technical transactions czasopismo …140 1. introduction high speed railway development requires ac...

11
* Prof. Ph.D. D.Sc. Eng.Adam Szeląg, Faculty of Electrical Engineering, Warsaw University of Technology. ADAM SZELĄG * 25 KVAC RAILWAY LINE WITHIN 3 KV DC INFRASTRUCTURE IN POLAND – ANALYSIS OF OPERATING CONDITIONS ANALIZAWARUNKÓW WPROWADZANIA DO POLSKIEJ INFRASTRUKTURY KOLEJOWEJ LINII ZELEKTRYFIKOWANEJ W SYSTEMIE 25 KVAC 50 HZ Abstract Electrified transport is strongly assorted, due to long term development and use of diversified solutions, particularly in the scope of electrical engineering considering the following aspects: nominal voltage of a power supply system, vehicles’ main circuits and electrical drives. The problem of compatible work of varied railway systems in mutual interaction regions, despite of various studies, still appears a significant issue. The main purpose of the paper is to present the negative impact of mutual interaction of AC DC railway regions on the electrified railway lines and power grid. A Matlab – Simulink model of the DC and AC traction systems has been developed. In the article, apart from the main problems which could appear in the AC-DC transition zones, the voltage unbalance analysis caused by the AC traction substation is covered and the influence of asymmetric input voltage of the rectifier traction substation on the DC voltage quality is analysed. Keywords: traction power supply system, asymmetry, harmonics, mutual influence of AC and DC power systems Streszczenie Zelektryfikowany transport jest silnie zróżnicowany ze względu na długi okres rozwoju oraz stosowa- nie rozmaitych rozwiązań, w szczególności w zakresie rozwiązań technicznych, z uwzględnieniem takich aspektów jak: napięcie znamionowe układu zasilania, główne obwody pojazdów oraz napędy elektryczne. Pomimo przeprowadzenia szeregu badań, problem kompatybilności działania różnych systemów kolejo- wych na obszarach wzajemnego oddziaływania nadal pozostaje istotnym zagadnieniem. Niniejszy artykuł ma na celu przedstawienie zagadnienia negatywnego wpływu wzajemnego oddziaływania obszarów kole- jowych AC-DC na zelektryfikowane linie kolejowe oraz sieć energetyczną. W tym celu opracowano model Matlab – Simulink systemów trakcyjnych DC i AC. W artykule, oprócz głównych problemów, jakie mogą pojawić się w strefach styku systemów AC-DC, przedstawiono również analizę asymetrii napięcia powo- dowanej przez podstację trakcyjną AC oraz przeanalizowano wpływ asymetrycznego napięcia zasilającego podstacji prostownikowej na jakość napięcia w sieci trakcyjnej DC. Słowa kluczowe: system zasilania trakcji elektrycznej, asymetria, harmoniczne, oddziaływanie wzajemne systemów zasilania AC i DC TECHNICAL TRANSACTIONS ELECTRICAL ENGINEERING 1-E/2016 CZASOPISMO TECHNICZNE ELEKTROTECHNIKA DOI: 10.4467/2353737XCT.16.036.5298

Upload: others

Post on 11-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

* Prof.Ph.D.D.Sc.Eng.AdamSzeląg,FacultyofElectricalEngineering,WarsawUniversityofTechnology.

