superstring theory and integration over the moduli space

164
Superstring theory and integration over the moduli space Kantaro Ohmori Hongo,The University of Tokyo June, 24th, 2013@Nagoya arXiv:1303.7299 [KO,Yuji Tachikawa]

Upload: others

Post on 15-Jun-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Superstring theory and integration over the moduli space

Superstring theory and integration over

the moduli space

Kantaro Ohmori

Hongo,The University of Tokyo

June, 24th, 2013@Nagoya

arXiv:1303.7299 [KO,Yuji Tachikawa]

Page 2: Superstring theory and integration over the moduli space

Section 1

introduction

Page 3: Superstring theory and integration over the moduli space

Simplified history of the superstring theory

Page 4: Superstring theory and integration over the moduli space

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

Page 5: Superstring theory and integration over the moduli space

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

Page 6: Superstring theory and integration over the moduli space

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

Page 7: Superstring theory and integration over the moduli space

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’87 “Multiloop calculations in covariant superstring

theory” [E.Verlinde, H.Verlinde ’87]

Page 8: Superstring theory and integration over the moduli space

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’87 “Multiloop calculations in covariant superstring

theory” [E.Verlinde, H.Verlinde ’87]

’94∼:2nd superstring revolution

⇒ nonperturbative perspective

Page 9: Superstring theory and integration over the moduli space

Simplified history of the superstring theory

∼70’s:Bosonic string theory→ supersymmetrize

’84∼:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’87 “Multiloop calculations in covariant superstring

theory” [E.Verlinde, H.Verlinde ’87]

’94∼:2nd superstring revolution

⇒ nonperturbative perspective

’12: “Superstring Perturbation Theory Revisited”

[E.Witten]:

Superstring perturbation theory and supergeometry

Page 10: Superstring theory and integration over the moduli space

The work of [KO,Tachikawa]

Page 11: Superstring theory and integration over the moduli space

The work of [KO,Tachikawa]

FMS:ambiguity

Formulation using supergeometry

⇒ 2 examples where ambiguity does not appear

Page 12: Superstring theory and integration over the moduli space

The work of [KO,Tachikawa]

FMS:ambiguity

Formulation using supergeometry

⇒ 2 examples where ambiguity does not appear

N = 0 ⊂ N = 1 embedding [N. Berkovits,C. Vafa

’94]

Page 13: Superstring theory and integration over the moduli space

The work of [KO,Tachikawa]

FMS:ambiguity

Formulation using supergeometry

⇒ 2 examples where ambiguity does not appear

N = 0 ⊂ N = 1 embedding [N. Berkovits,C. Vafa

’94]

Topological amplitudes

[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Page 14: Superstring theory and integration over the moduli space

1 introduction

2 Supergeometry and Superstring

3 Reduction to integration over moduli

Page 15: Superstring theory and integration over the moduli space

Section 2

Supergeometry and Superstring

Page 16: Superstring theory and integration over the moduli space

Bosonic string theory

Page 17: Superstring theory and integration over the moduli space

Bosonic string theory

Action:S =∫Σ d

2zGij∂Xi∂Xj

Page 18: Superstring theory and integration over the moduli space

Bosonic string theory

Action:S =∫Σ d

2zGij∂Xi∂Xj

⇒ Riemann Surface = 2d surface + complex

structure

Page 19: Superstring theory and integration over the moduli space

Bosonic string theory

Action:S =∫Σ d

2zGij∂Xi∂Xj

⇒ Riemann Surface = 2d surface + complex

structure

Conformal symmetry⇒ bc ghost

Page 20: Superstring theory and integration over the moduli space

Bosonic string theory

Action:S =∫Σ d

2zGij∂Xi∂Xj

⇒ Riemann Surface = 2d surface + complex

structure

Conformal symmetry⇒ bc ghost

⇒ A =∫Mbos,g

dmdmF(m, m)

