technical information manualnyrupplast.dk/media/brochure/evopipes_rg_en.pdf · (natural gravity)...

60
TECHNICAL INFORMATION MANUAL EVOSAN PP utility sewerage systems EVORAIN PP stormwater sewerage systems

Upload: others

Post on 05-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

TECHNICAL INFORMATION MANUAL

EVOSAN PP utility sewerage systems

EVORAIN PP stormwater sewerage systems

Page 2: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Contents

Page 3: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Corrugated double-wall pp EvOsAN and EvORAIN piping system 5

EvOsAN utility sewerage system and EvORAIN stormwater drainage system

6

EvOsAN and EvORAIN fittings for external sewerage networks 8

EvOsAN and EvORAIN system hydraulic calculations 11

Choosing roughness coefficient for gravity sewerage for EvORAIN/EvOsAN pp systems

13

EvOsAN and EvORAIN minimum pipeline slope 14

pipeline turns, connections and depth of installation 16

EvOsAN and EvORAIN transportation and storage 19

Factors causing pipeline deformations 22

EvOsAN and EvORAIN sewerage system installation 25

Main principles of EvOsAN and EvORAIN system installation 33

EvOsAN and EvORAIN pressure testing with water or air in accordance with EN 1610

37

Hydraulic parameter table 39

Conformity certificates 49

product standards 54

Notes 56

Resistance of plastic materials to chemical matters 59

Page 4: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

sECTION 1Corrugated double-wall pp EvOsAN and EvORAIN piping system 5

Constructive advantages of the EvOsAN and EvORAIN piping system 5

EvOsAN utility sewerage system and EvORAIN stormwater drainage system

6

Technical information 6

Quality control selection parameters 7

EvOsAN and EvORAIN fittings for external sewerage networks 8

4

Page 5: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Corrugated double-wall PP EVOSAN and EVORAIN piping system

EVOSAN and EVORAIN is a comprehensive innovative stormwater and utility sewerage piping system.

EVOSAN and EVORAIN are the most advanced high-quality double-wall pipes with excellent usage and functional properties ensuring good flow and reliability.

EVOSAN and EVORAIN pipes conform to the quality requirements and standards of the utility sewerage and stormwater piping systems and are recommended for use in gravity piping systems. pipes are designed for long-term use under normal load.

EVOSAN and EVORAIN are structured-wall pipes: their external side is corrugated and the profile properties guarantee high mechanical strength. smooth internal walls of the pipes ensure excellent hydraulic properties required for the pressure-free (natural gravity) systems.

The pipes are flexible and preserve water tightness even in the most problematic soil conditions, are resistant to deformation when installed under roads with heavy load.

Due to their special structural properties, the pipes are lighter and at the same time stronger than conventional smooth-walled pipes. Transportation, storage and installation of the corrugated pipelines is much faster, easier and cheaper.

piping system consists of the DN 110 to DN 500 mm pipes (DN=OD, nominal outer diameter) and unified pipeline system connection pieces. EVOSAN and EVORAIN pipes can be connected to all types of inspection wells, inspection manholes and sumps.

The pipes are made of polypropylene (PP), which ensures high modulus of elasticity (Young) and ring stiffness SN 8 in accordance with EN ISO 9969. pp materials have :

excellent long-term strength properties•high resistance to corrosion•perfect resistance to abrasion•chemical and biological inertness•

pp is an environmentally friendly material and 100% recyclable.

The pipes are equipped with welded on solid polypropylene coupling. Tolerance between the pipe and the coupling is adjusted to ensure:

easier installation•complete pipelines water tightness•uniform strength of the connection and the pipe•the system is equipped with a new type sealing ring •ensuring higher pipeline running parameterspipes are available in six-metre pieces (other lengths upon •request)standard colour of the outer side of the utility sewerage •is reddish brown (EVOSAN) and of stormwater pipes - black (EVORAIN), but the inside of both pipes is white for better visibility during inspection or filmingUse of pp and special design allow high-pressure rinsing of •the EVOSAN and EVORAIN pipelines.

Constructive advantages of the EVOSAN and EVORAIN piping system

5

Page 6: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN utility sewerage system and EVORAIN stormwater drainage system

EVOSAN and EVORAIN are the most advanced high-quality double-wall pipes with excellent usage and functional properties. EVOSAN and EVORAIN piping systems fully conform to the quality requirements and standards of the utility and storm water piping systems.

Standards Conformity • EN 13476-3Wall profile conforms to the series 3 in accordance with •DIN 16961 = 8 kN/m²pp ensures high modulus of elasticity (Young) and ring •stiffness sN 8 in accordance with EN ISO 9969suitable for all materials in accordance with EN 1610•suitable for pressure tests in accordance with EN 1610•

Thermal stress resistance EVOSAN and EVORAIN pipes and connecting pieces are made for utility sewerage and storm water drainage. Requirements of the EN 476 standard in respect of the thermal effect levels should be observed: up to +45ºC for diameters up to DN 200 and up to +35ºC for larger diameters. The system is designed for use at temperatures between -40ºC and +95ºC.

Identification pipe identification in accordance with EN 13476-3 Nominal dimensions (DN) Dimensions of outer diameter (OD) in millimetres: 110, 160, 200, 250, 315, 400, 500 mm. Lengths standard pipe length is 6000 mm (without polypropylene coupling). spacial lengths are available upon request. Connection Welded on solid polypropylene coupling ensures uniform strength of the connection places and the pipe, owing to which water tightness of the pipeline will remain unchanged for many years fully conforming to EN 13476-3.

Sealing ring The pipes and connecting pieces have a patented new sealing ring, which makes connections of the system components completely watertight.

Material pipe and connecting pieces are made of polypropylene (pp).pp properties: • density–900-910kg/m³

modulusofelasticity–1500-1750MPa•thermalconductivity–0.2W/mºC•

linearexpansion–0.1W/mºC•heatcapacity–2000J/kgºC•tensilestrength–30MPa•

Chemical resistance With chemical resistance to pH2 (acid) and pH12 (alkali) EVOSAN and EVORAIN pipes are resistant to all substances contained in wastewaters soils in accordance with DIN 8075. Colour

Marking EVOSAN and EVORAIN pipe marking includes: • standardnumber(forexample,EN13476-3)• manufactureridentification(EVOPIPES)• diameterseries(Dnom/Din,forexample,OD200/175)• trademark,(forexample,EVOSAN/SewerPipeor EvORAIN/Rainwater pipe)• materialmarking(forexample,PP)• hardnessclass(forexample,SN8)• periodofmanufacture(dateorcode) Watertightness Conforms to EN 476, EN 681 and EN 1053. All pipes and connection pieces must be watertight.

Quality controlThere is a quality supervision control of the production process at the company. It criteria are summarised in table 1.1.1.

Technical information

6

EVOSAN Outer profile - reddish brownsmooth inner side - RAL white (for inspection)

EVORAINOuter profile - RAL blacksmooth inner side - RAL white (for inspection)

Page 7: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN utility sewerage system and EVORAIN stormwater drainage system

Properties Frequency Number of samples

Outer layer appearance, colour Continuous inspection process for entire batch –

profile At least once every 4 hours 1

Outer diameter DN/OD, mm Once every 4 hours 1

Wall thickness, mm Once every 4 hours 1

Inside layer appearance Continuous process during the entire batch production period –

Colour conformity Continuous process during the entire batch production period –

Layer surface Continuous process during the entire batch production period –

Inner diameter DI, mm Once every 4 hours 1

Weight, kg/m Once every 4 hours 1

pipeline marking Once per batch 1

Pipeline testing

Ring rigidity Once per batch 3

Ring elasticity Once per batch 3

Quality control selection parameters Table 1.1.1

7

Page 8: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN and EVORAIN fittings for external sewerage networks

EVOSAN and EVORAIN elbows

EVOSAN and EVORAIN equal tees

EVOSAN and EVORAIN reducing tees

EVOSAN and EVORAIN double coupling

EVOSAN and EVORAIN sleeve fitting

EVOSAN and EVORAIN protection fitting

Elbow DN/OD DN/OD DN/OD DN/OD DN/OD DN/OD DN/OD110 160 200 250 315 400 500

150 + + + + + + +300 + + + + + + +450 + + + + + + +900 + + + + +

Angle DN/OD 160 200 250 315 400 50045°, 90° 160 +45°, 90° 200 +45°, 90° 250 +45°, 90° 315 +45°, 90° 400 +45°, 90° 500 +

Angle 45°DN/OD b

DN/OD a 110 160 200 250 315 400 500160 +200 + +250 + + +315 + + + +400 + + + + +500 + + + + + +

DN/OD 110 160 200 250 315 400 500

DN/OD 110 160 200 250 315 400 500

DN/OD 110 160 200 250 315 400 500

EVOSAN and EVORAIN piping system fittings OD/DN from 110 to 500 mm. Components: sealing ring on one end, coupling on the other.

product images are for information only. Actual dimensions and colours may differ from the image.

EvOsAN and EvORAIN elbow

EvOsAN and EvORAINequal tee

EvOsAN and EvORAIN reducing tee

EvOsAN and EvORAIN double coupling

EvOsAN and EvORAIN sleeve fitting

EvOsAN and EvORAIN protection fitting

8

Page 9: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN and EVORAIN fittings for external sewerage networks

EVOSAN and EVORAIN elbows

EVOSAN and EVORAIN reducer

EVOSAN and EVORAIN pipeline and welded on solid coupling sizes and dimensions

EVOSAN and EVORAIN double-wall pipe – PVC reducing sleeve

EVOSAN and EVORAIN sealing ring

EVOSAN and EVORAIN sleeve plug

DN/OD bDN/OD a 110 160 200 250 315 400 500160 +200 + +250 +315 + +400 + +500 +

DN/OD mm ID mm L mm M mm110 93,8 6000 60160 138,9 6000 85200 174, 6 6000 90250 215,9 6000 95315 274,1 6000 110400 349, 8 6000 140500 439, 6 6000 188

DN/OD 160 200 250 315 400 500

DN/OD 160 200 250 315 400 500

DN/OD 110 160 200 250 315 400 500

For the drawings of EVOSAN pipe dimensions see Figure 1.3.1, and EVOSAN and EVORAIN pipe and welded on coupling dimensions are given in Table 1.3.1.

EvOsAN and EvORAIN reducer

EvOsAN un EvORAIN double-wall pipe-pvC reducing sleeve

EvOsAN and EvORAIN sleeve plug

EvOsAN and EvORAIN sealing ring

product images are for information only. Actual dimensions and colours may differ from the image.

Table 1.3.1

Figure 1.3.1

9

Page 10: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

sECTION 2EvOsAN and EvORAIN system hydraulic calculations 11

Full pipeline 11

Throughflow for full pipe 11

partially full pipeline 12

Throughflow for partially full pipe 12

Choosing roughness coefficient for gravity sewerageEvOsAN/EvORAIN pp systems 13EvOsAN/EvORAIN pp minimum pipeline slope 14

pipeline turns, connections and depth of installation 16

10

Page 11: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN and EVORAIN system hydraulic calculations

sewerage pipelines are designed with account of necessary flow of the (utility or storm) wastewater, relation of trench slope to pipeline filling and flow rate including hydraulic losses in the pipeline. When choosing sewerage pipeline diameter, it is taken into account that the pipe must carry the maximum flow without sewerage overflow. Moreover, at the time of minimum flow one every 24 hours self-cleaning must take place, which depends on minimum slope the pipeline installation. pipeline diameter is determined in hydraulic the calculation of the sewerage network. The calculation begins with determining rated flow of a network part, calculating average flow rate and hydraulic slope for each part individually.. From the point of view of hydraulics, the sewerage pipelines are considered covered free flow passage, which usually operates with partial flow. stormwater sewerage networks are usually calculated with full pipelines, but for utility sewerage pipelines partial fill is assumed. Average flow rate of the sewerage pipeline can be determined by EN 752 standard; it is recommended to use Colebrook-White and Manning equation.

For full round pipelines (H/ID), mean flow rate (v) is calculated by Colebrook-White formula.

FOR FULL PIPELINE:

wherev• –meanflowrateinthepipeline(m/s);g• –freefallacceleration(m/s);g=9.81(m/s2);ID• –pipelineinnerdiameter(m);I• –pipelinehydraulicslope(m/m);k• –pipelineroughnesscoefficient(m);γ• –fluidkinematicviscosityfactor(waterat+100Cis1.308x10-6m2/s);γ• =1, 308x10-6 (m²/s).

Flow volume or throughflow (Q) for full pipe (H/ID) is calculated by formula.

THROUGHFLOW FOR FULL PIPE:

whereQ• –throughflow(m³/s);v• –meanflowrateinthepipeline(m/s);ID• –pipelineinnerdiameter(m);π• –mathematicalconstant;π• =3,14.

For partly full round pipelines (H/ID) mean flow rate (v) is calculated by Manning equation, replacing (ID) with (4R), where R is hydraulic radius (flow cross-sectional area divided by wetted perimeter).

11

4

Page 12: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

FOR PARTLY FULL:

wherev• –meanflowrateinthepipeline(m/s);K• –Manning'scoefficient(m1/3/s);R• –pipelinehydraulicradius(m);I• –pipelinehydraulicslope(m/m).

Hydraulic pipeline roughness (k)or(Manning's)flowcoefficient(K) allows pressure loss depending on pipe materials, broken connections and sediments on the pipe surface under water level.

There are methods of calculation of full pressure losses:- by adding local pressure losses to the pipeline pressure losses;•- local pressure losses calculation assuming the top hydraulic pipeline roughness value in calculation of the of the pipeline •pressure losses.

Using the recommended hydraulic pipeline roughness value, it is necessary to determine whether the allowed norm is included in the local pressure losses. Currently the following values are used from k=0,03 mm÷3,00 mm and K=70÷90 m1/3/s.

