

1 o'niy 1964 5-Vf TM-LX-123/OOO/0OA

Figure 5.2

observation Type Coded As:

1 - photographic; cinetheodolite

2 - photographic; fixed camera or small telescope

3 - photographic; tracking camera or telescope

k - photographic; telescope

5 - Visual; naked eye or binoculars

6 - Visual; telescope (low power)

7 - Visual; telescope

8 - Visual; theodolite

9 - Visual; telescope

C - other instrument or unknown

**Data Type Coded As:

1 - Azimuth/Elevation (degrees and thousandths of degree)

2 - Azimuth/Elevation (degrees, minutes, tenths of minutes)

3 - Equatorial (right ascension/declination) Epoch 1950-

k - Equatorial (right ascension/declination) Epoch of date.

5 - Equatorial (right ascension/declination; Epoch of BD chart 185

6 - Equatorial (right ascention/declination) Epoch of CD chart 1575

1 July 1964 5-48 TM-LX-123/OOO/OOA

5.3.7 SATOF Format

5.3-7.1 Example

STATION DaHHx MMSSs HHMMm SDDMM IBbCC

Line Code Meaning

1 STATION Station Name

Da Day of Observation

HH Hour of Observation

x Unused Digit

MMSSs Minutes and Seconds of Observation

HHMMm Right Ascension

S Sign

DDMM Declination

I Accuracy of observation

B Stellar Magnitude

b Tenths of Magnitude

CC Check Sum (Sum of all digits in observation)

5.3'7'^ Handlogging Procedures

1. The first word is station name. Convert to SPADATS sensor number,

and log in cc 6-9«

2. Day of observation, first two digits of word two, is logged in cc 14-?5

Hour of observation is the third and fourth digit, log in cc l6-l7.

Current year and month are logged in 11-13» The last digit of word two

is unused.

3. Log the third word, minutes/and seconds of observation, in cc 18-22

adding 0 in cc 23-24.

4. Log the first four digits of word four, right ascension in cc 3I-34-,

multiply the last digit by 60 and log the result in cc 35-3^, adding

0 in cc 37' Right ascension is always indicated by an eleven punch in

cc 31.

lJuly 1961+ 5-^9 TM-LX-123/ooo/öOA

5. First digit of word five is sign. 0 signifies plus and is not logged.

1 indicates minus and an eleven punch is logged in cc 25. Log the

next two digits in cc 25-26. Convert the last two digits (section 5*2.9)

and log in cc 27-30. If the units digit of the minute field is an x, the

tenths position is tenths of degree. Log digit in cc 27.

6. First digit of last word is observation accuracy. Log in cc 10.

7- Type is 01, and is logged in cc U-5.

8. Object number will be in the message text. Log in cc 1-3»

9- Classification (U or C) as indicated on message is logged in cc 71«

1 July 1964 5-50 TM-LX-123/OOO/OOA

5-3.8 SATUG Format

5.3.8.1 Example

STATION DaHHx MMSSs DDDdx DDdxx IBbCC

Line Code Meaning

1 STATION Station Name

Da Day of Observation

HH Hour of Observation

X Unused Digit

MMSSs Minutes & Seconds of Observation

DDDd Azimuth

X Unused Digit

DDd Elevation

XX Unused Digits

I Accuracy of Observation

B Stellar Magnitude

b Tenths of Magnitude

CC Check Sum (Sum of all digits in observation)

5.3.8.2 Handlogging Procedures

1. Station name, first word, is converted to SPADATS sensor number

and logged in cc 6-9«

2. The first two digits of word two is day of observation. Log in cc 14-15

Current month and year is logged in cc 11-13« Hours of observation is

the third and fourth digit, and is logged in cc 16-17. Last digit of

group is unused.

3. Minutes and seconds, word three, is logged in cc 18-22 adding 0 in

cc 23-24.

h. Log the first four digits of word four, azimuth, in cc 31"3** adding

0 in cc 35-37« Last digit of group is unused.

