technical note 3691 - digital library/67531/metadc55948/m2/1/high... · m co cd,. ~m a 0...

163
m co CD , . ~ a m 0 lr- NATIONAL ADVISORY COMMITTEE “s; == FORAERONAUTICS L- ,’ TECHNICAL NOTE 3691 ANALYSIS ANDCOMPARISON WITHTHEORYOF FLOW-FIELD MEASUREMENTS NEARA IJFTINGROTORIN THELANGLEYFULL-SCALETUNNEL By Harry H. H@son Imgley AeronauticalLaboratory LangleyField, Va. WasMngton April 1956 ., . . .. .. . . .. ... . . ...... ... . .. .. .. . .. -—- . ..--— -—--—— -.——

Upload: tranphuc

Post on 28-Oct-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

mcoCD

,

.

~ am 0

lr-

NATIONALADVISORYCOMMITTEE“s;==FORAERONAUTICS L- ,’—

TECHNICAL NOTE 3691

ANALYSISANDCOMPARISONWITHTHEORYOF FLOW-FIELD

MEASUREMENTSNEARA IJFTINGROTORIN

THELANGLEYFULL-SCALETUNNEL

ByHarry H. H@son

Imgley AeronauticalLaboratoryLangleyField, Va.

WasMngtonApril 1956

.,. . .. . . . . .. ... . . .... .. .. . . . . . . . . . .. -—- . ..--— -—--—— -.——

x

*

NATIONALADVISORYCOMMDTEEFORAERONAUT Iulllllll!lululul10bb3b5

TECHNICALNO!t!E3691

ANAIXSISANDCOMPARISONWITHTEEORYOFFLOW-FIELD

MEMUHNENE NEARAIJJ?ITNGROTORIN

TEEIANGIEYFULL-SCALETUNNEL

~=H. Heyson

Resultsofan investigationintheUmgleyfull-scaletunneloftheinducedflownesra liftingrotoraregiven.Measurementsof streamanglesandvelocitiesweremadein severaltransverseplanesalongandbehindtherotorinfourMfferentconditionsrepresentativeofthecruisingandhigh-speedrangesofflight.Thesemeasurementsindicatethatavailabletheorymaybeusedto calculatewithreasonableaccuracytheinducedflowovertheforwardthree-quartersofthediskfortheseflightconditionsprovidedthata realisticnonuniformrotordisk-loaddistributionisassumed.Resrwardofthethree-cjp.srter-dismeterpoint,calculationsoftheinducedvelocityareincreasinglyinaccurateduetotherolliugup ofthetrailing-vortexsystem.Fartherrearward,wellbehindtherotor,theflowmaybe representedmoreaccuratelybytheflowbeMnd auniforml.yloadedwing.

INTRODUCTION

A detailedlmowledgeoftheinducedvelocityinandneartherotorisrequiredfora completehelicopteranalysis.Fortunately,verysuper-ficialestimatesareusuallyadequateforisolatedrotorperformanceorstabilitycalculations.Recently,however,theemphasisonrotor-bladevibrationproblemsandtheadventofthecompoundhelicopterandconvetii-plauehavehighlightedtheneedformorecompleteinformation.

Rotor-bladevibrationanalyses,b general,recpirea knowledgeoftheinstantaneousinducedvelocityactingontherotorbladesat anyparticularmoment.Someexperimentalevidence(ref.1) isavailablewhichindicatesthatthefluctuat~componentoftheflowmaybe so

-, largethatthereislittleapparentrelationbetweenthetitsntaneousandthetime-averagedinducedvelocities.Suchihstsntaneousvelocitieshavenotbeencalculatedtheoreticallyandme notdiscussedh this

,, paper.

2 NACATN 3691

Althoughperformancecalculationsfora compoundhelicopterorconvertiplanedonotrequtieasdetaileda lamwledgeoftheflowasdovibrationanalyses,theydorequirea moreelaborateanalysisthanis .neededforan isolatedrotor.Almowledgeofthetime-averagedinduced ‘-velocityatlocationsinthevicinityoftherotorshouldbe adequatetopredicttheeffectoftherotoronthewingssndtailsurfacesofthese D

maclxlnes.Thetime-averagedflowsareconsiderablysimplerto dealwiththeoreticallythanarethein.stantsneousflows,andtheresultsof severaltheoreticalanalysesme available(refs.2 to 6, forexample).Theseanalysesme limitedbytherestrictednuniberoflocationsforwhichthecalculationsweremadeandalsoby thefactthattheside-to-sidesym-metriescausedby a finitetip-speedratioareusuallyneglected.

Severalpreviousexperimentalinvestigations(seeref.7 forabibliography)haveprovidedsomequalitativeinformationonthesubjectby theuseof smokeinflightandinwindtunnels.H.pwever,quantitativemeasurements(refs.8 to 10)sreextremelyscarceand,h general,areinadeq~teeitherto definethenatureofthefloworto checktheaccuracyofthetheoreticalcalculations.

Thisinvestigationwasundertakeninanattempttoprovidesuch uinformation.Stremnangleandvelocitymeasurementsweremadein severaltransverseplanesalongandbehinda liftingrotorintheIangleyfull-scaletunnel.Thesimulatedflightconditionscovertip-speedratios a

between0.0g5and0.232andcslculatedwakeskewan+j”lesbetween75.0°and85.8°. SubstantiallyaU thebasicdatawe presentedinordertoprovidethedesignerwiththemsxhmxnsmountofinformation.Atthoselocationsforwhichtheoreticalcalculationsareavailable,themeasureddatawe comparedwiththeoryinorderto determinetheextenttowhichthecalculationssrevalidandalsoto determinethegeneralnatureoftheflowfield.

SYMBOLS

CL Lrotorliftcoefficient~V2 z~fi

% rotorthrustcoefficient, TP(m)%z

f equivalentflat-platemea representingparasitedrag,basedon

unitdragcoefficient,HelicopterparasitedragY Sqft~v2

— —-——

-T

NACATN 3691 3

.

.

i’

L

~

%

R

s

T

v

v

Vfj

x

Y

z

a

r

7

P

P

x

Cl

complementof skewangle(usedinref.k asangleof attackofrotortip-pathplane),deg

lift,lb

-c pressure,lb/sqft

free-streamdynamicpressure,lb/sqf%

bladeradius,ft

semispanofwing,ft

rotorthrust,lb

forwardspeedofrotor,ft/sec

normalcomponentof inducedvelocity,positivedownwsrd,ft/sec

averageormomentumvalueofthenormalcomponentofinducedvelocity,positivedownward,ft/sec

distanceparallelto longitudinalrotortip-path-plsmaxis,measuredpositiverewrwardfromcenterofrotor)ft (fig=1)

distanceparallelto lateralrotortip-path-planetis, measuredpositiveonadvancimgsideofdiskfromcenterofrotor,ft(fig.1)

distancepsmallelto sxisperpendiculartorotortip-pathplane,measuredpositiveaboverotorfromcenterofrotor,ft (fig.1)

rotorcontrol-axisangleofattack,radians

circulation,sqft/sec

vorticity,radians/see

tip-speedratio,v ~ a

massdensityof &, slugs/cuft

rotorwakeskewangle,anglebetweenZ-axisoftip-pathplaneandaxisof skewedwake,positiverearwardfromZ-axis,deg(fig.1)

rotorangularvelocity,radi.ans/sec

—--- . —.—. —. .—. —.. - -..—.— ——— —.— .—— —

4 NACATN3691

Notethatthedefinitionsof X, Y, and Z,togetherwiththedirect-ion ofrotationoftherotorinthisinvestigationresultina left-handedaxis‘system.

M?3?ARATUSANDTESTS

ThesurveyswereconductedintheLangleyfull-scaletunnelwhichisdescribedinreferenceI-1.Theexperimentalapparatususedinthesetestsisshowninfigure2(a).

Therotorwasoftheteeteringor seesawtypeandhaduntapered,untwistedblades(fig.2(b))~th WA oo~ *foil section.Therotorradiuswas7.5 feetanditssoliditywaso.05k3. Therotortipspeedwas500 feetpersecondforalltestsexceptthatat v = 0.232.Forthistest,therotorwasoperatedat450feetpersecond.

Two.differentsurveyrakeswereusedinthetests(fig.2(c)).Acalibratedfive-tubesurveyrakewasusedtomeasurethestreampitchandyawanglesanddynamicpressuresformostofthetests(fig.2(d)).TMS rakeisfullydescribedinreferenceM. ~ orderto obtaindataclosertotheplaneoftherotor,a calibratedpitchhead(fig.2(e))wasusedto surveypointsinthelongitudinalplsneof symmetryforoneflightcondition.

Theprocedureusedinthetestswasasfollows:Therotorwasfirstsetapproximatelyata predeterdnedflightcondition.Then,theareaabove,below,andbehindtherotorwassurveyedwiththerakes.Atintervslsduringthesurveying,readingsweretskenofrotorthrustanddrag,bladeflappingandfeatheringmotions,andtunneldynamicpressure.

CORRECTIONS

A floorwasinstslledinthetunneltestsectionforallthetests,andforthisconfigurationtheLangleyfull-scaletunnelhasno appreciablejet-boundarycorrection(ref.13).

In orderto correctthemeasureddynamicpressuresandstreamanglesforthefluwaboutthesupportingmechanismandfortumnelstresmangle,dataweretakentwiceateachpointin space– oncewithandoncewithouttherotorbladesinstalJed.Thedifferenceisconsideredtobe charac-teristicoftheisolatedrotor.It shouldbe noted,however,thatthisprocedureisnotadequatetiregions-diatel.ybehindtherotor.(See

.

*

_.

.

.

.

_——.—

.

.

,

.

NACATN 3691

figs.3 to 5.) Measurementsbecauseoftheeffectoftheangleofattackoftherotor

Theaccuracyofthetwo

5

madeintheseregionshavelittleaccuracyrotorontheflowaboutthetower.Thewascorrected

PRECISION

fortunnelstresmangle.

rakesisessentiallythesame.Bothmeasuredynamicpressure-within2 percentandstresmangieswithin 1/2°. Thesefigurestakeintoaccounttheunsteadinessoftheflowandthehighvibrationleveloftherakemount.Atthelowesttip-speedratio,addi-tionalinaccuracyis causedby’the&LFficultyinreadingthesmallchangesof liquidheightinthemanometertubes.Overallaccuracyintermsoftheaveragevalueofthenormalcomponentofinducedvelocitywillbe afunctionoftherotorliftcoefficient.Foreaseofreference,thefol-lowingtablegivestheestimatedoverallaccuracyforeachofthef~ghtconditionscoveredinthisinvestigation: “

I Tip-speedratio,v I Accuracy,percentV. I

0.095 *15.139 ~lo.140 flo.232 i-25

Therskesusedwereincapableofmeasuringinstantaneousvariationsof inducedvelocitysuchasmightbe desiredfora refinedblade-vibrationanslysis. Therefore,alldataaretime-averagedvalues.T’Qeexperjm.ent~restitsofreference8 indicatethatinstantaneousv~uesmaydiffergreatlyfromthemeanvaluesmeasuredinthesetests.

Duringthetests,therotortipspeedwasheldconstanttowithin1 percent.Thethrustcoefficientwasmeasuredwithin1 percent.Theskewangle,whichwascomputedby usingthemeasuredvaluesof ~ andthemeasuredblademotionsinequation(3) ofreference2, shouldbeaccuratetowithti1°.

Thepositionoftherakewithrespectto thehubwasknownwithin0.3 percentR. Becausetherotorwasoftheteeteringtype,theonlyconingwasdueto thedeflectionoftheblades.Thetipdeflectionwasestimatedvisuallytobebetween2 and3 percentoftheradius.The

.-.-— —-. ....— _ .——..—.. —.— . —_____ _.—_ ____ —_. . —,

6 NACATN 3691

datasrepresentedwithreferenceto a plsneparalleltothetip-pathplaneandpassingthroughtheteeteringpin.

RESU3SANDDISCUSSION

BasicData

Becauseofthepresentlackof information,boththeoreticalandexperimental,ontheinducedvelocitiesinmanyareasnesrtherotor,substantiallyellthebasicdataobtainedintheinvestigationsrepre-sented.Ineachcasetherotorflightconditionisidentifiedonthefigureby theskewangle X andthetip-speedratio V. TableI iden-tifiesthevsriousflightconditionsmorecompletely.

Figures3 to5 showthemeasuredstreamanglesintheflow;fig-ures6 to 8 showcontoursofdynamic-pressureratio;andfigures9 to ~givethemeasuredvsluesofinduced-velocityratio.Thefairingsofthemeasureddata,showninfigures9 to 29,areusedforthesubsequent ~analysis.

