symmetry-adapted tensorial formalism to model rovibrational and rovibronic molecular spectra

49
Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006 Symmetry-Adapted Tensorial Symmetry-Adapted Tensorial Formalism to Model Formalism to Model Rovibrational and Rovibronic Rovibrational and Rovibronic Molecular Spectra Molecular Spectra Vincent BOUDON Laboratoire de Physique de l’Université de Bourgogne – CNRS UMR 5027 9 Av. A. Savary, BP 47870, F-21078 DIJON, FRANCE E-mail : Vincent. Boudon@u-bourgogne . fr Web : http://www.u-bourgogne.fr/LPUB/tSM.html

Upload: zane-cameron

Post on 31-Dec-2015

24 views

Category:

Documents


1 download

DESCRIPTION

Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra. Vincent BOUDON Laboratoire de Physique de l’Université de Bourgogne – CNRS UMR 5027 9 Av. A. Savary, BP 47870, F-21078 DIJON, FRANCE E-mail : [email protected] - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Symmetry-Adapted Tensorial Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Formalism to Model Rovibrational and

Rovibronic Molecular SpectraRovibronic Molecular Spectra

Symmetry-Adapted Tensorial Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Formalism to Model Rovibrational and

Rovibronic Molecular SpectraRovibronic Molecular Spectra

Vincent BOUDON

Laboratoire de Physique de l’Université de Bourgogne – CNRS UMR 5027

9 Av. A. Savary, BP 47870, F-21078 DIJON, FRANCE

E-mail : [email protected]

Web : http://www.u-bourgogne.fr/LPUB/tSM.html

Page 2: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

ContentsContentsI. Introduction & general ideas

II. Symmetry adaptation

III. Rovibrational spectroscopy

Spherical tops: CH4, SF6, …

Quasi-spherical tops

Other symmetric and asymmetric tops

IV. Rovibronic spectroscopy

Jahn-Teller effect, (ro)vibronic couplings, …

Electronic operators

Application to some open-shell systems

V. Conclusion & perspectives

Page 3: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

I. Introduction & general ideasI. Introduction & general ideas

Page 4: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Why tensorial formalism ?Why tensorial formalism ?

• Take molecular symmetry into account

Simplify the problem (block diagonalization, …)

Also consider approximate symmetries

• Systematic development of rovibrational/rovibronic interactions, for any polyad scheme

Effective Hamiltonian and transition moments construction

Global analyses

Page 5: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

II. Symmetry adaptationII. Symmetry adaptation

Page 6: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Case of a symmetric topCase of a symmetric top

Quantum number

=irreducible representation

of a groupz z

O(3) ⊃ C∞v ⊃ C3v

Cv symmetrization: Wang basisC3v symmetrization: use of projection methods

z

J(J +1)

rJ J, K ,C K = k

Page 7: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Spherical tops: the O(3) G group chainSpherical tops: the O(3) G group chain

j,nCσ = ( j )GnCσm j,m

m∑

Tσ( j ,nC ) = ( j )GnCσ

m Tm( j )

m∑

G

Sphere

Lie group O(3)(or SU(2)CI)

Molecule

Point group G(or G

S)

Page 8: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

What do all these indexes mean ?What do all these indexes mean ?Rank / O(3) symmetry (irrep)

z-axis projection / component

Symmetry / G irrep

Component

Multiplicity index

O(3) Tm( j )j, m

G j,nCσ Tσ( j ,nC )

Page 9: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Example 1: “Octahedral harmonic” of rank 4Example 1: “Octahedral harmonic” of rank 4

=5

24+ i

⎜⎜

⎟⎟

+5

24− i

⎜⎜

⎟⎟

+7

12

Y (4,A1 )(θ,φ) = (4 )GA14 Y4

(4)(θ,φ) + (4 )GA10 Y0

(4)(θ,φ) + (4 )GA1−4Y−4

(4)(θ,φ)

Page 10: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Example 2: Rank 3 harmonic, A2 symmetryExample 2: Rank 3 harmonic, A2 symmetry

