supplementary materials for -...

12
www.sciencemag.org/content/346/6208/445/suppl/DC1 Supplementary Materials for A photoinduced metal-like phase of monoclinic VO 2 revealed by ultrafast electron diffraction Vance R. Morrison, Robert. P. Chatelain, Kunal L. Tiwari, Ali Hendaoui, Andrew Bruhács, Mohamed Chaker, Bradley J. Siwick* *Corresponding author. E-mail: [email protected] Published 24 October 2014, Science 346, 445 (2014) DOI: 10.1126/science.1253779 This PDF file includes: Materials and Methods Figs. S1 to S4 References

Upload: lydang

Post on 17-Sep-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

www.sciencemag.org/content/346/6208/445/suppl/DC1

Supplementary Materials for

A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast

electron diffraction

Vance R. Morrison, Robert. P. Chatelain, Kunal L. Tiwari, Ali Hendaoui, Andrew Bruhács, Mohamed Chaker, Bradley J. Siwick*

*Corresponding author. E-mail: [email protected]

Published 24 October 2014, Science 346, 445 (2014) DOI: 10.1126/science.1253779

This PDF file includes: Materials and Methods

Figs. S1 to S4

References

Page 2: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

1 Materials and Methods

1.1 Ultrafast electron diffraction with RF compressed electron pulses

The measurements presented here were made on a home built ultrafast electron diffractometer

(Fig. S1) employing radio-frequency pulse compression techniques (16). This approach has

very recently been shown to offer dramatic improvements in instrument performance (17, 18).

These techniques allow us to produce compressed electron pulses with ∼106 electrons per pulse

with ∼300 fs time resolution (17).

In these experiments, VO2 specimens initially in the M1 phase (∼310 K) are photoexcited

with 35 fs, 1.55 eV (800 nm) laser pulses at near normal incidence (∼10 degrees) with a range

of excitation fluences; the evolution of the SMT was then probed after a variable delay time

with an ultrashort electron pulse with ∼500,000 electrons per pulse. These electron pulses were

generated through photoemission in a DC, high voltage electron gun with 266 nm laser pulses

and accelerating voltages up to 95 kV. Although the diffractometer is capable of operating with

a repetition rate of 1 kHz, a delay of 20 ms between pump laser pulses was required before

reinitiating the transition in order to allow the samples to completely relax back to the insulating

phase. The diffraction pattern (Fig. S2) produced at each delay is the result of approximately

50 individual fifteen second exposures and was detected on a Gatan Ultrascan 1000, a phosphor

coated CCD with near single electron detection capabilities.

In addition to the ultrafast electron diffraction measurements performed, ultrafast infrared

transmittance measurements were conducted under identical pump-probe conditions. The IR

pulses (5 µm wavelength) were generated using difference frequency generation from the signal

and idler beams of an IR optical parametric amplifier (38). The ultrafast mid-IR transmission

measurements were made using the femtosecond pulse acquisition spectrometer from Infrared

Systems Development, based on 64 pixel Mercury Cadmuim Telluride IR detector arrays. The

VO2 samples were held at atmospheric pressure as opposed to the 10−7 Torr used for the electron

1

Page 3: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

diffraction experiments.

1.2 Pulse laser deposition grown VO2 specimens

The high-quality stoichiometric polycrystalline vanadium dioxide films used in these measure-

ments were synthesized at the Laboratory of Micro- and Nanofabrication facility at INRS by

means of reactive pulsed laser deposition process. A pure (99.95%) vanadium target was used

with a KrF excimer laser (λ = 248 nm) in an oxygen environment with a pressure of 15 mTorr

and substrate temperature of 500 ◦C (23, 39). The samples were 70 nm thick and deposited on

50 nm thick amorphous silicon nitride windows. Temperature dependent resistivity curves are

shown in Fig. S3 and display the characteristic hysteretic behaviour of VO2.

