supplementary information webs for high-performance ... · 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0...

8
Supplementary Information Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors Lei Wang, a Guanhua Zhang,* b Xiaojia Zhang, a Huimin Shi, a Wei Zeng, c Hang Zhang, c Qing Liu, a Chengchao Li, d Quanhui Liu a and Huigao Duan* b a School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Hunan 410082, P. R. China b State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, National Engineering Research Center for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Hunan 410082, P. R. China c College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082P. R. China d School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 523000, P. R. China * E-mail: [email protected]; [email protected] Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Upload: others

Post on 03-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Supplementary Information webs for high-performance ... · 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 4 0 A g - 1 5 0 A g - 1 6 0 A g - 1 1 0 A g -

Supplementary Information

Porous ultrathin carbon nanobubbles formed carbon nanofiber

webs for high-performance flexible supercapacitors

Lei Wang,a Guanhua Zhang,*b Xiaojia Zhang,a Huimin Shi,a Wei Zeng,c

Hang Zhang,c Qing Liu,a Chengchao Li,d Quanhui Liua and Huigao

Duan*b

a School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Hunan 410082, P. R. China

b State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, National Engineering Research Center for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Hunan 410082, P. R. China

c College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082,P. R. China

d School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 523000, P. R. China

* E-mail: [email protected]; [email protected]

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2017

Page 2: Supplementary Information webs for high-performance ... · 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 4 0 A g - 1 5 0 A g - 1 6 0 A g - 1 1 0 A g -

10 nm

(e)

10 nm

(f)

(a)

2 μm

(b)

2 μm

(c) (d)

100 nm 100 nm

Fig. S1 (a,b) SEM images of the CNFWs-500-5 and the CNFWs-700-2, respectively,

(c,e) and (d,f) corresponding TEM images of the CNFWs-500-5 and the CNFWs-700-

2, respectively.

In order to demonstrate the thickness of the carbonaceous coating layer can be

well controlled by tuning catalytic conversion temperature or time, the corresponding

control experiments were carried out. From the TEM images of the CNFWs-500-5

and CNFWs-700-2 and the TEM images of the CNFWs (Fig. 4 and Fig. S5) in the

following measurement, different thickness of the carbon walls with about 8 nm, 5 nm

and 3 nm were obtain, exhibiting the accurate controllability of the thickness of the

carbon layer by our method.

Page 3: Supplementary Information webs for high-performance ... · 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 4 0 A g - 1 5 0 A g - 1 6 0 A g - 1 1 0 A g -

(a)

800 nm

(b)

200 nm

Fig. S2 (a,b) SEM images of the products dried in a conventional vacuum oven after

ZnO@C NFWs being immersed in 1 M HCl aqueous solution for 10 h.

(a) (b)

400 nm

Fig. S3 (a) Digital photograph and (b) SEM image of the ZnO@C NFWs.

Page 4: Supplementary Information webs for high-performance ... · 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 4 0 A g - 1 5 0 A g - 1 6 0 A g - 1 1 0 A g -

(a) (b)ZnO

400 800 1200 1600 2000 2400 2800 3200

Inte

nsity

(a.u

.)

Raman Shift (cm-1)

ZnO ZnO@C

400 800 1200 1600 2000 2400 2800 3200

2D

G

Inte

nsity

(a.u

.)

Raman Shift (cm-1)

D

Fig. S4 Raman spectra of (a) ZnO NFWs (black), ZnO@C NFWs (red), and (b)

CNFWs.

10 nm 10 nm

(a) (b)

Fig. S5 (a,b) HRTEM images of hollow carbon nanobubbles showing with the

ultrathin walls less than 10 layers.

Page 5: Supplementary Information webs for high-performance ... · 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 4 0 A g - 1 5 0 A g - 1 6 0 A g - 1 1 0 A g -

0 2 4 6 8 10 12 14 16 18 20 220.0

0.2

0.4

0.6

0.8

1.0 40 A g-1

50 A g-1

60 A g-1

10 A g-1

15 A g-1

20 A g-1

30 A g-1

Pote

ntia

l (V)

Time (s)

70 A g-1

0 50 100 150 200 250 300 350 400 450 5000.0

0.2

0.4

0.6

0.8

1.0

Pote

ntia

l (V)

Time (s)

0.5 A g-1

1 A g-1

2 A g-1

3 A g-1

5 A g-1

(a) (b)

Fig. S6 (a,b) The GCD curves of the CNFWs electrode at various current densities

measured using a three-electrode system in 1 M H2SO4 aqueous electrolyte.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Curr

ent (

A)

Potential (V)

CNFWs CNFWs-700-2 CNFWs-500-5

(a) (b)

0 10 20 30 40 50 60 700

20

40

60

80

100

120

140

160

Spec

ific c

apac

itanc

e (F

g-1 )

Current Density (A g-1)

CNFWs CNFWs-700-2 CNFWs-500-5

Fig. S7 Comparison of electrochemical performance of the carbon electrodes with

different carbon wall thickness in a three-electrode system. (a) CV curves of the

CNFWs, CNFWs-700-2 and CNFWs-500-5 at the scan rate of 100 mV s−1, and (b) the

specific capacitances of the CNFWs, CNFWs-700-2 and CNFWs-500-5 at various

discharge current densities.