Approximate Manning's coefficient can be calculated by formulas:

whereK• –Manning'scoefficient(m1/3/s); g• –freefallacceleration;g=9,81(m/s2);ID• –pipelineinnerdiameter(m);k• –pipelineroughnesscoefficient(m).

Flow volume or throughflow (Q) for partly full pipe (H/ID) is calculated by formula.

THROUGHFLOW FOR PARTLY FULL PIPE:

wherev• –meanflowrateinthepipeline(m/s);A• –pipelinefillingarea(m2).

Roughness coefficient (k) includes hydraulic losses with account of pipeline material properties and sediment forming at the connection points from the wastewaters in the bottom part of the pipeline. With forming sedimentations in the pipelines, its cross-section is reduced, which must be taken into account when performing hydraulic pipeline calculations. Hydraulic losses occur at the connections, pipeline diameter change, in wells and at fitting connections. That is why it is necessary to take into account local resistance occurring in the pipelines, assuming higher roughness coefficient value including in it the aforesaid factors. The most frequently used roughness coefficient values (k) are given in Table 2.2.1.

EVOSAN and EVORAIN system hydraulic calculations

12

Page 13: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Choosing roughness coefficient for gravity sewerage for EVORAIN/EVOSAN PP systems

Maximum allowed fill for EVOSAN utility sewerage pipelines are given in Table 2.2.2.

Recommended roughness coefficient (k) for sewerage pipelines EVOSAN/EVORAIN

Maximum fill for EVOSAN utility sewerage pipelinesdepending on diameter

mm pipeline roughness coefficient including hydraulic losses

0, 25 for main discharge pipes without special structural accessories and without or with little inflow rate from the sides

0, 40 for discharge pipes with many inflow pipes and structures (where it is necessary to take into account small losses at connections)

0, 75 for discharge pipes with many inflow pipes and structures (where it is necessary to take into account significant losses at connections)

EVOSAN pipeline

OD/DN (mm) 110 160 200 250 315 400 500

ID (mm) 93,8 138,9 174,6 215,9 274,1 349,8 439,6

Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75

Marking: OD/DN –pipelineouterdiameter(mm);ID –pipelineinnerdiameter(m);H/ID –gravitypipelinefill,dimension-freevalue.

Table 2.2.1

Table 2.2.2

13

Page 14: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN and EVORAIN minimum pipeline slope

In gravity sewerage networks the water flows under effect of gravitation, therefore the minimum slope of the gravity sewerage pipeline must ensure pipeline self-cleaning depending on its diameter. For the pipeline to self-clean, correct minimum slope is to be chosen; depending on hydraulic conditions of the flow each diameter has its own minimum installation slope. pipeline slope depends on pipe diameter. With increase of diameter, the flow rate in the pipeline increases. It means that the condition can be satisfied calculating the minimum pipeline slope by the following formula:

wherei• min–minimumslope;ID• –pipelineinnerdiameter(m).

Minimum hydraulic slope satisfying the pipeline self-cleaning conditions can be calculated by the following formula:

whereI• min–pipelineminimumhydraulicslope(m/m);ρ • –wastewaterratio;ρ =1000 (kg/m3);g• –freefallacceleration(m/s);g=9,81(m/s²);R• –pipelinefillhydraulicradius(m);τ• –flowpressure(N/m2);τ• =2,25N/m2–forplasticpipelinesofutilityandproductionsewerage;τ• =1,35N/m2–forplasticpipelinesofstormwatersewerage.

Hydraulic radius of full pipe is calculated as follows:

whereR• –pipehydraulicradius(m);ID• –pipeinnerdiameter(m).

Hydraulic radius of partly full pipe is calculated as follows:

whereR• –pipehydraulicradius(m);A• –pipefillingarea(m2);P• –pipewettedperimeter(m).

OD/DN mm 110 160 200 250 315 400 500

ID, m 0,0938 0,1389 0,1746 0,2159 0,2741 0,3498 0,4396

H/ID 1 1 1 1 1 1 1

R 0,023 0,035 0,044 0,054 0,069 0,087 0,11

Hydraulic radius of full pipe

Marking:

OD/DN –pipeouterdiameter(mm);ID –pipeinnerdiameter(m);

H/ID –gravitypipelinefillhasdimension-freevalue;R –pipehydraulicradius(m).

14

Page 15: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN and EVORAIN minimum pipeline slope

For pipeline self-cleaning to take place once every 24 h, mean flow rate (v) must be at least: - v = 0,6 ÷ 0,8 8 m/s for utility sewerage; - v = 0,7 ÷ 1,0 0 m/s stormwater sewerage.At lower flow rates, rotting /fermentation of the wastewater may begin and methane H2s development, which are not at all desirable processes. In such cases, it is advisable to rinse the system.When choosing the hydraulic pipeline slope it is recommended not to exceed the rate over 5,0 m/s. In pipeline structures with higher hydraulic slopes, it is necessary to take into account that the following factors may occur in case of higher flow rates:• airdrawintothesystem,• H2Semissionintotheenvironment,• increaseoferosioninthepipelines,• increaseofpipelinemaintenancerisk.

Designing and construction of the utility and stormwater sewerage is carried out in accordancewith the country's existingconstruction design standards and other regulations.

OD/DN, mm 110 160 200 250 315 400 500

ID, m 0,0938 0,1389 0,1746 0,2159 0,2741 0,3498 0,4396

H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75

A 0,003 0,009 0,015 0,023 0,044 0,072 0,122

P 0,15 0,25 0,31 0,38 0,54 0,69 0,92

R 0,02 0,04 0,05 0,06 0,08 0,1 0,13

Hydraulic radius of partly full pipe

Minimum allowed EVORAIN/EVOSAN PPsewerage pipe installation slope (m/m)

Marking:

OD/DN –pipeouterdiameter(mm);ID –pipeinnerdiameter(m);

H/ID –gravitypipelinefillhasdimension-free value;R –pipehydraulicradius(m);

A –pipefillingarea(m2);P –pipewettedperimeter(m).

EVORAIN pipelines EVOSAN pipelinesStormwater sewerage Utility and production sewerage

FillH/ID

Flowpressure

τ=1,35N/m2 Imin(m/m)

FillH/D

Flowpressure

τ=2,25N/m2 Imin(m/m)

OD/DN (mm) OD/DN (mm)ID (mm) ID (mm)

1.0110

0,0059 0,5110

0,009893,8 93,8

1.0160

0,0040 0,6160

0,0059138,9 138,9

1.0200

0,0032 0,6200

0,0047174,6 174,6

1.0250

0,0025 0,6250

0,0038215,9 215,9

1.0315

0,0020 0,7315

0,0028274,1 274,1

1.0400

0,0016 0,7400

0,0022349,8 349,8

1.0500

0,0013 0,75500

0,0017439,6 439,6

15

Page 16: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Pipeline turns, connections and depth of installation

All points of connection of sewerage pipeline branches must be in wells. The angle between intake and discharge pipelines must be at least 90°. If approved by the customer, the sewerage pipeline branches may be designed outside wells. In such case, the angle between intake and discharge pipelines must be at least 135°.

Note: any angle between intake and discharge pipelines is allowed if a drop is provided in the well or if stormwater sewer well is connected with a drop.

Connection of pipelines with different diameter must be carried out in the wells so that top points of inner surfaces of the pipes were at the same level. In presence of sufficient reasons, pipeline connection at wastewater calculation levels is allowed.

pipeline installation depth depends on possible frost line, which may vary in different geographic locations. Usually pipeline installation depth is determined by adding 0,2 m on top of the pipe surface to the frost line. For large diameter pipelines, there can be deviations from the installation depth, which cannot be less than 0,7 m from the surface of soil to the pipeline surface. pipelines installed at 0,7 m depth and less (from the pipeline surface) must be protected from penetration of frost.

Inspection manholesIn sewerage networks of all systems, the inspection wells are installed:• atconnectionofbranches;• inplaceswherepipelinedirection,slopeordiameterchanges;• onstraightpipelinestagesatthefollowingdistances(dependingonpipelinediameter):35mifpipelinediameteris160mm; 50 m if pipeline diameter is 200-400 mm, 75 m if pipeline diameter is 500 mm.

Inspection manhole hatches are installed:• ontrafficways-atthesamelevelwithroadsurfaceinaccordancewithtechnicalregulationsoftheroadadministration;• ingreenzones-50-70mmabovethegroundsurface;• inundevelopedareas-200mmabovethegroundsurface;• onroadswithouthardsurface-with0,5mwideprotectionrimaroundmanholehatch.• Ifnecessary,manholesshallhavelockablelids.

SEWERAGE INSPECTION WELL CSB 400/315connection OD160

STORMWATER WELLS CRS 400/315sedimentation chamber height=0.7 m, volume =67 lconnection OD160

product images are for information only. Actual dimensions and colours may differ from the image.

NOTE: SOLUTION WITH ANGLED LID IS POSSIBLE

16

Page 17: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Pipeline turns, connections and depth of installation

NOTE: SOLUTION WITH ANGLED LID IS POSSIBLE

Drop wellsDrop wells should be designed:• toreducepipelineinstallationdepth;• topreventsurpassingmaximumwastewaterflowrateorchangeofcolour;• whencrossingundergroundstructures;• dischargeofoverflowinthelastwellbeforethewaterreservoir.

Stormwater wellsStormwater wells should be designed:• onstreetstages;• atcrossroadsandpedestriancrossingsatthesideofovergroundwaterinlet;• atthelowestpointattheendofslopes;• atthelowestpointifstreetguttershavevaryinglongitudinalprofile;• inplaceswherethereisnoovergroundwastewaterdrains(forexampleinthestreets,squares,parks,yards).• Lengthofconnectionbetweenthestormwaterwelltothesewermanholecannotexceed40m;maximumonemore stormwater well should be installed on the connection. The connection diameter should be less than 160 mm if the slope is 2%.• Stormwaterwellcanhaveroofdrainsanddrainagepipelinesconnected.• Stormwaterwellsneed0,3-0,5mdeeprecessforsedimentcollection.• Ditchescanbeconnectedtotheseweragenetworkonlythroughwellswithsedimentationchamber.Attheendofthe ditches there should be grilles with at least 50 mm between bars; diameter of the connection pipeline should be determined by calculation, but should be at least 250 mm.

17

Page 18: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

sECTION 3EvOsAN and EvORAIN transportation and storage 19

Instructions for transportation 19

Instructions for storage 20

Instructions for handling 21

Factors causing pipeline deformations 22

Choosing pipeline strength class 23

18

Page 19: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Instructions for transportation (see Figure 3.1.1) :

EVOSAN and EVORAIN transportation and storage

1) use cargo vehicles with flat platforms,2) the transportation platform must be free from sharp objects that can damage pipes,3) if possible, use wooden frames for the protection of the pipes,4) fix the pipes securely before the transportation,5, 6) pipes with couplings cannot be placed under load.

Figure 3.1.1

19

1

3

5

2

4

6

Page 20: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Instructions for storage (see Figure 3.1.2):1) pipe bundles or individual pipes shall be stored on a flat surface free from stones and sharp objects,2) pipes shall be stored at least on wooden planks, 3) pipes must not remain constantly bended for a long time, 4) if stored in piles, pipe couplings cannot rest directly on each other. Figure 3.1.2

When stored packaged at a construction site, the pipes can be stacked as follows:

• forDN/OD100,160and200mmpipes,maximumrecommendedstackingheightontopofoneanotherisfourpacks;• forDN/OD250,315mmpipes,maximumrecommendedstackingheightontopofoneanotherisfivepacks;• forDN/OD400mmpipes,maximumrecommendedstackingheightontopofoneanotheriseightpacks;• forDN/OD500mmpipes,maximumrecommendedstackingheightontopofoneanotherissixpacks.

Couplings of the packaged pipe should not rest directly on each other (see Figure 3.1.3).

Figure 3.1.3

EVOSAN and EVORAIN transportation and storage

20

1

3

2

4

Page 21: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

For loading instructions, see (Figure 3.1.4):

Number of EVOSAN and EVORAIN pipes in the packaging

1) pipes can be loaded by hand, but they must not be thrown or dragged,2) if pipes are moved by a mechanical lifting device, ropes and other accessories that do not damage the pipes must be used.

At the production facility, the pipes are packaged and labelled with a sticker (for the sticker see Figure 3.1.5). Number of pipes in a packaging depends on pipe diameter. The above information is given in Table 3.1.1.

DN/OD mm ID mm L m Pieces inpackaging

110 93,8 6,0 50

160 138,9 6,0 28

200 174,6 6,0 20

250 215,9 6,0 8

315 274,1 6,0 6

400 349,8 6,0 3

500 439,6 6,0 2

Marking:

OD/DN –pipeouterdiameter(mm);ID –pipeinnerdiameter(m);

L –pipelengthinpackaging(m).

The pipes from DN/OD 110-315 mm are packaged using wooden frames, but from DN/OD 400-500 mm using planks and wire.

Figure 3.1.4

Table 3.1.1

Figure 3.1.5

EVOSAN and EVORAIN transportation and storage

21

1 2

Page 22: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Factors causing pipeline deformations

Pipes can have two types of deformation:

1) general deformation;2) local deformation.

General deformation is caused by filling layer sagging. Local deformation is caused by poor quality of installation material.

Factors affecting general deformation:• soildensityattheinstallationsite.Itmeansthatthelessissoildensityascomparedwiththeoptimumdensity,themorelikely deformation may occur;• thelowerisshapestrengthgradeSN,themorelikelydeformationmayoccur;• whencompactingsoilaroundthepipeedges it isnecessarytoensurefillinganduniformcompactingaroundthepipe supports and pipe sides.

The aim is to achieve the conditions when the groundwater and soil pressure on the pipe surface is as uniformly distributed as possible (see Figure 3.0.1). The deformation is minimum if at the installation site the soil is well compacted so that future settlement would be negligible. For the best result, it is recommended to use dense that does not need much additional compacting (sand or stone chips) or can be easily compacted. supports placed under the pipes must withstand the load without deformations..

