t-beam & rectangular beam(3sections)_final

Upload: nsureshbabu

Post on 03-Apr-2018

244 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    1/23

    esign of Beams

    rade of concrete M 25 =

    ear Cover (cc) 32 mm =

    rade of Steel Fe 415 pt & pc,max =

    Moment Shear

    Mu Vu Leff bw D bf Df d Pt Pc

    kN m kN mm mm mm mm mm mm mm mm mm kN m % % No dia

    200.00

    Size of beam

    450 7501 B1 Simply 10000

    Support 750.00 230.00

    800.00

    1.127 0.000 6 2532 40.0 710.0 782.62 Singly 3.306

    25

    6 25

    Dia

    of

    bar

    cc

    pt,min

    Type of

    Section

    Mu,limMu/bd

    2

    N/mm2

    16

    161200 100

    450

    16

    pt,limit

    450 100

    % of Steel

    Requried

    T

    Reinforc.o

    Beam Section

    Design Forces

    Type of

    Beam

    40.0 710.0 0.9813.527Singly

    215.00 100Support

    Span

    900.00 640.0 Doubly 3.967

    0.000

    1.346 0.160

    32

    32 710.0

    1339.49

    782.62

    TITLE

    1.194%

    0.205%

    4.000%

    d'

    Eff.

    depth

    Type1

    PROJECT

    DESIGN OF T & RECTANGULAR BEAMS

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    2/23

    1.0 Example 1 :Design the T-Beam for the following parameters :

    bf = Df =

    bw = d =

    fck = N/mm2

    fy = N/mm2

    Mu =

    Df/d = 100/300 =

    3xumax/7d < < xumax/d

    Mulim = 0.3616 fckbw xumax (d - 0.416xumax) + 0.4467 fck(bf- bw) yf(d - yf/2 )

    xumax = 0.5313 d = 0.5313 x 300 = mm

    yf = 0.15 xumax + 0.65 Df = 88.9085 mm

    Mulim = kNm

    Mu < Mulim Hence designed as singly reinforced section.

    Location of N.A

    When xu = Df , Moment of Resistance Mu1 = 0.3616 fckbfDf(d -0.416 Df)

    Mu1 = kNmMu < Mu1, N.A lies within the flange .( xu < Df)

    Hence designed as a rectangular beam of width b =bf

    Method - 1 :

    Area of tension reinforcement ( Ast )

    Ast = = mm2

    Method - 2 :

    Depth of N.A (xu) Mu = 0.3616 fckbfxu (d - 0.416xu)

    xu = = 87.33 mm < Df

    Ast = 0.3616 x fckx bf x xu x 1.15 = mm2

    2.0 Example 2 :

    Design the T-Beam for the following parameters

    0.2277

    3489.45

    CL. NO. T - BEAM DESIGN CALCULATIONS

    250

    kNm

    200

    mm 100 mm

    300 mm

    DATE CHECKE

    RE

    Yugasoft

    PROJECT

    TITLE REVISION

    DESIGNE

    MP

    DOCUMENT. NO.

    1200

    20

    200

    mm

    DATE

    0.33

    Df/d

    fy

    0.5313

    3488.26

    256.8583

    224.2498

    159.39

    2

    6.411202.1

    dbf

    Md

    fck

    u

    dbdbf

    M4.611

    f

    f0.5f2

    fck

    u

    y

    ck

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    3/23

    CL. NO. T - BEAM DESIGN CALCULATIONS

    DATE CHECKE

    RE

    Yugasoft

    PROJECT

    TITLE REVISION

    DESIGNE

    MP

    DOCUMENT. NO. DATE

    bf = mm Df =bw = mm d = mm

    fck = N/mm2

    fy = N/mm2

    Mu = kNm d' = mm

    Df/d = 100/200 = 0.5 > xumax/d

    Mulim = 0.3616 fckbfxumax (d - 0.416xumax) xumax = 0.456 d

    = kNm =

    Mu > Mulim Hence designed as doubly reinforced section.

    Depth & location of N.A :

    xu = xumax = 91.2 mm < Df N.A lies within the flange.