ADAMSZELĄG*

25KVACRAILWAYLINEWITHIN3KVDCINFRASTRUCTUREINPOLAND–ANALYSIS

OFOPERATINGCONDITIONS

ANALIZAWARUNKÓWWPROWADZANIA DOPOLSKIEJINFRASTRUKTURYKOLEJOWEJLINIIZELEKTRYFIKOWANEJWSYSTEMIE25KVAC50HZ

A b s t r a c t

Electrified transport is strongly assorted, due to long term development and use of diversified solutions,particularlyinthescopeofelectricalengineeringconsideringthefollowingaspects:nominalvoltageofapowersupplysystem,vehicles’maincircuitsandelectricaldrives.Theproblemofcompatibleworkofvariedrailwaysystemsinmutual interactionregions,despiteofvariousstudies,stillappearsasignificant issue.ThemainpurposeofthepaperistopresentthenegativeimpactofmutualinteractionofACDCrailwayregionsontheelectrifiedrailwaylinesandpowergrid.AMatlab–SimulinkmodeloftheDCandACtractionsystemshasbeendeveloped.Inthearticle,apartfromthemainproblemswhichcouldappearintheAC-DCtransitionzones,thevoltageunbalanceanalysiscausedbytheACtractionsubstationiscoveredandtheinfluenceofasymmetricinputvoltageoftherectifiertractionsubstationontheDCvoltagequalityisanalysed.

Keywords: traction power supply system, asymmetry, harmonics, mutual influence of AC and DC power systems

S t r e s z c z e n i e

Zelektryfikowany transport jest silnie zróżnicowany zewzględu na długi okres rozwoju oraz stosowa-nierozmaitychrozwiązań,wszczególnościwzakresierozwiązańtechnicznych,zuwzględnieniemtakichaspektówjak:napięcieznamionoweukładuzasilania,główneobwodypojazdóworaznapędyelektryczne.Pomimoprzeprowadzeniaszeregubadań,problemkompatybilnościdziałaniaróżnychsystemówkolejo-wychnaobszarachwzajemnegooddziaływanianadalpozostajeistotnymzagadnieniem.Niniejszyartykułmanaceluprzedstawieniezagadnienianegatywnegowpływuwzajemnegooddziaływaniaobszarówkole-jowychAC-DCnazelektryfikowaneliniekolejoweorazsiećenergetyczną.WtymceluopracowanomodelMatlab–SimulinksystemówtrakcyjnychDCiAC.Wartykule,opróczgłównychproblemów,jakiemogąpojawićsięwstrefachstykusystemówAC-DC,przedstawionorównieżanalizęasymetriinapięciapowo-dowanejprzezpodstacjętrakcyjnąACorazprzeanalizowanowpływasymetrycznegonapięciazasilającegopodstacjiprostownikowejnajakośćnapięciawsiecitrakcyjnejDC.

Słowa kluczowe: system zasilania trakcji elektrycznej, asymetria, harmoniczne, oddziaływanie wzajemne systemów zasilania AC i DC

TECHNICAL TRANSACTIONSELECTRICAL ENGINEERING

1-E/2016

CZASOPISMO TECHNICZNEELEKTROTECHNIKA

DOI: 10.4467/2353737XCT.16.036.5298

140

1. Introduction

Highspeedrailwaydevelopment requiresACelectrification,due tomuchhigherpowertransfer capacity – vehicles collect lower currents from catenary. As a result, countriespreviouslyelectrifiedonlywithDCsystemhave todealwithmutual interactionofACandDCsystemsoperatinginadjacentareas[1,3,4,6,11–13].Thelattercooperationandrelatedissuesiscommonincountriesthatusemorethanonetractionpowersupplysystem(e.g.25kVAC50Hzrailwayandatramsystemsuppliedfrom600VDCcatenaryor15kVAC16.7Hzrailwayand750DC3rdrailurbansystem).Allthesesystemsmustoperatewitharequiredhighlevelofsafetyandreliability,especiallyinthecities–highlyurbanisedareas,wherethetracksofneighbouringsystemsareoperatingintheirvicinity[4].Despitevariousmeasurestaken,theproblemofcompatibleoperationofvarioustractionpowersupplysystemsinthecontactareasisasignificantareaofconcernandshouldbetakenintoaccountatthefirststagesoftheproject.

