tem_lecture7_handouts.pdf

31
1 Page: 1 Max-Planck Institut für Metallforschung Universität Stuttgart Transmission Electron Microscopy Christoph T. Koch Max Planck Institut für Metallforschung Part VII: Analytical Electron Microscopy (AEM) EELS & EDXS Literature :R.F. Edgerton, Electron Energy-Loss Spectroscopy in the Electron Microscope,Plenum, New York (1986, 1996) Page: 2 Max-Planck Institut für Metallforschung Universität Stuttgart Reminder: Electron Scattering in the Sample incident electrons transmitted electrons Sample Electrons incident on the sample may be deflected and/or transfer part of their energy to the sample. Detection system - γ X-rays Secondary and back-scattered electrons Detector Detector (not common in TEM, but standard in SEM) (Images, Diffraction Patterns, Spectra [representing the energy lost in the sample])

Upload: teka-kam

Post on 12-Feb-2015

5 views

Category:

Documents


0 download

DESCRIPTION

TEM Documentation

TRANSCRIPT

Page 1: TEM_lecture7_Handouts.pdf

1

Page: 1Max-Planck Institut für Metallforschung Universität Stuttgart

Transmission Electron Microscopy

Christoph T. Koch

Max Planck Institut für Metallforschung

Part VII: Analytical Electron Microscopy (AEM)EELS & EDXS

Literature:R.F. Edgerton, Electron Energy-Loss Spectroscopy in theElectron Microscope,Plenum, New York (1986, 1996)

Page: 2Max-Planck Institut für Metallforschung Universität Stuttgart

Reminder: Electron Scattering in the Sample

incidentelectrons

transmittedelectrons

Sample

Electrons incident on the sample may be deflected and/or transfer part of their energy to the sample.

Detection system

- γX-raysSecondary and

back-scattered electrons

DetectorDete

ctor

(not common in TEM, but standard in SEM)

(Images, Diffraction Patterns, Spectra [representing the energy lost in the sample])

Page 2: TEM_lecture7_Handouts.pdf

2

Page: 3Max-Planck Institut für Metallforschung Universität Stuttgart

“An artist’s view” of electron scattering

photon

Incident electron

Scattered electron

Imag

e an

d an

imat

ion:

Car

l Zei

ssS

MT

Page: 4Max-Planck Institut für Metallforschung Universität Stuttgart

Reminder: Inelastic Scattering

Electrons may lose energy by

• Exciting vibrational states (phonons) in the sample (∆E < 0.2eV)

• Exciting density fluctuations of electrons in the valence band (surface-and bulk plasmons) (5 eV < ∆E < 50 eV)

• Exciting bound electrons into an unoccupied orbital (LUMO or higher)

• Inter- and Intra band transitions

• Producing Bremsstrahlung

• Electron – electron (Compton) scattering

Page 3: TEM_lecture7_Handouts.pdf

3

Page: 5Max-Planck Institut für Metallforschung Universität Stuttgart

Separating Electrons by EnergyFocal plane of projectorlens system

MagneticPrism

Energy Dispersive Plane

Fast electrons of energy E1

Slow electrons of energy E2 < E1

BX

Slower electrons experience a stronger deflection by the magnetic field.The momentum p of the electron may then be determined from the radius of curvature a:

⎟⎟⎠

⎞⎜⎜⎝

⎛== ⊥ m

pEaBcep

2 ,

2r

Page: 6Max-Planck Institut für Metallforschung Universität Stuttgart

The Electron Energy Loss Spectrum

ELNES: electron energy near edge structureEXELFS: Extended energy loss fine structure

Zero-loss peak (ZLP) Core-loss spectrum(e.g. Carbon K-edge)

Energy loss in eV

Cou

nts

(arb

itrar

y un

its)

Volume plasmon peak (most likely energy lossin whole spectrum)

Page 4: TEM_lecture7_Handouts.pdf

4

Page: 7Max-Planck Institut für Metallforschung Universität Stuttgart

Origin of EELS Core-Loss Features

Conduction/Valence band

unoccupiedInner orbitals

Neighbor atomsC

ount

s N

Page: 8Max-Planck Institut für Metallforschung Universität Stuttgart

Energy

unoccupiedstates

K-shell L-shell M-shell N-shell O-shelln l

j5s 5p 5d4s 4p 4d 4f3s 3p 3d1s 2s 2p

K

L1

L2,3

M1

M2,3

M4,5

N1

N2,3

N4,5

N6,7

O1

O2,3

Naming Convention for Atomic Orbitals (Electron Shells)

Electronic excitations visible in the energy loss spectrum are named after the shell from which an electron was excited.