> 0 < 0 Antisymmetric function

Y (3,A2 )(θ,φ) = (3)GA2

2 Y2(3)(θ,φ) + (3)GA2

−2Y−2(3)(θ,φ)

D(3) ↓O=A2 ⊕ F1 ⊕ F2

Page 11: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

G matrix: Principle of the calculationG matrix: Principle of the calculation

H (4,A1 ) = (4 )GA1q

q=−4,0,4∑ Hq

(4 )

The idea consists in diagonalizing a typical octahedral (or tetrahedral) splitting term:

A( j)mm ' =(−1) j−m (4 )GA1

q

q∑ V

4 j jq −m m'

⎛⎝⎜

⎞⎠⎟

In the standard |j,m> basis this amounts to diagonalize the matrix:

[ j]−1/2FA1 nCσ ( j )(4 j ) nCσ

The eigenvectors lead to the G matrix; the eigenvalues are oriented Clebsch-Gordan coefficients:

Page 12: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Use of the G matrixUse of the G matrix

F( j1 j2 j)

p1 p2 p= ( j1 )Gp1

m1 ( j2 )Gp2m2 ( j )Gp

mVj1 j2 jm1 m2 m

⎛⎝⎜

⎞⎠⎟m1 ,m2 ,m

∑• Calculate symmetry-adapted coupling coefficients:

3jm (Wigner)3jp (p = nCσ)

TnCσ( j ) =Tσ

( j ,nC ) = ( j )GnCσm Tm

( j )

m∑

• Build symmetry-adapted tensorial operators:

Construction of Hamiltonian and transition-momentoperators

Coupling of operators, calculation of matrix elements

Page 13: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Matrix elements: the Wigner-Eckart theoremMatrix elements: the Wigner-Eckart theorem

Reduced matrix element« physical part »

Matrix element (p = nCσ)

Coupling coefficient« geometric part »

Group-dependantphase factor

ψ p '( j ') Tp0

(k ) ψ p '( j ') = Ξ j ' p ' F (k j j ')

p0 p pj ' T (k ) j

• In the O(3) G group chain:

• In the G group: ψ σ '(C ') Tγ

(Γ ) ψ σ '(C ') = ΞC 'σ ' F (Γ C C ')

γ σ σC ' T (Γ ) C

• Recoupling formulas: Using 6C, 9C, 12C coefficients, etc.

Page 14: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Quasi-spherical tops: ReorientationQuasi-spherical tops: Reorientation

j,nC,σ = ( j )GnCσm j,m

m∑

j,nC,C,σ = (C ) ′GCσσ j,nC,σ

σ∑~ ~

~ ~

O(3) ⊃ Td ⊃ C2v

Page 15: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

III. Rovibrational spectroscopyIII. Rovibrational spectroscopy

S4

C3

Page 16: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Rotational & vibrational operatorsRotational & vibrational operators• Rotation, recursive construction of Moret-Bailly & Zhilinskií:

R1(1) =2J (1) =2rJ Elementary operator

R2(0) =(R1(1) ⊗ R1(1))(0) =−43

J 2 Scalar operator

RK (K ) =(RK−1(K−1) ⊗ R1(1))(K ) Recursive construction

RΩ(K ) = R2(0)( )Ω−K2 ×RK (K ) Maximum degree Ω, rank K

RσΩ(K ,nC) = (K )GnCσ

m RmΩ(K )

m∑ Symmetrized operator

• Vibration, construction of Champion:

Each normal mode ⇒ ai(C ), ai

+(C )

εV s{ } ′s{ }ΓvΓ ′v (Γ) = f ai

(C ), ai+(C ){ }( ), ε =time-reversal parity

Page 17: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Effective tensorial HamiltonianEffective tensorial Hamiltonian

H Pk{ }

= t s{ } s'{ }Ω K ,nΓ( )ΓvΓv'β RΩ K ,nΓ( ) ⊗ εV s{ } s'{ }

ΓvΓv' Γ( )⎡⎣ ⎤⎦all indexes∑ (A1g )

Systematic tensorial development

H Pn =P Pn HP Pn =H GS{ }

Pn + ...+ H Pk{ }Pn + ...+ H Pn{ }

Pn

Effective Hamiltonian and vibrational extrapolation

ΨrJ ,nC( ) ⊗Ψ v

Cv( )⎡⎣

⎤⎦

Γ( )

Coupled rovibrational basis

H =H P0 ≡GS{ }

+ H P1{ }+ ...+ H Pn{ }

+ ...