    Area of tension reinforcement ( Ast )

    = +

    fy(d-d')

    = mm2

    Area of compression reinforcement ( Asc )

    = esc = 0.0035 ( 1 - d'/xumax )

    = 0.0035 ( 1 - 30/91.2 )

    == mm

    2fsc = N/mm

    2

    fcc = N/mm2

    3.0 Example 3 :

    Design the T-Beam for the following parameters

    bf = Df =

    bw = d =

    fck = N/mm2

    fy = N/mm2

    Mu =

    1200 100

    310 kNm

    50020

    200 200

    30135

    1200 mm 100

    (Mu - Mulim) x 1.15

    (0.456)

    91.2mm

    Mu - Mulim

    (fsc-fcc)(d-d')

    25 415

    Ast

    1911.48

    0.3616 x fckx bf x xumax x 1.15

    fy

    102.56

    200 mm

    Asc

    395.13

    8.92

    0.00235

    mm

    300 mm

    mm

    128.266

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    4/23

    CL. NO. T - BEAM DESIGN CALCULATIONS

    DATE CHECKE

    RE

    Yugasoft

    PROJECT

    TITLE REVISION

    DESIGNE

    MP

    DOCUMENT. NO. DATE

    Df/d = 100/300 =

    3xumax/7d < Df/d < xumax/d

    Mulim = 0.3616 fckbw xumax (d - 0.416xumax) + 0.4467 fck(bf- bw) yf(d - yf/2 )

    xumax = 0.4791 d = 0.4719 x 300 = mm

    yf = 0.15 xumax + 0.65 Df = mm

    Mulim = kNm

    Mu < Mulim Hence designed as singly reinforced section.

    Location of N.A

    When xu = Df , Moment of Resistance Mu1 = 0.3616 fckbfDf(d -0.416 Df)

    Mu1 = kNm

    Mu > Mu1, N.A lies outside the flange . xu > Df

    When xu = 7Df/ 3 ,

    Moment of Resistance Mu2 = 0.3616 fck bf (7Df/3) d-0.416 (7Df/3)

    Mu2 = kNm > 310 kNm

    Mu < Mu2 Non Uniform stress block in flange. xu < 7Df/3

    ( Rectangular cum parabolic stress block )

    Depth of N.A ( Xu)

    Mu = 0.3616 x f ckx bw x xu x (d-0.416xu)+ 0.4467 x fckx (bf- bw) x yfx (d - yf/ 2)

    a = 0.416 + 0.0225 k k = (21/34) * ((bf/bw) -1) = 3.088

    b = - (1+ 0.3 k - 0.195 (Df/d) )

    c = M_k + 0.4225 k (Df/d)2

    - 1.3 k (Df/d)M_k = =

    xu/d = =

    xu = 142.8956 mm < 143.73 mm (xumax)

    yf = 0.15 xu + 0.65 Df = mm < Df Hence O.K

    Area of tension reinforcement ( Ast )

    = ( 0.3616 fckbw xu + 0.4467 fck(bf- bw)yf) 1.15

    = mm2

    4.0 Example 4 :

    Design the T-Beam for the following parameters

    bf = mm Df =

    bw = mm d = mm

    fck = N/mm2

    fy = N/mm2

    Mu = kNm d' = mm

    Df/d = 100/300 =

    0.33

    (0.4791)

    310.581

    86.5595

    0.3616 x fckx bw x d1.905Mu

    Ast

    86.434

    (0.2053)

    1200 100

    50

    200 300

    20 250

    258

    0.33

    mm

    143.73

    364.798

    280.3123

    0.476319

    fy

    3390.729

    a

    acbb

    2

    42

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    5/23

    CL. NO. T - BEAM DESIGN CALCULATIONS

    DATE CHECKE

    RE

    Yugasoft

    PROJECT

    TITLE REVISION

    DESIGNE

    MP

    DOCUMENT. NO. DATE

    3xumax/7d < Df/d < xumax/d

    Limiting Moment of Resistance : ( Mulim )

    Mulim = 0.3616 fckbw xumax (d - 0.416xumax) + 0.4467 fck(bf- bw) yf(d - yf/2)

    xumax = 0.5313 d = 0.5313 x 200 = mm

    yf = 0.15 xumax + 0.65 Df = mm

    = kNm

    Mu > Mulim Hence designed as doubly reinforced section.