5. Elevation, word five, is logged in cc 25-27 adding 0 in cc 28-30.

The last two digits of group are not used.

1 July 196h 5-51 TM-IX-123/OOO/OQA

6. Accuracy of observation, first digit of last word is logged in

cc 10. Remaining digits are unused.

7- Type is 01. Log in cc U-5«

8. Satellite number will be in message text. Log in cc 1-3-

9. Classification (U or C) as indicated on message is logged in cc 71

i

1 July 196U 5-52 IM-LX-I23/OOO/OOA

5.3-9 Trinidad Format

5.3.9.1 Example

SS511 OBJty STATa YMoDa HHMMSS.ss DD.d DDD.dd NNNN )))))

Line Code Meaning

1 $$$$$ Connecting Call Code

2 SS511 Format Code Indicator

OBJ SPADATS Obj #

ty Observation type

STAT SPADATS Sensor #

a Observation Accuracy

YMoDa Date of Observation

3 HHMMSS.ss Time of Observation

DD.d Elevation (degrees)

DDD.dd Azimuth (degrees)

NNM Slant Range (Nautical Miles)

C End of Line Indicator

h ))))) Disconnect Call Code

5.3«9.2 Handlogging Procedures

1. First line ($$$$$) is not used in handlogging.

2. Second line:

a. The first word of line two is the format indicator and is unused.

b. The first three digit& of word two is SPADATS object number, log

in cc 1-3. The last two digits of word two is observation type

and is legged in cc U-5.

c. SPADATS Sensor number, the first four digits of word three, is logged

in cc 6-9«

d. The last word of line two is date of observation, and is logged in

cc H-15.

1 July 1964 5-53 IW-LX-123/OOO/OOA

3. Third line:

a. The first word is the time of observation and is logged in cc 16-23

e4j4MM „ r\ -;»-, „„ o)' OVXVX^IIK <-* v -til *-v~ t_~t •

"b. The second word of line three is elevation and is logged in cc 25-27

adding 0 in cc 28-30.

c. Azimuth, the third word, is logged in cc 31"3^> adding 0 in cc 35-37

d. The fourth word is slant range reported in nautical miles. Convert

the four digits to kilometers by multiplying by 1.852, and log the

result in cc 38-blt.

e. The last word, one digit, is unused in manual processing.

h. Trinidad may submit observations without slant range, in which case

type 01 is logged in cc 4-5»

5. The classification (U or C) is logged in cc 71« Classification is

indicated on the message.

1 July 19& 5-5U TM-UC-123/OOO/OQA (

5.3.10 SYNCOM II Format

The following is a list of Syncom Station names with the corresponding SPADATS

Station numbers:

SYNCOM STATION MAKE SPADATS STATION NUMBER

SYNT1H 0909

SYNCS2 09C1

SYNCS3 0902

SYNCS4 0903

SYNCS5 0904

5.3.10.1 Example

))))) OBJBC STATNA Y^MDD HHMM SSsss T DDd STATNA YUMDD HHMM SSsss T KKKKKKkkk STATRA YYMHDD HHMM SSsss T Kkkkkk STATNA YYJMDD HH*W SSsss T DDDd •ww Line Code Meaning

1 ))))) Precedes Object #

OBJEC International Designation Satellite #

2-5 STATNA Station Name

YYMMDD Dtue of Observation

HHMMSSsss Time of Observation

T Type Code (See Figure 5.3)

XXXXXXXXX Data (3-9 characters: see Figure 5.3)

6 $$$$1 End of Observation

5.3.10.2 Handlogging Procedures

1. The first word of line one is unused in handlogging. The second word

is the SAO satellite number, convert to SPADATS number by using Satellite

table. Syncom II 633H is object number 634, and is logged in cc 1-3*

2. Each observation consists of k lines. The station name is the first

word of each line. Convert to SPADATS sensor number, and log in cc 6-9.

