t 2g states

36
t 2g states Crystal Field Effects e g states

Upload: terah

Post on 16-Mar-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Crystal Field Effects. e g states. t 2g states. Crystal Field Effects in CTM. als3ti4.rcn. rcn2 als3ti4. als3ti4.rcf. MODIFY. als4ti4a.rcg. rcg2 als4ti4a. als4ti4a.m14. als4ti4a.rac. rac2 als4ti4a. als4ti4a.ora. als3ti4.plo. plo2 als3ti4. als3ti4.ps. Crystal Field Effects in CTM. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: t 2g  states

t2g states

Crystal Field Effects

eg states

Page 2: t 2g  states

Crystal Field Effects in CTM

als3ti4.rcn

als4ti4a.rcg

als3ti4.rcf

als4ti4a.m14

rcn2 als3ti4

rcg2 als4ti4a

MODIFY

als3ti4.plo plo2 als3ti4 als3ti4.ps

als4ti4a.rac rac2 als4ti4a als4ti4a.ora

Page 3: t 2g  states

als4ti4a.rcg10 1 0 00 4 4 1 1 SHELL00000000 SPIN00000000 INTER8 10 1 0 14 2 4 1 1 SHELL03000000 SPIN03000000 INTER8 0 80998080 8065.47800 0000000 1 2 1 12 1 10 00 9 00000000 0 8065.4790 .00 1P 6 S 0P 5 D 1Ti4+ 2p06 3d00 1 0.0000 0.0000 0.0000 0.0000 0.0000HR99999999Ti4+ 2p05 3d01 6 464.8110 3.7762 0.0322 6.3023 4.6284HR99999999 2.6334Ti4+ 2p06 3d00 Ti4+ 2p05 3d01 -0.26267( 2P//R1// 3D) 1.000HR 38-100 -99999999. -1  

Change the first line in als4ti4a.rcf

Crystal Field Effects in CTM

Page 4: t 2g  states

als4ti4a.racY % vertical 1 1 butler O3 to Oh endchain actor 0+ HAMILTONIAN ground PRINTEIG OPER HAMILTONIAN BRANCH 0+ > 0 0+ 1.0 OPER SHELL2 BRANCH 4+ > 0 0+ 7.00 actor 0+ HAMILTONIAN excite PRINTEIG OPER HAMILTONIAN BRANCH 0+ > 0 0+ 1.0 OPER SHELL2 BRANCH 4+ > 0 0+ 7.00 actor 1- plane transi PRINTTRANS oper MULTIPOLE branch 1- > 0 1- 1.000RUN

 

Always the same rac-file in Oh symmetry

Crystal Field Effects in CTM

Page 5: t 2g  states

0 7 = 2.13 eV

Crystal Field Effects in CTM

Page 6: t 2g  states

als4ti4a.oraTRANSFORMED MATRIX for TRIAD 2 ( 0+ 1- 1- 0) (1*7) DIM :1:3:3 ACTOR PLANE ---- MATRIX ---- PRINTTRANS BRA/KET : 461.1850 461.9710 463.0501 463.5387 465.4900 468.5141 470.9370-------------------------------------------------------------------------------- 0.00000: 0.009445 0.015776 0.137714 0.021110 0.505803 0.346162 0.963990 TRANSFORMATION FINISHED

 

7 lines with energy and intensity

Crystal Field Effects in CTM

Page 7: t 2g  states

SO3 Oh (Butler) Oh (Mulliken)

S 0 0 A1

P 1 1 T1

D 2 2 + ^1 E+T2

F 3 ^0+ 1 +^1 A2+T1+T2

G 4 0 + 1 + 2 + ^1 A1+E+T1+T2

Crystal Field EffectsCrystal Field Effects

Page 8: t 2g  states

TiIV ion in TiO2: 3d0-configuration: 1S, j=02p13d9-configuration: 2P2D = 1,3PDF j’=0,1,2,3,4p-transition: 1P j=+1,0,-1

Write out all term symbols:1P1 1D2 1F3

3P0 3P1 3P23D1 3D2 3D3

3F2 3F3 3F4

1 3 4 3 1

2p XAS of TiO2 (atomic multiplets)

Page 9: t 2g  states

J in SO3 Deg. Branchings in Oh Deg.