Page 5: TEM_lecture7_Handouts.pdf

5

Page: 9Max-Planck Institut für Metallforschung Universität Stuttgart

Example: EEL Spectrum of Boron Nitride

EEL spectrum of Boron Nitride

Page: 10Max-Planck Institut für Metallforschung Universität Stuttgart

Inelastic Scattering Geometry

-

Sample

Elastically scattered electron

Inelasticallyscattered electron

Ewald sphere radius: k0Beam energy: E0

m

kh

mpE

22

2

022

0

r

==

Ewald spheres for elastically/inelasticallyscattered electrons.

k0

k’

( )( )2

0

222

02

0||0

||

0

/

,

'

vmE

kq

kqkq

qqqkkq

E

E

E

γϑ

ϑϑ

ϑϑ

∆=

+≈

≈≈

+=−=

rr

rrrr

rrr

rrr

⊥qr||qrqr

θ

Page 6: TEM_lecture7_Handouts.pdf

6

Page: 11Max-Planck Institut für Metallforschung Universität Stuttgart

Angular Dependence of Inelastic ScatteringCharacteristic Angle: 02/ EEE =ϑ E( = average energy loss, typically 37eV)

Differential cross section for inelastic scattering:

( ) ( ) ⎪⎩

⎪⎨

<<<

<∝

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+++

+=

Ω −

ϑϑϑϑϑϑϑ

ϑϑϑ

ϑϑϑϑ

ϑϑγσ

04

02

0

220

22

40

22240

20

2

for ,for ,

for ,114

E

E

EEkaZ

dd

a0: Bohr radius (=0.529Å)γ: relativistic correction factorθ: scattering angleθ0: effective cutoff angleθE: characteristic angle

Compare: Elastic Rutherford scattering cross section is proportional Z2!

Page: 12Max-Planck Institut für Metallforschung Universität Stuttgart

Bethe Theory and Dipole Approximation

2

3*

042

0

2

2

042

0

2

)(exp()('4

exp('4

rdrrqirkk

qa

irqinkk

qadd

jjf

jj

n

rrr

rr

i)

)

Ψ⋅Ψ⎟⎟⎠

⎞⎜⎜⎝

⎛=

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛=

Ω

∑∫

γ

γσ|n>: Target electron orbital|i>: Initial electron orbitalq: Scattering vectorrj: Atom positions

Scattering cross section for an electron from the initial state |i> into a state |n> :

Dipole approximation: ...1exp( −⋅+=⋅ rqirqi jrrrr )

222......1exp( −⋅=−⋅+=⋅⇒ irqniirqniinirqin rrrrrr )

Non-zero only for pairs of states |i> and |n> whose symmetry is different, i.e. whose angularmomentum changes.

Vanishes, because |Ψi> and |Ψn> are orthogonal

(for orbitals close to the core only the local atom at r=0 must be considered)

Dipole Selection Rule: Change in angular momentum ∆l = +/-1

Page 7: TEM_lecture7_Handouts.pdf

7

Page: 13Max-Planck Institut für Metallforschung Universität Stuttgart

Physical Significance of Matrix Element

• The matrix element determines the basic edge shape. ELNES and EXELFS oscillations modify this shape.

• Computation of the basic edge shapes only requires isolated atoms.