2

Page 4: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

Figure S1: Schematic diagram of the ultrafast electron diffractometer including the synchro-

nization electronics and the chirped pulse amplification laser system. The sample is pumped

with 35 fs, 800 nm laser pulses, while third harmonic generation is used to produce 266 nm,

UV pulses. A fast photo-diode is used to detect the timing of the pulses from the ultrafast os-

cillator; a phase-locked loop (PLL) is then used to produce synchronized RF pulses which are

then amplified by an RF amplifier. These pulses then drive the RF compression cavity. Two

magnetic lenses, S1 and S2, are used to collimate the electron beam as it exits the electron gun,

and then to focus the beam at the CCD detector.

3

Page 5: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

Figure S2: Diffraction patterns of low temperature (A) and high temperature (B) phases of VO2.

The red arrows indicate the disappearance of diffraction features which are present in the M1

phase, but not allowed by symmetry in the R phase. The shadow in the center of the images is

a beam block used to prevent the main electron beam from saturating the CCD.

4

Page 6: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

40 50 60 70 80 90 100

10−2

10−1

100

101

Temperature (ºC)

Res

istiv

ity (Ω

•cm

)

Figure S3: Temperature dependent resistivity curve with increasing temperature shown in red

and decreasing temperature shown in blue.

5

Page 7: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

0

0.2

0.4

0.6

0.8

1

1.2

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

−0.02

0

0.02

0.04

0.06

0 5 101

1.01

1.02

1.03

1.04

Delay (ps)

-1 ps 10 ps

s (Å-1)

Inte

nsity

(arb

. uni

ts)

ΔI

(arb

. uni

ts)

A

B

220

302 313

Rel

ativ

e In

tens

ity

Figure S4: A) Time resolved, background subtracted, diffraction data from 0 ps to 10 ps and

an excitation fluence of 6.1 mJ/cm2. Inset) Time resolved intensity of the 220 reflection. B)

Time resolved change in diffracted intensity shown in A). No decrease is seen in the 302 and

313 reflections, indicating that the PLD remains intact. In addition, no changes are observed in

the s > 0.5 A−1 region.

6

Page 8: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

References

1. M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263

(1998). doi:10.1103/RevModPhys.70.1039

2. E. Dagotto, Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

Medline doi:10.1126/science.1107559

3. P. A. Lee, X.-G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity.

Rev. Mod. Phys. 78, 17–85 (2006). doi:10.1103/RevModPhys.78.17

4. B. J. Siwick, J. R. Dwyer, R. E. Jordan, R. J. D. Miller, An atomic-level view of melting using

femtosecond electron diffraction. Science 302, 1382–1385 (2003). Medline

doi:10.1126/science.1090052

5. C.-Y. Ruan, Y. Murooka, R. K. Raman, R. A. Murdick, Dynamics of size-selected gold

nanoparticles studied by ultrafast electron nanocrystallography. Nano Lett. 7, 1290–1296

(2007). Medline doi:10.1021/nl070269h

6. G. Sciaini, R. J. D. Miller, Femtosecond electron diffraction: Heralding the era of atomically

resolved dynamics. Rep. Prog. Phys. 74, 096101 (2011).

doi:10.1088/0034-4885/74/9/096101

7. M. Gao, C. Lu, H. Jean-Ruel, L. C. Liu, A. Marx, K. Onda, S. Y. Koshihara, Y. Nakano, X.

Shao, T. Hiramatsu, G. Saito, H. Yamochi, R. R. Cooney, G. Moriena, G. Sciaini, R. J.

Miller, Mapping molecular motions leading to charge delocalization with ultrabright

electrons. Nature 496, 343–346 (2013). Medline doi:10.1038/nature12044

8. L. Whittaker, C. J. Patridge, S. Banerjee, Microscopic and nanoscale perspective of the

metal-insulator phase transitions of VO2: Some new twists to an old tale. J. Phys. Chem.