Page 6: Supplementary Information webs for high-performance ... · 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 4 0 A g - 1 5 0 A g - 1 6 0 A g - 1 1 0 A g -

2 μm 50 nm

(a) (b)

Fig. S8 (a,b) SEM images of the CNFWs electrode after 35,000 cycles at the current

density of 10 A g−1 under three-electrode testing.

0.0 0.2 0.4 0.6 0.8 1.0-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06 3500 mV s-1 2500 mV s-1

3000 mV s-1 1500 mV s-1

2000 mV s-1

Curr

ent (

A)

Voltage (V)0 20 40 60 80 100 120 140 160 180 200

0.0

0.2

0.4

0.6

0.8

1.0

Volta

ge (V

)

Time (s)

0.5 A g-1

1 A g-1

3 A g-1

5 A g-1

7 A g-1

10 A g-1

15 A g-1

25 A g-1

35 A g-1

(a) (b)

Fig. S9 (a) CV curves with the scan rates from 1,500 to 3,500 mV s−1 and (b) GCD

curves at various current densities of the symmetric SCs.

Page 7: Supplementary Information webs for high-performance ... · 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 4 0 A g - 1 5 0 A g - 1 6 0 A g - 1 1 0 A g -

Table S1. The comparison of the electrochemical performance of our CNFWs with

that of one-dimensional carbon-based web electrodes in the previous literatures.

Materials Electrolyte Test cellCapacitance

(F g−1)Cycling

performanceReference

3-electrode 155 at 10 A g−135,000 at 10 A g−1

(94.1%)CNFWs 1 M H2SO4

2-electrode 85 at 10 A g−115,000 at 5 A g−1

(80%)

This work

3-electrode 176 at 2 A g−15,000 at 1 A g−1

(99%)Nitrogen-enrichedmeso-macroporos

carbon fiber network

1 M H2SO4

2-electrode 98 at 100 mV s−1 _

1

Mesoporous carbon nanofibers

6 M KOH 2-electrode 103 at 1 A g−1 4,250 at 150 mV s−1 2

3-electrode 140 at 0.75 A g−1 -single-walled carbon

nanotube films1 M LiClO4

2-electrode 35 at 0.75 A g−1 -

3

Functionalizing few-walled

carbon nanotube film

0.1 M KOH 3-electrode 133 at 10 mV s−1 100 at 10 mV s−1 4

3-electrode 67 at 10 mV s−1 -

Hybrid nanomembranes

of carbon nanotube sheets coated with poly

(3,4-ethylenedioxythio

phene)

1 M H2SO4

2-electrode -5,000 at 500 mV s−1

(94%)

5

3-electrode 110 at 5 mV s−1 -Active carbon wrapped carbon

nanotube buckypaper

6 M KOH

2-electrode -4,000 at 5 A g−1

(98%)

6

Page 8: Supplementary Information webs for high-performance ... · 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 4 0 A g - 1 5 0 A g - 1 6 0 A g - 1 1 0 A g -

References:

1 L. Fan, L. Yang, X. Ni, J. Han, R. Guo and C. J. Zhang, Carbon, 2016, 107, 629-

637.

2 Z. Liu, D. Fu, F. Liu, G. Han, C. Liu, Y. Chang, Y. Xiao, M. Li and S. Li, Carbon,

2014, 70, 295-307.

3 Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao

and S. Xie, Energy Environ. Sci., 2011, 4, 1440-1446.

4 N. A. Kumar, I. -Y. Jeon, G. -J. Sohn, R. Jain, S. Kumar and J. -B. Baek, ACS Nano,

2011, 5, 2324-2331.

5 J. A. Lee, M. K. Shin, S. H. Kim, S. J. Kim, G. M. Spinks, G. G. Wallace, R.

Ovalle-Robles, M. D. Lima, M. E. Kozlov and R. H. Baughman, ACS Nano, 2011, 6,

327-334.

6 H. Chen, J. Di, Y. Jin, M. Chen, J. Tianand Q. Li, J. Power Sources, 2013, 237,

325-331.