22exp(),( irqniirqinEqM rrrrr

⋅≈⋅= )

Edge

Background

Basic Edge

1. Basic edge for isolated atom

2. Spectrum containing background (e.g. from other edges)

3. Modulation by fine structure

4. Modulation by far-edge-fine structure

Page: 14Max-Planck Institut für Metallforschung Universität Stuttgart

Energy Loss Near Edge Structure (ELNES)ELNES provides information about local band structure, oxidation states and bonding. Its computation requires therefore (time consuming) band structure computations or equivalent methods in real space.

• The ELNES Signal may be interpreted as the local symmetry-projecteddensity of states in the conduction band

• Core-hole effect: The electron that has been excited into one of the unoccupied atomic orbitals leaves behind a hole, producing a shift on all the other orbitals, including the one it is jumping to. This affects the ELNES.

• One can often distinguish local bonding characteristics by Fingerprinting, i.e. by comparing with spectra of the same element in known local environments.

Page 8: TEM_lecture7_Handouts.pdf

8

Page: 15Max-Planck Institut für Metallforschung Universität Stuttgart

EXtended Energy-Loss Fine Structure (EXELFS)If a core-shell electron is excited enough to leave the potential of ist

local atom it travels through the sample as a spherical wave. Theinteference of this outgoing wave with the ones reflected byneighboring atoms affects the ionization probability, modulating theionization edge structure (see also X-ray technique EXAFS).

• EXELFS carries information about the coordination of an atomicspecies in a material.

• It starts at energies >Ec+50 eV (Ec = edge energy)

• It may be overlaid by multiple scattering effects (e.g. Ec + plasmon loss) => Single scattering correction (deconvolution with low-lossEEL spectrum) is necessary.

• Radial distribution function (RDF) may be obtained from EXELFS.

Page: 16Max-Planck Institut für Metallforschung Universität Stuttgart

Low-Loss EELS• Mainly Plasmons (longitudinal density fluctuations in a plasma, here:

the electrons in the valence band)

• Also Intra- and Interband transitions (as opposed to ionization edges, which catapult electrons into the conduction band or outside the local atom’s potential).

• Energy loss range comparable with the range accessible to V-UV spectroscopy.

• Information about (local) dielectric properties of the material:Determination of dielectric function with high spatial resolution

• Excitation / annihilation of atomic vibrations (phonons): Energylosses << 1eV.

21 εεεεε ii ir +=+=

Page 9: TEM_lecture7_Handouts.pdf

9

Page: 17Max-Planck Institut für Metallforschung Universität Stuttgart

Dielectric Formulation of Energy LossThe dielectric formulation of energy losses considers a continuum of varying (complex) dielectric constant, instead of individual atomic orbitals.

Double differential cross section ( )

Kramers Kronig Relation relates real and imaginary part of the dielectric function. The full complex ε=ε1+iε2 can therefore be obtained from a single EEL spectrum ( )ωh=E

Page: 18Max-Planck Institut für Metallforschung Universität Stuttgart

Models of the Dielectric Function

Drude Model: Valid for Metals and Semiconductors. Assumes the existence of a single plasmon resonance frequency ωp and a damping coefficient τ (small for metals). ωp depends on the valence electron density ne and the effective electron mass m.

Lorentz Model: Assumes an ensemble of many different harmonic oscillators representing possible interband transitions with energies equal to the oscillators eigenfrequency ωn. Commonly only one such harmonic oscillator is assumed:

Page 10: TEM_lecture7_Handouts.pdf

10

Page: 19Max-Planck Institut für Metallforschung Universität Stuttgart

Multiple Inelastic Scattering

j(ν) = J(E)e2πiνEdE−∞

j(ν) = z(ν) 1+s(ν)I0

+s(ν )[ ]2

2I0

2 + ...⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ = z(ν)es (ν )/ I0

J1(E) = R(E)⊗ S(E) = R(E − E' )S(E' )dE'−∞

Single scattering spectrum (as measured):

Instrumental broadening(point spread function)

Actual energy lossfunction of sample

)()()(21)(

0

2 ESESERI

EJ ⊗⊗=

Double scattered spectrum (as detected):

Fourier transform of spectrum containing all multiple scattering orders:

(I0 = total current in spectrum, z(ν):FT of zero-loss peak shape)

Page: 20Max-Planck Institut für Metallforschung Universität Stuttgart

Fourier-Log Deconvolution

s(ν) = I0 lnj(ν)z(ν )

⎝ ⎜

⎠ ⎟

If the whole spectrum starting at E=0 is available (possible for low energy losses):

O K

Ni K

Page 11: TEM_lecture7_Handouts.pdf

11

Page: 21Max-Planck Institut für Metallforschung Universität Stuttgart

Fourier-Ratio Method

One can approximate the multiple scattering at higher energy losses as a convolution of the actual spectrum with its low-loss range (since low energy losses (e.g. plasmons) have a much higher scattering cross section).The single scattering energy loss function can then be obtained by deconvolution, using an iterative algorithm (such as Maximum Likelihood, Richardson-Lucy, etc.) or straight division in Fourier-space.

k1(ν) = I0jK (ν)jl(ν )

Page: 22Max-Planck Institut für Metallforschung Universität Stuttgart

Itotal

Thickness Determination by EELS

Inelastic Mean Free Path: ( )

[ ]36.0

0

02

0

0

6.7

/2ln511/11022/1106

ZE

EEEE

EE

m

m

m

++

≈β

λ

Mean energy loss (in eV):

(E0 in keV, β=collection angle)

At sufficiently high specimen thickness, several inelastic scattering events may occur.The EELS intensity is then given by an exponential in reciprocal space

( )ZLPtotal IIt /ln/ =λ

IZLP

λ is typically 50 – 150 nm

Page 12: TEM_lecture7_Handouts.pdf

12

Page: 23Max-Planck Institut für Metallforschung Universität Stuttgart

Delocalization of Inelastic Scattering

At higher Energy losses θE becomeslarger (θE ~ E). For high energy losses the spatial resolution is therefore determined by the size of the spectrometer collection aperture (uncertainty principle).

At low energy losses, qE determines a lower cut-off angle below which the scattering cross section is reduced. It therefore needs to be considered in addition to the aperture size.

Generally the resolution of inelastic scattering may be approximated by the a disk of diameter d50 from which 50% of the inelastic signal stem:

( ) ( ) ( )224/3250 /6.0/5.0 βλϑλ += Ed

Raileigh criterion for collection apertureLimits low-loss resolution

Page: 24Max-Planck Institut für Metallforschung Universität Stuttgart

Spatial-resolution of inelastic scattering (neglecting aberrations) using an AlGaNedge (effective CCD pixel size: 2Å). d50 experimental reflects an average value with energy-slit of about 2eV.

Dat

a: L

in G

u, M

PI-M

FM

icro

scop

e: Z

eiss

Libr

a 20

0FE

+MC

Delocalization of Inelastic Scattering

Page 13: TEM_lecture7_Handouts.pdf

13

Page: 25Max-Planck Institut für Metallforschung Universität Stuttgart

Separating Electrons by EnergyFocal plane of projectorlens system

MagneticPrism

Energy Dispersive Plane

Fast electrons of energy E1

Slow electrons of energy E2 < E1

BX

Slower electrons experience a stronger deflection by the magnetic field.The momentum p of the electron may then be determined from the radius of curvature a:

⎟⎟⎠

⎞⎜⎜⎝

⎛== ⊥ m

pEaBcep

2 ,

2r

Page: 26Max-Planck Institut für Metallforschung Universität Stuttgart

Imaging Energy Filters

D: diffraction planeO: image planeS: sextupole lens Energy dispersed diffraction pattern

Energy-selecting slit aperture

Achromatic image

Intermediate Image

Intermediate Diffraction Pattern

Imaging Energy Filter

An optical element (i.e. may have some magnification) which replicates the image in O1 in O3, but electrons of different energy cross the image plane O3 at different angles of incidence.

Page 14: TEM_lecture7_Handouts.pdf

14

Page: 27Max-Planck Institut für Metallforschung Universität Stuttgart

Energy Filter Aberrations

MagneticPrism

BX

Imaging energy filter aberrations• Reduce spectral resolution (by convoluting diffraction pattern or image with the spectrum)• Reduce the area that can be imaged (depends on width of energy-selecting slit).