The second word of each line is date of observation, and is logged in i

Mi

1 July X9Sk 5-55 OM-LX-123/OOO/OCA

cc 11-1 j. Time is word three and four of each line. Use only line one,

the average observation time, and log in cc l6-2k. The fifth word is the

observation type code (l digit). See figure 5.3»

a. 'jtype code 5 indicates elevation in degrees and tenths of degree

(3 digits). Log in cc 25-27 adding 0 in cc 28-30.

b. Type code 1 indicates slant range in meters (9 digits). The

decimal point falls after 6th digit. Insure decimal point is in

the correct place on log sheet. Log in cc 38-^» The last digit

is rounded off.

c. Type code 9 indicates range rate, and is logged in cc ^5-51 adding

0 in 52-53» Minus sign as indicated on message is logged in cc 1*5«

If no minus sign is indicated, plus is understood and a 0 is logged

in cc k$. The decimal point falls after the first digit.

d. Type code k indicates azimuth in degrees and tenth of degree, and is

logged in cc 31-31* adding 0 in cc 35-37.

Ttype 25 is logged in cc k-5, accuracy of observation is 0 and is logged

in cc 10.

Classification (U or C) as indicated by message is logged in cc 71*

Figure 5*3

Observation type Codes As:

1 - Range in meters (9 digits).

k - Azimuth in degrees and tenths of degree {k digits).

5 - Elevation in degrees and tenths of degree (3 digits).

9 - Range Rate in meters per/second.

Given to nearest .01 meters per/second (sign and 6 digits)

'•••**•-•-•i*»mm*W ;..„,.„„•- .-..„«M«^^- ^aWB^^^^^.^^j^^gy^^^ *Mmm&m

1 July 196^ 5-56 m-UC-123/OOO/OQA

5.3.H C&L/682 Format

5.3.II.I Example

tSTAa HHMMSS

))))) Line

OBJBC XMoDa Q DDDdd DDdd XXXXXXXX

Code Meaning

1 ***** Connlncting Call Code

2 t Observation type

STA SPADATS Sensor #

a Observation accuracy

OBJBC SPADATS Object #

YMoDa Date of Observation

3 HHMMSIJ Time of Observation

Q Data Quality

DDDdd Azimuth

DDdd Elevation

XXXXXXXX Frequency

k ))))) Disconnect Call Code

5.3.H.2 Handlogging Procedures

1. First word of line one is connecting call code and is unused in hand-

logging.

2. Second line:

a. Type, first digit, of line two is observation type. 681/682 is

type 32, and is logged in cc 4-5. The next three digits are SPADATS

sensor number. Log in cc 7-9 with a 0 in cc 6. Last digit of word

one is accuracy of observation, and is logged in cc 10.

b. Second word is SPADATS object number. Log last three digits in

cc 1-3.

c. Third word, date of observation, is logged in cc 11-15.

1 July 196h 5-57 TM-UC-123/OOO/OQA

3. Third line:

a. Time of observation, first word, is logged in cc 16-21 adding 0

in cc 22-24.

b. Data Quality, second vord, 7 - Best, k - Good, 0 - Poor, is for

analyst use only.

c. Azimuth, the third vord, is in degrees and hundreth of degrees.

Log in cc 31-36 adding 0 in 37-38.

d. Elevation, the fourth vord, is in degrees and hundredth of degrees.

Log in cc 25-28 adding 0 in cc 29-30-

e. Last vord is not used in handlogging.

h. If no header card is on the message, log information for cc 1-15 from

text of message. Station 1 is 68l and Station 2 is 682. If text of

message is omitted, message DE line will be FTMEAD. The DSSO will

advise you on necessary information for Object number, Station number,

and date.

5- The classification as indicated on message is logged in cc 71*

1 July 19& 5-59 TM-IX-123/OOO/oaA

e. Slant range is in kilometers and is logged in 39-te preceded by a

0 in cc 38. Decimal point is understood at the end of the field.