Allowed deformation of just installed EVOSAN and EVORAIN PP pipelines is 10%.

This condition is possible due to EVOSAN and EVORAIN pipe profile and special sealing ring dimensions, which can take and absorb greater soil loads. As local deformation loads are not regulated by EN, construction regulations of a country where the construction takes place shall be observed.

RECOMMENDATION!To avoid deformations exceeding the allowed, the conditions of installation set out in EN 1610 and Section 4 are to be adhered to. Main principles of EVOSAN and EVORAIN system installation.

General deformation of pipe installed in the ground can continue until the vertical and horisontal forces affecting the pipe balance. pipe deformation studies have proved that usually those deformations stop within one to two years after their installation provided the external forces affecting the pipes have not changes over that time. The allowed deformation is determined by the fact that over the planned period of service (50 years) it cannot exceed 15% (see Figure 3.2.2).

Factors affecting local deformation:

1) large sharp stones in the bottom layer of the soil,2) thin layer of filling material over the pipes.

Figure 3.2.1

22

Page 23: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

If local deformation is caused by a stone above the pipe (see Figure 3.2.3), it is apparent that any its downward movement will only increase deformation. Allowed local deformation values are not defined in the EN regulations.

EVOPIPES recommends the following actions in case of local deformation:• iflocaldeformationofthepipesexceeds10%andithasbeendiscoveredimmediatelyafterinstallationofanewpipeline,we recommend excavating and removing the factor causing the deformation• if localdeformationof thepipes is less than10% , the locationshallbemarkedand inspectedagainbefore theendof the warranty period. If the deformation has exceeded 10%, we recommend excavating and removing the factor causing the deformation

Choice of strength grade of pipes used in gravity pipelines mainly depends on their initial enclosing material, its density and loads affecting the pipe (surface layer thickness and traffic load). EVOSAN and EVORAIN strength grade is sN8 (8 kN/m²), but to customer'sspecialorderEVOSAN and EVORAIN pipes can be manufactured with up to sN 31.5 (31.5 kN/m²).

In areas free from traffic load the installation depth is 0,7 m, but in the streets, parking lots, etc., where there is traffic load, the installation depth is 1,0 m with sN8 pipes. The installation depth can be reduced to 0,5 m if the loads affecting the pipes are distributed by protective structures with higher strength grade pipes are used. In such case, see information provided in Section 2 Pipeline bends, connections and depth of installation.

Pipe deformation detection

Objective of the deformation tests is to determine whether there is deformation of smaller inner diameter or relative deformation. Basic principle of determining relative deformation. Relative deformation (see Figure 3.2.4).

Relative deformation can be calculated by the following formula:

whereδ – maximum deformation mm;IDvid –meaninnerpipediametermm;IDvid min –thesmallestmeasuredinnerdiameter of the installed pipeline, mm.

Choosing pipeline strength class

Figure 3.2.3

Figure 3.2.4

Figure 3.2.2

Factors causing pipeline deformations

23

Page 24: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

sECTION 4EvOsAN and EvORAIN sewerage system installation 25

Trench 25

Trench stability 26

Trench bedding 26

Water removal 26

Fastening and support 27

Types of bedding structures 27

special bedding or support methods 28

Delivery, moving and transportation at the construction site 29

storage at the site 29

EvOsAN and EvORAIN installation in construction trench 30

Main principles of EvOsAN and EvORAIN system installation 33

Inspection of materials before installation 34

pipe installation 34

Pipecuttingtosize 35

Crossing reinforced concrete wells and walls 36

Installation of fittings 36EvOsAN and EvORAIN pressure testing with water or air in accordance saskaņā with EN 1610

37

24

Page 25: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN and EVORAIN sewerage system installation

As the safety of the gravity sewerage piping systems depends on all parts of the pipeline, special attention should be paid to compatibility of pipes, trench foundation and initial filling material. In case of pp pipes it is essential to ensure mechanically stable system where unifirm force affects pipes from all sides. If the soil and trench bedding have reached maximum resistance to load (soil and vehicles), the system is considered mechanically stable.

Symbols:

OD –outerdiameterinmetres;β–angleofthetrenchedgewithoutsupportmeasuredhorizontally.

Minimum required trench width (depending on pipe dimensions and installation depth) should comply with the regulations for sewerage pipeline installation and testing to EN 1610.

Trenches should be designed and excavated to ensure correct and safe pipeline installation.

If during the construction access to the external underground structure surface is required, for example, to sewerage holes, at least 0,50 m wide working space should be provided.

Iftwoormorepipesareinstalledinthesametrenchorfill,thedistancebetweenthepipelinesshouldincludeminimumhorizontalworking space. Unless stated otherwise, it should be 0,35 m for pipes up to DN/OD 700 mm and 0,50 m for pipes over DN/OD 700 mm.

If necessary, for all other supply pipelines, drain pipes and sewerage pipes, structures and surfaces appropriate safety measures should be provided to protect them from harmful effects.

Fastening materials should not contain parts exceeding the following dimensions:• 22mmDN≤200;• 40mmDN>200līdzDN≤600.

Maximum trench width:• trenchwidthcannotexceedthemaximumwidthspecifiedinthestructuraldesign;• ifitisnotpossible,thismattershouldbeagreedwithdesignengineer.

Trench

Trench width

Minimum trench width ration to rated DN/OD

DN/ODmm

Minimum trench width (OD+X) m

Trench with supports

Trench without supports

β>60° β≤60°

110 OD+0,40 OD+0,40

160 OD+0,40 OD+0,40

200 OD+0,40 OD+0,40

250 OD+0,50 OD+0,50 OD+0,40

315 OD+0,50 OD+0,50 OD+0,40

400 OD+0,70 OD+0,70 OD+0,40

500 OD+0,70 OD+0,70 OD+0,40

Table 4.1.1

25

Page 26: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Minimum trench width can have exceptions

Minimum trench width obtained based on Tables 4.1.1 and 4.1.2 can be changed in the following circumstances:• ifstaffwillneverneedtostepintothetrench,forexample,automatedinstallationtechnologiesareused;• ifthestaffwillneverneedtostandbetweenthepipelineandthetrenchwall;• incaseofunavoidablerestrictingcircumstances.

NOTE: any of those cases will require special changes to be introduced in the design and structure.

Trench stability should be ensured either by support system of the trench sides or using other applicable methods. Trench support systems are removable in accordance with the structural design planning so as not to loosen or damage the pipeline.

Trench bedding slope and trench bedding material must conform to the technical parameters of the design. Trench bedding material cannot be disturbed. If it has been, the initial load bearing capacity should be restored.

If the pipes are to be installed on the trench bedding, it should be levelled to the required slope and shape to ensure the support of pipe cylinder. Recesses for pipe couplings in the trench bedding should be done as necessary.

Infreezingconditions,thebeddingmayneedtobeprotected,sothatthefrozenlayersdonotremainbeloworabovethepipes.

During the installation, excavation site should be free from water, for example, rain water, leakages, spring water or water from pipeline leaks. Water removal methods cannot interfere with fastening parts and pipelines.

During water removal, safety measure should be taken to avoid loss of expensive materials.

Moreover, effect of water removal on groundwater movement and surrounding area stability should be taken into account.

After completion of water removal, all discharge pipes should be properly closed.

Trench stability

Trench bedding

Water removal

Minimum trench width ratio to trench depth

Trench depth m Minimum trench width m

<1,00 Navminimālāplatumaprasību

≥1,00≤1,75 0,80

>1,75≤4,00 0,90

>4,00 1,00

Table 4.1.2

EVOSAN and EVORAIN sewerage system installation

26

Page 27: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Minimum trench width ratio to trench depthGeneral information

Thickness of materials, beddings, supports and fastening should conform to the design requirements. Fastening materials and their connections with any support should be chosen taking into account:• pipesize;• pipematerialandwallthickness;• soilproperties.

Width of the fastening should correspond to the trench width, unless specified otherwise. Width of pipeline bases installed in the fills should be four times OD, unless specified otherwise.

Minimum thickness of the initial filling layer c (see Figure 4.1.2) will be 150 mm above the pipe and 100 mm above the connection. When using materials c value specified in the design should be taken.

Any amount of soft soil under the trench bedding should be removed and replaced with an appropriate bedding material. If a substantial amount of soft soil is discovered, it will be necessary to revise the structural design.

Type 1 of bedding structure

Type 1 of the bedding structure (Figure 4.1.1) can be used with any fastening ensuring support of the pipes along their entire length applying a and blayerthicknessrequirementsItappliestoallsizesandshapesofthepipes.Unless specified otherwise, thickness of bottom bedding a measured under the pipe cannot be less than: • 100mminnormalsoilconditions;• 150mminrockyorheavysoilconditions.Thickness of top bedding b will be as specified in the structural design.

Type 2 of bedding structure

Type 2 of the bedding structure (Figure 4.1.2) can be used with homogenous, relatively soft, grainy soil ensuring support of the pipes along their entire length. pipes can be laid directly on the properly formed and levelled trench bedding.Thickness of top bedding b will be as specified in the structural design.

Fastening and support

Types of bedding structures

Type 1 of bedding structure

Type 2 of bedding structure

Figure 4.1.1 Figure 4.1.2

EVOSAN and EVORAIN sewerage system installation

27

Page 28: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

If trench bedding has too low load bearing capacity to support of the pipe base materials, it is necessary to apply special measures. such situation may be due to unstable soil, for example, peat, shifting sands.

Examples of possible measures may be replacement of soil with other materials, for example, sand, gravel and hydraulic binding materials, or resting the pipelines on pile supports, for example, using cross beams or swing mounts, longitudinal beams or reinforced concrete slabs connecting the piles.

The same way during designing and construction attention should be paid to transfers from one kind of soil conditions to other, which would require different solutions.

special bedding or pipeline support methods can be used only if their suitability has been confirmed by structural design calculations.

NOTE: Pipelines resting on piles under ground can be subjected to extremely high loads.

Type 3 of bendding structure

Type 3 of the bedding structure (Figure 4.1.3) can be used with homogenous, relatively soft, grainy soil ensuring support of the pipes along their entire length. pipes can be laid directly on the levelled trench bedding.Thickness of top bedding b will be as specified in the structural design.

Special bedding or support methods

Type 3 of bedding structure

Figure 4.1.3

EVOSAN and EVORAIN sewerage system installation

28

Page 29: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Control of received materials

The supplied pipes, pipeline elements and connection fittings should be inspected to make sure that the materials are properly labelledandconformtothecustomer'srequirements.Manufacturer'sinstructionsshouldbeobserved.Allpartsshouldbecarefullyinspected before both adjustment and installaiton to make sure that they have no damage. If the parts are damaged, they should be sent back making respective notes in the waybills.

Delivery to the site

pipes and fittings should always be moved by specially designed vehicles and their loading and unloading should be supervised by a competent person. During transportation the pipes should rest on maximum possible surface area.

Unloading from vehicles

• Alwaysusehoistingbelts(forexample,madeoffabricorsimilar).Useofchainsorcablewiresisnotallowed.Inanycircumstances avoid falls or hard hits of the pallets against one another during lifting.• Hoistingbeltsshouldbefixedinthemiddleofpalletsat3.5mdistance.Duringpalletmovementtheyshouldbehand- directed to the right position. Do not use crowbars or sticks for the movement of pallets on the vehicle.• Thepalletsshouldbeplacedonthelifttruckforksperpendicularlymakingsurethereisasufficientdistancebetweenthe forks.

pipelines packs and pallets should be handled avoiding sharp blows. pipe packs and pallets should be placed on sufficiently rigid and level surface to avoid sagging of the pipe packs and pallets or their bottom beams. pipes and fittings can be stored outdoors, however, in such case the storage period cannot be longer than one year.

Pipes should be stored in compliance with the following conditions:

• placethepipessothattheyrestonaperfectlevelsurface;• heightofpilesofindividualpipescannotexceed1m.Pilesidesshouldbesupported.;• packagedpipepalletscanbeplacedontopofeachother.StackheightcannotexceedthatsetoutinSECTION 3 EVOSAN and EVORAIN TRANSPORTATION AND STORAGE;• inveryhotsummersplasticpipesshouldbeprotectedfromoverheating.Insuchcircumstances,itisrecommendedtofinda place in the shadow or cover the pipes with light-coloured opaque tenth-cloth.

Delivery, moving and transportation at the construction site

Storage at the site

EVOSAN and EVORAIN sewerage system installation

29

Page 30: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN and EVORAIN pipe installation in construction trench

General information

If the work is interrupted, it is advisable to cover the pipe ends temporarily. End protection caps should be taken just before the connection of the pipes. Avoid getting soil from the trench to the pipes. Remove the soil that has fallen into the pipe (the pipe should be clean).

Routing and installation slope

pipes should be laid straight and at the slope specified in the design. And necessary adjustments and slopes shall be done by rasing or lowering the bedding always ensuring pipeline support along its entire length; see (Figure 4.1.4). Never make permanent adjustments with narrow support surface.

EvORAIN pp DN/OD 400 mm installation process

EVOSAN and EVORAIN pipe installation in construction trench

Figure 4.1.4

30

Page 31: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN and EVORAIN pipe installation in construction trench

Levelling course

At the bottom of the construction trench on the filling layer or the bedding, the levelling course should be made with the distance from the bottom of the straight pipe section of at least 100-150 mm (at least 100 mm under the coupling), see (Figure 4.1.5). In thedesigndoesnotspecifyotherwise,inthetrafficzonethelevellingcourseisformedbysand,gravelorcrushedstones.Sizeofparticles of the levelling course material should be as close as possible to the bedding and primary filling (and surrounding natural soil) material to avoid risk of mixing.