Energy Dispersive Plane

(Spectrum x Image)

Energy-slit

Diffraction pattern

Image

Energy varies across diffr. pattern(non-isochromatic)

Page: 28Max-Planck Institut für Metallforschung Universität Stuttgart

Energy-filtered Electron Diffraction

Energy-filtered CBED pattern (Slit width: 10eV)

Energy variation for CBED pattern(Energy loss: 0eV [red] .. 10eV [blue])

(M.M.G. Barfels, M. Kundmann, C. Trevor, J.A. Hunt, Microsc Microanal 11(Suppl 2), 2005)

Page 15: TEM_lecture7_Handouts.pdf

15

Page: 29Max-Planck Institut für Metallforschung Universität Stuttgart

Correcting Imaging Energy Filter Aberrations

Dia

gram

: G. B

otto

n

Page: 30Max-Planck Institut für Metallforschung Universität Stuttgart

Gatan Imaging Filter (GIF): mounted below the column

Actual Design of a Post-Column Filter

Page 16: TEM_lecture7_Handouts.pdf

16

Page: 31Max-Planck Institut für Metallforschung Universität Stuttgart

In-Column (Omega) Filter

Imag

e an

d an

imat

ion:

Car

l Zei

ssS

MT

Page: 32Max-Planck Institut für Metallforschung Universität Stuttgart

Evolution of In-Column Filter Designs

11000nm2

1eV, 200kV190nm2

1eV, 200kV9nm2

1eV, 200kV12nm2

1eV, 80kV

0.007eV0.5eV15eV23eV

Page 17: TEM_lecture7_Handouts.pdf

17

Page: 33Max-Planck Institut für Metallforschung Universität Stuttgart

In-Column vs. Post-Column

• 4 Dispersive elements (4x90°)

• Integrated into microscope column

• Electron Optics designed to optimize filter performance

• Spectra and images projected on viewing screen, CCD, photographic film, TV-camera

• 1 dispersive element (90°)

• May be added to any existing microscope

• Filter- and microscope optics separately controlled

• Only detectors integrated into energy filter possible (no film, no viewing screen)

In-Column (Omega) Filter Post-Column Filter

Page: 34Max-Planck Institut für Metallforschung Universität Stuttgart

Energy-Filtered TEM (EFTEM)

C1 .. C7: correction elements

In EFTEM mode, the energy filter is used to record images formed by electrons that have experienced different energy losses.

The energy window is shifted by changing the accelerating voltage of the microscope. This ensures that the TEM optics may remain unchanged.

Slit aperture

Page 18: TEM_lecture7_Handouts.pdf

18

Page: 35Max-Planck Institut für Metallforschung Universität Stuttgart

Electron Spectroscopic Imaging (ESI)Energy-filtered images may also be acquired sequentially by scanning the beam

across the specimen and recording a spectrum at every beam position (STEM-EELS).

Adding an energy dimension to an image makes it a 3D data cube

Page: 36Max-Planck Institut für Metallforschung Universität Stuttgart

STEM-EELS Maps and Linescans

Ti : O ratio

in nm

STEM-EELS:• Provides a whole spectrum (e.g.1000 .. 4000 energy channels) for each beam position along the scan line (or scanned area)• Spatial resolution is determined by the electron beam probe size.

Composition Profile

SrTiO3 ceramic

Page 19: TEM_lecture7_Handouts.pdf

19

Page: 37Max-Planck Institut für Metallforschung Universität Stuttgart

EFTEM vs. STEM-EELS

• Acquisition time independent of number of pixels

• Parallel acquisition ensures zero drift between pixels

• Energy may have shifted between images

• Slit cuts away electrons -> inefficient.