Thebasic-datacurvesarenotdiscussedas suchinthispapersince .themoresignificantphenomenahavecilreadybeenpointedoutinrefer-ence10.

DiscussionofApplicableTheory

Inreference2,CastlesandDe Leeuwpresentcalculatedvaluesofthenormalcomponentof inducedvelocityinthelongitudinalplaneofsymmetryandalongtheprincipal(X,Y,Z)axesofa rotorwitha uniformdisk10diTlf$. Reference3 usestheflowfieldofreference2 to calcul-ate theflowfieldforrotorshavingnonuniformbutcircularlysymmet-ricaldiskloadings(thespecificcasescalculatedbeingrotorswithatriangulardiskloadingandwithatypicalmeasuredmeandiskloading).

AdditionaltheoreticalcalculationsbylhnglerandSquire(ref.4)giveinduced-velocityinformationintheentirerotordiskandalsofora transverseplaneinthefsrwake. A latersectiondiscussesa methodoftransformingtheseresultsto correspondwiththeresultsofrefer-ences2 and3 exceptforthespecificdiskloadingsconsidered.

Drees(ref.5) discussessomeoftheeffectsofa finitetip-speedratioandpresents“calculationsof someoftheseeffectsat selected .

.

— —

NACATN 3691 7

.s

,.

.

pointsontherotordisk. It shouldbe notedthatthecalculatedcurvespresentedwiththedataareinthisreference.

Comparisonof

Values

notmodifiedfortheasymmetriesdiscussed

MeasuredData

ofReferences

WithCalculated

2and3

Imgitudinal planeof symmetry.-Figures30 to 33 presentthemeas-uredvaluesofinducedvelocityinthelongitudinalplaneof symmetryascompsredwiththecalculatedvaluesfromreferences2 and3.

Forthefourflightconditions,themeasureddataneartheforwardportionsoftherotorfallclosetotheflowcalculatedfortherotorswithzeroloadinthecenter.Theexistenceofessentiallyzeroinducedvelocityatthecenteroftherotorandofregionsofupwashbehindthecenterereclearlyshown.Furtherrearwsrdintheflow,justbehindthetrailingedgeoftherotor(X/R= 1.07), thereisno longermy pronouncedcorrelationbetweenthemeasuredandthecalculatedflow,regardlessof

● theliftdistributionassumedto existontherotordisk.At ~eaterdistancesbehindtherotor(X/R= 2.OTand3.14), thereseemstobe nocorrelation.Thephysicalreasonsforthislackof correlationsre.discussedsubsequently.

LOngitudindaxis.-If curvesarefairedthroughthedatainfig-ures30 to 33andthevaluesat Z/R= O aretakenfromthesecurves,itispossibleto obtainan ideaofthevariationof inducedvelocityalongthelongitudinalsx.isoftherotor.Theresults,plottedinfig-ure34, showclesrl.ythegoodcorrelationofthenonuniformlyloadedrotorcalculationsintheflowovertheforwsrdthree-qusrtersoftherotorandthedeviationbehtidthatpoint.

Figure35 compsresthemeasuredpointsoffigures34(c) andZl(d):Thesetwoflightconditionshaveverysmalldifferencesinskewangles.Thereis,however,ana~reciabledifferenceintip-speedratioandliftcoefficient.Actually,thecalculatedinduced-velocityratiosforthesetwoskewsaglesarevirtuallyidentical.Itmaybe seenthat,experimentally,thereisverylittledifferencebetweenthehducedvelocitiesalongthelongitudinalsxisforthetwotip-speedratios.Thisfactisasassumedinreferences2 and5.

Lateralax.is.-Thebasicdatamaybe cross-plottedinthesamemannerto obtaintheinduced-velocitydistributionalongthelateral(Y)axis. Theresultsofthesecrossplotsareshowninfigure36 andwecompsredwiththecalculateddistributionsofreferences2 and3. Thecalculatedflowissymmetricalsinceno accountistakenofdissymmetriesduetothefinitetip-speedratio.

——... . .——-—c _-—_ —

8 NAC!ATN3691

A wordof cautionisnecessaryatthispoint.Eecauseoftheneces-sityofmaintaininga clesrancebetweenthesurveyrskeandtherotor,itwasnotpossibleto obtaindata?mchcloserthan20percentR above “therotor.(Seefigs.30, 32, and33.) Thetheorypredictsratherlsrgegradientsof inducedvelocityatlocationsclosertotherotorthanthispoint. Inthelongitudinalplaneof symmetryitispossibleto cross-plotthedatawithsomeconfidenceby comparingthetrendsshownwellabovetherotorby thetheoryandby themeasuredpoints.At otherloca-tions,withoutthetheoryasa guide,theaccuracyof crossplotsisproblematical.Therefore,thefollowingdiscussionoftheinduced-velocitydistributionontheY-aMs shouldberegardedasbeingona lessfirmbasisthanthediscussionintheprecedingsections.

Figure36 indicatesthattherotordoeshavezeroinducedvelocityat itscenter.Thisis inagreementwiththeassumptionthattherotorcarrieszeroloadat itscenterandfurtherindicatesthatthisfactmustbeusedH theflowistobe calculatedwithmy de~ee ofaccuracy.

Figure36 also showsthattheinduced-velocitypeakontheretreatingsideishigherandfurtheroutboardthanthepeakontheadvancimgside.Thisresultislogicalwhenthedifferenceinloadingonthetwosides “*oftherotorsrecompsred.Theresultantvelocitiesatthetier portionofthebladesontheretreatingsideareverylowor evennegative,whereasthecorrespondingvelocitiesontheadvancingsidesremuchhigher.There- “fore,theload@ ontheinnerportionoftheretreatingsideofthediskmustbe lessthanthatontheadvancingside.Theouterportionoftheretreatingsidemustthencsrrya greaterloadinginorderthattheblaiiethrustmcynentremainessenti~yconstantaroundthedisk.Thus,theloadingontheretreatingsidewillpeakfartheroutboardandata highervaluethsmtheloadingontheadvancingsideofthedisk.Thisisthesametrendshownby themeasuredinducedvelocitiesandisindicativeoftheverycloserelationbetweentheinducedvelocitiesandtheloadingalongthisaxis.

ComparisonofMeasuredDataWithCalculatedValuesofReference4

Modificationof calculationsforfiniteliftcoefficient.-ManglersndSquire,inreference4Y computetheinducedvelocitiesintherotordiskandina transverseplaneinthef= wake. Theircalculatedresultsarekbnitedtovsmishinglysmallliftcoefficientsinthatthetrailing-vortexsystemleavestherotorinthesamedirectionandwiththesamevelocityasthefreestream

Theassumptionof a finiteliftcoefficientaltersthispicturein .twoways:First,thetrailing-vortexsystem-mustnowcrossthefree-stresmflowand,second,therewillbe a changeinthevortexdensity.

.

.—

xNACATN 3691

Theresultsofreferencek me easilymodifiedto accountforchsmgesandywhensomodified)willcorrespondwiththeresultsoferences2 snd3 exceptforthespecificdiskloadingsconsidered.

9

theseref-l!he

firstmodificationismerelya rotationofthefieldto accountfortheincltitionofthewake. Theincidenceangle i isthenthecomplementoftheskewangleX. Thechangeinvortexdensity,althoughaffectingtheabsoluteinducedvelocityv,wi12haveno effectupontheinduced-velocityratio ~ -

()VO-43. Therefore,thenewvalueof v msybe -vc~

foundbyusingthevalueof v/v. fromreference4 andby cal.culat~V. fromanequationwhichconsidersthefiniteliftcoefficient(suchaseq.(32) ofref.2).

Forthepurposeof comparisonwiththetiasureddataofthispaper,alltheinducedvelocitiesofreference4 havebeenmodifiedto corre-spondwithreference2 inregerdtobothskewangleandvortexdensity.

Planeoftherotor.-Veluesof induced-velocityratiointheplaneoftherotorobtainedby cross-plottingthemeasureddataarecomparedwiththecorrectedcalculatedvaluesfromreference4 infigures37to 43.Thesefigureswe discussedonlyingeneral,sincetheyindicatethessmeresultsasthepreviouscomparisonwithreferences2 and3. Thisresultmightbe expectedsincethecalculatedresultsshouldbecomparableifthesameloaddistributionssxeassumed.Theresmiblancebetweenthetypicalloadingofreference3 andpressuredistributionIIIofrefer=ence4 isevident. .

Ingeneral,thessmeextentofagreementisnoticeable(seeespeciallyfig.37(b));thatis,thecalculatedflowfieldis closetothemeasuredfieldonlyovertheforwardthree-quartersofthedisk.

Eachfigure(figs.37 to 43) showsthattheinduced-velocityfieldforpressuredistributionIII(labeledP.D.III)isclosertothemeasuredfieldonbothsidesofthediskthanthatforpressuredistributionI(labeledP.D.I). SticepressuredistributionIIIrepresentsa diskloadingwithzeroloadinthecenterandtheotherdistributiondoesnot,thisresultisasexpected.

Thisresultdoesnotagreewiththatofreference9, whichindicatesthatpressuredistributionI shouldbeusedforcalculatingtheinducedvelocitiesovertheadvsmcm sideandpressuredistributionIIIjover”theretreatingsideoftherotor.Thisresult(ref.9) arosefrommeas-urementsmadeat X/R= 1.5 andyas such,is subjectto errorbecause

. ofthediscrepancybetweentheoryandthemeasureddatainthisregion.Thepresentresultisconsideredtobemoreaccurate.

Thevaluesat X/R= 0.5 (fig.43) seemtoindicatethat,atthislocation,theerro’risgeneraldysomewhatlargerneartheouteredges

.—- —— .— ———. —

10 NACATN 3691

ofthedisk.Thisresultmighttrailing-vortexsystemwouldbedisksoonerthanthecenter.

be expectedsincetheroll-upoftheexpectedto affecttheouteredgesofthe .

Fsrwake.-Reference4 slsocomputestheinduced-velocitydistribu-tioninthefarwake. Thecomputedcontoursofinduced-velocityratioforbothpressuredistributionsinthefarwakearecomparedinfig-ures44to49withmeasuredcontoursofinducedvelocityat X/R= 2.07and X/R= 3.14 forthreedifferentflightconditions.(Noticethattherotationofthecalculatedflowfieldrequiredto obtaincorrespond-encewithreferences2 and3 resultsina verticaldisplacementofthecomputedinducedvelocities.)

Ingeneral,themeasuredinducedvelocitiesareofthesameorderofmagnitudeasthecalculatedvslues.Thisresultwouldbe expected,regardlessoftheflowpatternassumedforthecalculations,sinceagivenamountofdownwardmomentummt be impartedtotheairto obtaina givenlift.Thedistributionofinducedvelocityis,however,ratherdifferentfromthecalculatedvalues,particularlyinthecentralpor-tionofthewake. ~ somecases,thecalculatedinduced-velocityfieldintheusuallocationof short-spantailsurfacescouldbeincorrectby . ‘asmuchas 1.5v/vo.

.

Natureofthe.Flow

Atthispointthereasonfortheratherseverediscrepanciesbetweenthecalculatedsndthemeasuredinducedvelocitiesintherearwardpor-tionoftheflowis considered.Reference10hasalreadynotedtherollingup ofthevortexsheetbehindtherotor.Figures50to 52 exsminethisphenomenonmorethoroughlyforthreedifferentf~ght conditions.Thesefiguresarecontourmapsofthemeasuredlocalmeanvorticitybehindtherotor.Theintersectionoftheoutermostedgeoftheassumedwake(refs.2,3, 4,and6) withthesurveyplaneisshownineachcaseby thedashed-lineelMpse. IXtheassumedwskevortexpatternis correct,thecontoursofvorticityshouldbe alongthiswakeedge(orwithinit,dependingupbnthediskloaddistribution).

In general,thisisnottruesincethedominantfeatureineachcaseisthevorticityassociatedwiththewell-developed,rolled-upvorticesbehindtherotortips. It shouldbenotedthatthesevorticeshaveonlybeendisplacedverticallyabouthalfasfsrasthecenterofthewake.Thelowerhalfoftheellipticalsheetisessentiallycompletelyrolledup atthetrailingedge(figs.50,51(a),and52). Theupperhalfoftheellipticalsheet(originatingfromtherearofthedisk)isstillvisible “at X/R= 1.07,butitslsois completelyrolledup shortlysfterthatpoint(figs.51(b)=d 51(c)). .

NACATN 3691 fll

,.