Lett. 2, 745–758 (2011). doi:10.1021/jz101640n

9. C. Berglund, H. Guggenheim, Electronic properties of VO2 near the semiconductor-metal

transition. Phys. Rev. 185, 1022–1033 (1969). doi:10.1103/PhysRev.185.1022

10. J. Goodenough, The two components of the crystallographic transition in VO2. J. Solid State

Chem. 3, 490–500 (1971). doi:10.1016/0022-4596(71)90091-0

Page 9: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

11. A. Zylbersztejn, N. Mott, Metal-insulator transition in vanadium dioxide. Phys. Rev. B 11,

4383–4395 (1975). doi:10.1103/PhysRevB.11.4383

12. R. M. Wentzcovitch, W. W. Schulz, P. B. Allen, VO2: Peierls or Mott-Hubbard? A view from

band theory. Phys. Rev. Lett. 72, 3389–3392 (1994). Medline

doi:10.1103/PhysRevLett.72.3389

13. V. Eyert, The metal-insulator transitions of VO2: A band theoretical approach. Ann. Phys. 11,

650–704 (2002). doi:10.1002/1521-3889(200210)11:9<650::AID-ANDP650>3.0.CO;2-K

14. S. Biermann, A. Poteryaev, A. I. Lichtenstein, A. Georges, Dynamical singlets and

correlation-assisted Peierls transition in VO2. Phys. Rev. Lett. 94, 026404 (2005). Medline

doi:10.1103/PhysRevLett.94.026404

15. C. Weber, D. D. O’Regan, N. D. Hine, M. C. Payne, G. Kotliar, P. B. Littlewood, Vanadium

dioxide: A Peierls-Mott insulator stable against disorder. Phys. Rev. Lett. 108, 256402

(2012). Medline doi:10.1103/PhysRevLett.108.256402

16. T. van Oudheusden, E. F. de Jong, S. B. van der Geer, W. P. E. M. Op ’t Root, O. J. Luiten, B.

J. Siwick, Electron source concept for single-shot sub-100 fs electron diffraction in the 100

keV range. J. Appl. Phys. 102, 093501 (2007). doi:10.1063/1.2801027

17. R. P. Chatelain, V. R. Morrison, C. Godbout, B. J. Siwick, Ultrafast electron diffraction with

radio-frequency compressed electron pulses. Appl. Phys. Lett. 101, 081901 (2012).

doi:10.1063/1.4747155

18. M. Gao, H. Jean-Ruel, R. R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena,

R. J. D. Miller, Full characterization of RF compressed femtosecond electron pulses using

ponderomotive scattering. Opt. Express 20, 12048–12058 (2012). Medline

doi:10.1364/OE.20.012048

19. A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, R. Schoenlein, Evidence for a

structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast

timescale. Phys. Rev. B 70, 161102 (2004). doi:10.1103/PhysRevB.70.161102

20. S. Wall, L. Foglia, D. Wegkamp, K. Appavoo, J. Nag, R. Haglund, J. Stähler, M. Wolf,

Tracking the evolution of electronic and structural properties of VO2 during the ultrafast

Page 10: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

photoinduced insulator-metal transition. Phys. Rev. B 87, 115126 (2013).

doi:10.1103/PhysRevB.87.115126

21. T. C. Koethe, Z. Hu, M. W. Haverkort, C. Schüssler-Langeheine, F. Venturini, N. B. Brookes,

O. Tjernberg, W. Reichelt, H. H. Hsieh, H. J. Lin, C. T. Chen, L. H. Tjeng, Transfer of

spectral weight and symmetry across the metal-insulator transition in VO2. Phys. Rev. Lett.

97, 116402 (2006). Medline doi:10.1103/PhysRevLett.97.116402

22. M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streltsov, M. A. Korotin, V. I.

Anisimov, H. H. Hsieh, H. J. Lin, C. T. Chen, D. I. Khomskii, L. H. Tjeng, Orbital-assisted

metal-insulator transition in VO2. Phys. Rev. Lett. 95, 196404 (2005). Medline

doi:10.1103/PhysRevLett.95.196404

23. A. Hendaoui, N. Émond, S. Dorval, M. Chaker, E. Haddad, Enhancement of the positive

emittance-switching performance of thermochromic VO2 films deposited on Al substrate

for an efficient passive thermal control of spacecrafts. Curr. Appl. Phys. 13, 875–879

(2013). doi:10.1016/j.cap.2012.12.028

24. See supplementary materials on Science Online.

25. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, J. C. Kieffer,

Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition.