• Acquisition time grows linear with number of pixels

• Specimen may have drifted between pixels

• All energy channels acquired simultaneously – no energy drift

• All electrons are used-> very efficient use of electrons

EFTEM STEM-EELS

Page: 38Max-Planck Institut für Metallforschung Universität Stuttgart

Ionization Edges: Background Subtraction

Background extrapolation: usually power law IBackground(E) = AE-r

(Generally, the background model depends on energy loss)

Fit background Ionization edge

Background subtractedIonization edge

Extrapolatedbackground

Page 20: TEM_lecture7_Handouts.pdf

20

Page: 39Max-Planck Institut für Metallforschung Universität Stuttgart

EFTEM: 3 Window methodIm

ages

: J. V

erbe

eck

Background extrapolation: usually power law IBackground(E) = AE-r

Page: 40Max-Planck Institut für Metallforschung Universität Stuttgart

Background subtraction in 3-Window Elemental Mapping

E1..E3: energies at edge of energy slit

Page 21: TEM_lecture7_Handouts.pdf

21

Page: 41Max-Planck Institut für Metallforschung Universität Stuttgart

22 eV

23 eV

Si3N4

SiC

100 nm

Map of Plasmon energies in a Si3N4 / SiC ceramic determined by fitting the position of the plasmon peak energy to an EFTEM series. The different plasmon energies stemfrom different valence electron densities in these materials.The shift in plasmon energy from left to right is due to an non-isochromaticity of 0.5eV.

Image: A. Zern, W. Sigle

Plasmon Energy Map

Page: 42Max-Planck Institut für Metallforschung Universität Stuttgart

Zero-Loss Filtering in Electron Diffraction

Image G. Botton

Zero-loss filtered CBED patternUnfiltered CBED pattern

Convergent beam electron diffraction (CBED) patterns become much clearer, if the diffuse inelastic scattering background has been removed by zero-loss energy filtering.

Page 22: TEM_lecture7_Handouts.pdf

22

Page: 43Max-Planck Institut für Metallforschung Universität Stuttgart

EELS at interfaces

Energy-loss

Energy-loss

posi

tion

inte

nsity

Sequentially acquired EELS Linescan across an interface in Si3N4

Page: 44Max-Planck Institut für Metallforschung Universität Stuttgart

Electron Spectroscopic Profiling (ELSP)

• Less beam damage• Better Signal/Noise

Energy in eV

Posit

ion a

cros

s

inter

face

50nm

GaAs AlGaAs

Single focusing spectrometers focus spatial information into a line normal to the dispersive direction.

interface

ener

gy

E=0

Page 23: TEM_lecture7_Handouts.pdf

23

Page: 45Max-Planck Institut für Metallforschung Universität Stuttgart

(La,Ca)MnO3/SrTiO3 – 3.9A resolution

Concentration profiles across an interface from a single exposure!

Electron Spectroscopic Profiling (ELSP)

T. Walther, Ultramicr. 96, 401 (2003)

Page: 46Max-Planck Institut für Metallforschung Universität Stuttgart

EELS at Interfaces

= +

Spatial Difference Technique

Spectrum incl. interface = a·Spectrum of interface + b·Spectrum of bulka + b = 1

each spectrum > 0 at all energies

a · IGB(E)b · IGrain(E)

Page 24: TEM_lecture7_Handouts.pdf

24

Page: 47Max-Planck Institut für Metallforschung Universität Stuttgart

Momentum-Resolved EELS

50µrad

5eV

volume plasmon

interband transitions

3.3eV band edge

Zero Loss Peak (ZLP

Page: 48Max-Planck Institut für Metallforschung Universität Stuttgart

Increasing Energy Resolution: Monochromators

(has residual dispersion) (dispersion free)(has residual dispersion)

Page 25: TEM_lecture7_Handouts.pdf

25

Page: 49Max-Planck Institut für Metallforschung Universität Stuttgart

After Excitation: Relaxation => Characteristic X-rays

Page: 50Max-Planck Institut für Metallforschung Universität Stuttgart

Energy-Dispersive X-ray Spectroscopy (EDXS)

Vacuum inc. electron

-

X-ray

While EELS probes energy levels of available empty atomic orbitals into which electrons may be excited (relative to the electron’s initial orbital), EDXS probes the energy levels of filled orbitals from which electrons may relax to replace the excited electron.