Page 21: Superstring theory and integration over the moduli space

Superstring theory

Page 22: Superstring theory and integration over the moduli space

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

Page 23: Superstring theory and integration over the moduli space

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

⇒ Super Riemann Surface

= 2d surface + supercomplex structure

= 2d surface + complex structure + gravitinoθ

θ θ

θθ

θ θθθ

Page 24: Superstring theory and integration over the moduli space

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

⇒ Super Riemann Surface

= 2d surface + supercomplex structure

= 2d surface + complex structure + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

⇒ BC(bcβγ) superghost

Page 25: Superstring theory and integration over the moduli space

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

⇒ Super Riemann Surface

= 2d surface + supercomplex structure

= 2d surface + complex structure + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

⇒ BC(bcβγ) superghost

⇒ A =∫Msuper,g

dmdηdmdηF(m, m, η, η)

Page 26: Superstring theory and integration over the moduli space

Superstring theory

Action:S =∫Σ d

2zd2θ GijDθXiDθX

j

⇒ Super Riemann Surface

= 2d surface + supercomplex structure

= 2d surface + complex structure + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

⇒ BC(bcβγ) superghost

⇒ A =∫Msuper,g

dmdηdmdηF(m, m, η, η)?⇒ A =

∫Mbos,g

dmdmF′(m, m)

Page 27: Superstring theory and integration over the moduli space

Supermanifold

Page 28: Superstring theory and integration over the moduli space

Supermanifold

supermanifold = patched superspaces

Page 29: Superstring theory and integration over the moduli space

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM ∋ (x1, · · · , xp|θ1, · · · , θq)θiθj = −θjθi

Page 30: Superstring theory and integration over the moduli space

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM ∋ (x1, · · · , xp|θ1, · · · , θq)θiθj = −θjθi

x′i = fi(x|θ)θ′µ = ψµ(x|θ)

Page 31: Superstring theory and integration over the moduli space

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM ∋ (x1, · · · , xp|θ1, · · · , θq)θiθj = −θjθi

x′i = fi(x|θ)θ′µ = ψµ(x|θ)Mred = {(xi, · · · , xp)} −→ M

Page 32: Superstring theory and integration over the moduli space

Super Riemann Surface (SRS)

Page 33: Superstring theory and integration over the moduli space

Super Riemann Surface (SRS)

Complex supermanifold Σ of dimension 1|1:Σ ∋ (z|θ)

Page 34: Superstring theory and integration over the moduli space

Super Riemann Surface (SRS)

Complex supermanifold Σ of dimension 1|1:Σ ∋ (z|θ)Patches are glued by superconformal transf.

Page 35: Superstring theory and integration over the moduli space

Super Riemann Surface (SRS)

Complex supermanifold Σ of dimension 1|1:Σ ∋ (z|θ)Patches are glued by superconformal transf.

z′ = u(z|η) + θζ(z|η)√

u(z|η)θ′ = ζ′(z|η) + θ

√∂zu(z|η) + ζ(z|η)∂zζ(z|η)

Page 36: Superstring theory and integration over the moduli space

Super Riemann Surface (SRS)

Complex supermanifold Σ of dimension 1|1:Σ ∋ (z|θ)Patches are glued by superconformal transf.

z′ = u(z|η) + θζ(z|η)√

u(z|η)θ′ = ζ′(z|η) + θ

√∂zu(z|η) + ζ(z|η)∂zζ(z|η)

Dθ = ∂θ + θ∂z = F(z|θ)(∂θ′ + θ′∂z′)

Page 37: Superstring theory and integration over the moduli space

Split Super Riemann Surface

Page 38: Superstring theory and integration over the moduli space

Split Super Riemann Surface

z′ = u(z)

θ′ = θ√∂zu(z)

Page 39: Superstring theory and integration over the moduli space

Split Super Riemann Surface

z′ = u(z)

θ′ = θ√∂zu(z)

θ ∈ H0(Σ,TΣ∗1/2red )

⇒ split SRS↔ Riemann surface with spin str.