Phys. Rev. Lett. 87, 237401 (2001). Medline doi:10.1103/PhysRevLett.87.237401

26. P. Baum, D.-S. Yang, A. H. Zewail, 4D visualization of transitional structures in phase

transformations by electron diffraction. Science 318, 788–792 (2007). Medline

doi:10.1126/science.1147724

27. A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, A.

Leitenstorfer, Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz

spectroscopy. Phys. Rev. B 83, 195120 (2011). doi:10.1103/PhysRevB.83.195120

28. T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H.-C. Bandulet, D. Brassard, J.-C.

Kieffer, M. A. El Khakani, F. A. Hegmann, Phase diagram of the ultrafast photoinduced

insulator-metal transition in vanadium dioxide. Phys. Rev. B 85, 155120 (2012).

doi:10.1103/PhysRevB.85.155120

Page 11: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

29. J. M. Zuo, Measurements of electron densities in solids: A real-space view of electronic

structure and bonding in inorganic crystals. Rep. Prog. Phys. 67, 2053–2103 (2004).

doi:10.1088/0034-4885/67/11/R03

30. J.-C. Zheng, Y. Zhu, L. Wu, J. W. Davenport, On the sensitivity of electron and X-ray

scattering factors to valence charge distributions. J. Appl. Crystallogr. 38, 648–656 (2005).

doi:10.1107/S0021889805016109

31. A. M. M. Abeykoon, C. D. Malliakas, P. Juhás, E. S. Bozin, M. G. Kanatzidis, S. J. L. Billinge,

Quantitative nanostructure characterization using atomic pair distribution functions

obtained from laboratory electron microscopes. Z. Kristallogr. 227, 248–256 (2012).

doi:10.1524/zkri.2012.1510

32. A. S. Belozerov, M. A. Korotin, V. I. Anisimov, A. I. Poteryaev, Monoclinic M_1 phase of

VO2: Mott-Hubbard versus band insulator. Phys. Rev. B 85, 045109 (2012).

doi:10.1103/PhysRevB.85.045109

33. R. Sakuma, T. Miyake, F. Aryasetiawan, Quasiparticle band structure of vanadium dioxide. J.

Phys. Condens. Matter 21, 064226 (2009). Medline doi:10.1088/0953-8984/21/6/064226

34. Y. Yao, Y.-Z. Zhang, H. Lee, H. O. Jeschke, R. Valentí, H.-Q. Lin, C.-Q. Wu, Orbital selective

phase transition. Mod. Phys. Lett. B 27, 1330015 (2013).

doi:10.1142/S0217984913300159

35. M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B.-J. Kim, H.-T. Kim, Z. Cai, M. V. Holt, J. M.

Maser, F. Keilmann, O. G. Shpyrko, D. N. Basov, Nanoscale imaging of the electronic and

structural transitions in vanadium dioxide. Phys. Rev. B 83, 165108 (2011).

doi:10.1103/PhysRevB.83.165108

36. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V.

Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, Mott transition in VO2

revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

Medline doi:10.1126/science.1150124

37. J. Nag, R. F. Haglund, E. A. Payzant, K. L. More, Non-congruence of thermally driven

structural and electronic transitions in VO2. J. Appl. Phys. 112, 103532 (2012).

doi:10.1063/1.4764040

Page 12: Supplementary Materials for - Sciencescience.sciencemag.org/content/sci/suppl/2014/10/22/346.6208.445... · /content/346/6208/445/suppl/DC1 . Supplementary Materials for . A photoinduced

38. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, M. Woerner, Generation,

shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm. J.

Opt. Soc. Am. B 17, 2086 (2000). doi:10.1364/JOSAB.17.002086

39. A. Hendaoui, N. Émond, M. Chaker, E. Haddad, Highly tunable-emittance radiator based on

semiconductor-metal transition of VO2 thin films. Appl. Phys. Lett. 102, 061107 (2013).

doi:10.1063/1.4792277