Polyad structure

P0

P1

P2

P3

Rotation Vibration

Page 18: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Transition momentsTransition moments

μΘ(Γ0 ) = 1;m Θ [Γ] μ {i} C (1g ,Γ ) ⊗M ({i},Γ )⎡

⎣⎤⎦

(Γ0 )

Γ∑

{i}∑

m∑

Dipole moment

αΘ1Θ2

(Γ0 ) = L;m Θ1Θ2 [Γ]α {i} C (Lg ,Γ ) ⊗P({i},Γ )⎡⎣

⎤⎦

(Γ0 )

Γ∑

{i}∑

m∑

L =0,2∑

Polarizability

Rovibrationaloperators

Direction cosines tensor

ParametersStone coefficients

Page 19: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Spherical topsSpherical topsS4

C3

ν1 ν2 ν3 ν4

A1 E F2 F2

Raman Raman IR/Ra. IR/Ra.

Stretch Bend Stretch Bend

O(3) ⊃Td

C3

C4

O(3) ⊃Oh

1 2 3 4 5 6

A1g Eg F1u F1u F2g F2u

Raman Raman IR IR Raman Hyper-Raman

Stretch Bend

Page 20: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

The polyads of CH4The polyads of CH4

Global fit

n =2v1 + v2 + 2v3 + v4Polyad Pn:

Page 21: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Recent spherical top analysesRecent spherical top analyses

12CH4, 13CH4, 12CD4

Analysis of high polyads, intensities

GeH4, GeD4, GeF4

Fundamental bands (isotopic samples)

P4

ν3 stretching band

32SF6, 34SF6

First vibrational levels, hot bands

SeF6, WF6

Fundamental bands

Mo(CO)6

ν6 (CO stretch) band

Page 22: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

The ν2+ν4 combination band of SF6The ν2+ν4 combination band of SF6

1.0

0.8

0.6

0.4

0.2

0.0

12641262126012581256Wavenumber / cm-1

Simulation

Experiment

Overview of the Q-branches region

F1u

F2u

Page 23: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Quasi-spherical tops: SO2F2 and SF5ClQuasi-spherical tops: SO2F2 and SF5Cl1600

1400

1200

1000

800

600

400

200

0

SO42− SO2F2

GS GS

ν2 (E)

ν4 (F2)

ν1 (A1)

ν3 (F2)

ν4 (a1)

ν5 (a2)

ν9 (b2)

ν3 (a1)ν7 (b1)

ν2 (a1)ν8 (b2)

ν1 (a1)

ν6 (b1)

O(3) ⊃Td ⊃C2v O(3) ⊃Oh ⊃C4v

Page 24: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Other moleculesOther molecules

O(3) ⊃D2h group chain

X2Y4 molecules

Example: Ethylene, C2H4

O(3) ⊃C∞v ⊃C3v group chain

XY3Z molecules

Examples: CH3D, CH3Cl, …

Page 25: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

IV. Rovibronic spectroscopyIV. Rovibronic spectroscopy

Page 26: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

The problem: Degenerate electronic statesThe problem: Degenerate electronic statesOpen-shell molecules have degenerate electronic states.

We only consider rovibronic transitions inside a single isolated degenerate electronic state.

Transition-metal hexafluorides (ReF6, IrF6, NpF6, …), hexacarbonyles (V(CO)6, …), radicals (CH3O, CH3S, …), etc have a degenerate electronic ground state.

In this case, the Born-Oppenheimer approximation is no more valid. There are complex rovibronic couplings (Jahn-Teller, …).

Molecules with an odd number of electrons have half-integer angular momenta: use of spinorial representations.