2. AC and DC railway systems interactions

Afterintroductionof25kVACtractionintoPolishrailwayinfrastructure,themanagementof mutual interaction areas will be required. These areas occur at various points of theinfrastructure(Fig.3):• onthePowerUtilitySystem(PUS)side-whentractionsubstations(TSs)ofbothsystems

aresuppliedfromthesamePointofCommonCoupling(PCC).DCTSwillbefedbyunbalancedvoltagewhereasACTSbydistortedvoltage;

• ontherailwayside(ERL).UnbalancedinputvoltageofDCTScausesfluctuationofitsoutputvoltagewithdoubledPUS

frequency(inPoland100Hz).Suchphenomenonleadstotheoccurrenceofadditional,previouslynot present, non-characteristic higher order harmonics (HH) derived from the operation ofarectifierunit-bothonthePUSandERLsides.Asaresult,anACTSconnectedtothesamePCCisfedwithlowervoltagequality.ThelattercausesthepresenceofHH,intheACTSoutputaswell.SignificantlydecreasedpowerqualitymayresultinadditionalissuesrelatedtothefilteringdevicesinDCTS–deteriorationoftheHHfilterperformance.Installationoftworesonancefilterstunedtoparticularrectifierfrequencies(600Hzand1200Hz)resultinparallelresonanceinthemiddleofthosefrequencies(Fig.1).Ingeneral,itshouldnotbeaproblem,howeverincaseofnon-characteristicHHpresence;furtheranalysisofthefiltereffectivenessmayberequired.

Independent bulk supply points for theAC andDCTSs reduces the issues of powerqualitydescribedabove,however,doesnot resolve the issuerelated tomutual interactionareaspresentontheERLside.Railwaylinesinteractwitheachothermainlydueto[9]:• inductive coupling–ACERLhas an impact on theDCERL.50Hzvoltage (and as

aresultcurrents)ispresentintheDCsystemcircuitry.Additionally,HHcurrentsflowingintheDCcatenarymayalsoresultininducedvoltage(andcurrent)intheACcircuitry.However,thiseffectisnegligibleduetorelativelylowmagnitudesofthosecurrentsandenough,evensmall,separationbetweentheACandDClines;

• galvaniccoupling–returncurrentsofonesystemmaybepresent intheneighbouringrailsofadjacentsystem.Thisphenomenonderivesfromtheearthingmethodology–therailsoftheACsystemarewell-earthedwhereastherailsoftheDCsystemareisolatedfromtheground(Fig.3).

141

Fig.1ExemplarycharacteristicsofthefiltersusedinaDCtractionsubstationsinPoland (simulationresults)

Fig.2.CurrentflowinACtractionsystems.Fromthetop:25kV,25kVwithareturnconductor, 25kVwithreturnconductorandbooster-transformers,2×25kV)

142

Duetoinductivecoupling,thewell-knownandsafevalueof120VpotentialinDCrails[9]isnolongeracceptable.ThisiscausedbytheinfluenceofACcomponents,whichtogether(superimposed)withtheDCvoltage,increasetheriskofelectricshock(mixedvoltages–containingACandDCcomponents[9]).50HzcomponentinducedinDCrailscanalsohaveanegativeimpactontheoperationofoldertypestrackcircuits(TC),whichoperateonthebasisofisolatedblocks.Additionally,duetogalvaniccoupling,the50HzcomponentmayoccurinDCrails(togetherwithaninducedcomponent).DependingonthetypeofanACsystem(25kV,25kVwithareturnconductor,25kVwithabooster-transformersor2×25kV),thenegativeimpactofgalvaniccouplingseenfromtheDCsystemschanges,duetotheamountofreturncurrentflowingintheearth(Fig.2).

As faras theadjacentoperationofPUS linesandERLisconcerned,describedabovedescriptionmaybeapplicableaswell.

GalvaniccouplingresultsinthesignificantimpactoftheDCsystemontheACsystem–DCcomponentpresentintheACrailsnotonlyincreasestheriskofelectricshock(mixedvoltage[9]), but alsonegatively influences anACsystem infrastructure equipment (transformers,booster-transformersandautotransformerscoressaturation).DCstraycurrentsflowpathisclosedbytheelementsoftheadjacentACsysteminfrastructure.

IfthemutualinteractionareasappearatbothPUSandERLside(e.g.ACandDCTSsaresuppliedfromthesamePCCandERLsoperateincloseproximity),thelevelofnegativeinterference,describedabove,maybehigher.