Add 0 in cc k3-kk.

f. Log digits for range rate in cc V6-50, adding 0 in cc 51-53« log 0

in cc 45. If a minus sign precedes the field, an eleven overpunch

is needed in cc U5.

g. Classification (U or C) as indicated on messages Is logged in cc 71«

1 July 1964 5-59 TM-UC-123/OOO/OQA

e. Slant range is in kilometers and is logged in 39*42 preceded by a

0 in cc 38. Decimal point is understood at the end of the field.

Add 0 in cc 43-44.

f. Log digits for range rate in cc 46-50, adding 0 in cc 51-53« I«Qg 0

in cc 45. If a minus sign precedes the field, an eleven overpunch

is needed in cc 45«

g. Classification (U or c) as indicated on messages is logged in cc 71-

1 July 1964 5-60 lM-IiX-123/ooo/oaA f

5.3.I3 Code Tables

5.3«13*1 Observation Accuracy Code*

VISUAL OBSERVATIONS: Equipment Code 01 through 20

Normal Observation made under fail conditions

Observation slightly under par due to outside interference (e.g., soaie clouds, reduced visibility)

Observation poor due to outside interference.

Only estimate possible (Malfunction of equipment, too short time of object seeing).

Doubtful observation, unable to verify either object of instru- ment behavior. Observation should be considered only as tentative.

CODED ELECTRONICS OBSERVATIONS: Equipment Code 21 through 53

0 Signal strength good, reliable measurements.

1 Signal strength fail.

Signal weak, results poor,

Signal questionable.

Column 10 of Satellite Observation Conversion Sheet

1 July 196^ 5-61 •Dt-LX-123/OOO/OCA

5.3.13.2 Instrument Code

01 Visual observation without instruments. Estimates of h, z, or or* 6 only. 02 Visual observation with binoculars or small telescopes. Estimate only. 03 Optical observation with wide circles (Accuracy not better than * l/2 Degree). Ok Same as 03, accuracy + l/2 to l/lO Degree. 05 Same as 03, accuracy better than + l/2 Degree & Time better than l/5 Second. 06 Same as 03, accuracy better than 1 Minute of Arc, and Time to l/lOO Second. 07 Special code for observations with instruments specifically designed for tracking. 11 Photographic observations with very short-ratio and eiiall frame (e.g., 35 *•*

Lecia etc.); positions obtained by simple linear interpolation in starfleld. 12 Same as 11, but carefully analyzed (measured/positions). 13 Photographic observations with larger telescope and/or larger place (e.g.,

Astrograph, Schmidt telescope, ROTI, etc.). Ik Same as 13, but carefully measured and reduced. 15 Photographic observations with special tracking camera (ballistic camera,

photheod) carefully analyzed or QUICK LOOK DATA for codes 11 or 13* 16 Photographic observations with BAKER-NUNN Cameras, direct data readout no

special reduction (preliminary data). 17 Same as l6, final analysis with all corrections made. 21 Radar observations with fixed beam antenna. 22 Radar observation with moving beam, no self-tracking feature. Data readout

from position of dials. 23 Radar observation with moving beam antenna "TH tracking capability. Data

readout by dials. 2k Same as 22, data readout automatic. 25 Same as 23, data readout automatic. 31 Passive tracking data from telemetry systems \e.g., TIM-18). Disk with

diameter of less than 20 feet. Angular data accuracy not better than 1 degree. 32 Same as 31, disk diameter between 20 and 59 feet. 33 Same as 31, disk diameter over 60 feet. 3k Same as 31. 35 Same as 32 with angular accuracy better than + 1 Degree. 36 Same as 33 + l/lO Degree. 37 Same as 31. 38 Same as 32 but angular data accuracy better than • l/lO Degree. 39 Same as 33- kl Doppler observations (passive track). Signal strength accuracy see section 5«3»13-1 k2 Direction finding system. Signal strength accuracy U3 Interferometer system. Signal strength accuracy 51 Fence observation (Minitrack). 52 Fence observation (Microloc). 53 Fence observation (Doploc).