Page 27: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Modified Born-Oppenheimer approximationModified Born-Oppenheimer approximation

H (r,Q) = H(r)Electronic kinetic energy+ electronic interactions

{ + V(r,Q)Electron-nuclei and nuclei-nuclei

Coulomb interaction

1 2 3 + T(Q)Nuclear kinetic

energy

{

H(r) +V(r,Q0 )( )ψ n(r) =Enψ n(r), Ψ(r,Q) = χn(Q)ψ n(r)n∑

T(Q)δm,n +Umn(Q)( )χn(Q) =Eχm(Q)n∑

Umn(Q) = ψm* (r) H(r) +V(r,Q)( )∫ ψ n(r)dr

Degenerate electronic state Γ: sum restricted to the [Γ] degenerate states

• Inclusion of non-adiabatic interactions among the [Γ] multiplet• Non-adiabatic interactions with other states neglected

Page 28: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

The Jahn-Teller « effect » The Jahn-Teller « effect » 

U(Q) =U(Q0 ) +∂U(Q)∂Qi

⎝⎜⎞

⎠⎟Q0

Qi +12i=1

3N−6

∑ ∂2U(Q)∂Qi∂Qj

⎝⎜

⎠⎟

Q0

QiQji, j=1

3N−6

∑ +L

H =12

hν i Pi2 +Qi

2( )i=1

3N−6

∑ +L

+∂V(Q)∂Qi

⎝⎜⎞

⎠⎟Q0

Qii=1

3N−6

Linear Jahn-Teller coupling1 24 44 34 4 4

+12

∂2V(Q)∂Qi∂Qj

⎝⎜

⎠⎟

Q0

QiQji, j=1

3N−6

Quadratic Jahn-Teller coupling1 24 4 44 34 4 4 4

+L

After some rearrangements:

!Q0 is usually not an equilibrium configuration

Electronic energy = 0Electronic operators

Hermann Arthur JAHNHermann Arthur JAHN(1907 – 1979)(1907 – 1979)

Edward TELLEREdward TELLER(1908 – 2003)(1908 – 2003)

Page 29: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

EE problem : linear JT levelsEE problem : linear JT levels

l =v,v−2,L ,−v

j = l ±1 / 2 ⇒ j blocks

H ( j) =hν ×

j +1 / 2 D(2 j +1)

D(2 j +1) j + 3 / 2 2D

2D j + 5 / 3 D(2 j + 3)

D(2 j + 3) j + 7 / 2 4D

4D O O

O O

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⎟

• Infinite matrices truncation

• HJT is non perturbative !!

Page 30: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

If we include the molecular rotation …If we include the molecular rotation …Example of the G’g F1u problem (ReF6)Example of the G’g F1u problem (ReF6)

45,000 45,000for J = 28.5 only !45,000 45,000

for J = 28.5 only !

… the problem becomes intractable !

Page 31: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Constructing electronic operatorsConstructing electronic operators

EKe (Ke ,neΓe) = EKe−1(Ke−1) ⊗E(1)( )(Ke,neΓe) , E(1) =2J e

Linearly independant operators ⇒ Ke ≤2J e

Electronic state Γ Electronic angular momentum Je

•Γe = E’ : Je = 1/2, operators

• Γe = F : Je = 1, operators

•Γe = G’ : Je = 3/2, operators

E0(0,A1 ) =I , E1(1,F1 ) =2J e

E0(0,A1 ) =I , E1(1,F1 ) =2J e , E2(2,E ) ,

E2(2,F2 )

E0(0,A1 ) =I , E1(1,F1 ) =2J e , E2(2,E ) ,

E2(2,F2 ), E3(3, A2 ) , E3(3, F1 ) , E3(3, F2 )

Page 32: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Rovibronic operatorsRovibronic operators

H {Pk } = t{s} { s'}

Ω(K ,nΓ)(Ke,Γe )Γ1Γ2 (Γv )

all indexes∑ RΩ(K ,nΓ) ⊗ EKe(Ke,Γe ) ⊗ εV{ s}{ s'}

Γ1Γ2 (Γv )⎡⎣ ⎤⎦(Γ)⎡

⎣⎢⎤⎦⎥(A1 )