Page 40: Superstring theory and integration over the moduli space

Supermoduli spaceMsuper

Page 41: Superstring theory and integration over the moduli space

Supermoduli spaceMsuper

Space of deformations of SRS

Page 42: Superstring theory and integration over the moduli space

Supermoduli spaceMsuper

Space of deformations of SRS

even deformation: µzz ∈ H1(Σred,TΣred)

Page 43: Superstring theory and integration over the moduli space

Supermoduli spaceMsuper

Space of deformations of SRS

even deformation: µzz ∈ H1(Σred,TΣred)

odd deformation: χθz ∈ H1(Σred,TΣ1/2red )

Page 44: Superstring theory and integration over the moduli space

Supermoduli spaceMsuper

Space of deformations of SRS

even deformation: µzz ∈ H1(Σred,TΣred)

odd deformation: χθz ∈ H1(Σred,TΣ1/2red )

dimMsuper = ∆e|∆o = 3g− 3|2g− 2 (g ≥ 2)

Page 45: Superstring theory and integration over the moduli space

Supermoduli spaceMsuper

Space of deformations of SRS

even deformation: µzz ∈ H1(Σred,TΣred)

odd deformation: χθz ∈ H1(Σred,TΣ1/2red )

dimMsuper = ∆e|∆o = 3g− 3|2g− 2 (g ≥ 2)

Msuper,red ≃Mspin

Page 46: Superstring theory and integration over the moduli space

Supermoduli space of SRS with punctures

Page 47: Superstring theory and integration over the moduli space

Supermoduli space of SRS with punctures

NS puncture

Page 48: Superstring theory and integration over the moduli space

Supermoduli space of SRS with punctures

NS puncture

R puncture

Page 49: Superstring theory and integration over the moduli space

Supermoduli space of SRS with punctures

NS puncture

R puncture

dimMsuper = ∆e|∆o

= 3g−3+nNS+nR|2g−2+nNS+nR/2 (g ≥ 2)

Page 50: Superstring theory and integration over the moduli space

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

Page 51: Superstring theory and integration over the moduli space

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

Page 52: Superstring theory and integration over the moduli space

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

MR ∋ (m, η), ML ∋ (m, η)

Page 53: Superstring theory and integration over the moduli space

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

MR ∋ (m, η), ML ∋ (m, η)

m1 = t1 + it2 + nilp., barm1 = t1 − it2 + nilp.,

ζ i = ηi, ζ i+∆o = η i

Page 54: Superstring theory and integration over the moduli space

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

MR ∋ (m, η), ML ∋ (m, η)

m1 = t1 + it2 + nilp., barm1 = t1 − it2 + nilp.,

ζ i = ηi, ζ i+∆o = η i

Integration over Γ is unique

[E.Witten , arXiv:1209.2199]

Page 55: Superstring theory and integration over the moduli space

Integration cycle for string theory

MR 6≃ ML w/ NS-R or R-NS vertex

(t1 · · · t2∆e|ζ1 · · · ζ∆o+∆o) ∈ Γ ⊂MR ×ML

Real subsupermanifold

MR ∋ (m, η), ML ∋ (m, η)

m1 = t1 + it2 + nilp., barm1 = t1 − it2 + nilp.,

ζ i = ηi, ζ i+∆o = η i

Integration over Γ is unique

[E.Witten , arXiv:1209.2199]

if we fix the behavior of

Γ near boundary.

Page 56: Superstring theory and integration over the moduli space

Odd coordinates ofMsuper

Page 57: Superstring theory and integration over the moduli space

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Page 58: Superstring theory and integration over the moduli space

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

Page 59: Superstring theory and integration over the moduli space

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

deformation χ :gravitino background

Page 60: Superstring theory and integration over the moduli space

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

deformation χ :gravitino background

{χσ} : a (bosonic) basis of gravitino background

χ = ησχσ

Page 61: Superstring theory and integration over the moduli space

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

deformation χ :gravitino background

{χσ} : a (bosonic) basis of gravitino background

χ = ησχσ

Page 62: Superstring theory and integration over the moduli space

Odd coordinates ofMsuper

Σ0 : Split SRS = (m|0) ∈Msuper,red ⊂Msuper

Σ : SRS obtained by odd deformation of Σ0

deformation χ :gravitino background

{χσ} : a (bosonic) basis of gravitino background

χ = ησχσ

Σ = (m|η1, · · · , η∆o)