Primary filling (installation layer, side filling)

The requirements are almost identical to those to the levelling course. primary filling material (installation material) is a material around the pipe on the bedding or bottom layer, which can be the same as the levelling course material. primary filling height should be at least 150 mm. Installation material should be compacted by layers. Maximum first layer height is half of the pipe diameter. If necessary, during compacting the pipelines can be filled with water. The installation material directly above the pipes can be compacted using special equipment only if thickness of the layer is at least 150 mm. For use of other compacting methods layer thickness should be at least 150 mm.

Final filling (backfill)

In the traffic area backfill is formed by the organic compactible soil (sand or stone chippings). The excavated soil can be used for backfilling provided it complies with the following requirements:

• 150mmpackinglayerabovethepipe(E layer in the Figure 4.1.5) should be of organic compactible soil (sand or stone chippings), backfill layer on top of it (C and D layers in Figure 4.1.5) cannot contain stones or hardened pieces with diameter exceeding 300 mm;• packingmaterialshouldbecompactibleanditsmaximumparticlesizeshouldnotexceed2/3ofthepackinglayerthickness;• backfillmaterialshouldhavevariablegrainsizetopreventformationofvoids.

Compacting

Density depends on compacting method, type of soil, equipment, backfilling technologies and backfill thickness. In the traffic area the backfill material should be compactible and compacted to at least 90% of the standard density by Proctor Density method EN 1610. Ifatrenchisexcavatedinthegreenzoneimmediatelynexttoaroad,backfillingandcompactingshouldneverthelessbe carried out in accordance with the traffic area requirements. In other cases backfill should be compacted to the density of surrounding soil. The trench should be filled in such way so that during the subsequent compacting it reaches the design height and is at the level with the ground surface.

31

Page 32: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Pipe installation in construction trenches with and without supports in accordance with Table 4.1.1

Marking:

Dr – standard density according to proctor (%)DN/OD – outer diameterA – greenzone(notrafficload)B – under traffic way C – filling with soil, compacting to Dr≥85%D – filling with soil, compacting to Dr≥95%F – filling with soil, compacting to Dr≥95%G – levelling course >100līdz150mmE – EVOSAN and EVORAIN (PP) pipelines without mechanical compactionI – with supportII – without support

NOTES1. Levelling course under the pipelines is made of all existing soil types.2. In places of pipeline connections recesses should be made in the levelling course to accommodate the couplings.3. pipeline installation, creation of levelling course and backfilling should be carried out in dry trenches.4. x un β value can be determined using Table 4.1.1.

Figure 4.1.5

EVOSAN and EVORAIN pipe installation in construction trench

32

Page 33: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Main principles of EVOSAN and EVORAIN system installation

General information

EVOSAN and EVORAIN pipes are supplied complete with solid welded on polypropylene coupling and rubber sealing ring. structured-wall sealing ring should be placed into the first complete corrugation groove in accordance with EN 13476-3 standard, see (Figure 4.2.1 A, B).

EVOSAN and EVORAIN sealing ring is made of highly slippery flexible and soft rubber, which allows connecting pipes without lubrication. Lubrication can be used for easier connection of large diameter pipes. Unique shape of the sealing ring allows the pipe to adjoin the coupling to create a watertight joint, see (Figure 4.2.1 A, B).

RECOMMENDATION

• ConnectionofDN/OD 110, 160, 200, 250, 315 mm pipes does not require lubricant.• Connection of DN/OD 400, 500 mm pipes may require lubricant for easier joining process.• Before applying the lubricantmake sure that inside of the solid coupling is clean. Only outer joint parts of the solid couplings or double couplings can be smeared with lubricant, see (Figure 4.2.2). Lubricant must be applied uniformly over the entire surface. Only special lubricants designed for this purpose should be used. Do not use oils or grease.

Main principles of EVOSAN and EVORAIN system installation

Figure 4.2.1 A Figure 4.2.1 B

Figure 4.2.2

Marking

1 – welded on solid polypropylene coupling2 – RAL white, smooth inner surface

3 – EvOsAN (reddish brown) and EvORAIN (RAL black) structured surface4 – EvOpIpEs patented new type sealing ring

33

Page 34: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Before the installation, the pipes and fittings should be inspected to make sure they have not been damaged during transportation and/or storage. Do not install damaged parts.

Before the installation, make sure that the pipes and connection pieces are not damaged, then clean the pipe ends, coupling and sealing thoroughly. During intervals in the installation work, it is advisable to cover the pipe ends with protection plug to protect them from dirt (soil, debris). place pipes onto the levelled trench bedding or levelling course so that the pipe would rest on the surface with its entire length.

Wherever possible, protect pipe ends so that the joints to reduce the deformation by ongoing installation work as much as possible. Connect the pipes gradually using axis rotation method avoiding application of irregular load on the parts.

Brief description of processes is given in Figure 4.2.3Measurementprocedureandsizemarkingonthepipeforcuttingtosize.Whenmarking,takeintoaccountthatthepipescan1. be cut only along the corrugation recesses.Aftermarkingthesizeremovesealingring.2. After the sealing ring is removed, you can begin cutting.3. After the pipe is cut, place the sealing ring back on the pipe. It shall be carefully placed into the first complete corrugation 4. recess.Justbeforejoiningthepipecouplingandthepipeend,checkagainandremoveforeignobjects,ifnecessary.5. place the coupling parallel to the pipe. push into the joint as far as it can go. Force applied during connection should be 6. uniformly distributed.

Inspection of materials before installation

Pipe installation

Figure 4.2.3

Main principles of EVOSAN and EVORAIN system installation

34

1 3

5

2

4 6

Page 35: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Pipescanbecuttosizeusingfinesaworothersuitabletoolbymakingcutinthecorrugationgrooveverticallytothepipeaxis.Smooththeedgeroughnessusingsandpaper,fileorknife.Whencuttingthepipetosize,rememberthatithascouplingontheother end and its length (M), see Figure 4.2.4 A, B. Inner coupling lengths (M) depending on the diameter are given in Table 4.2.1.

Pipe cutting to size

Figure 4.2.4 A Figure 4.2.4 B

Table 4.2.1Coupling joint inner length (M). depending on diameter

Pipe outer diameter, mm M, mm

110 60

160 85

200 90

250 95

315 110

400 140

500 188

Main principles of EVOSAN and EVORAIN system installation

35

Page 36: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

EVOSAN and EVORAIN can be connected to reinforced concrete wells. In places where sewerage pipes enter reinforced concrete wells or cross wall structures, protection grommets should be used. place the profiled sealing ring in the first complete corrugation groove (if thepipehasbeencut tosizemakesure thecut is in themiddleof thecorrugationgrooveandtheedgesarenotdamaged in any way). push the pipe to the drain through the protection grommet.

Brief description of processes is given in Figure 4.2.5Make aperture of the required diameter in the reinforced concrete well and place the protection grommet, after that fill the 1. gaps between the protection grommet and the aperture in the reinforced concrete well. After sealing the gaps, wait until the sealant hardens and only after that insert the pipe into the protection grommet.push the pipe into the protection grommet as far as it can go.2. pipe joined with the protection grommet.3.

Fittings have couplings on all ends and should be installed same as other sewerage pipes. sealing ring are places in the first complete corrugation groove on the end of the pipe.

Flexible connection with sewerage pipes

If sewerage pipes are correctly connected to the reinforced concrete well (paying special attention to creation of sand bend in the place of connection), installation is possible without flexible joint.

However, if mandatory design requirements at a particular site demand flexible connection, it can be easily done ion accordance with EN 1610;8.6.4. If needed, short pipe sections L≤1.0 can be cut to size on site or specially ordered. Double couplingsconforming to standards and appropriate sealing rings ensure the required flexibility.

Figure 4.2.5

Crossing reinforced concrete wells and walls

Installation of fittings

Main principles of EVOSAN and EVORAIN system installation

36

1 32

Page 37: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Crossing reinforced concrete wells and walls

Installation of fittings

EVOSAN and EVORAIN pressure testing with water or air in accordance with EN 1610

Pressure tests of the system can be done using both compressed air or liquid in accordance with EN 1610.

When pressure testing the system with water or air it is necessary to make sure that all the pipes and and connection points are closed and properly sealed. When filling the system with water make sure to arrange air vent at the highest point.

pressure tests of pipelines, shafts and inspection hatches should be performed with air or water. If pneumatic test is performed, number of correction measures and repeat tests in case of non-conformity to the requirements is not limited. If the pneumatic pressure test has been failed one or more times, it is allowed to perform hydraulic pressure test and only the result of that test will be decisive.

Hydraulicpressuretestofthesystem–0,5 bar.Systemfillingtime–30 min.Stabilisationtime(includingperspirationandsimilarprocesses)–1 hour.Testduration–(30±1) min.As a result of the pressure test of the system during 30 min allowed pressure drop in the system is up to 0,01 bar.

Conditions to be satisfied during the test with a particular volume of water depending on type of the sewerage system:

• if the sewerage system consists of pipelines only: 0,15 l/m2 wetted inner surface, test pressure 0,5 bar and test duration 30 min;• if the sewerage systemconsistsofpipelinesandwells (UTILITYSEWERAGENETWORKS):0,20 l/m2 wetted inner surface, test pressure 0,5 bar and test duration 30 min;• iftheseweragesystemconsistsofpipelines,wellsandgullies(STORMWATERNETWORKS):0,30 l/m2 wetted inner surface, test pressure 0,5 bar and test duration 30 min.

Initially the air is supplied at the pressure 10% higher than the test pressure, then the system is adjusted for the respective testing method.Stabilisation time: 5 min.

Hydraulic pressure test

Pneumatic pressure test

Test method LA LB LC LD

Test pressure 0,01 bar 0,05 bar 0,1 bar 0,2 bar

Allowed pressure drop, mbar 2,5 10 15 15

Test duration, min

DN/OD 110 5 4 3 1,5

DN/OD 160 5 4 3 1,5

DN/OD 200 5 4 3 1,5

DN/OD 250 7 6 4 2

DN/OD 315 7 6 4 2

DN/OD 400 10 7 5 2,5

DN/OD 500 14 11 8 4

37

Page 38: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

sECTION 5Hydraulic parameter table 39

EvORAIN pp throughflow at roughness coefficient 0,25 mm 39

EvORAIN pp throughflow at roughness coefficient 0,40 mm 40

EvORAIN pp throughflow at roughness coefficient 0,75 mm 41

EvOsAN pp throughflow at roughness coefficient 0,25 mm 42

EvOsAN pp throughflow at roughness coefficient 0,40 mm 44

EvOsAN pp throughflow at roughness coefficient 0,75 mm 46

38

Page 39: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Roughness coefficient (k = 0,25 mm)

Fill (H/ID = 1,0)

Temperature (t = 100C)

Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s)

OD/DN mm 110 160 200 250 315 400 500

ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6

I % I I ‰ Q v Q v Q v Q v Q v Q v Q v

cm/m m/m mm/mm/km

dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s

0,1 0,001 1 1,7 0,24 4,8 0,32 8,8 0,37 15,5 0,42 29,3 0,50 55,9 0,58 102,4 0,67

0,13 0,0013 1,3 1,9 0,28 5,5 0,36 10,1 0,42 17,9 0,49 33,6 0,57 64,2 0,67 117,3 0,77

0,16 0,0016 1,6 2,1 0,31 6,2 0,41 11,3 0,47 19,9 0,54 37,5 0,64 71,5 0,74 130,6 0,86

0,2 0,002 2 2,4 0,35 6,9 0,46 12,7 0,53 22,4 0,61 42,1 0,71 80,2 0,84 146,6 0,97

0,25 0,0025 2,5 2,7 0,39 7,8 0,51 14,3 0,60 25,1 0,69 47,3 0,80 90,1 0,94 164,5 1,08

0,3 0,003 3 3,0 0,43 8,6 0,57 15,7 0,66 27,6 0,76 52,0 0,88 98,9 1,03 180,6 1,19

0,32 0,0032 3,2 3,1 0,45 8,9 0,58 16,3 0,68 28,6 0,78 53,7 0,91 102,3 1,06 186,7 1,23

0,4 0,004 4 3,5 0,51 10,0 0,66 18,3 0,76 32,1 0,88 60,3 1,02 114,7 1,19 209,3 1,38

0,5 0,005 5 3,9 0,57 11,2 0,74 20,5 0,86 36,0 0,98 67,6 1,15 128,6 1,34 234,6 1,55

0,59 0,0059 5,9 4,3 0,62 12,2 0,80 22,4 0,93 39,2 1,07 73,7 1,25 140,0 1,46 255,3 1,68

0,6 0,006 6 4,3 0,63 12,3 0,81 22,6 0,94 39,6 1,08 74,3 1,26 141,2 1,47 257,5 1,70

0,7 0,007 7 4,7 0,68 13,3 0,88 24,4 1,02 42,8 1,17 80,4 1,36 152,8 1,59 278,6 1,84

0,8 0,008 8 5,0 0,73 14,3 0,94 26,2 1,09 45,9 1,25 86,1 1,46 163,6 1,70 298,2 1,96

0,9 0,009 9 5,3 0,77 15,2 1,00 27,8 1,16 48,7 1,33 91,4 1,55 173,7 1,81 316,6 2,09

1 0,01 10 5,6 0,82 16,0 1,06 29,3 1,23 51,4 1,40 96,5 1,64 183,3 1,91 334,1 2,20

1,5 0,015 15 7,0 1,01 19,7 1,30 36,1 1,51 63,3 1,73 118,7 2,01 225,3 2,34 410,4 2,70

2 0,02 20 8,1 1,17 22,9 1,51 41,8 1,75 73,3 2,00 137,3 2,33 260,7 2,71 474,8 3,13

2,5 0,025 25 9,1 1,31 25,6 1,69 46,9 1,96 82,1 2,24 153,8 2,61 291,9 3,04 531,5 3,50

3 0,03 30 9,9 1,44 28,1 1,86 51,4 2,15 90,0 2,46 168,7 2,86 320,1 3,33 582,8 3,84

3,5 0,035 35 10,8 1,56 30,4 2,01 55,6 2,32 97,4 2,66 182,4 3,09 346,0 3,60 629,9 4,15