0 1 A1 A1 2

1 3 3T1 A2 3

2 4 4E, 4T2 T1 7

3 3 3A2, 3T1,3T2 T2 8

4 1 A1, E, T1, T2 E 5

12     25

Crystal Field Effect on XAS

<1S0|dipole|1P1> goes to <A1|T1|T1>

Page 10: t 2g  states

Effect of 10Dq on XAS:3d0

Page 11: t 2g  states

Effect of 10Dq on XAS:3d0

EXERCISE: 1. Try to reproduce this figure by calculating the crystal field

multiplet spectrum of Ti4+ as a function of the crystal field strength. The parameter to change is the value of the line "BRANCH 4+ > 0 0+ 0.00".

2. Set the crystal field values to negative numbers (this inverts the ordering of t2g and eg states)

Page 12: t 2g  states

Comparison with Experiment

Page 13: t 2g  states

Comparison with Experiment

Page 14: t 2g  states

als4ti4a.rcg10 1 0 14 2 4 1 1 SHELL03000000 SPIN03000000 INTER8 0 80998080 8065.47800 0000000 1 2 1 12 1 10 00 9 00000000 0 8065.4790 .00 1P 6 S 0P 5 D 1Ti4+ 2p06 3d00 1 0.0000 0.0000 0.0000 0.0000 0.0000HR99999999Ti4+ 2p05 3d01 6 464.8110 3.7762 0.0322 6.3023 4.6284HR99999999 2.6334Ti4+ 2p06 3d00 Ti4+ 2p05 3d01 -0.26267( 2P//R1// 3D) 1.000HR 38-100 -99999999. -1  

0 80998080 8065.47800 0000000 0 40994040 8065.47800 0000000

Crystal Field Effects in CTM

Page 15: t 2g  states

Turning multiplet effects off

Page 16: t 2g  states

J in SO3 Deg. Branchings in Oh Deg.

0 1 A1 A1 2

1 3 3T1 A2 3

2 4 4E, 4T2 T1 7

3 3 3A2, 3T1,3T2 T2 8

4 1 A1, E, T1, T2 E 5

12     25

Crystal Field Effect on XAS

<1S0|dipole|1P1> goes to <A1|T1|T1>

Page 17: t 2g  states

in Oh Deg.   in D4h   Deg.

A1 2 A1 A1 2+5 7

A2 3 B1 A2 7 7T1 7 E+A2 B1 3+5 8

T2 8 E+B2 B2 8 8

E 5 A1+B1 E 7+8 15 25       45

Lower symmetry

<A1|T1|T1> goes to <A1|E+A2| E+A2 >

Page 18: t 2g  states

Lower symmetry and angular dep.

Hasselstrom et al.Hasselstrom et al.PRB 62, 11192 (2000)PRB 62, 11192 (2000)

Page 19: t 2g  states

Partly filled 3d-shells

Page 20: t 2g  states

Crystal Field Effects: Tanabe-Sugano

Page 21: t 2g  states

A1 -0.801748 0.603819 0.943165 5.315486T1 -1.472040 -0.734825 0.914685 1.097910E -1.492799 -0.730041 -0.515086 0.855732 1.906725T2 -2.572434 -1.420765 -0.629293 0.391811 0.886141 1.968931A2 -1.400139

 

Generating TSD from the program

als5ni2.ora file gives ground state energies

Order states by energy: complicated due to LS3d

A1 -0.801748 0.603819 0.943165 5.315486T1 -1.472040 -0.734825 0.914685 1.097910E -1.492799 -0.730041 -0.515086 0.855732 1.906725T2 -2.572434 -1.420765 -0.629293 0.391811 0.886141 1.968931A2 -1.400139 3A2 3T2 3T1 1E 1T2

Page 22: t 2g  states

Ni2+ 2p06 3d08 4 0.0000 12.2341 7.5981 0.0832 0.0000HR99999999Ni2+ 2p06 3d08 4 0.0000 12.2341 7.5981 0.0002 0.0000HR99999999

 

Generating TSD from the program

Als5ni2z.rcg file switches off LS3d

3T2 = T1T2 = A2 + E + T1 + T2

A1 -0.687617 0.599870 0.883427 5.306541T1 -1.441638 -0.687618 0.883427 1.093059E -1.441639 -0.687617 -0.630865 0.883427 1.901225T2 -2.558384 -1.441639 -0.687618 0.422527 0.883427 1.964579A2 -1.441639 3A2 3T2 3T1 1E 1A1 3T1 1T1 1A1 1T2 1E 1T2

Page 23: t 2g  states

Crystal Field Effects

Page 24: t 2g  states

 