Theshilaritybetweentheflowbehindtherotorandthatbehindalow-aspect-ratiowingisverycloseanditispossibleto drawa somewhatmorequantitativeanalogy.

Reference14examinestherollingup ofthetrailing-vortexsystembehinda low-aspect-ratiowing. Forliftcoefficientsoftheorderofseveraltenths,theroll-upisessentiallycompleteina veryshort~s-tante.Figure9 ofreference14 showsthat,foranuntwisted,rectangularwingofaspectratio 4/fi(thesameaspectratioasa rotor),andfortheliftcoefficientsusedherein(0.720,0.373,and0.122),theroll-updistancesshouldbe0.33,0.64,and1.97timesthechordlen@h,respec-tively.Itismoredifficultto determinetherateofroll-upforsome-thingas complexasa rotor,butfigures50to52 hdicatequalitativelythatitisalsoextremelyrapid.

Theseobservationsarefurthersubstantiatedbytheinduced-velocitymeasurementspreviouslyexaminedinfigures30 and32. Themeasureddatainthesefiguresshowa markeddiscontinuity(whichwouldbe expectedattheedgeofthewake)onlyh thevicinityoftheupperwakeedgeatX/R= 1.07.Fartherbehindtherotor(X/R= 2.07smd3.14),thereisnopronounceddiscontinuity;thisconditionindicatestheabsenceofa strongvortexsheetinthisregion.

Figures33(f)and33(g)seemto showa discontinuitysomewhatabovetheupperedgeoftheassumedwake. Thepreviousanalogywithlow-aspect-ratiowingsindicatesthepossibilitythattheroll-upwouldnotbe asrapidinthiscasebecauseofthelowrotorliftcoefficient(CL= 0.122).Thedifferencebetweenthecalculatedandthemeasuredflowfieldsmaybe explainedonthisbasis.Intheforwardportionsoftheflow,theellipticalwakehasnotrolledUpymd itthereforeresmiblesthewake-vortexmodelusedinthecalculations.Thewakehere,has,of course,thegreatesteffectontheinducedvelocitiesintheforwardportionsoftheflowandessentiallydeterminestheirmagnitude.Conse~ently,inthispartoftheflow,calculationsgivea reasonablepictureoftheactualinducedvelocity.

Fartherrearwsrd,however,thedistortedportionofthewakehasagreatereffectindeterminingtheactualinducedvelocity.Thecalculatedflowfield,therefore,isincre.asingl.ymoreinaccurateas itsdistancedownstreamincresses.

A shortdistsncebehindtherotor,it shouldbe possibleto assumethattheflowwillbe thesameasthatforanequivaleritwing. Themin-imumdistancebehindtherotoratwhichthisprocedurewillbe validisa functionoftheliftcoefficient.

Fromreference15theinducedvelocityintheplaneof symmetryofa uniformlyloadedrectsmgulsrwingis

..-——— - - .—...—— -—- —— — . .———— ———-— ----—— —- ——— —— - —

1’ NACATN3691

V=g

[(

H+“~” ‘S2:Z2‘S2:Z2(1) ,

~ it i’ assumedthatthelaterslcenterlineof(theapproximatecenterof

thequarterchordoftheequivalentwingandtherotorcoincideandalsothat s = 0.85Rgravityof’thevortexsystem),

v=Q&Er{i

x23-c

(o.@R)’ + x’ + “ [ 1‘2 t Z’+ (o.85R;’+ Z’ + (o.85R;’+ Z’I

E’nondimensionalized,equation

~= 0.85

{J

X R)’

0.723t [+)2+ (:)2

1

()20:723+ f}

Now

r=~‘Pm

and,forskewanglesnesr90°,

2) becomes

k1

z’+($)21() 2‘n 010.723+ #

(2)

+

r

(3) -

V. . LZ?@h#

(4)

(5)

Substitutingequation(4)intoequation(3)anddividingbothsidesoftheresultingequationby equation(5)gives

v— = 0.425=?0

{~ [o=7’3+ ::)2 + (:)2 (x)’ ‘(f)’+ o07’3: (:)’+

.

.

1

(R)‘20.723+ -

}

(6)

NACATN 3691 13

Theflowcalculatedby thisequationissymmetricalabout Z/R= O;thatis,itdoesnotallowfortheverticaldisplacementofthewake.Aspointedoutpreviously,thecentersofthevorticesaredisplaceddownwardanamount

(7)

Theinducedvelocityforthisassumedwinghasbeencalculatedfromequations(6)and(7)andis comparedwiththeflowmeasuredat X/R= 2.07dnd3.14(for p =0.1~ and X=82.3°) infigure53. As expectedintheserearwsrdplanes,itisa closera~roximationtotheactualflowthanaretheflowscalculatedonthebasisofa skewedcylindrical.wake(fig.32,forexample).

Anotherpointisworthnotinghere. Ithas,uponoccasion,beenassumedthattherotorwakemusthavemorevorticitybehindtheretreatingsideofthediskthanbehindtheadvancingsideofthedisk,sincetheunequalbladevelocitiesonthetwosidesrequiretheretreatingbladetohavea greatervalueof circulation.Thiswouldbe trueonlyatthetrailingedgeofthebladeto anobserverridingaroundwithit. However,to anobserverimmediatelybehindtherotordisk(asinthesesurveys),thesummationofvorticitybehindthediskmustbe equaloneachside,sincevorticitycannotendin space.MorecompletecontoursoflocalmeanVorticityisessentially

thau thosegiveninfigurestrue.

50to 52 indicatethatthis

CONCLUSIONS

Theresultsofthiswind-tunnelinvestigationoftheinducedflowneara singlerotorinsimulatedcruisingandhigh-speedflightareasfollows:

1.As farresrwardasthree-qyartersofa dismeterbehhd theleadingedgeoftherotordisk,thenormalcomponentof inducedvelocityofa liftingrotormayte calculatedwithgoodaccuracyby availabletheoryprovidedthata realisticnonuniformdiskloadingisassumed.

2.Rearwsrdofthisthree-xer diameterpoint,calculationoftheinducedvelocitybecomesincreasinglyinaccuratebecausethetrailing-vortexsystemrollsupveryrapidly,andthewakevortexpatternbehindtherotorisslteredfromthatassumedx a basisforthecalculations.

3.At locationswellbehindtherotor,theinducedflowmaybe cal-culatedmoreaccuratelybyassumingtherotortobe a uniformlyloaded

—,. . .—-.— -.. .___—__ _ —.—— —.— —.— _..— —.

14 NACATN3691

rectangularwing,providedthattherotorliftcoefficientissufficientlyhigh. .

4.ThereislJttleeffectoftheasymmetriesassociatedwithtip-speedratioontheinducedflowalongthelongitudinalaxisoftherotor.

5. Theinduced-velocitycalculationsofhfsnglerandSquirecanbemodifiedtoaccountforthewakecrossingtheflowbecauseofthefiniteliftcoefficient.

LangleyAeronauticalLaboratory,NationalAdvisorgCommitteeforAeronauticsj

~ey Field,Va.j Februsry23,1956.

u

.

.

.

NACATN3691 15

REFERENCES

.

1.

2.

3.

4.

5.

6.

7*

8.

9*

10.

Il.

E.

Falabella,Gaetano,Jr.,andMeyer,JohnInflowDistributionsIYom~erimentaJ-Blade-MotionDataona ModelHelicopterFlight. NACATN 3492,1955.

Castles,Walter,Jr.,andDe LeeuwjJacoboftheInducedVelocityintheVicinityEx.amPleSOf ItsApplication.NACARep.NACATN.2912.)

R.,Jr.: DeterminationofAerodynamicLoadingandRotorinHoveringandForward

Henri:TheNormalComponentofa LiftingRotorandSomeU.84,1954. (Supersedes

Heyson,HarryH.,andKatzoff,S.: TheNormalComponentofInducedVelocityintheVicinityofa LiftingRotorwitha NonuniformDiskLoading.NACATN3690,1956.

Mangler,K.W.,andSquire,H. B.: TheInducedVelocityFieldofaRotor.R. &M. No.2642,BritishA.R.C.,May1950.

Drees,J.Meijer:A TheoryofAirflowThroughRotorsandItsApplica-tiontoSomeHelicopterProblems.Jour.HeHcopterAssoc.ofGreatBritainlvol.3,no.2,July-Aug.-Sept.1949,pp.79-104.

Coleman,RobertP.,Feingold,ArnoldM.,andStemPin,CsrlW.: Eval-uationoftheInduced-VelocityFieldofanIdealizedHelicopterRotor.NACAWRbu6, 1945. (Formerl.yNACAARRL5E10.)

Gessow,Alfred:Reviewofbformationoni%ducedFlowofa LiftingRotor. NACATN3238, 1954.

Ross,RobertS.: An InvestigationoftheldrflowUnderneathHelicopterRotors.Jour.Aero.Sci.,vol.13,no.12,Dec.1946,Pp.665-677.

Fail,R. A.,andEyre,R. C.W.: DownwashMeasurementsBehinda I-2-I%DiameterHelicopterRotorinthe24-FtWindTunnel.R.& M. No.2810,BritishA.R.C.,Sept.1949.

Heyson,HsrryH.: PreliminmyResultsFromFlow-FieldMeasurementsAroundSingleandTandemRotorsintheLangleyllill-ScsJ-eTunnel.NACATN3242,1954.

DWmnce, SmithJ.: TheN.A.C.A.l?ull-ScaleWindT’unnel.NACARep.459,1933. -

Lange,RoyH.,smdFink,MarvinP.: StudiesoftheFlowFieldBehimda Iarge-Scale47.5°SweptbackWingHavingCi.rcul.a.r-ArcAirfoilSectionsandEquippedWithDrooped-NosesndPlainFlaps.NACAFM L51.IJ2,1952.

16 NACA~ 3691

13.

14.

15.

Silverstein,Ale,andKatzoff,S.: ExperimentalInvestigationofWind-TunnelbterferenceontheIbwnwashBehindanAirfoil.NACARep.60$),1937.

Spreiter,JohnR.,andSacks,VortexSheetandItsEffectAero.Sci.,vol.18,no.1,

.

AlvinH,: TheRollingUp oftheTrailing ,,ontheDownwash Behindw@s . Jour.J~. 1951,~. a-32, 72.

Silverstein,Abe,andWakeBehind

Katzoff, s.,andBliuivant,PlainandFlappedAirfoils.

.

W. Kenneth:llownwashNA.CARep.651>1939. .

.

x

I 1

Tip-speedRotorwakeskewangle,

ratio, p x, aeg

wT4PUZ I.-F’LICETCONDITIONS

CL CT Disk loading,Equivalentflat- Angle of

J& lb/sq ft platearea, f, athck,Sq ft a, deg

0.720 0.CX)320w 1.91 2.77 -9.2a.3& a.03373 w a2.18 2.34 -1.1a.373 a.m3p m a2.~ 2.79 -5*3.U22 .(X)321.450 1.55 1.35 -9.5

%Ihe seeminginconsistencybetweenthe valuesof rotorlift coefficientand thrustcoef-ficienton one handand the valuesof averagedisk loadon the otherwas causedby a slightdifferencein the densityof air at the differenttimesdurfqgwhichthe testswere run.

%

I v

i

-f

Figurel.-Coordinatesystemof rotorand wake. Arrmm indicatepositiveftlrectiona.

.

NACAm-3691

.

I .=— .—.._ ._. ..—=

1’f’----,%+‘;Q“‘7“”I

.-,7 =- j.-

1 -–”’* ‘“ ‘%--

F ‘ - ,=.

I ]\. ”

rll’.-——,.

1’

+\

Ii

\

,/’‘\.

‘$ . -—*\..+v./’- ““Y

M!z-..#-“.

,,

..:--.~-—:“B?———---:...-

(a)Testsetuplookinginto

Figure2.-Eq&~nt

L-83264.1entranceconeoftunnel.

usedin surveys.

-. . . .... ...—.— ~ —-- —.—. --- . -—.-— -.—— — ——

I

I

I

I

(b)Rotorblade. L-91957

me p.- continued.E

;u$

.

* c *

,

----- .— — I

II

~ (c)RakesE@ mounted. cm .wrvey-cwr18geram.L-87200.1

I) R&we 2.- Continued.

I

(d)End of one tube 01’fiw.~ r~e. L-91956.1

NACATN3691

.

(e)~ pitchhead.L-87202.1

23

IiYgure2.-Concluded.

. . ——. .. . —. ___ —.— — -.. .— ______ _ _ ... ... . .- -—.—_. .

.3-

Advanoi.ng Slds

Tlu-path plane of rotor (extended)

YjR

9.4 0 qo qoSoale

Devlatlon, dog

(a) X/R = -1.0.