Rovibronic effective Hamiltonian

Ψr(J ,nCr ) ⊗ Ψ e

(Je ,Ce ) ⊗Ψ v(Cv )⎡⎣ ⎤⎦

(βevCev )⎡⎣

⎤⎦σ

(βC )

Coupled rovibronic basis

Rovibronic transition moments

Mθi{ } ,F1u( ) = RΩ K ,nΓ( ) ⊗ EKe Ke,Γe( ) ⊗V s{ } s'{ }

Γ1Γ2 Γv( )⎡⎣

⎤⎦

Γev( )⎡⎣⎢

⎤⎦⎥

F1u( )Dipole moment:

And similarly for the polarizability …

Rotation VibrationElectronic

Page 33: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

The ν6 (C–O stretch) band of V(CO)6The ν6 (C–O stretch) band of V(CO)6Threefold degenerate electronic stateThreefold degenerate electronic state

1.0

0.8

0.6

0.4

0.2

0.0

2020201020001990198019701960Wavenumber / cm-1

Room temperature spectrum

Supersonic jet (13 K)P. Asselin et al.

SimulationM. Rey

J. Chem. Phys.114, 10773–10779(2001)

Page 34: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Half-integer states: spinorial representationsHalf-integer states: spinorial representations

)D Ri R j( ) =

)D Ri( )

)D Rj( )

• Vectorial (standard) representations:

(D Ri R j( ) = Ri ,Rj

©™ ¨Æ≠(D Ri( )

(D Rj( )

Ri , R j

©™

¨Æ≠=±1, projective factor

• Projective representations:

• Spinorial representations:

Projective representations that allow to symmetrizeSU(2) CI representations (spin states) into a subgroup G

“ Group ” GS

Page 35: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Example: The Oh “group”Example: The Oh “group”SS

OS E 4C3, 4C3−1 3C4

2 3C4 , 3C4−1 6C2

A1 1 1 1 1 1A2 1 1 1 −1 −1E 2 −1 2 0 0F1 3 0 −1 1 −1F2 3 0 −1 −1 1

′E1 2 1 0 2 0

′E2 2 1 0 − 2 0′G 4 −1 0 0 0

D1/2( ) ⊃ ′E1, D 3/2( ) ⊃ ′G , D 5 /2( ) ⊃ ′E2 ⊕ ′G , L

OhS =OS ⊗CI ⇒ ′E1τ , ′E2τ , ′Gτ ,L τ =g, u( )

Page 36: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Rhenium hexafluorideRhenium hexafluoride

(d)1

2F2g

2Eg G’g (b)

G’g (X)

E’2g (a)

Re6+ Voct Hso>> (0 cm-1)

(5015 cm-1)

(29430 cm-1)

0.80

0.75

0.70

0.65

0.60

65006000550050004500Wavenumber / cm-1

0.66

0.64

0.62

0.60

31000300002900028000Wavenumber / cm-1

• 129 electrons

• Strong spin orbit coupling

• Half-integer angular momenta

Page 37: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

1.5

1.0

0.5

0.0

750740730720710700Wavenumber / cm-1

Experiment,(H. Hollenstein,M. Quack,ETH Zürich)

Simulation,(M. Rey,ETH Zürich)

E’1 E’2 G’ G’

ν3

ν2 + ν6

The The νν33 band of ReF band of ReF66The The νν33 band of ReF band of ReF66

Page 38: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

C3v and its spinorial representations: C3vC3v and its spinorial representations: C3vSS

C3vS E C3,C3

−1 3σ v

A1 1 1 1A2 1 1 −1E 2 −1 0′A1 1 −1 i′A2 1 −1 −i′E 2 1 0

ψ ′A2( ) H A1( ) ψ ′A1( ) = ψ ′A1( ) H A1( ) ψ ′A2( )*

′A1, ′A2 are not physically discernable

′A2 = ′A1( )*

ψ C( ) ⇒ ψC*

( )

Complex irreps:

Page 39: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Cv and its spinorial representations: CvCv and its spinorial representations: CvSS