Page 63: Superstring theory and integration over the moduli space

Coupling between gravitino and SCFT

Page 64: Superstring theory and integration over the moduli space

Coupling between gravitino and SCFT

Sχ = 12π

∫Σred

d2zχTF

Page 65: Superstring theory and integration over the moduli space

Coupling between gravitino and SCFT

Sχ = 12π

∫Σred

d2zχTF

Sχ = 12π

∫Σred

d2zχTF

Page 66: Superstring theory and integration over the moduli space

Coupling between gravitino and SCFT

Sχ = 12π

∫Σred

d2zχTF

Sχ = 12π

∫Σred

d2zχTF

Sχχ =∫ΣredχχA

A ∝ ψµψµ (Flat background)

Page 67: Superstring theory and integration over the moduli space

Coupling between gravitino and SCFT

Sχ = 12π

∫Σred

d2zχTF

Sχ = 12π

∫Σred

d2zχTF

Sχχ =∫ΣredχχA

A ∝ ψµψµ (Flat background)

c.f. Dµφ†Dµφ ∋ AµA

µφ†φ

Page 68: Superstring theory and integration over the moduli space

Scattering amplitudes of superstring

Page 69: Superstring theory and integration over the moduli space

Scattering amplitudes of superstring

Vi : Vertex op. pic. number −1 (NS) or −1/2 (R)

Page 70: Superstring theory and integration over the moduli space

Scattering amplitudes of superstring

Vi : Vertex op. pic. number −1 (NS) or −1/2 (R)

AV,g =∫Γ dmdηdmdη FV,g(m, η, m, η)

Page 71: Superstring theory and integration over the moduli space

Scattering amplitudes of superstring

Vi : Vertex op. pic. number −1 (NS) or −1/2 (R)

AV,g =∫Γ dmdηdmdη FV,g(m, η, m, η)

FV,g(m, η, m, η) =⟨∏i Vi

∏∆e

a=1(∫Σred

d2zbµa)

∏∆e

b=1(∫Σred

d2zbµb)

∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(−Sχ − Sχ − Sχχ)〉m

Page 72: Superstring theory and integration over the moduli space

Scattering amplitudes of superstring

Vi : Vertex op. pic. number −1 (NS) or −1/2 (R)

AV,g =∫Γ dmdηdmdη FV,g(m, η, m, η)

FV,g(m, η, m, η) =⟨∏i Vi

∏∆e

a=1(∫Σred

d2zbµa)

∏∆e

b=1(∫Σred

d2zbµb)

∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(−Sχ − Sχ − Sχχ)〉mSχ =

∑∆o

σ=1ησ2π

∫Σred

d2zχσTF

Page 73: Superstring theory and integration over the moduli space

Picture changing formalism

Page 74: Superstring theory and integration over the moduli space

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Page 75: Superstring theory and integration over the moduli space

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Factors including χ :∫dη

∏σ(∫Σredβχσ) exp(

∑∆o

σ=1−ησ2π

∫ΣredχσTF)

Page 76: Superstring theory and integration over the moduli space

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Factors including χ :∫dη

∏σ(∫Σredβχσ) exp(

∑∆o

σ=1−ησ2π

∫ΣredχσTF)

=∏∆o

σ Y(pσ)

Y(pσ) = δ(β(pσ))TF(pσ)

Page 77: Superstring theory and integration over the moduli space

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Factors including χ :∫dη

∏σ(∫Σredβχσ) exp(

∑∆o

σ=1−ησ2π

∫ΣredχσTF)

=∏∆o

σ Y(pσ)

Y(pσ) = δ(β(pσ))TF(pσ)

χχ term vanishes if pσ 6= pτ

⇒ Formulation of FMS

Page 78: Superstring theory and integration over the moduli space

Picture changing formalism

χσ = δ(z− pσ) pσ ∈ Σred

Factors including χ :∫dη

∏σ(∫Σredβχσ) exp(

∑∆o

σ=1−ησ2π

∫ΣredχσTF)

=∏∆o

σ Y(pσ)

Y(pσ) = δ(β(pσ))TF(pσ)

χχ term vanishes if pσ 6= pτ

⇒ Formulation of FMS

Valid where [δ(z− pσ)] spans odd deformations

⇒ Coordinates given by picture changing formalism

is not global!