-e 3.-M5asurea abeam angles in vicinity of rotor. Horizontalaad HtiCd coru@Ients

vectorsrepresentyaw and pitchangles. Base of vectoris at pointof measurement.X =p = 0.095.

, ‘ x ,

I

I

II

I

1

.s-

w.-

0-

-u- \\

4-

LIn

I

(b) X/R = -0.~.

IMgure3.-Continued.I

I

l’,

,U -

13-

,* -

(c) X/R=O.

.

Figure3.-Conti.nufd.

.

1

.* -

Z3-

.1-

.1 -

S/mo-

-.1-

+2 -

. . ... . .,, . 1

,~1,,1, ” :8 .; .* .2

1.2 Lo

am

. .!2 -.5 ..”

i

I’m

,>-

,s -

‘aI -

0—

-.1 -

-, ?-

-J -

-. 4-

-, 5-

5-a -

-.7-

-.6-

-.9 -

.L.o -

-u -

.1.9 -

-LJ -

-w -

1111, 11118, , ,-, e -.* .; .3 -14 -La -w

(e) X/R = 1.07.

i?P

E!

g

t , , t

I

I

i

.3--m CM4

-2.““---\\\Y\\\Y ‘

H“ -—’--ix+.1-

/ /#/_

///

-,1-

->2-

-, 3-

Ui

..4-

-.5-

-.6-

[l f#//,— /d—. - -

.\\\

.\\\

{111, ,,, ,,, ,1,14 1,2 ,,0 .s

1!.6 .4

11 l,,,Z 0

11, ,,, , ,-,1 -.4 -L * -1,0 -I, *

VI4>4

uo

,x-

.1 -

0-

-.1 -

-,a-m

-.3-

--- -

-.5-

-h -

-.7-

-.3-

-, 9-

-LO -

-L] -

-1.U -

1 I 1 I 1 I 1~ 1111111111 111A A 1.! !0 4 .: A 42 -.@ 4 -.8 -lIa -I.*

Tim

(g) x/R = 3.14.

F@vre 3.- Concluded.

.

I

{

I

I

A4mrminE aide

.4- *IV.

,., ,

.3 -\bb*

.2- bbbb

.1-

z/R

. ,

44

i

Al-.1-

\b

-a- \L

AL-.s -

I I I08

i

b

\

A

I.4

b Lb+

\ lL\

1,,4

I I I.s o

Y/R

(a) X/R = -1.0.

Retmattng side

.

.

,

‘~msaab.

Devle.tlcm, de~

F&we 4.-Mmaured 8treamanglesin vicinityof rotor. Horizontaland verticalcanponentsofvectorsrepresentyaw andpitch angles. Base of vectoriB at point of mxwuremnt.~ = 0.140.

x= 82.3o; :

m

,Ll -<r’

?3-”./

;2-, ,

,1 -

0-

1

-.L -t

. .a- \

,+ -

I1.2

.

,

I

b

\

\

\

I1.0

.

.4

~ am

>. ..,., ,,,

v. . . . . . ,,● +-.,*, ,,<< .,,,, ,,

Ill.s

II.’6 .!4

1111111 II 1 I-M -. * -, 6 .4 -:.0 -;2

IIw

(b) X/R = -0.5.

Flgme 4.-Contin@l.

, , , I

“.

x

I

i

II

.1-

m0-

fip#b plm d .kr,

-.*-, ,,, , ,1)/)) )1 llllwllllllla Idlt19 1,0 a .6 ,il %2 0 -. 2 -. e ..6 -.s -1,0

T/l

“aJJ?

mmmuoq 4W

(c) X/R = O.

Figme k.- Continued.

.,1- 1

1111111 l~tl 1111111161 :61-;,0’-1’2 I..4 -

1.2 1,0 .8 .6 .14 .2 0 -, a -. @ -. .

(d) X/R = 0.5.

IYgureb.- ContLuud.

, .

II

I

I

I

I

I

I

-.1-

-,2-

Lm-.3-

-.* -

-.Y-

-.6-

-.7 -

-,a-

-.9-

● l. O-

-L1-

1111111 1 11.- L2 1,0 a : 1111 11111 I I 1 1

+ s 0 -,2 ..4 .!6 -’d A +!2 -[u

(e) X/R = 1.07.

Illgure4.-Continued.

.,1 -

-,a-

-,3-

.,Q -

-.5-

-.6-

-.7-

4-

+-

-la -

4.1-

\\\\\\

1111111 Ialllll I((lttll J&l-J, I-;*

1.4 1,1 1.0 & .6 .4 .2 0 -.2 -A .; -.8

(f) X/% = 2.07.

Figureh.- Continued.

. .

UI

!2

111111 II 11111 1,,1,1111 11111

1A LX 1.0 @ ; ,U .2 0 -.2 -,@ .; -.s -l@ -1,2 -hQ

m

(g) X/R =3.14.

Figure4.- Concluded.

,U-.

.3- “

.2-.

.1 -

mo-

-,1 - ‘>

.,1 - ,

-.3-’

~ti.. . . . . . . . ,.,

. . ...”. .,, ,,.

., . . . . . ,., .,

. . . . . . ,,, ,,,

,,

,,

,,

.!

,\ .-*,,, ,,,

b, . . . . . . . ,,,

. . . . . . . . . .

. . . . . . . ,,, ,

11)1111 II1.s LO .6 J ,~

,,,

>,?P,,

,,,

Ill.1

,.

,!

. .

.,

.

.

.

#WL?HU4 dti

,,, ,,, ,

.,, ,,/

,,, , ~?+

.,, ,,, #

.

.

.

,.

. . .

. . .. . .

.,8

.

,,,---~ ~.,

\\ %-----” .

\ t-..~....

, <. .-..,. .

1111111-a -1,0 -L2

(a) X/R = O.

sentyaw andpitch@es. Baae of vectorisFigure ~.-’ Measured streamaagleain ticinityof rotor. Horizontaland verticalcomponentsrepre-

at pointof mmaurement. X= 83.9°Jp = 0.232. F~

* , . <

,U -

.3 -

,2 -

.1 -

m0-

-.1 -

-.2 -

-.3 -

. .

./

,.

.,

,,,

r?,,,,,,.

11111111 III!L2 1,0 a .6 .9 ,e

(b)

Figure

0

m

,,

,,. .,,

,

,.*

,!.

,,,

,,,

Wmtik mm?,, ,,, ..+.r.trf,- ..P,, ,, *,, *,

, .? ttf t*--

,

.

.

.

..

/,,

,., , ,,, , , tk~=-”””

1 1! 1111) III..2 -.+ -. 6 -.6 -Lo -L2

L&fIulhim, 446

X/R = 0.5.

5.- Contdm.zd.

I

1)111111 1 11111I.w L1 1.0 .9

111111111,1 ,11,1!6 * .2 0 -.s --- -.6 -d -LO -L8 4A

T/l

WI% 4

(c) x/R = 1.0’-(.

Rlgure 5.- Continued.

. .

!2

. #

a-- *

J-, ,,, . ..w -<,

..1 -

n-.s-

-.3 -

-.* -

-.5 -

-.6 -

)1111111 1 I Illl,U 1,1 la .I ,: .: .2

TO

(d) X/R = 2.07.

Figure 5.- Continued.

g

-J-

.2-Zn

-.3-

-.*-

-.5-

-.6-

(e) X/R = 3.14.

Figure5.- Umcltia.

. , *

khCOldllg aide Retreatingaide.4-

●3 -

,2-

●l-

iii/R !

0 1 Tip-ma th plane of rotor (extended)

111111111 1~11.6 e4 a o -of! -, 4 - ●6

Y/’R

(a) X/R = -1.0.

Fi&ure6.-Contoursof dynmic pressure q/~ ~ the vicinityof the rotor. x = 75.00;v = 0.095.

El

/1

1

1

1111111 Ill Ill 1,111, I1.2 1,0 .8 ,6 .4

11111.2 0 -G? -, u -. ! -.’s -LO -L2

m

(b) X/R = -0.50.

~gme 6.-Continued.

. . .

El

.

I

It

I

h-

.3-

,2-

.1-

\

Z1’n0-

-. 2-

-, 3-

“1-’/’ /---111111 11111 11111

1.2 1,0 ,0 .; ,* .2 { .)2 -. k!

m

II-.6 4

(c) X/I? = o.

-JoI

-1 !2

~gure6.-Continueci.

I

\ (’.1-

Zm0-

-.3- 1111111 I 1111

1.2 1.0 .s A .Q ,2

(d)

Figure

ltllll I I I I0 +2 -. * -.! .!s 4 -1!2

m

X/R = 0.5.

6.- Conttiued.

, . .

t

I

II

I

1

-* tida.3

bkmtti ,Ib

.2

,1

0

m-. 1

-. 2

-, 3

-. @

-.5

-.6

-. 7

-. s

-, 9

-1.0

-1.1 -1111111 111111 JlJ21111611g l-J41-J,2,

1.2 1,0 ..5 .6 .& .2 - .M -. -.

m

(e) X/R = 1.07.

~gure 6.- Continued.

ml -.1-

.,2--.3-..v--.5--.6--.7-7-1-

-.9-

.1,0 -

-1,1-

.La-

-1.5-

.Lw -

/

I1!1

IL’0

I .! ‘.d’.!” J’

mk-ulq, ,Iti

&“’Ill

A -’6 ‘ -’!9I

-,0 -Lo ‘ L ‘ -i,,

Lm

;

(f) X/R = 2.07. El

Mgure 6.- Continued.u$

, , . ,

m

.1-0

~

-.1-

-.2-

-.z-

..W

-.5-

-.6-

-i.z-

-l, Y-

-1.W

.1.5-, ,,, ,,

1,1 1.9 a1111111 111111111111 II

.6 ,% .2 0 -,2 -.! -.6 -A -1.0 -1.2rn

(g) X/R = 5.14.

Figure 6.-Concluded.

MluOiM rid,

,a- Imwlrq aid,

,1

0

-, L

m ‘“2-,3-. 4

-.5-

-.6-

-.7-

(“.4-

11111,2 1,0

I,s

I Ill Ill Illa 0 -. 2

In

(a) X/R= l.07.

1111111 II-,4 -..5 ‘-@ -hi -i.z

F@me 7.- Contoursof dynamicpressure ~~ inthetinicityof rotor. x=82.30j~ =cI.140. ~

la

$

. , .

. .

u-a

1

.1

0

-.1

-.2

-.3

-,’4

-.5

-.6- 1

-.7-

-.s-

-. 9-

-1.0-

111111 111111 111111.2 1.0 x .6

1111111,@ ,2 0 -a -.U *8 -1,0 -1.2

(b) x/R=2.07.

Figure7.-Continued.

ulP

VIro

-.1-

-.z-

-s-

-.6-

-.7-

.6-

+-1

1,2

/

1111 11111 1111111 I;6

I1,0 .8 .* ;1 0 -, 2 -. u -. 6 ..6 -1,0

w

(c) X/R = 3.14.

Figure7.-Concluded.

II-u

I-w

, . . , ,

m

Mvamiw #l&.

Edi-mtiw lib

.1-1.11,2

0 //

~T*M u!plm of rata? (U.krdEd)

(

-, 1-

-.2-

-. 3-

.,4-

1111 1111 I 11111111111 I1.0 .8 !6 .4 ;2

(EJ

~gure 8.- Contoursof dynamicpressure

P

o -.2 -.w -.6 -.6 -1.0

YLU

x/R= 1.07. b

q/qo IIIthe vicinityof the rotor. X= 83.9°;

= 0.232.

Y-

o Tipqm U plud of rdor (dmltd)

-, 1-

a-,2-

-.3-

-, Q- 1.,

-. 5-

11111111 II 11111111 Ill1,0 .$ .6 .U .2 0 -.2 -.N ~.6 -.8 -lLO

YrB

(b) X/R = 2.07.

l?igure 8.- tintinued.

. , , ,

1,

I

I

-, 1-2/74

-.2-

-.3-

-.~-

-,9-

I

I

11111111 I1,0 ,s %6 ,4 .2

(c)

F%gure

11111 .llll ill l!o -12 -. 14 -. 6 -. 8 -1,0 -liz

Y/m

X/R = 3.14.

8.-Concluded.

I

,

I

I

v/v.

.

Advancingside Retreatingside

1“

o

-1

1

0

-1

1

0

-1

-11

(a) z/R= o.32.

(b) z/rt=o.250

(c) z/R= o.18.

It@re 9.- Masured

(d) Z/R= O.Il.

valuesofx=

induced-velocityratio v/vo. X/R= -1.0;75.00;~ = 0.095.