C∞vS E L 2C ϕ( ) L ∞σ v

Σ+ ≡0+ 1 L 1 L 1Σ+ ≡0− 1 L 1 L −1Π≡1 2 L 2cos ϕ( ) L 0Δ ≡ 2 2 L 2cos 2ϕ( ) L 0Φ ≡ 3 2 L 2cos 3ϕ( ) L 0

M M M M M M

1 / 2 2 L 2cos ϕ / 2( ) L 03 / 2 2 L 2cos 3ϕ / 2( ) L 05 / 2 2 L 2cos 5ϕ / 2( ) L 0

M M M M M M

Wang basis:

J,K ,± =12

J ,K ± J ,K( ) K = k( )

J ,0+ = J ,0 (even integer J ), J ,0− = J ,0 (odd integer J )

Page 40: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

The ground electronic state of CH3OThe ground electronic state of CH3O

CH3O: 1a1( )22a1( )

23a1( )

24a1( )

21e( )4 5a1( )

22e( )3

2e( )3 ≡ 2e( )1 ⇒ %X 2E ground electronic term

S =1 / 2 ⇒ CS = ′E and CL =E, Ce ⊂CS ⊗CL = ′A1 ⊕ ′A2 ⊕ ′E

D 3/2( ) ⊃D 1/2( ) ⊕D 3/2( ) ⊃D Ce( ) = ′E ⊕ ′A1 ⊕ ′A2( )

⇒rJ =

rS+

rL, J e =3 / 2, Ke =1 / 2 , 3 / 2 , Ce = ′E , ′A1, ′A2

Basis set: ψ eσe

Ce( ) = 3 / 2,Ke,Ce,σ e

or 1 / 2, 1 / 2 , ′E( )⊗ 1, 1 ,E( ),Ce,σ e

or 1 / 2, 1 / 2( ) ⊗ 1, 1( ) ,Ke,Ce,σ e

Spin Orbit

Page 41: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Electronic operators for CH3OElectronic operators for CH3O

Spin: ES1 1( ) =2S 1( ),

Orbit: EL1 1( ) =2L 1( ), EL

2 2( ) = EL1 1( ) ⊗EL

1 1( )( )2( )

H GS{ }GS =t0 ES

1 1,0−( ) ⊗EL1 1,0−( )

( )0+ ,A1( )=4t0SzLz (spin-orbit coupling)

One order 0 non-trivial operator for the ground state:

′E ⊗E 4t0 ; 62 cm_1

1 / 2, 1 / 2( )⊗ 1, 1( ), 3 / 2 , ′A1 ⊕ ′A2

1 / 2, 1 / 2( )⊗ 1, 1( ), 1 / 2 , ′E

Page 42: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Vibronic operators for CH3OVibronic operators for CH3OCase of a doubly degenerate vibrationCase of a doubly degenerate vibration

H v=1{ }v=1 =t1 ES

0 0,0+( ) ⊗EL0 0,0+( )

( )0+( )⊗ +V1{ } 1{ }

1 1 0+( )⎛⎝

⎞⎠

0+ ,A1( ) → Harmonic oscillator

+t2 ES1 1,0−( ) ⊗EL

0 0,0+( )( )

0−( )⊗ −V1{ } 1{ }

1 1 0−( )⎛⎝

⎞⎠

0+ ,A1( ) → 2Szl (spin-vib., small)

+t3 ES0 0,0+( ) ⊗EL

1 1,0−( )( )

0−( )⊗ −V1{ } 1{ }

1 1 0−( )⎛⎝

⎞⎠

0+ ,A1( ) → 2Lzl (orb.-vib. ≡ JTL)

+t4 ES1 1,0−( ) ⊗EL

1 1,0−( )( )

0+( ) ⊗ +V1{ } 1{ }

1 1 0+( )⎛⎝

⎞⎠

0+ ,A1( ) → 4SzLz (spin-orb., v=1 correction)

+t5 ES0 0,0+( ) ⊗EL

2 2, 2( )( )

2( ) ⊗ +V1{ } 1{ }1 1 2( )⎛

⎝⎞⎠

0+ ,A1( ) → Vibronic ( ≡ JTQ)

