table 8.2.2-1 reservoir routing - university of idaho · eak flow from 1930 m '1s to 1 148 m...

14
The storage-outflow function is calculated in the following table using the same method as i n Example-48.2.1) in the text ui h At - 2 hrs. for b example, for Q = 57 ma/s, 2s/At + Q = ((2 x 75 x 10 )/(2 x 3600) + 57 = 20,890 ms/s as shown In order to perform the level pool computations, a computer program given i n Table 8.2.2-1, was used. The input data is described in the READ statements (lines 9, 11, 12 and 13) and the input variables are described on lines 15 through 29. The input data for this problem is i n Table 8.2.2-2 and the output is in Table 8.2.2-3. The method is the same as that presented i n Example (8.2.1) in the text. The nitlal outflow is 57 ma/s, b sponding t o an initial storage of 75 x 10 ma. The reservoir reduces eak flow from 1930 m '1s to 1 148 m '/a and delays i t by 4 hours.

Upload: tranthien

Post on 06-Sep-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

The storage-outflow func t ion is ca lcu la ted i n the fol lowing table using t h e same method as i n Example-48.2.1) i n t h e t e x t u i h A t - 2 h r s . for b example , f o r Q = 57 m a / s , 2 s /A t + Q = ( ( 2 x 75 x 10 ) / ( 2 x 3600) + 5 7 = 20,890 m s / s as shown

I n o r d e r t o pe r fo rm t h e l e v e l poo l computations, a compute r program g iven i n T a b l e 8.2.2-1, was used. The i n p u t data is d e s c r i b e d i n t h e READ s ta tements ( l i n e s 9, 11, 12 and 13) and the input va r i ab l e s a r e described on l i n e s 15 th rough 29. The i n p u t data f o r t h i s problem i s i n T a b l e 8.2.2-2 and the o u t p u t is i n Table 8.2.2-3. The method is t h e same as t h a t p r e sen t ed i n Example (8.2.1) i n t h e t e x t . The n i t l a l o u t f l o w is 57 m a / s , b sponding t o an i n i t i a l s to rage of 75 x 10 ma. The r e s e r v o i r reduces

eak f low from 1930 m '1s t o 1 148 m '/a and delays i t by 4 hours.

Table 8.2.2-1 Program For Level Pool Reservoir R o u t i n g

PROGRAM SAMPLE5 ( INPUT, OUTPUT, TAPES-INPUT, TAPE^-OUTPUT) DIMENSION S(30),QS(30),Q(SO),SFUNC(30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I t

THIS PROGRAM IS FOR RESERVOIR LEVEL POOL ROUTING FOR PROBLEMS 8.2.1 THROUGH 8.2.6.

READ (5,101) SJO,DT,DTT,JSS,JNN,TPM FORHAT(3FlO.O,2I1O,F10*0) READ(5.102) (S(JS),JS=1,JSS) READ (5,102) (QS(JS),JS-~,JSS) READ (5,102) (Q(JN),JNm1,JNN) FORMAT(~FIO.~) *************************************************************

INPUT DATA C,ONV-CONVERSION FACTOR-1 SJO-INITIAL RESERVOIR STORAGE DT-ROUTING INTERVAL, MIN DTT-TIHE INTERVAL FOR HYDROGRAPH, HIN JSS-NUMBER OF VALUES DESCRIBING DISCHARGE-STORAGE RELATION JNN-NUMBER OF VALUES DESCRIBING INFLOW HYDROGRAPH TIN-TOTAL TIHE FOR ROUTING COMPUTATIONS, HIN S( JS 1-RESERV.OIR STORAGE QS(JS)-SPILLWAY DISCHARGE Q( JN)-RESERVOIR INFLOW