.

.

NACAm3691 m

v/v.

Advancing side Retreating 8ide

10

.. .-----1-

(e) Z/R= -O.08.

1

0

-1 ‘

10

-1

(f) Z/R= -O.14.—.. . ___ — ——.——

(g) “.Zpl = -0.21.

1

(h) z/R= -o.28.

IE@ure9.. fhnctied.

� ✿ ✎�✍✍✎ � ✎✎�✿✿ ✿✿✿✿✿ ✎✿ ✿✿✿✿✿✿ ✍ ✿� ✿✿✿✿✿✿ ✿ ✿

58-.

NACATN3691 ,

Advancing side Retreating side

1

0

-1.

(a) z/R= o.36.

(b) Z/R= O.30.

v/v.

1

0

-1

1

0

(c) z/R= o.23.

Rtgure10.-

10@

Measured

05 o

valuesx

Y/R

(d) Z/R= O.16.

ofinduced-veloci~= 75.00;~ = 0.095.

R-0/ -10 @ -10~

ratio v/vo.X/R= -0.5;

.

.

.

.

.

.

.— . . .

.

59

v/v.

Advancingside Retreatingside2

1

0-1-2

(e) Z/R= -O.07.

2

1 I

o ~

-1 ‘

(f) Z/R= -0.13.

1

0-1

(g) Z/R= -O.20.

.11.5 1.9 05 0 -05 -109 -1.5

Y/R

= -0.27.

Concluded.

--..—— ————-——-—— —.

60

Advancingaide Retreatingside1

0

-1

(a) z/R= o.38.

2-

1

0 ‘-1

v/v.

2

10

-1

2

‘1

0

-1

(b) Z/R= O.31.

(c) z/R= o.25.

1.5 100

FigureIl.- Measured

05 0 -05 ‘-1.() -105

~jR

(d) Z/R= O.1~.

valuesofinduced-velocityratio v/vo. X/R= O;x = 75.00;~ = 0.095.

.

.

.

.

.

— .——.———-—

NACAm.3691

v/v.

3210

-1-2

2

1

0

-1

2

1

0

-1

1

0

-1<

Advencingside Retreatingside

(e) Z/R= -O.w.

(f) Z/R= -O.14.

(g) z/R= -o.20.

1.5 1.9 05

(h)

?Hgure

o -05 -100 -105Y/R

\Z/R= -0.27..

Il. - Concluded.

.. . ..— ——— —-— ——— -— —---—“———”—— —— ..—.— —— ----.—- —- —-- ------—— -~-—- -——

NACATN369i

Advancingside Retreatingside

2-

1

0

-1

(a) Z/R= O.37.

2

1 .....-..

0

-1

(b) Z/R= O.30.

v/vo2.

1

0

-1 “

(C) z/R= o.2k.

z

1 —

o

-1105

E@ure 12.-

10CI 05 0

Meamredvaluesx

Y/R

(d) Z/R= O.1~.

of induced-veloci~= 75.00;p = 0.095.

-05 -1.0 -1.5

.

ratio v/vo. X/R= -0.5; -

.

NACATN3691 . 63

543210-1-2-3-4

4321

0.-1

v/vQ -2-3

Aavanolng eide RetreatiDEside

(e) Z/R= -O.05.

/’P

Lb

# ‘

\ \p / > &

t

(f) Z/R= -O.12.

-2J I I I I I I

k) @=-o .19.2

1

0 4’ $’-1

1.5 1.0 .5

(h)

Figure

o -0 5 -1.9 -1.5

Y/R

z/R= -0.25.

12.- Concluded.

. .-z ..— —-————.__— . . . . ..-—

. . . . . .— —----- -— -—-———--——

..—

r

64

v/v.

Advancingside Retreating

NACATN3691

side

2-..........-

1-

0“-1 ‘

3210

-1

3210-1-2

32

10-1-2

(a) z/R= o.26.

(b) Z/R= O.19.

(c) Z/R= O.12.

1.5

Figure13.-

100 05 0 -05 -1.0

Y/R

(d) Z/R= 0.($.

Wasuredvaluesofinduced-velocityx = 75.00;p = 0.095.

-105

.

.

.

.

.

.

ratio v/vo. X/R= 1.07.

NACATN3691

v/v.

Advancing aide Retreatingaide4 I .A I I I I I3 I I I2 v 1

/ Iv” I1 i[

II

I I I YIi

-1-2

-2 J 1 I I I I I

(e) Z/R= -O.01.

543210-1-2-3

(f) Z/R = -0.08.

4’3 A

2 1-1 /. I0 /

-1 4 !-2 t V

v

-31.5 1.0 85 0 -.5 -1.0 -L*5

(g) z/R= -o.14.

Figure13.- Continued.

--—— ——.-—- --——- —— —--— -———-——- —. —-— —

66.

NACATN3691

.Advancingside Retreatingside

43210

-1-2

(h) Z/R= -0.21.

3210

-1-2

.- (i) z(R=-o.28..--,..-”2

“1

0 <-1105 1.0 OS 0 -05 -1.0 -1.5

Y;R “

= -0.34.

Continued.

.

.

Figure13.-

r..

———

NACATN3691 67

v/vo

2

10

-1

AdvancingBide Retreatingaide

(k) Z/R= -O.41.

210

-1

(1) Z/R= -0.48.2.10

-1

(m) Z/’R= -O.%.

1

0-1

(n) Z/R= -0.61.

2

1

0 — .

-1 1.5 100 050. -05 -1oo -1.5

Y/Ii

(o) Z/R= -0.68.

~gure 13.- (!ontfnuedo

-. .— _. —. —.-— — _._. .— . .. ——. ——

v/To

1

0-1

Advanoingside Retreatingside

(P) Z/R= -O.7k.

(q) z/R= -o.81.

(r) Z/R= -O.88.

“.. . . . . .

(S) Z/R= -O.gk.

105 1.0

—— —.

(t)

ItLgure

0 -05 -100 -105Y/R

Z/R= -1.01.

13.- Concluded.“

.

.

.

.

.

WA Im3691

tivenaing aide Retreating side

69

v/vo

.

l&jurelk. -

210-1-

(a) Z/h= O.25.

210-1L

(b) Z/R= 0.18.210

-2

210-1-2

3210-1

(c) Z/R= O.Il.

(d) Z/R= O.0~.

1.5 1.~ .5 0 -05Y/R

(e) Z/R= -O.02.

valuesofinduced-velocityx = 75.00;~ = 0.095.

-1.0 -1.5

ratio V/Vo. X/R= 2.07;

-——. -—..— ——

70 WA IIJV3691

v/vo

mvanaing side Retreating aide

43210-1-2

(f) Z/R=-O.@.

5t432 4 < H1 / 4

0 /

-1 / {

-2 .-3 1

(g) z/R= -0.16.43210-1-2

-31.5 100 05 -100 -105

YOD ’05

.

*

(h) Z/R= -O.22.

[email protected] Continued.

NACACIT?3691.

71

v/vo

Advancingside RetreatingBide

3210

-2

.(i) z/R= -o.29.7J

2

1

0-1-2

(j) Z/R= -O.36.

2110-1

(k) z/R= -o.42.

3! I I I } I II II210

%!5PEW] I t I 1-% I. ..10!) ●5 o. -05 -100 -1.5

Y/R

. (1) Z/R= -O.49.

Figure14.- Continued.

—. — —— —__ -. —

72 NACAm3691

Advancingside Retreatingside

(m) Z/R=-O.%.

2“1’

0“

-1‘

(n) z/R= -o.62.

v/v(j

1

0-1

21

0

-1

(o) Z/R= -0.69.

1*5 0 -05 -100 -1.5

Y/R

(P) ,z/R=-o.76.F5gure”lk.- Contigued.

.

.

.

.

—————--- .—

NAOATN3691 73

Advancingaide Retreatingside

2 .–.-.

1

o

-1

(q) z/R= -o.82.2 ..——..

1 ... ...0

-1

(r) Z/R= O.@.

v/vo

1-

0-1

(s) z/R= -o.96.

1

0-1 ‘1*5 1.0 05 0 -05 -100 -105

Y/R

(t) z/R= -l.02.

~gure 14.- Conctided.

— —._______ -...—._ —_—_— .—-— ——. ~——— - —.—— —.-

NACATN3691

Retreatingside .

21

0

-1 -

(a) Z/R= 0.23.

2~10

(b) Z/R= 0.17.v/PQ

.

(c) Z/R= 0.10.

32 1.

1

0-1

-2105 Lo 05 0 -05 -1.n -la5

Y!R

(d) Z/R= 0.03.

Figure15.- I%suredvaluesofinduced-veloci~x = 75.00;~= 0.095.

ratio v/vo.X/R= 3.14.

NACATN3691 75

Advanolng alcle Retreating aide

321o-1-2

(e) Z/R= -O.03.3210-1-2

v/vo

321.0-1-2

43210-1-2

(g) Z/R= -O.17.

I

IJ

-31.5 1.9 .5

(h)

Figure

o -.5 -1.9 -1.5Y/R

Z/R= -0.23.

15.- Continued.

.—_______ _.. _ -—. ..- ——— ———.—

.76.

‘?/ V(j

Aihncing side Retreatingside

43 I

I21

1{

1- 1 1“ I~

-1 I~ I I I I k-2 I

(i) z/R= -o.30.3.2 A

1 *

o /

-1 /H I.J-2

(j) z/R= -O.37.32 A

10-1-2

(k) Z/R= -O.43. ~

210

-9–-1.5 1*CI 05

(1)

Figure

o -.5 -1.0 -105

Y~R

Z/R= -0.50.

15.- Continued.

.

.

.

.

\

NACA~ 3691

Advenclngside

77

Retreatingside

2

1

0

-1

(m) Z/R= -O.57.

2“

1

-1- “

(n) z/R= -o.63.v/vo

21

0

-1 “

(0) Z/R= -O.70.

2

1

0

=.11.5 1.’0 05 0 -o 5 -100 -1.5

Y/Ii ‘

(P) Z/R= -O.77.

Figure15.- Continued.

..,——____ -.. ——_.. . ~—. - . ..— — - . —- —- —-— —

78 NACATN3691

Advancingside ‘ Retreatingside

21

0

-1 ●

(~ z/R= -o.83.

21

0I-1 +

(r) Z/R= -O.90.

v/vo

2] I I I I I I1

0

(S) Z/R= -O.97.

21

0-1 J I I I I I–-1.5 o -05 -1*O -105

.

.

.

.

m

(t) Z/R= -l.03.

l?igure15.- Concluded..

———.—— ——---—-

NACATN3691 79

.

.

Advancing side Retreating side

o-1

(a) z/R= o.38.

1

-1v~v

o

1

0-1

1

0

(b) Z/R= O.32.

(C) Z/R= O.2~.

I I I I I‘loo 05 0 -05 -100

~~R

(d) Z/R= O.18.

Figure16.- Measuredvaluesxofinduced-velocityratio v/vo. X/R= -1.0;= 82.3°;w = 0.140.

— — ..— — —. ...— ———_

80 NACATN3691

10

-1

1

0-1

1

0-1

10

-1

Advancing side Retreating side

.

.

(e) Z/R= -0.07.

I I I I

.

(f) Z/R= -().13e

(d z/R= -o.20.

1.9 05 0 -o 5 -100

(h) Z/R

Figure16.-

= -0.27.

Concluded.

.

.

NAC!ATN3691

Advancingside Retreatingside

1-0 ..--”..“.

-1

(a) z/R= o.36.

1

-1

(b) Z/R= O.30. “

v/v.

1

0

-1

21

0

. . ---

(c) z/R= o.23.

..- “

-1 J1.5

I I I I I 1.

ltQure17..

1.0

Measured

05. 0 -a 5 -i. o -105

Y/R

(d) Z/R= O.18.

valuesofinduced-velocityx= 82.30;~ = 0.140.

ratio v/vO. X/R= -0.5;

—-————..—- .— -——. . .— .. ..—_— ..—

82 NACA‘rM3691

v/vo

Advancingside Retreatingside

21

0

-1

-2

(e) Z/R= -O.07.

1I

-1I

1

0-1

10-1

(f) Z/R= -O.14.

(g) z/R= -o.20.

I

.

.

.

–1.5 1.0 .50 -05 -1.!) -1.5Yh

(h) Z/R

ltlgure17.-

= -0.27.

Concluded. ●

Advancingside Retreatingside

1 . . . . . .

0-1 r

(a) Z/R= O.35.

210

-1v/v.

(b) Z/R= O.29.

21

......0

-1-

(c) Z/R= O.22.