Page 26: TEM_lecture7_Handouts.pdf

26

Page: 51Max-Planck Institut für Metallforschung Universität Stuttgart

EDXS: Sensitive to Heavy Elements

10−1

10−2

10−3

10−4

1

10 20 30 40 50Z

ω ω =

Z 4

a + Z 4

Z: nuclear charge; a: constant (e.g. a ≈ 106 for K-lines)

X-ray emission as function of element (approx.):

Page: 52Max-Planck Institut für Metallforschung Universität Stuttgart

Si(Li) - Detector

-500 .. -1000V

- +

Si, Li drifted(insulating)

γ

Detector cooled by liquid N2

Energy-loss of γ for creating one electron-hole pair: 3.8 eV @ T = 77 K=> Number of electron-hole pairs proportional to photon-energy (up to a few keV)

charge pulse only ≈ 10-16 C (->amplification and computer processing)

≈3

mm

Alternative: Ge

Page 27: TEM_lecture7_Handouts.pdf

27

Page: 53Max-Planck Institut für Metallforschung Universität Stuttgart

Efficiency of Different EDX Detector Designs1,0

0,8

0,6

0,4

0,2

0,00,0 1,0 2,0 3,0 4,0

fensterlosPolymer-UTWatmosph. UTWBe

E [keV]

Effi

cien

cy

No windowPolymeric ultra-thin windowAtmospheric thin window (BN, diamond, …)Beryllium window

Cooling the detector is necessary, to a) keep the Li in place and b) reduce noise (e.g. thermally activated electron-hole pairs)Thin windows, transparent to (almost all) X-rays, protect the detector.

Page: 54Max-Planck Institut für Metallforschung Universität Stuttgart

EDX Detector

Dia

gram

: G. B

otto

n

window

collimator

Objective lens

Tilted sample holder with notch

e- beam

Liquid N2-filled dewarcools the detector

Page 28: TEM_lecture7_Handouts.pdf

28

Page: 55Max-Planck Institut für Metallforschung Universität Stuttgart

EDX detector

Cryostat

FET DetectorWindow

Collimator

liq. N2

window

Shutter FET

Detector

Cooling

Diagram: Oxford Instruments

Page: 56Max-Planck Institut für Metallforschung Universität Stuttgart

The Collimator

Diagram: Oxford InstrumentsExample: EDX detector in a SEM

Page 29: TEM_lecture7_Handouts.pdf

29

Page: 57Max-Planck Institut für Metallforschung Universität Stuttgart

The EDX Spectrum

Continuous background (Bremsstrahlung)

Characteristic X-ray peaks

Page: 58Max-Planck Institut für Metallforschung Universität Stuttgart

EDX mapping of grain junctionBF image

Grain junction in Si3N4

Experiment: Z. Zhang

Page 30: TEM_lecture7_Handouts.pdf

30

Page: 59Max-Planck Institut für Metallforschung Universität Stuttgart

The Inelastic Interaction Volume

Because of the low specimen thickness the interaction volume in a TEM is much smaller than in SEM. This reduces the count rate, but makes excellent spatial resolution possible.

Diagrams: Oxford Instruments

SEM AEM

Interaction volume

~10-5µm3 ~10-8µm3

Page: 60Max-Planck Institut für Metallforschung Universität Stuttgart

Beam Broadening

Diagram: Oxford Instruments

Page 31: TEM_lecture7_Handouts.pdf

31

Page: 61Max-Planck Institut für Metallforschung Universität Stuttgart

Spatial Resolution Limit: Specimen Drift

ADF-STEM image EDX Ru-map

Images: T. Yaguchi et al., IMC16 Sapporo, Japan (2006)

A 4Å thick Ruthenium layer may clearly be resolved by EDXS in a Cs-corrected TEM

High spatial resolution in EDXS Mapping requires thin specimen and, because of the low count rates, very long exposure times. It then depends on the specimen drift (and the effectiveness of methods compensating it) whether non-blurred EDXS maps can be recorded.