DT-DT.60. DTT=DTT*60. TI!4=TIM*60. NTIM-TIH/DT+1 WRITE( 6,200) FORMAT(SX,'LEVEL POOL ROUTING',//

+SX,'DISCHARGE-STORAGE RELATION1,//) WRITE(6.202) F o R M A T ( ~ X , 'STORAGE', 2 X , tDISCHARCEt ,2X, 'STORAGE FUNCTION', ) DO 50 JS-1, JSS SFUNC( JS)-2.*S( JS)/DT+QS( Js) WRITE(6,201) s( Js) 9 QS( JS) ,SFUNC( JS) CONTINUE FORMAT(SX,F12.O,2F1Oo2) SJ-SJO QINI -Q(I) WRITE (6,154) FORMAT(///~X, *TIHE(HfN) ',4X,'I(T) t,4X, 'I(T)+I(T+DT) ',1X,

+~~s(T)/DT-Q(T) ',1X, '2S(T+DT)/3T+Q(T+DT)t,3X, 'Q(T+DT) ' , I

DETERMINE INITIAL DISCHARGE GIVEN INITIAL RESERVOIR STORAGE

DO 30 J-1 ,JSS IF(SJO.LT.S( J+l 1 .AND.SJO.GE.S( J)) GO TO 35 CONTINUE CONTINUE QOUTJ-(QS( J+1 )-as( J) )*(SJO-S( J) )/(S( J+1 1-S( J) )+QS( J) T-0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PERFORM RESERVOIR ROUTING COMPUTATIONS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TI -0. DO 100 J-1 ,NTIM T=T+DT CALL INFLOW(JNN,QIN2,T,DTT,DT,Q) QT-QIN1 +QIN2 ST-2.*SJ/DT-QOUTJ SFJJ-QT+ST IF(J.EQ.1) WRITE(6.155) TI ,QIN1 ,QT,ST-,SFJJ,QOUTJ

DETERMINE DISCHARGE .

CALL STORFN~JSS,S~JJ,QOUTJJ,QS,SFUNC) SJ-(SFJJ-QOUTJJ)*DT/2. QOUT J- QOUT J J QINI -QIN2 TT=T/60. WRITE(6,155) TT,QIN1 ,QT,ST,SFJJ,QOUTJJ CONTINUE FORMAT(1X,F10.2,F10.2,1X,F12.2,2X,F12.2,5X,F12.2,2X,F12.2) STOP END SUBROUTINE STORFN(JSS,SFJJ,QOUTJJ,QS,SFUNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SUBROUTINE TO COMPUTE DISCHARGE FROM STORAGE RELATIONSHIP

DIMENSION QS(30), SFUNC(30) IF(SFJJ.LT.SFUNC(1)) SFJJ-SFUNC(1) IF(SFJJ.LT.SFUNC(1 1 ) GO TO 120 DO 100 JS-1, JSS-1 .

IF(SFJJ.LT.SFUNC(JS+l).AND.SFJJ.GE.SFUNC(JS)) GO TO 120 CONTINUE CONTINUE QOUTJJ=(QS(JS+~)-QS(JS))*(SFJJ-SFUNC(JS))/(SFUNC(JS+~)-SFUNC(JS))

+ +QS(JS)

T a b l e 8.2.2-1 (continued, page 3 )

RETURN E N D S U B R O U T I N E INFLOW(JNN,QINl,T,DTT,DT,QI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S U B R O U T I N E U S E S LINEAR INTERPOLATION T O D E T E R M I N E INFLOW AT D I F F E R E N T T I M E S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DIMENSION QI(50) TX-T TT-0.0 DO 10 JJ-1 ,JNN-1 IF(TX.GE.TT.AND.TX.LE.(TT+DTT)) G O T O 2 0 T T = T T + DTT C O N T I N U E QIN1 -QI( 1 ) G O T O 25 CON T I N U E QINl -(QI( JJ+1 )-QI(JJ))*(T-TT)/DTT+QI(JJ) CON T I N U E C O N T I N U E RETURN E N D

1 T a b l e 8.2.2-2 I n p u t Data f o r L e v e l P o o l R e s e r v o i r R o u t i n g

LEVEL POOL ROUTING 75000000. 120. 120. 5 10 1800.0 75000000. 81 000000. 87500000.100000000.11 0200000.

227. '

57. 519. 1330 2270; 60. 100. 232. * 300. 520. 1 31 0. 1930. 1460. 930. 650.