21

0-1 “10~ 1.9

Y/R

(d) Z/R= O.21.

Figure18.- Wasuredveluesofinduced-veloci~ratio v/vo. X/R. O;x= 82.3°;~ = 0.140.

-..——. ——-. —.. ..— — ——— — .——. —

IW2Am 3691

21

0-1-2

210

-1v/v.-2

2

10

-1

1

0

Advancingside Retreatingside

(e) Z/R= -O.07.

(f) z/R= -o.14.\

.“” .

(d z/R= -o.20.

1.5 1.af3 05

(h)

Figure

o -e 5 -1.0 -105

Y/R

z@= -0.27.

18.- Concluded.

.

.

.

— —

NACAIm 3691 85

Advanoingside Retreatingside

v/v.

3210

-1

3210

-1

3210

-1

(a) z/R= O.Jo.

. . ..

(b) Z/R= O.~.

(c) z/R=o.27;3] I 1 I I I i210

-1 -1.5 1.0 95 0 -05 -1.0 -105

IRI_gure19.- Measured

Y/Ii

(d) Z/R= 0.20.

valuesofinduced-velocityx= 82.3°; I.L= 0.140.

ratio v/vo.X/R= 0.5;

. . . . . .. . . . . ——_ ————.—._. . __ __ _____ —— -.—— —.

\tiA m 3691

AQvenalng aide Retreating Bide.

v/vo

0

43210-1-2

-3

(e) Z/R= -O.W.

41 I I I I I I

(f) z/’R=-c).l3.32 1 A

10 P-1-2 L

(d Z/R= -0.20.

210 7--1 7~

-2 I1.0 .5

(h)

Figure

o -05 -1.9 -1.5Y/R

Z/R= -0.27.

19.- Ccmcluded.

.

.

.

. —

NACATN3691 87

Adwmoingaide Retreatingside

2

1’0 I. w I I I I I* I

(a) z/R= 0.23.2’

1“~ —o“ J

-1-

v/v.

32

1

0-1-2

432

1

0-1-2-3

(b) Z/R= 0.17.

(c) Z/R= 0.10.

200

Figure20.-

1.0 05 0Y/R

(d) Z/R= 0.03.

valuesofinduced-velocityx= 82.3°;v = 0.140.

K-0. -100 -105

ratiov/vo. X/R= 1.07;

.—. .—. -——— -—..

88 NACATN3691

Mvanchg aide Retreating 81de

65 I’Y I I II I I4 l\

3 I + Atw21 I II

t t-1 I 1

o I ! !* 1. I 1. II I-1 n-V6b I 1 w

-2-3 v“v-41 I I I I I I I

(e) Z/R= -O.03.

v/v.43210-1-2-3

(f) Z/R= -O.10.

!3

. .

2 //1 \Q

o 4

-1 ++

-2–z-’2.0 1.7 1.0 05 0 -.5 -1.0 -105

k)Figure

Y/R

Z/R”=-0.17.

20.- Continued.

.

.

2X NACATN 3691 89

v/v.

43210

-1-2

32

1

0-1-2

~2

10

-1-2

3210

-1

Retreating n~de Advanulngaide

(h) Z/R= -0.20.

(i) z/R= -o.23.

(J) z/R= -o.27..

-2 J I I 1 I I I I2*@ 1*5 1.0 05 0 -05 -1.0 -L5

(k)

l?Qure

Y/R

Z/R= -0.30.

20.- Continued.

-_ —.—.. ..- —.. ——— — —--— -—— -— —--- ——

90 NACATN3691

v/v.

3210

-1-2

Advanoingaide Retreatingal~e

(1) Z/R= -O.33.

3-210-1-2

(m) Z/R=-0.37.21 — ~o

-1.

(n) z/R= -o.40.2

10 /

-1200 1.5 1.0 ●5 o -. 5 -1.0 -1.5

(o)

IRQure

Y/R

Z/R= -0.47.

20.- Cont3nued.

.

.

.

.

NACAIIN3691 91

v/v.

Advanoingside Retreating~ide

(P) z/R= -o.53.

21 I I I I I 11“ ‘

I

o“-1 J I I I I I I

(q) z/R= -o.60.2

1’0

-1 ~

(r) z/R= -o.67.

2

1

0

.1

(s) Z/R= -O.~.

21 1

-1105 1.0

(t)

Figure

o -05 -1.0 -1.5Y/R

Z/R= -0.80.

20.- Concluded.

—- . ...—-. .—.. —___ ...— ..- . . -—.——..—___ ___ ----

.

klvanolng aide rietretitlngaid-e

NACATN3691

32 I

10

-1-2

32

10

-1-2

-3

(a) Z/R= 0.07.

.

.

.

.

v/Y.

(b) Z/R= O..- .-

4 ,

32

10

0 /

-2 4

-3

(c) Z/R= -0.07.k32 — —

1 \o /

& ~ i-1 /

-2 I

-3;.0 1.5 l.c! ●5 o -.5 -1.0 -1.~

Y/R

(d) Z/R= -0.13.

valuesofinduced-velocityratio v/vo. X/R= 2. 07;x = 82.3°; u = 0.140. -

.

—.——

93

Advanalng side Retreating olde

.

3210

-1-2-3

(e) Z/R= -O.20.

>.

2 — —1 b-.o \●

-1v/v. -2

(f) z/R= -o.27.32 m a. 41 ‘ 4

1. fo \

-1 “Q@+@&%!&-2

(g) Z/R= -O.33.

2 ~10 \:

-l_ w- W

-22.0 1.5 1.0 .5 ,0 -. 5 -1.0 -105

Yh

(h) Z/R= -O.37..~gure 21.- Contin-d.

. ..-. ..——— .—.,_ .. ——-—___ ___ ____ ._. —— .. . . .

MACATM3691

Advancing8id0 Retreatingelde

3“2 — — sl

v1 \o-1--= ~ ~ — — —.-2“ .

(i) Z/R= -O.40.

3’2’10 Y

-1v/v. -2

(j) Z/R= -O.43.210

-1 M~ ~

(k) Z/R= -0.47.2

1

0-1‘-2.0 1.5 1.0

(1)

IZIgure

o -05 -1.0 -105

Y/R

Z/R= -0.50.

2Z.- Continued.

.

.

.

95

Advancingaide Retreatingaide

2

1

0-1

(m) Z/R= -O.53.

2

0 --1,

(n) Z/R= -O.57.

v/v.

2

1

0-1

(0) z/R= -o.63.2

1 ...........

0

-12.0 1.5 100 05 0 -05 -100 -1:5

(P)

Figure

“Y/R

Z/R= -0.70.

Z1..- Continued.

— —— .. —.. — —— —.. .. —._ _—_. .— —––.

96 NACATN3691

+..

“Advanolngaide Retreatingside

2

1

0

-1

(q) Z/R= -0.77.

2 ‘

o -~ . ---- --1

(r) Z/R= -0.83.

.1 ‘o

-1

10

(S) Z/R= -O.90. ~

-1__1*S 1.0 OS o -e5 -1.0 -1.5

. Y/R

.

.

(t) Z/R= -O.97.

Figure~.- Concl@ed.

—.—

.

13XNACATN3691

Advancingelse Retreating aide

.

3210’-1 I-2I t I I I I I I

(a) Z/R= O.03.

3 72 n

+* * * x. ..

,1 .. .. ... ....0 #

A-1 .,-2*

v/v.

(b) Z/’R=-O.O3.

43210-1-2

(c) Z/R= -O.10.

432 /k=

\1 / * Lo 4 A k

-1~-2

~fjj

-32.01.5 1.0 .5 0 -.5 -1.0 -1.5

Y/R

(d) Z/R= -O.17.

Figure22.- l%smredvaluesoffiduced-velocityratio v/vo. X@ = 3.14;x= 82.3°;I.I= 0.140.

..-. ..—_-——__ .- —-. ——- .—.——

.

MACAm 3691

Ahandng ei.de Retreating aide

k3210-1-2-3

(e) z/R= -o.23.3210 II L

-1 %2-2

(f) z/R= -o.30.

vho

321o-1-2-

(g) z/R= -O.37.

-z2*o 1.5 l.@

(h)

Figure

.5 0 -. 5 -1.0 -1*5

Y/R

Z/R= -0.40.

22.- Continued.

.

.

.

.

.

MAC!Am3691 99

Advanolngside Retreatingaide

3“2

10-1 .%-2

32

10-1-2

(i) Z/R= -O.k5.

(J) z/R= -O.47.v/v.

3“21’0“-1-2

(k) Z/R= -O.50.

3210-1

‘2.0 1.5 1.0

(1)

lRL~”e

OS o -05 -Lo -1.5

Y/Fl

Z/R= -0.~.

22.- Continued.

.. .— ..—. .— .-. —-———. . .—. — _ —

lco

Advanolngaide Retreating

NACAIm 3691

eide

321

,.0-1

(m) Z/R= -0.57.

321

0-1

(n) Z/R= -0.60.

v/v.

321o-1

(0) z/R= -o.67.2

10

-12.0 1.5 100 ●5 o -0

.

.

.

Y/R

(P) Z/R= -O.73.

ll~e 22.- Continued.

.

“NACATN3691 101

Adv~cingf3ide Retreatingside

2

1

-1

(q) Z/R= -0.80.21“— —o’

-1 ‘

(r) Z/R= -0.87.Vlvo

.

(S) Z/R= -O.93.5L1 . . . .

0. * 7@@--1 L“1*5 100 05 0 -*5 -1.0 -1.5

(t) Z/R= -1.00.

Figure22.- Concluded.

—....———— ~ ....—. .

NACATN3691

Mvanolng elde RetreatiMeide

Vfvo

2

0

-2

2

0

(a)z/Bm O.*.

.2=(c)Zhl= 0.=.

:=(d)Z/B.0.16.

2

0w% F

-2

1.0 .5 0 -.5 -1.0Y/R

(h) ZfiE -0.26.

I!lgure23.- Msasuredvaluesofinduced-veloci~ratiox= 83.90; p = 0.232.

.

v/vo. X/R= -1.O;

NACATN3691

Y/v.

Eigure24.-

.

Advanolng aide Retreat- Bide

2

0

-2 (8)Z/R- O.m.2

-2{b) Z/17-0.-

2.

00

v-W

-E(c) Z/R= 0.24.

2

0

-2. (d)Z/R-0.17.

2

0

-2(e) Z/RE -0.07.

2

0

-e(f) Zfil--0.14.

2

0

-e

2(g)z/R- -0.2L

o

-21.5 -1.0 -1.5

Measured

100

valuesx

.5 0 -.5.YIR

(h) Z/R.-0.27.

ofinduced-veticity= 83.90; p = 0.232.

ratio v/VO. X/R= -0.5;

.— _.. _ . .. .. —— -—— — —-— ——

1C!4

Mvamlng Bide

NACATN3691

RetreatingEdde

Vfvo

Figure25.-

2

0

-2(a) z/R-0.40.

2.

0-n

-2..(%)z/R- o.~ ‘

2

0

-2

2

0

-2

(c)2/%-’0.26.

(d)Z/Rm 0.19. .

(g)z/R.-0.2.L2

0

.‘i.5 1.0 .5 0 -.5 -1.0 -1.5

Yin(h) Z/RE -0.28.

.

.,

Msasuredvaluesofinduced-velocityratio v/vo. X/R= O;x= 83.90;w = 0.232.

.

.

___— —.—

NACATM3691

Mvanw aide netraat~ nide

Figure26.-

2

0

-2(8)Z@ .0.59.

2@n

o❑ /

-2 (b)Z~ = O.R.2

0z ‘

-2 - i(c) 2/2. 0.26.. . .

c I i I I i I2

0A

-eL I I I I I I(d) Z@ :0.19.

I 1 I I I I4 &

2 \ %%7

o

-2

-$WI

(* z/R- 4.07.I I I I I I

.?

<0

-2(2)z/R- -0.2L

2

0m +

v

-2-1.5 1.0 .5 0 -.5 -1.0 -1.5

Measuredvaluesofinduced-velocityratiox = 83.90;p = 0.232.

v/vo. X/R o.5;

-.— --- -- ----~—- ---— — —- .~————— —— .-—y--- _ .——

(a) Z/R= 0.21.

i 10 34-2

(b) Z/R= 0.14.

.(c) Z/R= O.C&

4

2 A0-e-8 ~.

(d) Z/R= 0.01.

m

(e) Z/R= -0.6.

Iltgure27.- Wasuredvaluesof bduced velocityratio v/vo. X/R = l.~;x = 83.9°; P = 0.232.

.

107

(f) Z/R= -O.12.