Page 79: Superstring theory and integration over the moduli space

Integration over a supermanifold

Page 80: Superstring theory and integration over the moduli space

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

Page 81: Superstring theory and integration over the moduli space

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

m′ = m + aη1η2

η′i = ηi

Page 82: Superstring theory and integration over the moduli space

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

m′ = m + aη1η2

η′i = ηi

ω|U1= (f0(m) + f2(m)η1η2)dmdη1dη2

Page 83: Superstring theory and integration over the moduli space

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

m′ = m + aη1η2

η′i = ηi

ω|U1= (f0(m) + f2(m)η1η2)dmdη1dη2

ω|U2=

(f0(m′) + (f2(m

′)− a∂f0(m′))η1η2)dm′dη′1dη

′2

Page 84: Superstring theory and integration over the moduli space

Integration over a supermanifold

M: dim1|2 supermanifold,

M = U1 ∪ U2,U1 ∋ (m|η1, η2), U2 ∋(m′|η′1, η′2)M = V1

∐V2,Ui ⊃ Vi

m′ = m + aη1η2

η′i = ηi

ω|U1= (f0(m) + f2(m)η1η2)dmdη1dη2

ω|U2=

(f0(m′) + (f2(m

′)− a∂f0(m′))η1η2)dm′dη′1dη

′2∫

M ω =∫V1,red

f2dm +∫V2,red

(f2 − a∂f0)dm′

Page 85: Superstring theory and integration over the moduli space

Projectedness of supermanifolds

Page 86: Superstring theory and integration over the moduli space

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

Page 87: Superstring theory and integration over the moduli space

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists

Page 88: Superstring theory and integration over the moduli space

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists∫M ω =

∫Mred

p∗(ω)

Page 89: Superstring theory and integration over the moduli space

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists∫M ω =

∫Mred

p∗(ω)

All supermanifolds are projected in smooth sense.

Page 90: Superstring theory and integration over the moduli space

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists∫M ω =

∫Mred

p∗(ω)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

Page 91: Superstring theory and integration over the moduli space

Projectedness of supermanifolds

M:projected⇔an atlas in which x′ = f(x) for all gluing

⇔ p : M→ Mred exists∫M ω =

∫Mred

p∗(ω)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

non-holomorphic projection destroys holomorphic

factorization.

Page 92: Superstring theory and integration over the moduli space

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Page 93: Superstring theory and integration over the moduli space

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red ≃Mspin i :Mspin −→Msuper

Page 94: Superstring theory and integration over the moduli space

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red ≃Mspin i :Mspin −→Msuper

p :Msuper →Mspin does not exists.

(g ≥ 5, non-holomorphic one exists)

Page 95: Superstring theory and integration over the moduli space

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red ≃Mspin i :Mspin −→Msuper

p :Msuper →Mspin does not exists.

(g ≥ 5, non-holomorphic one exists)

Global integration onMsuper

6⇒ Global integration onMspin

(with holomorphic factorization)

Page 96: Superstring theory and integration over the moduli space

Superstring Perturbation Theory Revisited[E.Witten ’12]

Page 97: Superstring theory and integration over the moduli space

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

Page 98: Superstring theory and integration over the moduli space

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

PCO: not globally valid

Page 99: Superstring theory and integration over the moduli space

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

PCO: not globally valid

Movement of PCO⇒ exact form

Page 100: Superstring theory and integration over the moduli space

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

PCO: not globally valid

Movement of PCO⇒ exact form

E.Witten described the way which does not rely on

the reduction

Page 101: Superstring theory and integration over the moduli space

Superstring Perturbation Theory Revisited[E.Witten ’12]