T a b l e 8.2.2-3 O u t p u t D a t a P r o m L e v e l P o o l R e s e r v o i r R o u t i n g

I DISCHARGE-STORAGE RELATION

STORAGE DISCHARGE STORAGE FUNCTION 75000000. 57.00 20890.33 81 000000. 227;OO 22727;OO . 87500000. 519.00 24824.56 100000000. 1330;OO 29107.78 1 1 0200000. 2270 -00 32881.11

The i n f l o w and o u t f l o w hydrographs a r e shown i n Cols . (2) and (3) of T a b l e 8.4.3 and p l o t t e d i n F i g u r e 8.4.3-1. Given X, t h e v a l u e of K i s spec i f i ed by Eq. (8.4.11)

I n t h i s c a s e , A t - 3 min P 180 sec . The numera to r i s computed i n Col. (4) of Tab l e 8.4.3; t h e denomina tor f o r X = 0.25 is shown i n Col. ( 5 ) . Figure 8.4.3-2 shows a p l o t of the numerator vs. t h e denominator of the expression f o r K. I t is n e a r l y a s t r a i g h t l i n e . S i m i l a r p l o t s f o r X - 0.2 and 0.3 a re shown i n F i g u r e s 8.4.3-3 and 8.4.3-4, r e s p e c t i v e l y ; b o t h a r e looped more than f o r X - 0.25. Choosing values f u r t h e r away from X = 0.25 produces even wider loops . The v a l u e o f X i s t h u s chosen t o be 0.25. The v a l u e of K is computed as. t he average of t h e values i n Col. (6) of t h e t ab le , which is the r a t i o of t h e numera to r t o t h e denomina tor o f Eq. (8.4.11) and i s K = 599 sec - 10 mins.

A s a check, t h e v a l u e s of K = 1 0 min, X - 0.25 are used i n the Muskingum r o u t i n g p rocedu re (C1 = -0.1 11 , C2 - 0.444, C3 = 0.667, i n i t i a l outflow - 0) and the outflow hydrograph obtained fo l lowing rout ing is shown i n Col. ( 7 ) of Tab l e 8.4.3 which is v e r y s i m i l a r t o t h e observed outflow hydrograph i n Col. (3 ) .

C O ~ : ( 1 ) ( 2 ) (31 ( 4 ) ( 5 ( 6 ) ( 7 ) Time Inflow Outflow N u n Denom K Routed Outflow

(rnin) (cf s ( c f s ) X = 0.25 ( s e c ) ( c f s )

Table 8 . 4 . 3 Determination of the Muskingum parameters K and X

The v a l u e s o f t h e Muskingum c o e f f i c i e n t s a r e g i v e n by Eqs..(8.4.8) t o (8.4.1 0) i n t h e t e x t , w i t h K - 0.24 h , X = 0.25. Because K < A t , i t i s necessary t o i n t e r p o l a t e t h e inf low hydrograph s o t h a t t h e va lues of C , , C2 and C a r e a l l p o s i t i v e and t h e c o m p u t a t i o n s a r e a c c u r a t e , A t = 0.25 h is s a t i s 3 a c t o r y f o r t h i s purpose.

. .

C, = (At - 2KX)/[ZK(1 - X ) + b t l

C1 + C2 + C3 = 0.21 3 + 0.607 + 0.180 = 1.000 a s r e q u i r e d .

The v a l u e s of t h e i n f l o w hydrograph a r e g i v e n i n Column ( 3 ) o f Tab le 8.4.4 where t h e v a l u e s a t 0 , 0.5, 1.0, 1.5 h r a r e g i v e n i n t h e problem d e s c r i p t i o n and t h e remainder obtained by l i n e a r in te rpo la t ion .

The computation is performed using Eq. (8.4.7) i n t h e t e x t .

For example, f o r j -1, Q1 = 739 c f s a s s p e c i f i e d i n t h e problem d e s c r i p t i o n and

= 825 c f s

a s shown i n Columns (4) t o ( 7 ) of t h e t a b l e . S u c c e e d i n g c a l c u l a t i o n s a r e performed i n t h e same way. The inflow and outf low hydrographs a r e p lo t t ed i n F i g u r e 8.4.4 where i t c a n be s e e n t h a t t h e r o u t i n g is e s s e n t i a l l y a t r a n s l a t i o n of t h e f lood wave along t h e channel i n t h i s example.