4 0,04 40 11,5 1,67 32,6 2,15 59,5 2,49 104,2 2,85 195,2 3,31 370,2 3,85 673,8 4,44

4,5 0,045 45 12,2 1,77 34,6 2,28 63,2 2,64 110,6 3,02 207,1 3,51 392,9 4,09 715,1 4,71

5 0,05 50 12,9 1,87 36,5 2,41 66,7 2,78 116,6 3,19 218,5 3,70 414,3 4,31 754,1 4,97

5,5 0,055 55 13,5 1,96 38,3 2,53 70,0 2,92 122,4 3,34 229,2 3,88 434,7 4,52 791,2 5,21

6 0,06 60 14,2 2,05 40,0 2,64 73,1 3,05 127,9 3,49 239,5 4,06 454,2 4,73

6,5 0,065 65 14,8 2,13 41,7 2,75 76,2 3,18 133,2 3,64 249,4 4,23 472,9 4,92

7 0,07 70 15,3 2,22 43,3 2,85 79,1 3,30 138,3 3,78 258,9 4,39 490,9 5,11

7,5 0,075 75 15,9 2,30 44,8 2,96 81,9 3,42 143,2 3,91 268,1 4,54

8 0,08 80 16,4 2,37 46,3 3,05 84,6 3,53 147,9 4,04 276,9 4,69

8,5 0,085 85 16,9 2,45 47,7 3,15 87,2 3,64 152,5 4,17 285,5 4,84

9 0,09 90 17,4 2,52 49,1 3,24 89,8 3,75 157,0 4,29 293,9 4,98

9,5 0,095 95 17,9 2,59 50,5 3,33 92,3 3,85 161,3 4,41 302,0 5,12

10 0,1 100 18,4 2,66 51,8 3,42 94,7 3,95 165,5 4,52

11 0,11 110 19,3 2,79 54,4 3,59 99,3 4,15 173,7 4,74

15 0,15 150 22,5 3,26 63,6 4,20 116,2 4,85

20 0,2 200 26,1 3,77 73,5 4,85

EVORAIN PP throughflow at roughness coefficient 0,25 mm

HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVORAIN PP(gravity stormwater sewerage networks) FULL (in accordance with Colebrook-White and Manning's equations)

Symbols used in the tabels are given on page 47*

39

Page 40: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Roughness coefficient (k = 0,40 mm)

Fill (H/ID = 1,0)

Temperature (t = 100C)

Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s)

OD/DN mm 110 160 200 250 315 400 500

ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6

I % I I ‰ Q v Q v Q v Q v Q v Q v Q v

cm/m m/mmm/mm/km

dm3/sl/s

m/sdm3/s

l/sm/s

dm3/sl/s

m/sdm3/s

l/sm/s

dm3/sl/s

m/sdm3/s

l/sm/s

dm3/sl/s

m/s

0,1 0,001 1 1,6 0,23 4,6 0,30 8,5 0,35 14,9 0,41 28,2 0,48 53,7 0,56 98,3 0,65

0,13 0,0013 1,3 1,8 0,27 5,3 0,35 9,7 0,41 17,1 0,47 32,3 0,55 61,5 0,64 112,5 0,74

0,16 0,0016 1,6 2,1 0,30 5,9 0,39 10,8 0,45 19,1 0,52 35,9 0,61 68,5 0,71 125,2 0,82

0,2 0,002 2 2,3 0,34 6,6 0,44 12,2 0,51 21,4 0,58 40,3 0,68 76,8 0,80 140,3 0,92

0,25 0,0025 2,5 2,6 0,38 7,4 0,49 13,7 0,57 24,0 0,66 45,2 0,77 86,1 0,90 157,3 1,04

0,3 0,003 3 2,9 0,41 8,2 0,54 15,0 0,63 26,4 0,72 49,6 0,84 94,5 0,98 172,6 1,14

0,32 0,0032 3,2 3,0 0,43 8,5 0,56 15,5 0,65 27,3 0,75 51,3 0,87 97,7 1,02 178,4 1,18

0,4 0,004 4 3,3 0,48 9,5 0,63 17,4 0,73 30,6 0,84 57,5 0,97 109,5 1,14 199,8 1,32

0,5 0,005 5 3,7 0,54 10,6 0,70 19,5 0,82 34,3 0,94 64,5 1,09 122,6 1,28 223,8 1,47

0,59 0,0059 5,9 4,1 0,59 11,6 0,76 21,3 0,89 37,3 1,02 70,1 1,19 133,4 1,39 243,4 1,60

0,6 0,006 6 4,1 0,59 11,7 0,77 21,5 0,90 37,6 1,03 70,7 1,20 134,6 1,40 245,5 1,62

0,7 0,007 7 4,4 0,64 12,7 0,84 23,2 0,97 40,7 1,11 76,5 1,30 145,5 1,51 265,5 1,75

0,8 0,008 8 4,8 0,69 13,5 0,89 24,9 1,04 43,6 1,19 81,9 1,39 155,7 1,62 284,0 1,87

0,9 0,009 9 5,1 0,73 14,4 0,95 26,4 1,10 46,3 1,26 86,9 1,47 165,3 1,72 301,5 1,99

1 0,01 10 5,3 0,77 15,2 1,00 27,9 1,16 48,8 1,33 91,7 1,55 174,4 1,81 318,0 2,10

1,5 0,015 15 6,6 0,95 18,7 1,23 34,2 1,43 60,0 1,64 112,6 1,91 214,1 2,23 390,3 2,57

2 0,02 20 7,6 1,10 21,6 1,43 39,6 1,65 69,4 1,90 130,3 2,21 247,5 2,58 451,2 2,97

2,5 0,025 25 8,5 1,24 24,2 1,60 44,4 1,85 77,7 2,12 145,8 2,47 277,0 2,88 504,9 3,33

3 0,03 30 9,4 1,36 26,6 1,75 48,7 2,03 85,2 2,33 159,9 2,71 303,7 3,16 553,5 3,65

3,5 0,035 35 10,1 1,47 28,7 1,90 52,6 2,20 92,1 2,52 172,8 2,93 328,2 3,42 598,1 3,94

4 0,04 40 10,8 1,57 30,7 2,03 56,3 2,35 98,6 2,69 184,8 3,13 351,1 3,65 639,7 4,21

4,5 0,045 45 11,5 1,67 32,6 2,15 59,7 2,49 104,6 2,86 196,1 3,32 372,5 3,88 678,7 4,47

5 0,05 50 12,1 1,76 34,4 2,27 63,0 2,63 110,3 3,01 206,8 3,51 392,8 4,09 715,7 4,72

5,5 0,055 55 12,7 1,84 36,1 2,38 66,1 2,76 115,7 3,16 217,0 3,68 412,1 4,29 750,8 4,95

6 0,06 60 13,3 1,93 37,7 2,49 69,0 2,88 120,9 3,30 226,7 3,84 430,5 4,48 784,3 5,17

6,5 0,065 65 13,9 2,01 39,3 2,59 71,9 3,00 125,9 3,44 236,0 4,00 448,2 4,66

7 0,07 70 14,4 2,08 40,8 2,69 74,6 3,12 130,7 3,57 245,0 4,15 465,2 4,84

7,5 0,075 75 14,9 2,16 42,2 2,79 77,3 3,23 135,3 3,70 253,7 4,30 481,6 5,01

8 0,08 80 15,4 2,23 43,6 2,88 79,8 3,33 139,8 3,82 262,0 4,44

8,5 0,085 85 15,9 2,30 45,0 2,97 82,3 3,44 144,1 3,94 270,1 4,58

9 0,09 90 16,4 2,37 46,3 3,05 84,7 3,54 148,3 4,05 278,0 4,71

9,5 0,095 95 16,8 2,43 47,6 3,14 87,0 3,64 152,4 4,16 285,7 4,84

10 0,1 100 17,2 2,50 48,8 3,22 89,3 3,73 156,4 4,27 293,1 4,97

11 0,11 110 18,1 2,62 51,2 3,38 93,7 3,91 164,0 4,48 307,5 5,21

15 0,15 150 21,2 3,06 59,9 3,95 109,5 4,57 191,7 5,24

20 0,2 200 24,5 3,54 69,2 4,57 126,6 5,29

Symbols used in the tabels are given on page 47*

EVORAIN PP throughflow at roughness coefficient 0,40 mm

HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVORAIN PP(gravity stormwater sewerage networks) FULL (in accordance with Colebrook-White and Manning's equations)

40

Page 41: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Roughness coefficient (k = 0,75 mm)

Fill (H/ID = 1,0)

Temperature (t = 100C)

Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s)

OD/DN mm 110 160 200 250 315 400 500

ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6

I % I I ‰ Q v Q v Q v Q v Q v Q v Q v

cm/m m/mmm/mm/km

dm3/sl/s

m/sdm3/s

l/sm/s

dm3/sl/s

m/sdm3/s

l/sm/s

dm3/sl/s

m/sdm3/s

l/sm/s

dm3/sl/s

m/s

0,1 0,001 1 1,5 0,22 4,3 0,28 7,9 0,33 14,0 0,38 26,4 0,45 50,3 0,52 92,1 0,61

0,13 0,0013 1,3 1,7 0,25 4,9 0,33 9,1 0,38 16,0 0,44 30,1 0,51 57,5 0,60 105,3 0,69

0,16 0,0016 1,6 1,9 0,28 5,5 0,36 10,1 0,42 17,8 0,49 33,5 0,57 63,9 0,67 117,0 0,77

0,2 0,002 2 2,1 0,31 6,2 0,41 11,3 0,47 19,9 0,54 37,6 0,64 71,6 0,75 131,0 0,86

0,25 0,0025 2,5 2,4 0,35 6,9 0,46 12,7 0,53 22,3 0,61 42,1 0,71 80,2 0,83 146,7 0,97

0,3 0,003 3 2,6 0,38 7,6 0,50 13,9 0,58 24,5 0,67 46,2 0,78 88,0 0,92 160,9 1,06

0,32 0,0032 3,2 2,7 0,40 7,8 0,52 14,4 0,60 25,3 0,69 47,7 0,81 90,9 0,95 166,2 1,10

0,4 0,004 4 3,1 0,44 8,8 0,58 16,1 0,67 28,4 0,78 53,4 0,91 101,8 1,06 186,1 1,23

0,5 0,005 5 3,4 0,50 9,8 0,65 18,1 0,76 31,8 0,87 59,8 1,01 114,0 1,19 208,3 1,37

0,59 0,0059 5,9 3,7 0,54 10,7 0,71 19,7 0,82 34,6 0,94 65,0 1,10 123,9 1,29 226,4 1,49

0,6 0,006 6 3,8 0,55 10,8 0,71 19,8 0,83 34,9 0,95 65,6 1,11 125,0 1,30 228,4 1,50

0,7 0,007 7 4,1 0,59 11,7 0,77 21,4 0,90 37,7 1,03 70,9 1,20 135,1 1,41 246,8 1,63

0,8 0,008 8 4,4 0,63 12,5 0,82 23,0 0,96 40,3 1,10 75,9 1,29 144,5 1,50 264,0 1,74

0,9 0,009 9 4,7 0,67 13,3 0,88 24,4 1,02 42,8 1,17 80,5 1,36 153,3 1,60 280,1 1,85

1 0,01 10 4,9 0,71 14,0 0,92 25,7 1,07 45,1 1,23 84,9 1,44 161,7 1,68 295,4 1,95

1,5 0,015 15 6,0 0,87 17,2 1,13 31,5 1,32 55,4 1,51 104,2 1,77 198,3 2,06 362,2 2,39

2 0,02 20 7,0 1,01 19,9 1,31 36,5 1,52 64,0 1,75 120,4 2,04 229,2 2,39 418,6 2,76

2,5 0,025 25 7,8 1,13 22,2 1,47 40,8 1,70 71,6 1,96 134,7 2,28 256,4 2,67 468,2 3,09

3 0,03 30 8,6 1,24 24,4 1,61 44,7 1,87 78,5 2,15 147,6 2,50 281,0 2,92 513,1 3,38

3,5 0,035 35 9,3 1,34 26,3 1,74 48,3 2,02 84,9 2,32 159,5 2,70 303,6 3,16 554,4 3,65

4 0,04 40 9,9 1,43 28,2 1,86 51,7 2,16 90,8 2,48 170,6 2,89 324,7 3,38 592,8 3,91

4,5 0,045 45 10,5 1,52 29,9 1,97 54,9 2,29 96,3 2,63 181,0 3,07 344,5 3,58 628,9 4,14

5 0,05 50 11,1 1,60 31,5 2,08 57,9 2,42 101,5 2,77 190,8 3,23 363,2 3,78 663,0 4,37

5,5 0,055 55 11,6 1,68 33,1 2,18 60,7 2,53 106,5 2,91 200,2 3,39 381,0 3,96 695,5 4,58

6 0,06 60 12,1 1,76 34,6 2,28 63,4 2,65 111,3 3,04 209,1 3,54 398,0 4,14 726,5 4,79

6,5 0,065 65 12,6 1,83 36,0 2,37 66,0 2,76 115,8 3,16 217,7 3,69 414,3 4,31 756,3 4,98

7 0,07 70 13,1 1,90 37,3 2,46 68,5 2,86 120,2 3,28 225,9 3,83 430,0 4,47 784,9 5,17