    Depth of N.A location

    xu = xumax = 159.39 mm > Df N.A lies outside the flange. ( xu,max < 7Df/3 )

    Area of tension reinforcement ( Ast )

    = ( 0.3616 fckbw xu,max + 0.4467 fck(bf- bw)yf) 1.15

    = mm2

    Area of compression reinforcement ( Asc )

    = esc = 0.0035 ( 1 - d' /xumax )

    = 0.0035 ( 1 - 50/159.39 )

    =

    = mm2

    fsc = N/mm2

    fcc = N/mm2

    5.0 Example 5 :

    Design the T-Beam for the following parameters

    bf = Df =

    bw = d =

    fck = N/mm2

    fy = N/mm2

    Mu =

    Df/d = 90/450 = < 3xumax/ 7d

    Limiting Moment of Resistance : ( Mulim )

    Ast

    4735.32

    Asc Mu - Mulim

    1200 mm

    8.92

    0.2277 0.5313

    253.858

    fy

    (fsc-fcc)(d-d')

    0.0024

    21.906 217.39

    90 mm

    200 mm 450 mm

    (0.2053 )

    30 415

    654.5 kNm

    0.2

    88.9085

    159.39

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    6/23

    CL. NO. T - BEAM DESIGN CALCULATIONS

    DATE CHECKE

    RE

    Yugasoft

    PROJECT

    TITLE REVISION

    DESIGNE

    MP

    DOCUMENT. NO. DATE

    Mulim = 0.3616 fckbw xumax (d - 0.416xumax) + 0.4467 fck(bf- bw) Df(d - Df/2)xumax = 0.4791 d = 0.4719 x 450 = mm

    Mulim = kNm

    Mu < Mulim Hence designed as singly reinforced section.

    Location of N.A

    When xu = Df, Moment of Resistance Mu1 = 0.3616 fckbfDf(d -0.416 Df)

    Mu1 = kNm

    Mu > Mu1, N.A lies outside the flange . xu > Df

    When xu = 7Df/3 ,

    Moment of Resistance Mu2 = 0.3616 fckbw (7Df/3) x (d - 0.416 (7Df/3))

    + 0.4467 x fckx (bf- bw) x Dfx (d - Df/2)

    = kNm > 654.5 kNm ( Mu)

    Mu > Mu2 Uniform stress block in the flange. xu > 7Df/3

    Area of tension reinforcement ( Ast )

    Method - 1:

    Ast =

    = mm2

    Method - 2:

    Mu,flange = 0.4467 x fckx (bf- bw) x Dfx (d - Df/ 2)

    = kNm

    Mu,web = Mu - Muflange

    = kNm

    Ast =

    = mm2

    Method - 3:

    653.69

    483.35

    4612.731

    657

    488.467

    166.034

    215.6

    4612.7308

    )2/(

    15.16.411

    5.02

    fy

    uflange

    w

    w

    uweb

    cky

    ck

    Ddf

    Mdb

    db

    M

    ff

    f

    y

    fwfckw

    ff

    w

    f

    w

    u

    cky

    ck

    f

    Dbbfdb

    d

    D

    d

    D

    b

    bf

    dbM

    fff ck

    15.1)(4467.021

    2

    4467.06.411

    5.02

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    7/23

    CL. NO. T - BEAM DESIGN CALCULATIONS

    DATE CHECKE

    RE

    Yugasoft

    PROJECT

    TITLE REVISION

    DESIGNE

    MP

    DOCUMENT. NO. DATE

    Depth of N.A ( Xu)

    Mu = 0.3616 f ckbw xu (d - 0.416xu)+ 0.4467 fck(bf- bw) Df (d - Df/ 2)

    xu =

    xu = mm > 7Df/3 ( 210mm )

    Uniform stress block in the flange & xu > 7Df/3

    = + 0.4467 fck(bf- bw) Df) 1.15

    = mm2

    6.0 Example 6 :

    Design the T-Beam for the following parameters

    bf = mm Df = mm

    bw = mm d = mm

    fck = N/mm2

    fy = N/mm2

    Mu = kNm d' = mm

    Df/d = 90/450 = < 3xumax/7d

    Limiting Moment of Resistance : ( Mulim )

    Mulim = 0.3616 fckbw xumax (d - 0.416xumax)+ 0.4467 fck(bf- bw) Df (d - Df/2 )

    xumax = 0.479 d = 0.479 x 200 = mm

    Mulim = kNm

    Mu > Mulim Hence designed as doubly reinforced section.