Fig.3.MutualinteractionareasofneighbouringACandDCrailwaysystems

3. Analysis of voltage unbalance at the PCC feeding AC TS

Feedingdiagram(Fig.4)wasproposedfortheexemplaryanalysisofthePUSsidemutualinteractionareas.ACTSsupplies tworailwaysections(25kmeach)– lefthandside( toACTC2)andrighthandside(tosectioningpost)–50kmintotal.Forthepurposeofthisanalysissectioningpostsandsub-sectioning(paralleling)postsbetweenACTSshavenot

143

beenpresentedonFig.4.Fig.5showstheTSACoutputpowerduringapeakperiodundernormalfeedingconditions(whenneighbouringTSis inoperation).Theknowledgeof thepowerdemandcurvewill be significant to assess theminimumshort-circuitpower (faultlevel)atPCCbusbarswhich is required tomeet theunbalance requirementsdescribed inregulations[10].

Fig.4.ContactareaofACandDCrailwaysystemsatthePUSside(ACandDCTSssuppliedfromthesamePCC)

Relevant regulations governing maximum levels of voltage unbalance in Poland [8,10].Polishregulationstatesthat[10]:“…Withineachweek,95%ofresultsfromthesetof10-minuteaverageRMSvaluesofanegativephasesequencevoltagecomponentshouldbeintherangeof0%to1%ofapositivephasesequencevoltagecomponent”.

TheratiooftheRMSvalueofanegativephasesequence(nps)voltagecomponenttotheRMSvalueofapositivephasesequence(pps)voltagecomponentisdefinedasavoltageunbalancecoefficientαu[2,6,8,9].RMSvalueaveragedover600swindowisunderstoodas a onevalue (calculated from the set of instantaneousvalues in 10minuteswindow)mentionedintheregulation[10].Oneweekcomprisesof1008ofthelattervalues,whatmeansthat95%ofαuvalues(RMS)mustbesmallerthan1%–itconstitutes958values.Therefore,ifitisassumedthatapeakperiodlastsfor8hperday(2×4h),thenthepeakperiodconstitutes33%ofoveralltime(8×7=56h).Intheanalysedcase,theexceedanceofαumayoccuronlyduringashortpeakhourperiods.Ifduringallofthepeakperiodstheαuvaluescalculatedinlinewiththerequirements[10]arehigherthan1%,thenonly67%ofthosevalueswillbeacceptable(fromtherequired95%).Insuchcase,tobefullycompliantwith the requirements set out in regulation [10], duration of the peak periodshouldbenolongerthan1.2h.TheoverallpowersupplysystemforACrailwaysshouldbedesignedproperly(withpossiblyhighshortcircuitpowerattheTSHVbusbars)toprovidetheenvisagedlevelofvoltageunbalance(upto1%)throughouttherequiredperiod(min.95%overtheweek).

Takingintoaccounttheforecastedtraffic,onedefinedpowerdemandofanACTSandperformedtheanalysisofmutualinteractionoftheACandDCrailwaysystemsatPUSside(thesamePCCsuppliesDCandACTSs).Thefirststepwastoprovidesuchshort-circuitpowerattheATTSHVbusbarsthat,foragivenpowerdemandcurve(Fig.5),TSwillnotintroduceunacceptable[10]voltageunbalance.

144

Fig.5.ForecastedloadofanACTS–4-hourpeakperiod[11]

Fig.6.Exceedanceofthe1%unbalanceαulimitforvariousfaultlevels(short-circuitpowers) atPCC(busbars)feedingtheACTS

Figure6showshowmanyofthe10-minutevalues(describedin[10])exceedthepermissiblelimitversustheshort-circuitpower(faultlevel)atthePCC.Figure7confirmsthatthevoltageunbalance, caused by theAC railwayoperation, is acceptablewhenminimum short-circuitpoweratPCCisatleast3GVA.InthiscasethevoltageunbalancelevelatthePCCbusbarswillbeupto1%(Fig.8)[ofcourseifnounbalancecomesfromthePCCupstreamside].