1 July 1964 5-62 OM-LX-123/OOO/OQA I

5»3*13» 3 Time Accuracy Code

0 = At the full second (next 2 digits must be zeros).

1 «s At the l/lO second (last digit must be zero).

2 = At the 1/100 second (last digit).

5 « At the ten second digit (accuracy + 5 second: second digit can be 0 to 9)

9 * At the minute (any seconds will be considered estimates only).

5.3«13.4 Time Zone Code

0 = ZULU (Z)

k m Eastern Daylight (EDT)

5 = Eastern Standard (EST) Central Daylight (COT)

6 * Central Staudard (CST) Mountain Daylight (MDT)

7 • Mountain Standard (MST) Pacific Daylight <H)T)

8 = Pacific Standard (PST)

a

• 1 July 196^ 5-63 IM-LX-123/OOO/0OA

5.4 GLOSSARY OF ABBREVIATIONS

COSPAR

CPA

DC

DIA

DIP

DMNI

DMNO

DOM

DOY

EFTO

ER

IGY

MJD

N-M Element Set

OCS

Q-Points

RA

RMS

- Committee on Space Research, an international space agency

established by the International Council of Scientific Unions.

- Closest Point of Approach.

- Differential Correction.

- Defense Intelligence Agency.

- Display Information Processor. The computer used to generate

the BMEWS displays in the NORAD COC.

- Device for multiplexing non-synchronous inputs.

- Device for multiplexing non-synchronous outputs.

- Day of month.

- Day of year.

- Encrypted for transmission only.

- Earth radii, as a unit of distance. Also earth's rotation.

- International Geophysical Year.

- Modified Julian Day.

- An element set based on vectors. N is a geocentric unit

vector directed toward the ascending node. M is a vector

directed toward and in the same plane as the orbit path

and normal to N.

- Orbit Computation Sequences.

- The effective fix on an object which results from scan-to-scan

comparative analysis in a fan from either detection radar or

tracking radar at the SKEWS sites.

- Right ascension.

- Root mean square.

j__*H^j^~c^£|jgygg|

••-:-• -•-. ^sgrnsBF.ys«! • «tii^-sgi»«

1 July 196^ 5-64 TM-LX-123/OOO/OCA il

SAO

SATBV

SATOF

SATOR

SATTB

SATUG

SEAIC

SRADU

STC

SSO

SYNCOM

Punning Program Language.

Smithsonian Astrophysical Observatory.

A code that defines the particular format in which observations

from COSPAR stations are received.

A code that defines the particular format in which observations

from COSPAR stations are received.

Satellite orbits.

Satellite table, containing satellite numbers automatically

selected by the RASSN Program for further processing.

A code that defines the particular format in which observations

from COSPAR stations are received.

Sensor, Element, Acquisition, Information and Communications

files.

A B-2 tape file containing Sorted Reports, Associated,

Doubtfully Associated, Unassociated.

Sunnyvale Test Center, Sunnyvale, California.

Special Security Officer, Air Force Security Service Network.

Defines code format in which observations are received from

this satellite source.

- The Philco Utility Program System.

' "«'SWfr mVJ•

14 August 1964 (Last Page) TK-LX-123/OOO/OB

DISTRIBUTION LIST

ADC (60 copies)

Electronic Systems Division U96L System Program Office L. G. Hanscom Field Bedford, Massachusetts

Lt. R. A Jedlicka (ESSXE-2) W. C. Morton, III (ESSX) R. E. O'Neil (ESSXE-2) 36 copies Colonel T. 0. Wear (ESFX) Captain E. T. Winston (ESSXE-l)

SDC

A. Drutz (Washington) M. H. Goer R. C. Long (CS) - 10.copies J. F. Matousek (CS) R. L. McMurtrie - l6 copies J. B. Munson (SM) J. M. Plante R. A. Richmond - 2$ copies