(g) z/R= -o.19.

Vvo 20-e

(h) Z/R= -0.26.

2 m-%.+@=@0-1

(i) z/R= -o.32.b

a I

o

-1

(3) m=-o”39”,z

0~

-3.5 1.0 .5 0 -5 .-1.0 -M

(k)

lZ1.gure

rh

Z/R= -0.46.

27.- Concluded.

— .— .-. —.—.——. — .—— —. —— ——-- — ——... — —.— ————-.— -._———

.

m TN 3691

Mgure28.-

(a) Z/R= 0.08.

2

0

-?

(b) Z/R= 0.01.

2t

a

4 1. 1 I I I 1

(c) Z/R= -0.0~.

(d) Z/R= -0.W.*

2

0 i 4i-e-A‘-2

-B r-1.5 2.0 .5 0 -5 -Lo -2-5m

(e) Z/R= -0.19.

valuesofinduced-velocityx= 83.9°;u = 0.232.

ratio v/vo. x/R= 2.07;

.

,

— .—— ————

log. .

AATmmlngnib

.

4b

E >

bo t

-2

(f) Z/R= -0.2s.

e

o /’-2

(g) Z/R= -0.32.

(h) Z/R= -0.39.2

0

-2

(i) Z/R= -0.45.

(J) Z/R= -0.52.2

0

-2I-5 Lo .5 -1.0

JR -“5-1.5

. (k) Z/R= ~0.~.

.— -.. —.—. ..—. — —.-. —.. — ~.— ..- ——— ————-.—. .-— —-

llo

VIro

Measured

(a) Z/R= 0.03... .—. ..-—

2

0

(b) Z/R= -0.03.

(c) Z/R= -0.10.4, 1 , I o

“I—r—H—t(d) Z/R= -o.17.

.

2

0 lb - “ -

-2 v

1.5 Lo .5 0 -.5 -Lo -1.5

valuesx

rln

(e) Z/R= -0’.23.

ofinduced-velocity= 83.90;u = 0.232.

ratio v/vo. X/R= 3.14;

.

NACATN3691

(f) Z/R= -0.30.

(g) z/R= -0.37.

(h) Z/R= -0.43.

(i) Z/I?= -0.50.

(3) @ = -0.57.20 d+’- fl % i.-%.5 Lo .5 0 -5 -1.0 -l-s

(k) Z/R= -0.63.

Figure 29.- Concluded.

.

112

.4

d?

E-.

-. 4

.4

n92

,/

o \

o ‘\ A1-imsul@r -

-.a w1’4x\

-04-*E -.4 0

v/v.

(a) X/R= -1.0.

. .0 .4 .8 1.2 1-.6

v/vo

(c) X/R=O.

-.2

-04

NACATN3691

.

0 .4 .8 1=

7/70

(b) X/R= -0.5.

(d) X/R= 0.5.

Figure30.- Comparisonofmeasuredandtheoreticalvaluesofvelocityratio v/v. inlongitudinalplaneofsymmetry.P = 0.095.

1.8 1.6

induced-X = 75.O“j

I

I

+0

(e) X/R = 1.07.

*

o

-.s

VI..4

-.0

.@

4.0

0 .4 ,# lJ 1,6 1,0

(f) X/R = 2.07.

Figure30.- bnchdefi

a

o

..s

I/I-.4

..i

-.*

4,0

8.4.sl.l Ll La

(g) X/R= 3.14.

Z/R

.2

c-* 4 0

v/v.

(a) X/R M -0.95.

94

Z/R

.i?

o

-0 4 0 04 0 .4 .0

v/v. v/v.

(b) X/R = -0.8. (C) X/R = -0.6.

0 .4 .8

v/v.

(d) X/R = -0.4.

Figure31.- Comparisonofmeasuredandlongitudiulplaneof

.4

0

\

\ ‘., Cl

i

\ )\\

1 [1 1 I I

1.2 0 .4 .9 1.2

v/v.

(e) X/Ii=-0.2.E!*

Etkoretical values of itiuced-velocityratio v/vO inSy-luuletry.x= 85.8°; p = 0.139. $

NAC!ATN3691 115

.

.

.

z/R

.4

Z/R.2

0

II I

–Unl~ormload3& -Trian~lu loedc) -TypiCd load

–Measured@ /{o

P/ ‘

/o ●4 .8

v/v.

(f) X/R= O.

o -J--+-----rI I-0 8 -o 4 0 .4 08 1.2

v/v.

(g) X/R= 0.2.

0 , , ,-*9 -*4 0 .4 08 1.2 1.6

v/v.

(h) X/R= 0.4.

[email protected] Continued.

—..— .-— ..-— . .. . ..——....Z .——. —— .—.—————— .— —— ————— -—...-—. –.—

116 NACATN3691

, ,

0-o4 0 .4 .8 1.2 1.6

V&

(i) X/R= 0.6..4

o

I “

\

1 0/

.uniformload-----Triangnhr lcmd<Typicalloa~?deasured,

.,

.

0 .4 .8 1.2 1.6 2.0

v/v.

(j) X/R= 0.8.

.4? \\y,> ~

uniform loadTriangular10KI5 (3

Z/R .2 Typioalloati Cl \Measured o

6)~ \I

,/o0 .4 .8 1*2 1.6 2.0 2.4

v/v.

(k) X/R= 0.95.

Figure31.- Concludd.

—.. - —.—— —--

NACATN3691 117

04

a

Z/%

o

-J?

- .*

.4

B.,i’.2/

*Onlforml-d

SIlwlarM/’ lad l-d

●uul-eao

x.

-.s \

-e4--a -.4 0

+.

(a) X/R= -1.0.

o .4 .0 u

T/v.

(c) X/R’= O.

.4

-. e

-.4

4

.s

Z/E

o

-.s

-. 4o 04 .8 la

vho

(b) X/R= -0.5.

I I I I I I1 I I i I I I I i I I I I-. 4 0 .4 .e 1= 1.6

v/v.

(a) X/R= O.~.

Figure32.- Comparisonofmeasuredandtheoreticalvaluesof induced-velocityratio v/vO inlongitudinalplaneof synmetry.x = 82.3°;v = 0.140.

.

- --- .- -- .—.- ———-——-.——- --—- -—— —.. - —.—.-—.

E

‘i

0

*

-4

-,4

. . .

-’4

0.4.4t.i mm. ou

+0

(e) X/R= 1.07.

a

o

* -A

-.4

-A

.4

.1.00.4.81,s 1.*W

v%

(f) X/R = 2.07.

Figure32.-.Concluded.

4

-a

*

-.4

-.4

-4

.1.0

0 ,, ., ,,1 l.n 0.0

(g) x/’R=3.l4.

g’

.

NACATN 3691 llg

.

.

.

.4

.s

o

-a

-.4-. e -.4 0

T/T.

(a) X/R= -1.0.

0 .4 .0 1.2

v/r.

(b) X/h= -O.5.

04 4

.4 a

@@

o 0

-0s -.2

-.40

-.4.4 .e 1.s -.8 -.4 0 .4 .8 1s 1.6

T/v. T/v.

(c) X/R=O. (d) X/R= O.5.

Figure33.-Comparisonofmeasuredandtheoreticalvaluesof induced-velocityratiov/vO inlongitudinalplaneof symmetry.x = 83.903IJ= 0.232.

.

. .— . ..-—.——. . . . . . .—— - ———— —-—— —-— . .— .. —-—-

120 IIMAm 3691

a

-.4

0 .4 ..9 1.9 l.s S.o %4

./v.

(e) X/R= l.07.

o

-a

m-.4

-. 6

0

-a

*

-.4

-.6

0 .4 .s 1.2 1.8 a.o

+0

(f) X/R=2.07.

o .4 .e La 1.6 2.0

+0

(g) X/R=.3.14.

Figure33.- Concluded.

[

1

i

(a) X = 75.00;u = 0.095.

Figure34.- Comparisonofmeasuredandtheoreticalvaluasof induced-Velocitymtio v/vo alonglongitudinalcenterline.

I

t

I

Ii3

2

1

0

-1-1,0 -.9 -.6 -.4 -.2 0 .2 .4 ●6 .8 1.0

X/R

(b) X = 85. %J v = 0.139.

Fe ~.- Continued.

!=/

s

a

v/v.

1

0

-1-1.2 -.8 -.4“0 04 .8 La 1.6 0.0 a.4 8.8 S&

x/R

(C) Y,m82.3°;p= O.140.

Figure34.- Continued.

T/v.

-1.8 -.8 -*4 o A“*O 19s 1.6 a.o 0.4 9.0 3,!?

a

(d) x=83.90;P=o.232.

Figure~. - Concluded.

*

Figure33.- Effectof tip-speedratioon di6tilbU%iOn of induced-velocityratio v/vO alonglongitwiinalcenterline.

/j

I

Ii

Vlvo

klVRIlO~ng fllcle Retreating side’

1.6 1.2 .13 .4 0 -04 -6 g -102 -L 6

Y/R

Figure36.- Comparisonof measuredandtheoreticalvaluesof induced-velocityratio v/vO alonglateralcenterllne.

iag’

%

-1

1.6 1*Z .8 ●4

(b) X-

R@re

0 -,4 -0 g -1. E -1.6Y@

82.3°; p = o.M.

36. - Continued.

2

1

v/v.

c

-1

fMVanoLng aide Retreating aide

106 1.2 .~ ●4 o -04 -*8 -102 -106

Y/R

(c) XEB3.90JM= O.232.

l?kure 35. - ConcludA.

I

I

v/v.

3

2

P.D.-I

1

1 I A-. ! I 4/1FFFl”‘“

/ I 1 ‘\l 1fdo

/ I “\ \\L

/’—

I

-1.2 -1..0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1*O 1.2

X/R

(a) x = 75.(P; ~ = 0.035.

Figure 37. - Ccsnp.mtsonof inemuredvaluesof induced-velocityratio v/vOme with theoryof reference4 tified. ‘Premure distributionsI sndsnd P.D. III.

.

on longitudinal center

III denotedby P.D.I

130

v/v.

NACATN3691

(b) X = 85.80;p = 0.139.

Figure37.- Continued.

.

/ ‘

3

/

20

,

P.D.I /Measure

() () /1 \ $

)>/ /

// \ () f

//

\o (-) .

// L /I/- \

\ (? /

4u \ /

) \. /~’.~ I

I

-1.2-1.0 -.8-.6 -.4 -.2 () .2 .4 .6 .8 1.0 1.2XIR

v/v.

3

2 ,?!

//

“P.D. I I

P.D. 111 /

1 Measured= ‘., /k

/ ~I

//

/f \( \I

o Ii/ / ‘r

/ /

)

\o ,/

r

i)

\\ _ /

-1I

1I

-1.2 -1.0 -.8 -.6 -.4 -.2 0 .2 ,4 .6 .8 1.0 1

x/R

I

.Ii

I

II

●2

(c) X= 82.3°j~= 0.140.

Ffgure37.- Continued.

3

2

v/v.

oI

I-1

I

(d) x= E3.9°;pscI.232. gF

Figure 37.- Concluded.

,

. . .—— —. . —— . ..— — .-. .—.- - . —. ...--. .——.— .— -—>- . . .. ..- —. –.—. – .

NACATN3691 133

/ --7

/h/PeDeIJPJla 111> /

/ /

/ //— \ 9

\ ; /./

/,Y/R= -.25 \ _/ ●

y/R= +.25>

-e 4 0X\R

(a) x= 75.0°;w = 0.095.

04 ●tl

~gure 38.- Campsrisonofmeasuredvaluesofinduced-velocityratio v/v.at Y/R= &l.25”withtheoryof’reference4 modified.Pressuredistri-butionsI and111sredenotedbyP.D.I andP.D.III.

——— .—.

134 NACATN3691

3

2

1

v/v.

o

-1

0.

/ ‘/

/

//

I

/

/

-o 6 -o 4 o“ .k .8X/R

(b) x = 82.3°; ~ = 0.140.

lttgme 38.- Continued.

.

1.35

.

3

2

1

VIVO

o

-1

P.Do 1~

-o4’X/R

(C) X= 83.9°;p= 0.232.

Mgure 38.- concIuded. .

.

136 NACA!rN3691

;/v.

IRlgureat

3

2

1

0

–1

-2

/\

1/

P.Do I /P.D. III=I

Y\R = +050 t’b~‘-

Y\R = ‘o~t)

/“

/‘1/

I

/

/

//

/

I

/

I

-o 8 -04 0 .4 .8x~

(a) X = 75.0°; p = 0.095.