7,5 0,075 75 13,6 1,97 38,7 2,55 70,9 2,96 124,5 3,40 233,9 3,96 445,1 4,63

8 0,08 80 14,0 2,03 39,9 2,64 73,3 3,06 128,6 3,51 241,6 4,09 459,7 4,78

8,5 0,085 85 14,5 2,10 41,2 2,72 75,5 3,15 132,5 3,62 249,1 4,22 473,9 4,93

9 0,09 90 14,9 2,16 42,4 2,80 77,7 3,25 136,4 3,73 256,3 4,34 487,7 5,08

9,5 0,095 95 15,3 2,22 43,5 2,87 79,9 3,34 140,1 3,83 263,3 4,46

10 0,1 100 15,7 2,27 44,7 2,95 82,0 3,42 143,8 3,93 270,2 4,58

11 0,11 110 16,5 2,39 46,9 3,09 86,0 3,59 150,8 4,12 283,4 4,80

15 0,15 150 19,3 2,79 54,8 3,61 100,4 4,20 176,2 4,81

20 0,2 200 22,3 3,22 63,3 4,17 116,0 4,85

Symbols used in the tabels are given on page 47*

EVORAIN PP throughflow at roughness coefficient 0,75 mm

HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVORAIN PP(gravity stormwater sewerage networks) FULL (in accordance with Colebrook-White and Manning's equations)

41

Page 42: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Roughness coefficient (k = 0,25 mm)

Temperature (t = 100C)

Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s)

Manning's coefficient K s1/3/m 85 82 81 79 78 76 75

Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75

OD/DN mm 110 160 200 250 315 400 500

ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6

I % I I ‰ Q v Q v Q v Q v Q v Q v Q v

cm/m m/m mm/mm/km

dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s

0,1 0,001 1 0,8 0,22 2,8 0,30 5,1 0,34 8,8 0,38 20,3 0,46 38,2 0,53 75,0 0,61

0,17 0,0017 1,7 1,0 0,29 3,7 0,39 6,6 0,44 11,5 0,50 26,5 0,60 49,7 0,69 97,8 0,80

0,2 0,002 2 1,1 0,31 4,0 0,42 7,2 0,48 12,4 0,54 28,7 0,65 54,0 0,75 106,0 0,87

0,22 0,0022 2,2 1,1 0,33 4,2 0,44 7,5 0,50 13,1 0,57 30,1 0,68 56,6 0,79 111,2 0,91

0,28 0,0028 2,8 1,3 0,37 4,7 0,50 8,5 0,57 14,7 0,64 34,0 0,77 63,8 0,89 125,5 1,03

0,3 0,003 3 1,3 0,38 4,9 0,51 8,8 0,59 15,2 0,66 35,2 0,80 66,1 0,92 129,9 1,06

0,38 0,0038 3,8 1,5 0,43 5,5 0,58 9,9 0,66 17,2 0,75 39,6 0,90 74,4 1,04 146,2 1,20

0,4 0,004 4 1,5 0,44 5,6 0,59 10,2 0,68 17,6 0,77 40,6 0,92 76,3 1,06 150,0 1,23

0,47 0,0047 4,7 1,6 0,48 6,1 0,64 11,0 0,74 19,1 0,83 44,1 1,00 82,7 1,15 162,6 1,33

0,5 0,005 5 1,7 0,49 6,3 0,66 11,4 0,76 19,7 0,86 45,4 1,03 85,3 1,19 167,7 1,37

0,59 0,0059 5,9 1,8 0,53 6,8 0,72 12,4 0,82 21,4 0,93 49,4 1,12 92,7 1,29 182,1 1,49

0,6 0,006 6 1,9 0,54 6,9 0,73 12,5 0,83 21,6 0,94 49,8 1,13 93,5 1,30 183,7 1,50

0,7 0,007 7 2,0 0,58 7,5 0,78 13,5 0,90 23,3 1,02 53,8 1,22 100,9 1,40 198,4 1,62

0,8 0,008 8 2,2 0,62 8,0 0,84 14,4 0,96 24,9 1,09 57,5 1,30 107,9 1,50 212,1 1,74

0,9 0,009 9 2,3 0,66 8,4 0,89 15,3 1,02 26,4 1,15 61,0 1,38 114,5 1,59 225,0 1,84

0,98 0,0098 9,8 2,4 0,69 8,8 0,93 15,9 1,06 27,6 1,20 63,6 1,44 119,4 1,66 234,7 1,92

1 0,01 10 2,4 0,70 8,9 0,94 16,1 1,07 27,8 1,21 64,3 1,46 120,6 1,68 237,1 1,94

1,5 0,015 15 2,9 0,85 10,9 1,15 19,7 1,31 34,1 1,49 78,7 1,78 147,8 2,06 290,4 2,38

2 0,02 20 3,4 0,98 12,6 1,33 22,7 1,52 39,4 1,72 90,9 2,06 170,6 2,37 335,3 2,75

2,5 0,025 25 3,8 1,10 14,1 1,48 25,4 1,70 44,0 1,92 101,6 2,30 190,8 2,65 374,9 3,07

3 0,03 30 4,2 1,21 15,4 1,63 27,9 1,86 48,2 2,10 111,3 2,52 209,0 2,91 410,7 3,36

3,5 0,035 35 4,5 1,30 16,7 1,76 30,1 2,01 52,1 2,27 120,2 2,72 225,7 3,14 443,6 3,63

4 0,04 40 4,8 1,39 17,8 1,88 32,2 2,14 55,7 2,43 128,5 2,91 241,3 3,36 474,2 3,88

4,5 0,045 45 5,1 1,48 18,9 1,99 34,1 2,27 59,0 2,57 136,3 3,09 255,9 3,56 503,0 4,12

5 0,05 50 5,4 1,56 19,9 2,10 36,0 2,40 62,2 2,71 143,7 3,26 269,8 3,75 530,2 4,34

5,5 0,055 55 5,6 1,63 20,9 2,20 37,7 2,51 65,3 2,85 150,7 3,42 282,9 3,94 556,1 4,55

6 0,06 60 5,9 1,70 21,8 2,30 39,4 2,63 68,2 2,97 157,4 3,57 295,5 4,11 580,8 4,76

6,5 0,065 65 6,1 1,77 22,7 2,39 41,0 2,73 71,0 3,09 163,8 3,71 307,6 4,28 604,5 4,95

7 0,07 70 6,4 1,84 23,6 2,48 42,5 2,84 73,6 3,21 170,0 3,85 319,2 4,44 627,4 5,14

7,5 0,075 75 6,6 1,91 24,4 2,57 44,0 2,94 76,2 3,32 176,0 3,99 330,4 4,60

8 0,08 80 6,8 1,97 25,2 2,65 45,5 3,03 78,7 3,43 181,7 4,12 341,2 4,75

8,5 0,085 85 7,0 2,03 26,0 2,74 46,9 3,13 81,1 3,54 187,3 4,25 351,7 4,90

9 0,09 90 7,2 2,09 26,7 2,81 48,2 3,22 83,5 3,64 192,8 4,37 361,9 5,04

9,5 0,095 95 7,4 2,14 27,5 2,89 49,6 3,30 85,8 3,74 198,0 4,49

10 0,1 100 7,6 2,20 28,2 2,97 50,9 3,39 88,0 3,84 203,2 4,61

HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) pARTLY FULL (in accordance with Colebrook-White and Manning's equations)

Symbols used in the tabels are given on page 47*

EVOSAN PP throughflow at roughness coefficient 0,25 mm

42

Page 43: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) pARTLY FULL (in accordance with Colebrook-White and Manning's equations)

Roughness coefficient (k = 0,25 mm)

Temperature (t = 100C)

Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s)

Manning's coefficient K s1/3/m 85 82 81 79 78

Fill H/ID 0,5 0,6 0,6 0,6 0,7

OD/DN mm 110 160 200 250 315

ID mm 93,8 138,9 174,6 215,9 274,1

I % I I ‰ Q v Q v Q v Q v Q v

cm/m m/m mm/mm/km

dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s

11 0,11 110 8,0 2,31 29,5 3,11 53,3 3,56 92,3 4,02 213,1 4,83

12 0,12 120 8,3 2,41 30,9 3,25 55,7 3,71 96,4 4,20 222,6 5,05

13 0,13 130 8,7 2,51 32,1 3,38 58,0 3,87 100,4 4,38

14 0,14 140 9,0 2,60 33,3 3,51 60,2 4,01 104,1 4,54

15 0,15 150 9,3 2,69 34,5 3,63 62,3 4,15 107,8 4,70

16 0,16 160 9,6 2,78 35,6 3,75 64,3 4,29 111,3 4,85

17 0,17 170 9,9 2,87 36,7 3,87 66,3 4,42 114,8 5,00

18 0,18 180 10,2 2,95 37,8 3,98 68,2 4,55

19 0,19 190 10,5 3,03 38,8 4,09 70,1 4,67

20 0,2 200 10,8 3,11 39,8 4,20 71,9 4,79

21 0,21 210 11,0 3,19 40,8 4,30 73,7 4,91

22 0,22 220 11,3 3,26 41,8 4,40 75,4 5,03

23 0,23 230 11,5 3,34 42,7 4,50

24 0,24 240 11,8 3,41 43,6 4,60

25 0,25 250 12,0 3,48 44,5 4,69

26 0,26 260 12,3 3,55 45,4 4,78

27 0,27 270 12,5 3,62 46,3 4,88

28 0,28 280 12,7 3,68 47,1 4,96

29 0,29 290 12,9 3,75 48,0 5,05

30 0,3 300 13,2 3,81

31 0,31 310 13,4 3,87

32 0,32 320 13,6 3,94

33 0,33 330 13,8 4,00

34 0,34 340 14,0 4,06

35 0,35 350 14,2 4,12

36 0,36 360 14,4 4,17

37 0,37 370 14,6 4,23

38 0,38 380 14,8 4,29

39 0,39 390 15,0 4,35

40 0,4 400 15,2 4,40

Symbols used in the tabels are given on page 47*

EVOSAN PP throughflow at roughness coefficient 0,25 mm

43

Page 44: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Roughness coefficient (k = 0,40 mm)

Temperature (t = 100C)

Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s)

Manning's coefficient K s1/3/m 81 78 77 75 74 72 71

Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75

OD/DN mm 110 160 200 250 315 400 500

ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6

I % I I ‰ Q v Q v Q v Q v Q v Q v Q v

cm/m m/m mm/mm/km

dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s

0,1 0,001 1 0,7 0,21 2,7 0,28 4,8 0,32 8,4 0,36 19,3 0,44 36,3 0,50 71,3 0,58

0,17 0,0017 1,7 0,9 0,27 3,5 0,37 6,3 0,42 10,9 0,48 25,2 0,57 47,3 0,66 93,0 0,76

0,2 0,002 2 1,0 0,30 3,8 0,40 6,8 0,46 11,8 0,52 27,3 0,62 51,3 0,71 100,9 0,83

0,22 0,0022 2,2 1,1 0,31 4,0 0,42 7,2 0,48 12,4 0,54 28,7 0,65 53,8 0,75 105,8 0,87

0,28 0,0028 2,8 1,2 0,35 4,5 0,47 8,1 0,54 14,0 0,61 32,3 0,73 60,7 0,84 119,3 0,98

0,3 0,003 3 1,3 0,36 4,6 0,49 8,4 0,56 14,5 0,63 33,5 0,76 62,8 0,87 123,5 1,01

0,38 0,0038 3,8 1,4 0,41 5,2 0,55 9,4 0,63 16,3 0,71 37,7 0,85 70,7 0,98 139,0 1,14

0,4 0,004 4 1,4 0,42 5,4 0,56 9,7 0,64 16,7 0,73 38,6 0,88 72,6 1,01 142,6 1,17

0,47 0,0047 4,7 1,6 0,45 5,8 0,61 10,5 0,70 18,1 0,79 41,9 0,95 78,7 1,09 154,6 1,27

0,5 0,005 5 1,6 0,47 6,0 0,63 10,8 0,72 18,7 0,82 43,2 0,98 81,1 1,13 159,5 1,31

0,59 0,0059 5,9 1,8 0,51 6,5 0,69 11,7 0,78 20,3 0,89 46,9 1,06 88,1 1,23 173,2 1,42

0,6 0,006 6 1,8 0,51 6,6 0,69 11,8 0,79 20,5 0,89 47,3 1,07 88,9 1,24 174,7 1,43

0,7 0,007 7 1,9 0,55 7,1 0,75 12,8 0,85 22,1 0,97 51,1 1,16 96,0 1,34 188,7 1,55

0,8 0,008 8 2,0 0,59 7,6 0,80 13,7 0,91 23,7 1,03 54,7 1,24 102,6 1,43 201,7 1,65

0,9 0,009 9 2,2 0,63 8,0 0,85 14,5 0,97 25,1 1,09 58,0 1,31 108,9 1,51 213,9 1,75

0,98 0,0098 9,8 2,3 0,66 8,4 0,88 15,1 1,01 26,2 1,14 60,5 1,37 113,6 1,58 223,2 1,83

1 0,01 10 2,3 0,66 8,5 0,89 15,3 1,02 26,5 1,15 61,1 1,39 114,7 1,60 225,5 1,85

1,5 0,015 15 2,8 0,81 10,4 1,09 18,7 1,25 32,4 1,41 74,8 1,70 140,5 1,96 276,2 2,26

2 0,02 20 3,2 0,94 12,0 1,26 21,6 1,44 37,4 1,63 86,4 1,96 162,3 2,26 318,9 2,61

2,5 0,025 25 3,6 1,05 13,4 1,41 24,2 1,61 41,9 1,82 96,6 2,19 181,4 2,52 356,6 2,92

3 0,03 30 4,0 1,15 14,7 1,55 26,5 1,77 45,8 2,00 105,8 2,40 198,7 2,77 390,6 3,20

3,5 0,035 35 4,3 1,24 15,8 1,67 28,6 1,91 49,5 2,16 114,3 2,59 214,7 2,99 421,9 3,46

4 0,04 40 4,6 1,32 16,9 1,78 30,6 2,04 52,9 2,31 122,2 2,77 229,5 3,19 451,0 3,69

4,5 0,045 45 4,9 1,40 18,0 1,89 32,4 2,16 56,2 2,45 129,6 2,94 243,4 3,39 478,4 3,92

5 0,05 50 5,1 1,48 18,9 2,00 34,2 2,28 59,2 2,58 136,6 3,10 256,6 3,57 504,3 4,13