+t6 ES1 1, 1( ) ⊗EL

1 1,0−( )( )

1( ) ⊗ +V1{ } 1{ }1 1 2( )⎛

⎝⎞⎠

3 ,A1( ) → Vibronic (spin-orb.-vib., small)

+ L

6 non-trivial operators up to order 2 for v = 1:

Presumably 3 main contributions : t1, t3 and t5

Page 43: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Vibronic levels for an E-mode of CH3OVibronic levels for an E-mode of CH3O

′Ce* ⊗ ′Cv = A1( )( ) ′Ce

* μ 0{ } 1{ }Γ( ) Ce ⊗ Cv = E( )( )C ≠ 0 ⇒

C ⊂ ′Ce* ⊗Γ

E ⊂ A1 ⊗Γ = Γ

⎧⎨⎩

Γ = E (perpendicular band) ⇒3 bands from C = ′A1 ⊕ ′A2

4 bands from C = ′E

⎧⎨⎩

μ 0{ } 1{ }E( ) μ 0{ } 1{ }

E( )

Cv =A1

v=0

l =0

Cv =Ev=1

l =1

Ke =3 / 2,Ce = ′A1 ⊕ ′A2

Ke =1 / 2,Ce = ′E

′A1 ⊕ ′A2

′A1 ⊕ ′A2

′E

′E

′E′E

Vibration Spin-orbit Spin-Vib. + Orb.-Vib. + … JT

Ke =3 / 2,Ce = ′A1 ⊕ ′A2

Ke =1 / 2,Ce = ′E

~ 62 cm-1

Page 44: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Rovibronic operators and basis for CH3ORovibronic operators and basis for CH3O

J, Kr( )⊗ 1 / 2, 1 / 2( )⊗ 1, 1( ),Ke( )⊗ v, l( ),Kev( ),K ,C,σ

Coupled rovibronic basis:

Spin Orbit

VibrationalElectronic

Rotational Vibronic

Rovibronic

RΩ Lr ,Λr( ) ⊗ ESLS LS ,ΛS( ) ⊗EL

LL LL ,ΛL( )( )

Λe( )⊗ εV ns{ } ms{ }K1K2 Λv( )

( )Λev( )

( )Λ,Γ( )

Hamiltonian: Γ =A1 Dipole moment: Γ =A1 or EPolarizability: Γ =A1 or A2 or E

Rovibrational operators

Page 45: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Comparison with the “usual” approachComparison with the “usual” approach

•E electronic state associated to the L = 1, KL = 1 effective quantum numbers through symmetry reasons only (KL does not need to be identified to Λ)

•Separate JT calculation replaced by tensorial operators built on powers of L and S

•Global spin-orbital-vibrational-rotational calculation

•All vibronic levels in a given polyad considered as a whole

•Method based on symmetry (construction of invariants in a group chain); the link to the “usual” physical (JT) problem is not straightforward

Page 46: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

V. Conclusion & perspectivesV. Conclusion & perspectives

Page 47: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Future developmentsFuture developments

• Rovibronic transitions between different electronic states

General rovibronic model

• Analytic derivation of the effective Hamiltonian and transition moments from an ab initio potential energy surface

Analytic contact transformations

Cf. work of Vl. Tyuterev (Reims) on triatomics

Page 48: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

Programs STDS& Co.

Programs STDS& Co.

Spherical TopData System

www.u-bourgogne.fr/LPUB/shTDS.html

• Molecular parameter database

• Calculation and analysis programs

• XTDS : Java interface

Page 49: Symmetry-Adapted Tensorial Formalism to Model Rovibrational and Rovibronic Molecular Spectra

Mathematical Methods for Ab Initio Quantum Chemistry • Nice • October 20–21, 2006

AcknowledgmentsAcknowledgments

• M. Rotger, A. El Hilali, M. Loëte, N. Zvereva-Loëte, Ch. Wenger, J.-P. Champion, F. Michelot (Dijon)

• M. Rey (Reims)

• D. Sadovskií, B. Zhilinskií (Dunkerque)

• M. Quack et al. (Zürich)

• …