39*-Comparisonofmes&uredvaluesofinduced-velocityratiov/v.Y/R= ~.~ withtheoryofreference4 modified.Pressuretistri- -

butionsI andIIIdenotedbyP.D.I andP.D.IIZ.

.

. . . . —.-.. . - .— ——— —-—— ..—..— ._ .—.— —.

.

iXNACATN3691

4

3

2

1

v/v(J

o

-1

-2

/

/

P.D. IP.D. IIIY/R= -t.50Y/R= -.50

\-.—

/ ‘/

/

E

/

/

{

/

/I

-0 ~ -04

(b) X =

Figure

82.3°; ~= 0.140.

39.- Continued.

137

.

-.

138 NACATN3691

4

3

2

1

v/vo

o

/

I/

P.D. IP .D. III \\ / ,Y/R = +. ~0Y/R = -o ~01

@ /_—// /

/0 [11/

/

tI

I

-08 -.4’ 0 *4 .8X/R

(c) x = 83.9°; ~ = 0.232.

Figure 39.- Concluded.

—.. ———— .—. .. . . ... .—._ ...— ——— .— —.. —.. A . .. ——. .— ..—

NACATN3691

3

2

v/v.

Q

.

M.gure40.-at Y/R=>butionsI

[

/4r (

//

I P.Do I /tP*D. 111~I

/ /

#

I//

-0 $

(a)

Comparisonof*.75 withandIIZare

i

(

lL-0 . 0

139

l@R

x = 75.00;p = 0.095.

measuredvaluesofinduced-velocityratio v/v.theoryofreference4 modified.Pressuredistri-IenotedbyP.D.I andP.D.III.

—.——

. ..—.— — _——

140 MACATN3691

5

3

2

1

v/vo

o

-1

-2-

(b) x = 82.3°; p = o.1110.

figure 40.- Continued..

— ..—.. ——— ——— —_______ .— .. —-.._ ...-. —- . .. ——.— . . .— .

.

.

.

NACATN3691 M

5 - r/I

/f

4 . /

I/

. / El,

/

P.D.IP.D.111

2 Y/R =- ●75Y/R=+*75

1

vlv~

o

-1

-2

(c) x = 83.9°; ~ = 0.232.

HgurekO.- Concluded.

——.— .. .—. — ——.-——

Advancing i3iae Retreating aide

1

v/v.

o

-1

I I II .. \

/ \ \\\

p \

‘peD. I‘P.D. III- .

L 0\

-Meaaured

1

T

L I I

102

Figure41.- Conmmisontheoryof referenceandP.D.III.

, ,

I I I I I I I I I

-0 8! -1●8 - .4 0 k-0 .Y/R

(4 X= 75.0°; I-L=0.095.

of measuredvaluesof induced-Velocityratio4 miified. pressuredi.atributionaI and III

,a 2I

v/v. at X/R= -0.5 withexe denotedby P.D. I

. .

I

I I

I1

v/vo

o

-1

-2

Advanalnge~de Retreatinge~de

PoD. I \PoDo IIIMeasured \ \

\ \\

/\

{~

\//

\ \\\~

i‘ k

\

1 1 I 1 I 1 I I I1.2” .~ ●4 o -0 4 . -.$ -1.2

X/R

(b) x=82.3°;IL=0.140.

Figure 41. - Cmtinued.

I

Advancingside Retreating Bide E

0 -* k -0 8 -102

(c) x=

F5.gure

Y/R E*

83.9°;p = 0.232. =w

41.- Concluded. $

r

II

IJI

2

1

v/v.

o

-1

1

Advmclng side Retreating aide

1 1

P. D, I‘P, D, III&eaeured

/-A

.

k 1/f// !

// \,

./A’‘ II

\‘1 ‘J

.4 0 L1. -.8-0 -1

u$’

*2

Y/R

(a) x=75.0°; ~= 0.035.

Figure k2. - Comparisonof measuredvalueBof inducedvelocityratio v/vn on laterelcenterllne &tith theoryof reference4 modified. Wssure distributionsI and 11~ me denotedbyP.D. I GandP.D. In.

Advanoing siLe Retreating side

‘1

i

I

2

1

v/v.

o

-1

1*2 .8 04 0 -0 4 -. E! -102Y/R

(b) X=82.3°} y= O.lkO.

Figure42.- Continued.

1 r

‘.

2

1

v/v.

o

-1

Advanolngaltie Retreating aide

I

1.2 -0 4

(c) x=83.9°jLL=o.232.

Figme 42.- Concluded.

-0 f3 -102

. ———

NACAm3691

Advsnclngside Retreatingside

-1●“2

I?igure43.-

*4 11-0 . -0 g -1* 2

(a) X= 75.0°; p = 0.095.

Compatdsonofmeasuredvsluesofinduced-velocityratio v/v.at ~/R = 0.5 withtheoryofreference%utionsI andIIIdenotedby P.D.I and

4 mcdified.Pressuredistii-P.D.IU.

.

.—.. —=. ——.. . . .... — .- ..4._. ___ .. ... -. .-L- ___ _ ..— ——. -._—— .-

-.

.

NACATN3691

Admmlng alde Retreatingside

(b) X=

l?Lgure

.4 0 -0~ . -Oe -102Y/R

82.3°; p = 0.140.

43.- Continued.

..

——— -—. -

150 NACA~ 3691

4

3

2

1

v/vo o

-1

-2

-3

1

Advancingeide Retreatingaide

8 r/ 1 / )/ I

\ /, \

\\II ‘/

I

\ — ~ f I

I/< / P.D.1A IN

I / \ \P.D.ZII LMeasured~ If/

1II ‘qJ, /~

II

v1

\I \ \ //

\“\///

II

I ,

-\\ \ ,/A/

I I

\‘, ‘

1I

II I

,*2 ●g 06 0 -*4 -0 ~ -1.2

Y\R

(c) x=83.9°; ~=o.232.

Figure43.- Concluded.

. . . . . .. ..— —— ——. — . ---- . ——- —- .-— -- . ---- -..—------ ——--———--- —---- .- —.. —.. .,—

Figure

at

IJ=

151

-Oing #ids Bstrmtlng●lti.5

0

*

-. 5

-Lo~5 1.0 .5 0 -5 -Lo -1.5

m

(a)Measureddata.

.5

0

m

-.5

-Lo‘1.5 Lo .5 0 -5 -Lo 4.5

lb

(b)Theoretical,pressuredistributionI.

.5

0

*

-5

-Lo“1.5 Lo .5 0 -. 5 -Lo -L5

IIR

(c)TheoreticsJ.,pressuredistributionIII.

~. - Comparisonofmeasuredvaluesofinduced-veloci’qyratio v/voX/R= 2.07withtheoryofreference4 modified.X = 75.0°;0.095.

152

.5

0

*

-,5

-Lo

.5

0

m

-+5

-Lo

‘hauolw S149

I I

——

NACATN3691

Iutrmt”bgSia,

L5 Lo .5 0 -.5 -Lo -1.5m

(a)Measureddata.

-

Fx I/’rzL&l’\IK:*41--- I 1I ho \

-d

/

1.5 Lo .5 0 -.5 -Lo -1.5rh

(b)Theoretical,pressuredistributionI.

U Lo .5 0 -.5 -Lo -L5m

(c)Theoretical,pressuredistributionIII.

45.- Comparisonofmeasuredvaluesd induced-velocityratio v/vO

X/R= 3.14 withtheoryofreferenceh modified.X= 75.0°;0.095.

.

_—. -—— .. ——— ——..-. — .— ---—— .-— .. . .. ..-—. . . ..-. .-—- —.-.———

.

Figure

atP =

.5

0

*

-.5

-1.0

.5

-1.0

153

1.5 Lo .5 0 -.5 -Lo -1.5X/a

(a)Measureddata.

-..1.5 Lo .5 0 -.5 -LO -L5

rta

(b)Theoretical,pressuredistributionI.

.5

0

*

-. 5

-Lo105 Lo .5 -.5 -Lo -L5

$

(c)Theoretical,pressuredistributionIII.

46.- Comparisonofmeasuredvaluesofinduced-velocityratio v/vOX/R= 2.07 withtheoryofreference4 modified.X = 82.3°30.140.

___—

NACATN3691

.5

-Lo

.5

Qm

-.5

-Lo

(a)Measmeddata.

(b)Theoretical-,press~e~strfbutfonI.

(c)Theoretical,press~e ~s~fbutfon ~=

Figure47.- Comparisonofmeasuredvaluesofinduced-veloci~ratio v/v.at X/R= 3.14 withtheoryofreference4 modified.x= 82.3°;P = 0.140.

,.

— ______ __ . . ... . . .... —_— —.— —.— — ...— .— .-. ..—. —.—, —

NACATN3691

-.

.5

0

Z/B

-.5

-1.0I I I I I I I1.5 Lo .5 -1.0 -M5

rob ‘“5

(a)Bkasureddata.

.5

0 I / !\\\II A

c,-..

L5 Lo .5 0 .-.5 -LO -L5Yb

(b)Theoretical,pressuredistributionI.

.5

-LoL5 Lo .5 -5 -Lo -1.5

1%

(c)Theoretical,pressuredistributionIII.

155

Hgure 48.- Comparisonofmeasuredvaluesofinduced-velocityratio v/vOat X/R= 2.07 withtheoryofreference4 modified.x = 83.9°;P = 0.232.

156

————

NACATN3691

MmolngSlti E@l-uux●ids

(a) Measureddata.

.5

0-

-. 5

-LO~5 Lo .5 0 -5 -Lo -1.5

TIP.

(b)Theoretical,pressuredistributionI.

.5

0*

-5

-1.0I / /1 \ I I t

1.5 Lo .5 -.5 -Lo -1.5X“b

(c)Theoretical,Pressurefis~ibution1~0

IYgure49.- (hmparisonofmeasuredvaluesofinduced-veloci@ratio v/v. .’at X/R= 3.14withtheoryofreference4 modified.x= 83.9°;v = 0.232.

. ,

Advanoing side Retreating side

0

Z/R F-t---L-.2

-.4

6 [-“ 1.

= ifo I I I IA I I I

/11 I

- ---

Y/Ii

Figure ~.- Di.stributionof vorticlty,X/R = 1.07;X= 75.0°;v = 0.035.

IiI

I

t[

I1

.2

0

Z/R

-.2

1Y=‘t=7’=

-*4 ‘r =

,-. 6L

1

--=+”-Advanolng al&e Retreating 13i~

1.2 1.0 .s .6 .4 .2 0 -. 2 -*4 -. 6 -0 ~ -1.0 -1.2

Y/R

(a) X/R= l.O’7.

Figure51.- Dlstrfbutionof vorticitytmhindrotor.x = 82.3°;p = 0.140.

A

II

!2

#I

1 I1 -L

+=.:-=: -====-2?-r-..

4 I

Advanaing side Retreating elde

.2 -’r -4 7 =, 4-~~=!?o ‘r .20--’f =40

/ ~’i7 = 40-

0 = go

zh

-.2,< //~

4-.

6‘“1.2 1.0 .8 .6 .4 .2 0 -.2 -.4 -.6 -.a -1.0 -1..? -1.L

I

iY/Ii!

(b) X/R = 2.07.

l?Qure51.- Continual.

v----------.——.-+._.-..Advanolng aide RetreatingBide

.2

0

z/R

-.2

-. 4

-* 6

I

1 ?--7= 4./

- -- -—- —— —— —,/-/ Y

I “r--+---L--L--L-L-L-1.2 1.0 .8 ..6 .4 .2 0 -.2 -.4 -.

Y/R

(c) X/R = 3.14.

Rlgure>l.- Concluded.

7=4-7 =20-

.-

// J /---

}AI -. s -1.0 -1.2 -1.4

, J

1 I _&Ld

-’=+==-:+I

4 I

Adve.nolng side Retreating eicle

o1~< -!-= I I 1 \ I ~ i II

— — —

7 In I-/ .,

-. i? —— . “ _— -

-041.2 1.0 .g .6 .4

F@we ~. - Distributionof

.,2 0

Y/R

vorticity.XflR

-. 2 -04 -0 6 -c g -1.0 -1.2

= l.~j x = 83.9°;p = 0.232.

t

II

I

I

I

Z/R

,

.2

00 L

b-.2 (%

Cah3ulated-I I I

-. 4

b0/‘-s6

-0g “’

LvG)-1.0 1

/o .4 ●g 1.2 14

VITO

(a) X/R Q 2.07.

)6

z/R

(b) X/R E 3.14.

Figure73.- CcmparlSonin the phne of symmstryof measuredvaluesofinduced-velocityratio v/v. with thosecalculatedfor an equivalent

wing. x = 82.30; p = 0.140. I