Therefore,as faras thevoltageunbalance isconcerned, theshort-circuitpowerat thePCCshouldbetheconsideredasthemostsignificantareaofanalysis.

145

Fig.8.Estimatedcontribution(%)ofinstantaneous(5-seconds)valuesofαufactorsduringa4-hourpeakperiod[ifthevalueisequalto1itmeansthatαuiswithintherangeof0–1%]forvariousfault

levels(short-circuitpowers)atthePCC

Fig.7.Exceedanceofthe5%limitby10-minutesetsofRMSvaluesαuduringaweek,forvariousfaultlevels(short-circuitpowers)atPCC(busbars)feedinganACTS

146

4. Voltage quality analysis at the AC and DC ERL side in case of the same PCC for AC and DC TSs

Even ifAC TS is compliant with the regulation [10] (acceptable voltage unbalancelevel),inputvoltageofDCTSwillnotbefullybalanced.Thisphenomenonresultsintheoccurrence of non-characteristic HH in bothAC and DC side (input current and outputvoltage respectively) of thisDCTS.ThemagnitudesofHHdependon the commutationangleoftherectifierdiodesandthereforeontheDCTSload.

Forthepurposeofthelattervoltagequalityanalysis(ACandDCTSaresuppliedfromthesamePCC),onehasdevelopedaMATLAB–SimulinkmodelwiththeSimPowerlibraryapplication.Inlinewiththepreviousanalysis,the3GVAPCCwasmodelledtosupplyACandDCTS.DCTSoutputpowerisaround6MW,whereasthepowerconsumedbytheACTSisequalto40MVA(whatcausesasymmetryatthePCCaround1.3%).Thefollowingfigures(Fig9,10)showHHpresentintheinputcurrentandoutputvoltageoftheDCTS.Fig.11demonstratestheHHpresentintheoutputvoltageoftheACTS(note:thisanalysisdonottakeintoaccounttheharmonicfootprintcausedbytherollingstock).

As previouslymentioned, the presence of non-characteristicHH in aDC system cancause seriouscomplications [1] relatedmainly to theoperationof signalling systemsandfiltersinaTS[5].LCfiltermaybeconsideredasasolution[7].IntheACTSinputvoltage,ifTS is supplied from the samePCCasneighbouringDCTS, the contributionofHH isincreasedasaresultofthevoltageunbalance(Fig.11).FromthepointofviewofthePUS,electric traction,bothACandDC, is seenasso-called ‘disturbingandunstable’ load [2].Therefore,HHintheACERLarepresentwhenaDCTSoperatesunderloadingandfinally,non-characteristicHHoccurinDCTSrectifiedvoltageonlywhenACTSisinoperation.IfbothTSs(ACandDC)areloadedatthesametimetheresultsofasharedPCCwillbepresentatboth,ACandDCsideoftheERL.

Fig.9.CurrentmagnitudesofHHinACcurrentsupplyingaDCTS,relatedto50Hzfundamental[PCCshort-circuitpower3GVA,αu=1.3%]

147

Fig.10.OutputvoltagemagnitudesofHHinaDCTS,relatedtotheDCcomponent[PCCshort-circuitpowerat3GVA,αu=1.3%]

Fig.11.OutputvoltagemagnitudesofHHinanACTS[PCCshort-circuitpower3GVA,αu=1.3%]

148

5. Conclusions

The introduction of the railway line electrified with 25 kVAC 50 Hz voltage intoPolish railway infrastructuremight lead to appearance ofAC andDCmutual interactionareas.Phenomenaoccurringintheseareasmustbetakenintoaccountattheconceptdesignstageof theproject.Provisionof independent and reliableoperationofboth linesprovestobeinsufficientinthemutualinteractionareas.It is importanttotakeintoconsiderationcertainissues,suchasmalfunctionofinfrastructureequipmentduetoneighbouringsysteminterference,increasedriskofelectricshock(mixedvoltages–ACandDC),deteriorationofvoltagequalityinthePUSatthePCCandinACandDCtractionnetworks(additionalharmonics).Whenintroducinganew25kVACrailwaylineintothe3kVDCinfrastructurearea in Poland, it is necessary to conduct an additional and comprehensive research andanalysis,whichwillemployacomplexapproachtothecontactareas’relatedphenomena.