Calculation of transition matrices

Als5ni2.ora gives these matrices

Reduce Slater integrals to 50%

CALCULATIONS for ACTOR:PLANE TRANSI CALCULATING MATRIX for TRIAD 5 ( 0+ 1- 1- 0) (4*7) MATRIX HAS 21 ZERO, 7 REAL and 0 COMPLEX ELEMENTS CALCULATING MATRIX for TRIAD 17 ( 1+ 1- 0- 0) (4*2) MATRIX HAS 5 ZERO, 3 REAL and 0 COMPLEX ELEMENTS CALCULATING MATRIX for TRIAD 18 ( 1+ 1- 1- 0) (4*7) MATRIX HAS 19 ZERO, 9 REAL and 0 COMPLEX ELEMENTS CALCULATING MATRIX for TRIAD 19 ( 1+ 1- 2- 0) (4*5) MATRIX HAS 14 ZERO, 6 REAL and 0 COMPLEX ELEMENTS CALCULATING MATRIX for TRIAD 20 ( 1+ 1- ^1- 0) (4*8) MATRIX HAS 21 ZERO, 11 REAL and 0 COMPLEX ELEMENTS

Page 25: t 2g  states

 

Als5ni2.ora gives these matrices

Reduce Slater integrals to 50%

TRANSFORMED MATRIX for TRIAD 42 ( ^1+ 1- 1- 0) (6*7) DIM :3:3:3 ACTOR PLANE ---- MATRIX ---- PRINTTRANS BRA/KET : 852.903 854.301 855.088 855.312 856.419 871.640 873.099-------------------------------------------------------------------------------- -2.57243: 0.084753 0.000524 0.073496 0.054465 0.000005 0.139178 0.005166 -1.42076: 0.010636 0.028672 0.181098 0.000208 0.040343 0.069081 0.074203 -0.62929: 0.013535 0.044253 0.100561 0.027063 0.059448 0.003079 0.088162 0.39181: 0.001357 0.004753 0.002328 0.047212 0.190545 0.031137 0.078262 0.88614: 0.012572 0.029788 0.082503 0.002168 0.033906 0.000366 0.140053 1.96893: 0.000184 0.001708 0.001732 0.012048 0.088378 0.022026 0.069046

Calculation of transition matrices

Page 26: t 2g  states

 

als5ni2.plo

Reduce Slater integrals to 50%

postscript als5ni2t2.psenergy_range 850 880frame_title Ni 2pXASlorentzian 0.2 999. range 0 860lorentzian 0.4 999. range 860 999gaussian 0.25frame_title GROUND STATE ALLold_racah als5ni2.oraframe_title T2 to T1spectrum fstate 1-frame_title T2 to Espectrum fstate 2-frame_title T2 to T2spectrum fstate ^1-frame_title T2 to A2spectrum fstate ^0-end

Plotting the result

Page 27: t 2g  states

Plotting the result

T2

A2T1

E

Lowest energy of 4 different symmetries

Page 28: t 2g  states

Plotting the result

No LS

AtomLS

Atom no LS

Effect of spin-orbit coupling and crystal field

Page 29: t 2g  states

3d spin-orbit coupling

Page 30: t 2g  states

3d spin-orbit coupling

Page 31: t 2g  states

Effect of 10Dq on XAS:3dN

Page 32: t 2g  states

High-spin or Low-spin

10Dq > 3J(d4 and d5)

10Dq > 2J(d6 and d7)

Page 33: t 2g  states

Conf. Ground State SO3

HS Ground State in Oh

LS Ground State in Oh

3d0 1S01A1 -

3d1 2D3/22T2 -

3d2 3F23T1 -

3d3 4F3/24A2 -

3d4 5D05E 3T1

3d5 6S5/26A1

2T2

3d6 5D25T2

1A1

3d7 4F9/24T1

2E3d8 3F4

3A2 -3d9 2D5/2

2E -

High-spin or Low-spin

Page 34: t 2g  states

3d5 high-spin: Fe2O3

Page 35: t 2g  states

3d5 low-spin: FeIII(tacn)2

Page 36: t 2g  states

1. Copy als3ti4.rcn to exti4.rcn2. Copy als1ni2.plo to exti4.plo3. Copy als1ni2.rac to exti4.rac4. Run RCN2 and modify the exti4.rcf file in order to do

crystal field multiplet calculations.5. Calculate a crystal field multiplet spectrum for a

crystal field of 0.0 eV, 1.52 eV and 3.04 eV.6. Modify the exti4.plo file to plot the 3 spectra.7. Repeat the calculation for negative values8. Copy exti4.rcn to exco3.rcn and modify the file from

Ti4+ to Co3+.9. Calculate a crystal field multiplet spectrum for a

crystal field of 0.0 eV, 1.52 eV and 3.04 eV.10.What happens between 1.52 eV and 3.04 eV?

Exercise: Crystal Field Effects on Co3+