    (0.2053)

    215.6

    700 50

    0.2

    90

    200 450

    30 415

    211.403

    Ast

    4613.16

    657.01

    fy

    ( 0.3616 fckbw xu

    1200

    d

    D

    d

    D

    b

    b

    dbf

    Md

    ff

    w

    f

    wck

    u 2134

    21

    3616.0664.111202.1

    2

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    8/23

    CL. NO. T - BEAM DESIGN CALCULATIONS

    DATE CHECKE

    RE

    Yugasoft

    PROJECT

    TITLE REVISION

    DESIGNE

    MP

    DOCUMENT. NO. DATE

    Depth of N.A location

    xu = xumax = 215.6 mm > Df N.A lies outside the flange. ( xu,max > 7Df/3 )

    Area of tension reinforcement ( Ast )

    = ( 0.3616fckbw xumax + 0.4467 fck (bf- bw)Df ) 1.15

    +

    = mm2

    Area of compression reinforcement ( Asc )

    = esc = 0.0035 ( 1 - d'/xumax )

    = 0.0035 ( 1 - 50/215.6 )

    =

    = mm2

    fsc = N/mm2

    fcc = N/mm2

    Asc

    4936.236Ast

    Ast

    fy

    0.002688

    319.32 349.95

    13.38

    Asc Mu-Mulim

    (fsc-fcc)(d-d')

    (Mu-Mulim) X 1.15

    fy(d-d')

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    9/23

    DATE

    FERENCES

    D

    06-Oct-09

    DATE

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    10/23

    DATE

    FERENCES

    D

    06-Oct-09

    DATE

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    11/23

    DATE

    FERENCES

    D

    06-Oct-09

    DATE

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    12/23

    DATE

    FERENCES

    D

    06-Oct-09

    DATE

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    13/23

    DATE

    FERENCES

    D

    06-Oct-09

    DATE

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    14/23

    DATE

    FERENCES

    D

    06-Oct-09

    DATE

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    15/23

    DATE

    FERENCES

    D

    06-Oct-09

    DATE

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    16/23

    GeneralThe slab portion deforming with the rectangular portion of the beam increases the moment

    resisting capacity of the beam where it is in compression.where it is in tension along with

    the beam,such as at supports in continuous beams,it cracks and only tensile reinforcement

    provided are effective in tension and compressive force is taken by web(rectangular portion)

    reducing the beam to a rectangular one.

    Structurally,flanged beams may be of two types- T beams & L beams.If slab is

    extending on both sides of a beam it is called a T-beam;but if the slab is only on one side

    it is an L-beam.

    Which portion of the slab will work with the beam depends on span of beam,

    width of slab on adjacent sides,breadth of beam,thickness of slab and slab reinforcement at the

    junction of beam and slab.

    For ready reference the code defines the effective width of flange (slab) as follows:

    a)

    i) For T-beam, bf = l0 + bw + 6Df

    6

    ii) For L-beam, bf = l0 + bw + 3Df

    12

    bf = Effective width of flange for T or L-beam

    l0 = distance between sections of zero moments in a beam

    bw = breadth of web,and

    Df = Thickness of slab

    b) If the beam is an isolated one,i.e,only one beam has been provided in the floor/roofsystem,the effectve width of flange shall be as follows:

    i) For T-beam, bf = + bw

    ii) For L-beam, bf = + bw

    Note: lo = 0.7 leff

    In case,if the main reinforcement of a slab is parallel to the beam,the transverse reinforcement

    of slab at the junction shall not be less than 60% of the main reinforcement at midspan of the

    slab extending into it upto atleast quarter span of beam,to have monolithic behaviour.