5,5 0,055 55 5,4 1,55 19,9 2,09 35,9 2,39 62,1 2,71 143,3 3,25 269,1 3,74 528,9 4,33

6 0,06 60 5,6 1,62 20,7 2,19 37,5 2,50 64,8 2,83 149,7 3,39 281,1 3,91 552,4 4,52

6,5 0,065 65 5,8 1,69 21,6 2,27 39,0 2,60 67,5 2,94 155,8 3,53 292,5 4,07 574,9 4,71

7 0,07 70 6,0 1,75 22,4 2,36 40,5 2,70 70,0 3,05 161,7 3,66 303,6 4,22 596,6 4,89

7,5 0,075 75 6,3 1,81 23,2 2,44 41,9 2,79 72,5 3,16 167,4 3,79 314,2 4,37 617,6 5,06

8 0,08 80 6,5 1,87 24,0 2,52 43,3 2,88 74,9 3,26 172,8 3,92 324,5 4,52

8,5 0,085 85 6,7 1,93 24,7 2,60 44,6 2,97 77,2 3,36 178,2 4,04 334,5 4,66

9 0,09 90 6,9 1,99 25,4 2,68 45,9 3,06 79,4 3,46 183,3 4,16 344,2 4,79

9,5 0,095 95 7,0 2,04 26,1 2,75 47,1 3,14 81,6 3,56 188,4 4,27 353,7 4,92

10 0,1 100 7,2 2,09 26,8 2,82 48,4 3,22 83,7 3,65 193,2 4,38 362,8 5,05

Symbols used in the tabels are given on page 47*

HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) pARTLY FULL (in accordance with Colebrook-White and Manning's equations)

EVOSAN PP throughflow at roughness coefficient 0,40 mm

44

Page 45: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Roughness coefficient (k = 0,40 mm)

Temperature (t = 100C)

Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s)

Manning's coefficient K s1/3/m 81 78 77 75 74

Fill H/ID 0,5 0,6 0,6 0,6 0,7

OD/DN mm 110 160 200 250 315

ID mm 93,8 138,9 174,6 215,9 274,1

I % I I ‰ Q v Q v Q v Q v Q v

cm/m m/m mm/mm/km

dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s

11 0,11 110 7,6 2,19 28,1 2,96 50,7 3,38 87,8 3,83 202,7 4,59

12 0,12 120 7,9 2,29 29,3 3,09 53,0 3,53 91,7 4,00 211,7 4,80

13 0,13 130 8,2 2,39 30,5 3,22 55,1 3,68 95,4 4,16 220,3 4,99

14 0,14 140 8,6 2,48 31,7 3,34 57,2 3,82 99,0 4,32 228,7 5,18

15 0,15 150 8,9 2,56 32,8 3,46 59,2 3,95 102,5 4,47

16 0,16 160 9,1 2,65 33,9 3,57 61,2 4,08 105,9 4,62

17 0,17 170 9,4 2,73 34,9 3,68 63,1 4,20 109,1 4,76

18 0,18 180 9,7 2,81 35,9 3,79 64,9 4,33 112,3 4,90

19 0,19 190 10,0 2,88 36,9 3,89 66,7 4,44 115,4 5,03

20 0,2 200 10,2 2,96 37,9 3,99 68,4 4,56

21 0,21 210 10,5 3,03 38,8 4,09 70,1 4,67

22 0,22 220 10,7 3,10 39,7 4,19 71,7 4,78

23 0,23 230 11,0 3,17 40,6 4,28 73,4 4,89

24 0,24 240 11,2 3,24 41,5 4,37 74,9 5,00

25 0,25 250 11,4 3,31 42,4 4,46

26 0,26 260 11,7 3,37 43,2 4,55

27 0,27 270 11,9 3,44 44,0 4,64

28 0,28 280 12,1 3,50 44,8 4,72

29 0,29 290 12,3 3,56 45,6 4,81

30 0,3 300 12,5 3,62 46,4 4,89

31 0,31 310 12,7 3,68 47,2 4,97

32 0,32 320 12,9 3,74 47,9 5,05

33 0,33 330 13,1 3,80

34 0,34 340 13,3 3,86

35 0,35 350 13,5 3,91

36 0,36 360 13,7 3,97

37 0,37 370 13,9 4,03

38 0,38 380 14,1 4,08

39 0,39 390 14,3 4,13

40 0,4 400 14,5 4,19

Symbols used in the tabels are given on page 47*

HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) pARTLY FULL (in accordance with Colebrook-White and Manning's equations)

EVOSAN PP throughflow at roughness coefficient 0,40 mm

45

Page 46: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Roughness coefficient (k = 0,75 mm)

Temperature (t = 100C)

Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s)

Manning's coefficient K s1/3/m 75 73 71 70 69 67 66

Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7 0,75

OD/DN mm 110 160 200 250 315 400 500

ID mm 93,8 138,9 174,6 215,9 274,1 349,8 439,6

I % I I ‰ Q v Q v Q v Q v Q v Q v Q v

cm/m m/m mm/mm/km

dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s

0,1 0,001 1 0,7 0,19 2,5 0,26 4,5 0,30 7,8 0,34 18,0 0,41 33,8 0,47 66,4 0,54

0,17 0,0017 1,7 0,9 0,25 3,3 0,34 5,9 0,39 10,2 0,44 23,5 0,53 44,1 0,61 86,6 0,71

0,2 0,002 2 1,0 0,28 3,5 0,37 6,4 0,42 11,0 0,48 25,4 0,58 47,8 0,66 93,9 0,77

0,22 0,0022 2,2 1,0 0,29 3,7 0,39 6,7 0,45 11,6 0,50 26,7 0,60 50,1 0,70 98,5 0,81

0,28 0,0028 2,8 1,1 0,33 4,2 0,44 7,5 0,50 13,0 0,57 30,1 0,68 56,5 0,79 111,1 0,91

0,3 0,003 3 1,2 0,34 4,3 0,46 7,8 0,52 13,5 0,59 31,2 0,71 58,5 0,81 115,0 0,94

0,38 0,0038 3,8 1,3 0,38 4,9 0,51 8,8 0,59 15,2 0,66 35,1 0,80 65,9 0,92 129,4 1,06

0,4 0,004 4 1,3 0,39 5,0 0,53 9,0 0,60 15,6 0,68 36,0 0,82 67,6 0,94 132,8 1,09

0,47 0,0047 4,7 1,5 0,42 5,4 0,57 9,8 0,65 16,9 0,74 39,0 0,88 73,2 1,02 144,0 1,18

0,5 0,005 5 1,5 0,44 5,6 0,59 10,1 0,67 17,4 0,76 40,2 0,91 75,5 1,05 148,5 1,22

0,59 0,0059 5,9 1,6 0,47 6,1 0,64 10,9 0,73 18,9 0,83 43,7 0,99 82,1 1,14 161,3 1,32

0,6 0,006 6 1,6 0,48 6,1 0,64 11,0 0,74 19,1 0,83 44,1 1,00 82,8 1,15 162,7 1,33

0,7 0,007 7 1,8 0,52 6,6 0,70 11,9 0,79 20,6 0,90 47,6 1,08 89,4 1,24 175,7 1,44

0,8 0,008 8 1,9 0,55 7,1 0,74 12,7 0,85 22,0 0,96 50,9 1,15 95,6 1,33 187,8 1,54

0,9 0,009 9 2,0 0,58 7,5 0,79 13,5 0,90 23,4 1,02 54,0 1,22 101,4 1,41 199,2 1,63

0,98 0,0098 9,8 2,1 0,61 7,8 0,82 14,1 0,94 24,4 1,06 56,3 1,28 105,8 1,47 207,9 1,70

1 0,01 10 2,1 0,62 7,9 0,83 14,2 0,95 24,6 1,07 56,9 1,29 106,8 1,49 210,0 1,72

1,5 0,015 15 2,6 0,75 9,7 1,02 17,4 1,16 30,2 1,32 69,7 1,58 130,9 1,82 257,2 2,11

2 0,02 20 3,0 0,87 11,2 1,18 20,1 1,34 34,9 1,52 80,5 1,82 151,1 2,10 297,0 2,43

2,5 0,025 25 3,4 0,97 12,5 1,31 22,5 1,50 39,0 1,70 90,0 2,04 168,9 2,35 332,0 2,72

3 0,03 30 3,7 1,07 13,7 1,44 24,7 1,64 42,7 1,86 98,6 2,23 185,1 2,58 363,7 2,98

3,5 0,035 35 4,0 1,15 14,8 1,55 26,6 1,78 46,1 2,01 106,5 2,41 199,9 2,78 392,9 3,22

4 0,04 40 4,3 1,23 15,8 1,66 28,5 1,90 49,3 2,15 113,8 2,58 213,7 2,97 420,0 3,44

4,5 0,045 45 4,5 1,31 16,7 1,76 30,2 2,01 52,3 2,28 120,7 2,74 226,6 3,15 445,5 3,65

5 0,05 50 4,8 1,38 17,6 1,86 31,8 2,12 55,1 2,40 127,2 2,88 238,9 3,32 469,6 3,85

5,5 0,055 55 5,0 1,45 18,5 1,95 33,4 2,23 57,8 2,52 133,5 3,02 250,6 3,49 492,5 4,03

6 0,06 60 5,2 1,51 19,3 2,04 34,9 2,33 60,4 2,63 139,4 3,16 261,7 3,64 514,4 4,21

6,5 0,065 65 5,4 1,57 20,1 2,12 36,3 2,42 62,8 2,74 145,1 3,29 272,4 3,79 535,4 4,38

7 0,07 70 5,6 1,63 20,9 2,20 37,7 2,51 65,2 2,84 150,6 3,41 282,7 3,93 555,6 4,55

7,5 0,075 75 5,8 1,69 21,6 2,28 39,0 2,60 67,5 2,94 155,8 3,53 292,6 4,07 575,1 4,71

8 0,08 80 6,0 1,74 22,3 2,35 40,3 2,69 69,7 3,04 160,9 3,65 302,2 4,21 593,9 4,86

8,5 0,085 85 6,2 1,80 23,0 2,42 41,5 2,77 71,9 3,13 165,9 3,76 311,5 4,34 612,2 5,01

9 0,09 90 6,4 1,85 23,7 2,49 42,7 2,85 73,9 3,22 170,7 3,87 320,5 4,46

9,5 0,095 95 6,6 1,90 24,3 2,56 43,9 2,93 76,0 3,31 175,4 3,98 329,3 4,58

10 0,1 100 6,7 1,95 24,9 2,63 45,0 3,00 77,9 3,40 179,9 4,08 337,9 4,70

Symbols used in the tabels are given on page 47*

HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) pARTLY FULL (in accordance with Colebrook-White and Manning's equations)

EVOSAN PP throughflow at roughness coefficient 0,75 mm

46

Page 47: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Roughness coefficient (k = 0,75 mm)

Temperature (t = 100C)

Fluid kinematic viscosity coefficient (γ = 1,308x10-6 m2/s)

Manning's coefficient K s1/3/m 75 73 71 70 69 67

Fill H/ID 0,5 0,6 0,6 0,6 0,7 0,7

OD/DN mm 110 160 200 250 315 400

ID mm 93,8 138,9 174,6 215,9 274,1 349,8

I % I I ‰ Q v Q v Q v Q v Q v Q v

cm/m m/m mm/mm/km

dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s dm3/sl/s m/s dm3/s

l/s m/s

11 0,11 110 7,1 2,04 26,2 2,76 47,2 3,15 81,7 3,56 188,7 4,28 354,4 4,93

12 0,12 120 7,4 2,13 27,3 2,88 49,3 3,29 85,4 3,72 197,1 4,47 370,1 5,15

13 0,13 130 7,7 2,22 28,4 3,00 51,4 3,42 88,9 3,87 205,2 4,65

14 0,14 140 8,0 2,31 29,5 3,11 53,3 3,55 92,2 4,02 212,9 4,83

15 0,15 150 8,2 2,39 30,5 3,22 55,2 3,68 95,5 4,16 220,4 5,00

16 0,16 160 8,5 2,46 31,6 3,32 57,0 3,80 98,6 4,30

17 0,17 170 8,8 2,54 32,5 3,43 58,7 3,91 101,6 4,43

18 0,18 180 9,0 2,61 33,5 3,53 60,4 4,03 104,6 4,56

19 0,19 190 9,3 2,69 34,4 3,62 62,1 4,14 107,4 4,68

20 0,2 200 9,5 2,76 35,3 3,72 63,7 4,25 110,2 4,81

21 0,21 210 9,8 2,82 36,1 3,81 65,3 4,35 113,0 4,92

22 0,22 220 10,0 2,89 37,0 3,90 66,8 4,45 115,6 5,04

23 0,23 230 10,2 2,96 37,8 3,98 68,3 4,55

24 0,24 240 10,4 3,02 38,6 4,07 69,8 4,65

25 0,25 250 10,6 3,08 39,4 4,15 71,2 4,75

26 0,26 260 10,9 3,14 40,2 4,24 72,6 4,84

27 0,27 270 11,1 3,20 41,0 4,32 74,0 4,93

28 0,28 280 11,3 3,26 41,7 4,40 75,4 5,02

29 0,29 290 11,5 3,32 42,5 4,47

30 0,3 300 11,7 3,38 43,2 4,55

31 0,31 310 11,9 3,43 43,9 4,63

32 0,32 320 12,0 3,49 44,6 4,70

33 0,33 330 12,2 3,54 45,3 4,77

34 0,34 340 12,4 3,59 46,0 4,84

35 0,35 350 12,6 3,65 46,7 4,92

36 0,36 360 12,8 3,70 47,3 4,99

37 0,37 370 13,0 3,75 48,0 5,05

38 0,38 380 13,1 3,80

39 0,39 390 13,3 3,85

40 0,4 400 13,5 3,90

* Symbols used in all tables: Q - throughflowv - flow rateI - pipeline trench slopeOD/DN - pipeline outer diameterID - pipeline inner diameter