The author wishes to thank Ph.D. Marek Patoka for permission to use in this paper results of his rese-arch presented in his Ph.D. dissertation “Analiza oddziaływań zakłócających w strefie styku systemów trakcji elektrycznej 3 kV DC i 25 kV 50 Hz” completed at Warsaw University of Technology in 2014.

R e f e r e n c e s

[1]BatistelliL.,CaramiaP.,CarpinelliG.,ProtoD.,Power quality disturbances due tointerac-tion between AC and DC traction systems,PowerElectronics,MachinesandDrives,2004.

[2]HanzelkaZ.,Jakość dostawy energii elektrycznej. Zaburzenia wartości skutecznej na-pięcia,Wyd.AGH,Kraków2013.

[3]MaciołekT.,SzelągA.iin.,Przygotowanie pilotażowego wdrożenia w Polsce systemu zasilania trakcji 25 kV prądu przemiennego – etap II projekt prototypowej podstacji trakcyjnej i sieci trakcyjnej, OpracowanieZakładuTrakcjiElektrycznej IMEPWnazleceniePKPPLKS.A.,Warszawa2012.

[4]PatokaM.,Problemy oddziaływań wzajemnych w obszarach stykowych linii kolejowych zelektryfikowanych w systemach DC i AC,SEMTRAK2012,Zakopane2012.

[5]SzelągA.,Wpływ napięcia w sieci trakcyjnej 3kV DC na parametry energetyczno-trak-cyjne zasilanych pojazdów,InstytutNaukowo-Wydawniczy„Spatium”,Radom2013.

[6]SzelągA.,PatokaM.,Some aspects of impact analysis of a planned new 25 kV AC rail-way lines system on the existing 3 kV DC railway system in a traction supply transition zone, InternationalSymposiumonPowerElectronics,ElectricalDrives,Automa-tionandMotionIschia,ItalyVI2014(SPEEDAM2014).

[7]SzelągA.,MaciołekT.,Analiza efektywności filtrów wygładzających w podstacjach trakcji kolejowej 3 kV DC przy zaburzeniach napięcia zasilającego,„TechnikaTrans-portuSzynowego”,5/2013.

[8]PNEN50160Parametrynapięciazasilającegowpublicznychsieciachelektroener-getycznych.

[9]PNEN50122-3Zastosowaniakolejowe–Urządzeniastacjonarne–Bezpieczeństwoelektryczne,uziemianieisiećpowrotna–Część3:Oddziaływaniewzajemnesystemówtrakcjiprąduprzemiennegoistałego.

149

[10]RozporządzeniaMinistraGospodarkizdnia04V2007r.wsprawieszczegółowychwarunków funkcjonowania systemu elektroenergetycznego dla podmiotów zalicza-nychdogrupprzyłączeniowychIiIIzpóźniejszymizmianamizdnia18lutego2008r.i21sierpnia2008r.

[11]ZakładTrakcjiElektrycznejPW,Modernizacja linii kolejowej E65-Południe odcinek Grodzisk Mazowiecki – Kraków – Katowice–Zwardoń/Zebrzydowice – granica pań-stwa,ScottWilsonSp.zo.o.,Warszawa2010–2013.

[12]AltusJ.,NovakM.,OtcenasovaA.,PokornyM.,SzelągA.,Quality parameters of elec-tricity supplied to electric railways.ScientificLettersoftheUniversityofŻilina-Com-munications,2(3),2011.

[13]Tien-TrungV.,Paleček J.,KolářV., Influence of AC Electric Traction on Harmonic Distortion in 110 kV Supply Voltage Network: Measurement and Simulation,“PrzeglądElektrotechniczny”,2013,89.