    Location of Neutral Axis

    For a Singly Reinforced Section: (Mu

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    17/23

    DOCUMENT. NO. DATE DESIGNED DATE

    MP

    Yugasoft

    PROJECT

    Design of T- Beam Technical NotesTITLE REVISION

    CL. NO. DESIGN CALCULATIONS

    DATEDATE CHECKED

    REFERENCES

    415

    xumax(TABLE B of SP16)

    Case 1: When the Neutral Axis (N.A) lies within the flange (xu

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    18/23

    DOCUMENT. NO. DATE DESIGNED DATE

    MP

    Yugasoft

    PROJECT

    Design of T- Beam Technical NotesTITLE REVISION

    CL. NO. DESIGN CALCULATIONS

    DATEDATE CHECKED

    REFERENCES

    =

    = Pt,lim x bf x d +

    100

    =

    415

    3 x xumax

    Case 2: When the Neutral Axis (N.A) lies outside the flange

    & 3/7 xu lies within the flange

    Rectangular cum Parabolic portion of stress block is acting on the flange.Non Uniform

    stress block is acting on the flange.

    3 x xumax

    =

    +

    Cuw = 0.361 x fckx bw x xumax yfmax = 0.15 xumax +0.65 DfCuf = 0.446 x fckx (bf - bw) x yf

    Cu = 0.361 x fckx bw x xumax + 0.446 x fckx (bf- bw) x yfTu = 0.87 x fy x Ast,w + 0.87 x fy x Ast,f

    Mulim = Muw + Muw

    Mulim = Cuw x zw + Cufxzf= 0.361 x fckx bw x xumax x (d-0.446xumax)+ 0.446 x fck x (bf - bw) x yf

    .

    Ast

    Df

    d 7d

    fy

    Mu0.87 x fy x (d - 0.416 xu )

    Asc

    Mu -Mulim(fsc - fcc) x (d - d')

    For Doubly Reinforced Section

    Ast Mu -Mulim0.87 x fy x (d - d')

    250 500

    0.2276 0.2053 0.19547

    Page 18 of 23

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    19/23

    DOCUMENT. NO. DATE DESIGNED DATE

    MP

    Yugasoft

    PROJECT

    Design of T- Beam Technical NotesTITLE REVISION

    CL. NO. DESIGN CALCULATIONS

    DATEDATE CHECKED

    REFERENCES

    Mulim = 0.361 x fckx bw x xu x (d-0.446xumax) + 0.446 x fck x (bf - bw) x yf

    = 0.361 x xumax/d x (1- 0.416 x xumax/d)

    fckx bw x d + 0.223 x (bf/bw-1) x (yf/d) x (2-(yf/d))

    Mur = Cuw x zw + Cufxzf= 0.361 x fckx bw x xu x (d-0.446xumax)+ 0.446 x fck x (bf - bw) x yf x (d-yf/2)

    Equating Tu = Cu

    0.87 x fy x Ast = 0.361 x fckx bw x xu + 0.446 x fckx (bf- bw) x yf

    = 0.361 x fckx bw x xu +0.446 fck (bf - bw)yf

    0.87 x fy

    0.361 x fckx bw x xumax + 0.446 x fckx (bf- bw) x yf= 0.87 x fy 0.87 x fy

    +

    = 0.87 x fy 0.87 x fy x (d - yf/2)

    a = 0.416 + 0.0225 k

    b = 1+ 0.3 k- 0.195 (Df/d)

    c = M_k + 0.4225 k (Df/d)2 - 1.3 k (Df/d)

    xu/d =

    k = (21/34) * ((bf/bw) -1)

    M_k =

    Case3: When the Neutrl Axis (N.A) lies outside the flange

    & 3/7 xu lies outside the flange

    Uniform stress block in flange.

    =

    Mulim

    Ast,lim

    Ast,lim

    Mu_flange

    Mu

    Ast

    Mu_web

    0.3616 x fckx bw x d

    a

    acbb

    2

    42

    Page 19 of 23

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    20/23

    DOCUMENT. NO. DATE DESIGNED DATE

    MP

    Yugasoft

    PROJECT

    Design of T- Beam Technical NotesTITLE REVISION

    CL. NO. DESIGN CALCULATIONS

    DATEDATE CHECKED

    REFERENCES

    +

    3 x xumax

    Cuw = 0.361 x fckx bw x xumaxC

    uf= 0.446 x f

    ck

    x (bf- b

    w)

    x Df

    Cu = 0.361 x fckx bw x xumax + 0.446 x fckx (bf- bw) x DfTu = 0.87 x fy x Ast,w + 0.87 x fy x Ast,f

    Equating Cu = Tu ie Cuw + Cuf = Tuw + Tuf

    xu = 0.87 x fy x Ast- 0.446 x fck(b f-bw) x Df

    0.361 fckbw

    or

    xu =

    Mulim = Muw + Muw

    Mulim = Cuw x zw + Cufxzf= 0.361 x fckx bw x xumax x (d-0.446xumax)+ 0.446 x fck x (bf - bw) x Df

    .