HYDRAULIC PARAMETER TABLE (based on pipeline inner diameter) EVOSAN PP (gravity utility sewerage networks) pARTLY FULL (in accordance with Colebrook-White and Manning's equations)

EVOSAN PP throughflow at roughness coefficient 0,75 mm

47

Page 48: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Conformity certificates 49

Conformity Certificate INspECTA No. 1426/2009 in Latvian 49

Conformity Certificate INspECTA No. 1426/2009 in English 50

Conformity Certificate spsC No. spsC-8555 in Lithuanian 51

Conformity Certificate spsC No. spsC-8555 in English 52

Conformity Certificate ГОСТ Р No. pOCC Lv. AЯ12. НO5403 in Russian 53

product standards 54

Notes 56

Resistance of plastic materials to chemical matters 59

sECTION 6

48

Page 49: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Conformity certificates

49

Page 50: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Conformity certificates

50

Page 51: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Conformity certificates

51

Page 52: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Conformity certificates

52

Page 53: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Conformity certificates

53

Page 54: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Product standards

No. Standard number Standard title

1 EN 13476-1:2007plastics piping systems for non-pressure underground drainage and sewerage. structured-wall piping systems of unplasticizedpolyvinylchloride(PVC-U),polypropylene(PP)andpolyethylene(PE).Part1.Generalrequirementsandperformance characteristics

2 EN 13476-2:2007plastics piping systems for non-pressure underground drainage and sewerage. structured-wall piping systems of unplasticizedpolyvinylchloride(PVC-U),polypropylene(PP)andpolyethylene(PE).Part2.Specificationsforpipesandfittings with smooth internal and external surface and the system, Type A

3 EN 13476-3:2007plastics piping systems for non-pressure underground drainage and sewerage. structured-wall piping systems of unplasticizedpolyvinylchloride(PVC-U),polypropylene(PP)andpolyethylene(PE).Part3.Specificationsforpipesandfittings with smooth internal and profiled external surface and the system, Type B

4 EN 13476-4:2008plastics piping systems for non-pressure underground drainage and sewerage. structured-wall piping systems ofunplasticizedpolyvinylchloride(PVC-U),polypropylene(PP)andpolyethylene(PE).Part4.Guidancefortheassessment of conformity

5 EN 476:2000 General requirements for components used in discharge pipes, drains and sewers for gravity system

6 EN 681-1:2003 Elastomeric seals. Materials requirements for pipe joint seals used in water and drainage applications. part 1. Vulcanizedrubber

7 EN 681-2:2003 +A1 Elastomeric seals. Materials requirements for pipe joint seals used in water and drainage applications. part 2. Thermoplastic elastomers

8 EN 681-4:2003 +A1 Elastomeric seals. Materials requirements for pipe joint seals used in water and drainage applications. part 4. Cast polyurethane sealing elements

9 EN 728:2000 plastics piping and ducting systems. polyolefin pipes and fittings. Determination of oxidation induction time

10 EN 744:1995 plastics piping and ducting systems. Thermoplastics pipes. Test method for resistance to external blows by the round-the-clock method (title changed on 28.05.2003)

11 EN 1053:2000 plastics piping systems. Thermoplastics piping systems for non-pressure applications. Test method for watertightness

12 EN 1055:2000 plastics piping systems. Thermoplastics piping systems for soil and waste discharge inside buildings. Test method for resistance to elevated temperature cycling

13 EN 1277:2004 plastics piping systems. Thermoplastics piping systems for buried non-pressure applications. Test methods for leaktightness of elastomeric sealing ring type joints

14 EN 1437:2003 plastics piping systems. piping systems for underground drainage and sewerage. Test method for resistance to combined temperature cycling and external loading

15 EN 1446:2000 plastics piping and ducting systems. Thermoplastics pipes. Determination of ring flexibility

16 EN 1979:2000 plastics piping and ducting systems. Thermoplastics spirally-formed structured-wall pipes. Determination of the tensile strength of a seam

17 EN 12061:2000 plastics piping systems. Thermoplastics fittings. Test method for impact resistance

18 EN 12256:2000 plastics piping systems. Thermoplastics fittings. Test method for mechanical strength or flexibility of fabricated fittings

19 EN 14741:2006 ThermoplasticspipingandductingsystemsJointsforburiednon-pressureapplications.Testmethodforthelong-term sealing performance of joints with elastomeric seals by estimating the sealing pressure

20 EN ISO 9969:2008 Thermoplastics pipes. Determination of ring stiffness

21 ISO 12091:1995 structured-wall thermoplastics pipes - Oven test

54

Page 55: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Product standards

No. Standard number Standard title

22 EN ISO 1133:2005 plastics. Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MvR) of thermoplastics

23 EN ISO 1167-1:2006 Thermoplastics pipes, fittings and assemblies for the conveyance of fluids. Determination of the resistance to internal pressure. part 1. General method

24 EN ISO 1167-2:2006 Thermoplastics pipes, fittings and assemblies for the conveyance of fluids. Determination of the resistance to internal pressure. part 2. Determination of the resistance to internal pressure

25 EN ISO 1167-3:2008 Thermoplastics pipes, fittings and assemblies for the conveyance of fluids. Determination of the resistance to internal pressure. part 3. preparation of components

26 EN ISO 1167-4:2008 Thermoplastics pipes, fittings and assemblies for the conveyance of fluids. Determination of the resistance to internal pressure. part 4. preparation of assemblies

27 EN ISO 16871:2003 plastics piping and ducting systems. plastics pipes and fittings. Method for exposure to direct (natural) weathering

28 EN ISO 580:2005 plastics piping and ducting systems Injection-moulded thermoplastics fittings. Methods for visually assessing the effects of heating

29 EN ISO 9967:2008 Thermoplastics pipes. Determination of creep ratio

30 ISO 13967:1998 Thermoplastics fittings - Determination of the short-term stiffness

31 EN 1610:2000 Construction and testing of drains and sewers

32 EN 476:2000 General requirements for components used in discharge pipes, drains and sewers for gravity systems

33 EN 752:2008 Drain and sewer systems outside buildings

34 EN 13380:2002 General requirements for components used for renovation and repair of drain and sewer systems outside buildings

35 EN 13598-1:2004Plasticspipingsystemsfornon-pressureundergrounddrainageandsewerage.Unplasticizedpolyvinylchloride(pvC-U), polypropylene (pp) and polyethylene (pE). part 1. specifications for ancillary fittings including shallow inspection chambers

36 EN 14457:2004 General requirements for components specifically designed for use in trenchless construction of drains and sewers

37 EN 14654-1:2006 Management and control of cleaning operations in drains and sewers. part 1. sewer cleaning

38 EN 14802:2006 plastics piping systems. Thermoplastics shafts or risers for inspection chambers and manholes. Determination of resistance against surface and traffic loading

39 EN 14830:2007 Thermoplastics inspection chamber and manhole bases. Test methods for buckling resistance

40 CEN/TR 14920:2005 Jettingresistanceofdrainandsewerpipes.Movingjettestmethod

41 EN 14982:2007 plastics piping and ducting systems. Thermoplastics shafts or risers for inspection chambers and manholes. Determination of ring stiffness

42 CEN/TR 15128:2005 survey of European standards for rehabilitation of drain and sewer systems

43 ISO 9001:2008 Quality management systems

55

Page 56: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Notes

56

Page 57: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Notes

57

Page 58: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

Notes

58

Page 59: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

59

Resistance of plastic materials to chemical matters

Chemical matter or product

PVC

Poly

ethy

lene

Poly

prop

ylen

e

Poly

carb

onat

e

Poly

amid

e

Chemical matter or product

PVC

Poly

ethy

lene

Poly

prop

ylen

e

Poly

carb

onat

e

Poly

amid

e

ºC pvC

-U

pE pp pC pA ºC pvC

-U

pE pp pC pA

Acetaldehyde, in water (40%) 40 d ® ® - d Glycerin, fluid 60 ® ® ® d ®Acetic acid (<10%) 40 ® ® ® ® d Chlorhydric acid, fluid 40 ® ® ® d -Acetic acid (10%-85%) 60 ® ® ® - - Chlorhydric acid, concentrate 60 ® ® ® - -Acetic acid (85%-95%) 40 ® ® ® - - Hydrofluoric acid (40%) 20 ® ® ® - -Aceticacid(>95%) 20 ® ® ® - - Hydrofluoric acid (60%) 20 ® ® ® - -Acetone (small amount) 20 - ® ® - ® Hydrofluoric acid (100%) 20 ® ® ® - -Ammonia, water solution (20%) 40 ® ® ® - ® Hydrogen (100%) 60 ® ® ® ® ®Ammonia, dry gas 60 ® ® ® - ® Hydrogen peroxide (20%) 20 ® ® ® d dAmmonium chloride (20%) 20 ® d d d - Hydrogen sulphide, dry or wet 60 ® ® ® d dAmmonium fluoride (2%) 20 ® d d d - Hydrogen sulphide, fluid 40 ® ® ® d dAmmonium nitrate (20%) 20 ® d d d - Ketone - - - - ®Aniline (saturated fluid) 60 d - - - d Lactic acid (10%-90%) 40 ® ® ® ® ®Ortho-arsenic acid (<20%) 60 ® ® ® ® d Methanol, fluid 40 ® ® ® - ®Beer 60 ® ® ® d ® Mineral oil 20 ® ® ® d ®Benzol 20 - d d - ® sodium chlorate, fluid 20 ® ® ® d ®Bleach (13%) 40 ® ® ® d d sodium hydroxide (<10%) 20 ® ® ® d ®Borax, saturated fluid 60 ® ® ® d d Nitric acid (<30%) 40 ® ® ® - -Hydrobromic acid, fluid (10%) 20 ® ® ® - - Nitric acid (30%-45%) 45 ® ® ® - -Butane, gas ® - - ® ® Nitric acid (50%-60%) 20 ® d d - -Carbonic acid, dry 40 ® ® ® ® ® Nitrogen gases, dry or wet 60 d d d - dCarbonic acid, dry or wet 40 ® ® ® d ® Oils and fats 60 ® ® ® - ®Carbon tetrachloride 20 - - - - ® Oxalic acid, fluid (10%) 40 ® ® ® ® dCarbon disulphide 20 d d d - d Oxalic acid, fluid (concentrate) 60 ® ® ® - -sodium hydroxide (<40%) 40 ® ® ® - ® Oxygen 60 ® ® ® d ®sodium hydroxide (40%-60%) 60 ® ® ® - ® Ozone 20 ® d d - dCement, dry 20 ® ® ® ® ® perchloric acid (10%) 20 ® ® ® d ®Cement, mix 20 ® ® ® - ® perchloric acid (70%) 60 - d d - dChlorine, dry or wet gas 20 d d d - - permanganate (<6%) 20 ® ® ® d -Chlorine, water solution 20 d - - - - Benzene 60 ® d d - ®Chlorinated hydrocarbon - - - - ® Oil 20 ® ® ® d ®Chlorosulfuric acid (100%) 20 d d d - - phenol (<90%) 45 d d d - -Chromic acid, water solution(50%) 50 ® ® ® - - Orthophosphoric acid, fluid (<30%) 40 ® ® ® - -Chromic acid (20%) d d d ® - Orthophosphoricacid,fluid(>30%) 60 ® ® ® - -Chromosulfuric acid (20%) d d d - - potassium nitrate 60 ® ® ® - ®Citric, saturated fluid 60 ® ® ® ® ® potassium chloride 60 ® ® ® - ®Cresol, fluid (<90%) 45 d d d - - propane, fluid ® - - ® ®Copper sulphate, saturated fluid 60 ® ® ® ® d salt solution 40 ® ® ® ® ®Copper chloride, saturated fluid 60 ® ® ® ® d sea water 40 ® ® ® d ®Diesel 20 ® ® ® d ® sulphur dioxide (in all conditions) 40 ® ® ® d dphotographic developers 40 ® ® ® d ® sulphuric acid, fluid (<40%) 40 ® ® ® d -Dextrin (18%) 20 ® ® ® d ® sulphuric acid, fluid (40%-80%) 60 ® ® ® - -Ester - - - - ® sulphuric acid, fluid (80%-90%) 40 ® ® ® - -Ethanol (<40%) 40 ® ® ® d ® sulphuric acid, fluid (90%-96%) 20 ® ® ® - -Diethyl ether 20 - d d d ® Common salt solution (light) 40 ® ® ® ® ®Butyric acid 20 ® d d d ® Tartaric acid (10%) 60 ® ® ® ® ®

40 ® ® ® d ® Urine 40 ® ® ® ® ®Chlorofluorocarbon ® d d ® ® Water 60 ® ® ® ® ®Formaldehyde, fluid 30 ® ® ® d ® Xylene (100%) 20 - d d - ®Formic acid (<30%) 40 ® ® ® d - Zinc chloride, fluid (all kinds) 60 d ® ® d -Formic acid, concentrate 20 ® ® ® - - Zinc chloride, fluid (light) 60 ® ® ® d -

Marking: ® - plastic product is resistant to effect of chemicals in general installation conditionsd - plastic product is partially resistant to effect of chemicals in general installation conditions-–plasticproductisnotresistanttoeffectofchemicals

Page 60: TECHNICAL INFORMATION MANUALnyrupplast.dk/media/brochure/Evopipes_RG_EN.pdf · (natural gravity) systems. The pipes are flexible and preserve water tightness even in the most problematic

CONTACTS

Production and office

Jelgava,Latviaphone +371 630-943-00fax +371 630-943-01Langervaldes street 2a, Jelgava,LV-3002

Representative offices

Moscow, Russiaphone +7(495) 955-27-90fax +7(495) 955-27-90Hоlоdilnij pеrеulок 3, оffice 4301, Моscow

vilnus, Lithuaniaphone +370 69832116fax +370 52070910savanoriu pr.219, LT-02300, vilnius

[email protected]