If A t = 0.5 h r is used , t h e v a l u e s of t h e c o e f f i c i e n t s a r e C1 = 0.442, C2 - 0.721. C3 = -0.163. These c o e f f i c i e n t s . w i t h C g n e g a t i v e , c a u s e an inaccuracy i n t h e c a l c u l a t i o n t h a t leads a s l i g h t i n c r e a s e i n discharge a s t h e f l o w p a s s e s down t h e channel . I n the a b s e n c e o f l a t e r a l i n f l o w along t h e c h a n n e l , t h e d i s c h a r g e c a n n o t p h y s i c a l l y i n c r e a s e i n t h i s way s o t h e value of A t = 0.25 h r s was chosen f o r t h i s s o l u t i o n a s descr ibed previously.

Table 8 .4 .4 Flow routing i n a stream channel by the Muskingum method. The in f low hydrograph g iven i n the problem has been l i n e a r l y interpolated a t 0.25 hour time in terva l s .

C O ~ : ( 1 ) ( 2 ( 3 ) ( 4 ) (5 ) ( 6 ) (7

Time T i m e Inflow C C Outflow 1 ( h r ) 1ndex.j ( c f s ) 0 .213 0.687 O . I % O ( c f s )

Figure 8.4.3-3. Trial curve. for determination of Muskingum parameters Determrnation of K

Figure 8.4.3-4. Trial curve for determination of Muskingum parameters.

Figure 8.4.3-1.lnflow and Outflow Hydrographs

Figure 8.4,.3-2. Final curve for determination of Muskingum parameters

Determination of. K X - Q 2 b

(a ) The major advantages of t h e lumped o r hydrologic rou t ing methods a r e t h a t they a r e s imple and have been incorporated i n t o var ious r a i n f a l l - runoff models such as t h e U.S. Army Corps of Engineers HEC-1 computer pro- gram. Hydrologic r o u t i n g methods o n l y r e q u i r e lumped s y s t e m p a r a m e t e r s , e.g., t h e Muskingum method o n l y r e q u i r e s K and X f o r t h e channe l r each . Disadvantages of t h e hydrologic rou t ing methods include t h e f a c t t h a t t h e d e s c r i p t i o n of t h e process does not consider f l o w r a t e , ve loc i ty , and depth a s d i s t r i b u t e d v a r i a b l e s , id=., f u n c t i o n s of space . L i t t l e u s e i s made of t h e f u n d a m e n t a l p r i n c i p l e s of c o n s e r v a t i o n of mass and energy. The d i s -

advantages of the lumped method a r e ac tua l ly advantages of the d i s t r i bu t ed rout ing methods. Hydrologic methods require determination of the flowrate and water s u r f a c e e l e v a t i o n as s e p a r a t e calculations, whereas d i s t r i b u t e d methods simultaneously compute f lowrates and water surface elevations. On the other hand, the d is t r ibuted methods, especial ly the full-dynamic model, have the disadvantage t h a t they a r e more d i f f i c u l t t o use and require some knowledge of numerical methods such a s f i n i t e difference techniques.

(b) Limitations of the kinematic wave method stem from the fact that the loca l and convective accelerat ion and pressure terms a r e neglected i n t he momentum equation, s o t h a t backwater e f f e c t s or downstream disturbances a r e not considered i n the computations. The f r i c t i o n slope is taken as Sf = S,, which neglects the loca l and convective acceleration and pressure terms. The flood wave p r o p e r t i e s are desc r ibed p r i m a r i l y by t h e equation of continuity, describing the water movement exclusive of the influence of mass and force. In dynamic wave routing these quant i t ies a r e included.

(c) The kinematic wave could be j u s t i f i e d f o r applicat ions where the channels a r e f a i r l y steep and downstream d i s t u r b a n c e s cannot propagate upatrtrrm.