    Mulim = 0.361 x fckx bw x xu x (d-0.446xumax) + 0.446 x fckx (bf- bw) x Df

    = 0.361 x xumax/d x (1- 0.416 x xumax/d) +

    fckx bw x d 0.223 x (bf/bw-1) x (Df/d) x (2-(Df/d))

    Mur = Cuw x zw + Cufxzf= 0.361 x fckx bw x xu x (d-0.446xumax)+ 0.446 x fckx (bf- bw) x Dfx (d-Df/2)

    Astf =

    0.87 x fy

    Astw =

    Ast =

    Equating Tu = Cu

    0.87 x fy x Ast = 0.361 x fckx bw x xu + 0.446 x fckx (bf- bw) x yf

    Df

    d d

    Mulim

    0.446 fck(bf-bw)Df

    0.87 x fy x Astw

    0.361 x fckx bw

    w

    ff

    w

    f

    w

    u

    cky

    ck db

    d

    D

    d

    D

    b

    bf

    db

    M

    ff

    fck

    .021223.0

    6.411

    5.02

    dbdbf

    )M(4.611

    f

    f0.5w2

    ck

    u

    y

    ck

    w

    uflangeM

    Page 20 of 23

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    21/23

    DOCUMENT. NO. DATE DESIGNED DATE

    MP

    Yugasoft

    PROJECT

    Design of T- Beam Technical NotesTITLE REVISION

    CL. NO. DESIGN CALCULATIONS

    DATEDATE CHECKED

    REFERENCES

    0.361 x fckx bw x xumax + 0.446 x fckx (bf - bw) x Df= 0.87 x fy 0.87 x fy

    +

    = 0.87 x fy 0.87 x fy x (d - Df/2)

    Determination of fsc corresponding to strain ( sc )

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    22/23

    DOCUMENT. NO. DATE DESIGNED DATE

    MP

    Yugasoft

    PROJECT

    Design of T- Beam Technical NotesTITLE REVISION

    CL. NO. DESIGN CALCULATIONS

    DATEDATE CHECKED

    REFERENCES

    Eqn of Parabola

    @ x = 0.002 - esc , y = gcc

    y = x2

    or

    Note

    If the amount of tension reinforcement required to resist the Design moment Mu is less

    than the minimum reinforcement,then the minimum reinforcement (Ast,min) is provided for

    creep,shrinkage,thermal and other environmental requirements irrespective of the

    strength requirement.

    More over for singly reinforced sections Pt,provided < pt,limit (under Reinforced Section)

    For doubly Reinforced section,the area of tension and compression reinforcement Cl 26.5.1.1 b)

    provided should be less than the maximum reinforcement to avoid practical difficulty 26.5.1.2 Note

    in placing and compacting concrete. IS 456:2000

    3 Transverse or Shear Reinforcement

    Nominal Shear Stress tv = Cl 40.1

    Under no circumstances even with shear reinforcement the nominal shear stress

    in beamstv shall exceed maximum shear stress (tc,max) given in Table 20 of Cl 40.2.3IS 456:2000 for different grades of concrete. IS 456:2000

    Grade of concrete M15 Table 20

    IS 456:2000

    a) If tv > tc,maxThe section is to be redesigned by changing the value of b and d

    b)If tv < tc given in Table 19 of IS 456:2000Minimum shear reinforcement shall be provided in accordance with 26.5.1.6

    Design shear strength of concrete

    1

    Table 19 Design Shear Strength of Concrete tc N/mm2

    M15

    0.28

    0.35

    0.46

    0.54

    0.6

    0.64

    0.68

    0.71

    0.71

    0.71

    0.71

    0.71

    0.71

    M25 M30 M35

    0.446fck

    (0.002)2

    Vu/ bd (N/mm2)

    M40

    tc,max2.5 2.8 3.1 3.5 3.7 4

    N/mm2

    M20

    Grade of concrete

    pt M20 M25 M30 M35 M40

    0.25 0.36 0.36 0.37

    0.15 0.28 0.29 0.29 0.29 0.30.37 0.38

    0.5 0.51

    0.59 0.6

    0.50 0.48

    0.75 0.56 0.57 0.59

    0.49 0.5

    1.25 0.67 0.7 0.71

    1.00 0.62 0.64 0.66 0.67 0.68

    0.73 0.74

    0.78 0.791.50 0.72

    1.75 0.75 0.78 0.8

    0.74 0.76

    2.25 0.81 0.85 0.88

    0.82 0.84

    0.86 0.88

    0.9 0.92

    0.93 0.95

    0.96 0.98

    2.50 0.82

    2.75 0.82 0.9 0.94

    0.88 0.91

    0.99 1.013.00 0.82 0.92 0.96

    2.00 0.79 0.82 0.84

    2

    2)002.0(

    )002.0(

    446.0sc

    ck

    cc

    fg e

    2

    002.01446.0

    scckcc fg

    e

    t 6/)151(8.085.0 ckc ft

    ck

    p

    f

    89.6

    8.0

    Page 22 of 23

  • 7/29/2019 T-BEAM & Rectangular Beam(3sections)_final

    23/23

    DOCUMENT. NO. DATE DESIGNED DATE

    MP

    Yugasoft

    PROJECT

    Design of T- Beam Technical NotesTITLE REVISION

    CL. NO. DESIGN CALCULATIONS

    DATEDATE CHECKED

    REFERENCES

    c) tv > tc given in Table 19 of IS 456:2000, Shear reinforcement

    shall be provided to carry a stress equal to tv - tc

    Spacing of Shear Reinforcement (Sv)

    Cl 26.5.1.6

    When tv < tc Sv = IS 456:2000

    tv > tc Sv = Cl 40.4 a

    IS 456:2000

    Asv - Total Cross Sectional area of stirrup legs(mm2)

    fy - Characteristic strength of the stirrups 415 N/mm2

    Maximum Spacing of Shear Reinforcement (Sv,max)

    Cl 26.5.1.5 of IS 456:2000 stipulates that the maximum spacing of Shear reinforcement

    measured along the axis of the member shall not be more than 0.75d or 300mm

    whichever is less,where d is the effective depth of the section.

    Provide Shear Reinforcement at a spacing in such a way that it should not exceed

    the minimum of Sv and Sv,max

    4 Deflection Check

    The Vertical deflection limits may generally be assumed to be satisfied ,provided Cl 23.2.1

    that the span to depth ratio is not greater than the value obtained as below IS 456:2000

    Allowable L/d = Basic Value x Span Factor x MFt x MFc

    a) Basic Values of L/d

    Cantilever Simply Supported Continuous Cl 23.2.1 a

    IS 456:2000

    b) Span Factor = 1 Cl 23.2.1 b

    IS 456:2000

    c) Modification factor for Tension Reinforcement (MFt)

    Cl 23.2.2c

    MFt = 2 & Fig 4

    IS 456:2000

    Service stress in steel fs = 0.58f y

    Ast-Provided

    d) Modification factor for Compression Reinforcement (MFc)

    MFc = 1 + pc 1.5 Cl 23.2.1 d

    3 + pc & Fig 5

    pc - % of Compression Reinforcement IS 456:2000

    Note

    For Spans (Cantilever ) above 10m the deflection calculation should be made.

    e) Reduction factors for ratios of span to effective depth for flanged beams (F3) 0.8

    F3 = 0.8 + 2/7 (bw / bf- 0.3)

    The final span/depth ratio allowed is (Basic ratio) x (F1) x (F2) x (F3)

    7 20 26

    Ast-Required

    10

    Span (m)

    1

    0.225 + 0.00322 fs + 0.625 log10 (pt)

    b

    Af svy

    4.0

    87.0

    b

    Af

    cv

    svy

    )(

    87.0

    tt