Global integration onMsuper

6⇒ Global integration onMspin

PCO: not globally valid

Movement of PCO⇒ exact form

E.Witten described the way which does not rely on

the reduction

Infrared regularization

Page 102: Superstring theory and integration over the moduli space

Section 3

Reduction to integration over moduli

Page 103: Superstring theory and integration over the moduli space

Reduction condition

Page 104: Superstring theory and integration over the moduli space

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

(f2 − a∂f0)dm′

Page 105: Superstring theory and integration over the moduli space

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

f2dm′

Global integration onMsuper

⇒ Global integration onMspin in special cases

Page 106: Superstring theory and integration over the moduli space

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

f2dm′

Global integration onMsuper

⇒ Global integration onMspin in special cases

ω = F(m, m)∏

dmdm∏

all ηiηi∏

dηdηi

Page 107: Superstring theory and integration over the moduli space

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

f2dm′

Global integration onMsuper

⇒ Global integration onMspin in special cases

ω = F(m, m)∏

dmdm∏

all ηiηi∏

dηdηi

ω = i∗α ∧ P.D.[Mspin]

Page 108: Superstring theory and integration over the moduli space

Reduction condition

∫M ω =

∫V1,red

f2dm +∫V2,red

f2dm′

Global integration onMsuper

⇒ Global integration onMspin in special cases

ω = F(m, m)∏

dmdm∏

all ηiηi∏

dηdηi

ω = i∗α ∧ P.D.[Mspin]

ω does not depend on the locations of picture

changing operators

Page 109: Superstring theory and integration over the moduli space

Topological amplitudes in string theory[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Page 110: Superstring theory and integration over the moduli space

Topological amplitudes in string theory[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Type II string on CY (N = (2, 2)SCFT) ×R1,3

⇒ 4d N = 2 supergravity model

Page 111: Superstring theory and integration over the moduli space

Topological amplitudes in string theory[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Type II string on CY (N = (2, 2)SCFT) ×R1,3

⇒ 4d N = 2 supergravity model

F-term of 4d effective field theory is related to

topological string.

Page 112: Superstring theory and integration over the moduli space

Topological string

Twisted N = (2, 2) string theory

Page 113: Superstring theory and integration over the moduli space

Topological string

Twisted N = (2, 2) string theory

Amplitude =∫Mbos· · ·

Page 114: Superstring theory and integration over the moduli space

Topological string

Twisted N = (2, 2) string theory

Amplitude =∫Mbos· · ·

Fg : g loop vacuum amplitude

Page 115: Superstring theory and integration over the moduli space

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Page 116: Superstring theory and integration over the moduli space

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Ag : zero momenta limit of g loop amplitude of

2g − 2 graviphotons (RR) and 2 gravitons (NSNS)

Page 117: Superstring theory and integration over the moduli space

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Ag : zero momenta limit of g loop amplitude of

2g − 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag =∫Γ · · ·

Page 118: Superstring theory and integration over the moduli space

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Ag : zero momenta limit of g loop amplitude of

2g − 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag =∫Γ · · ·

dimR Γ = 6g − 6|6g − 6

Page 119: Superstring theory and integration over the moduli space

Reduction to topological string

Type II string on CY(6d)M ×R1,3

⇒ 4d N = 2 supergravity model

Ag : zero momenta limit of g loop amplitude of

2g − 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag =∫Γ · · ·

dimR Γ = 6g − 6|6g − 6

Ag = (g!)2Fg =∫Mbos· · ·

Page 120: Superstring theory and integration over the moduli space

Vertex operators

Page 121: Superstring theory and integration over the moduli space

Vertex operators

Graviphoton: VT = Σ× spacetime× (ghost)

Σ = exp(i√32(H(z)∓ H(z))) H : U(1)R boson

Σ : U(1)R charge (3/2,∓ 3/2)

Page 122: Superstring theory and integration over the moduli space

Vertex operators

Graviphoton: VT = Σ× spacetime× (ghost)

Σ = exp(i√32(H(z)∓ H(z))) H : U(1)R boson

Σ : U(1)R charge (3/2,∓ 3/2)

Graviton: VR =∫Σred

spacetime,ghost

Page 123: Superstring theory and integration over the moduli space

Calculation of amplitude

Page 124: Superstring theory and integration over the moduli space

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(−Sχ − Sχ − Sχχ)〉m

Page 125: Superstring theory and integration over the moduli space

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

Page 126: Superstring theory and integration over the moduli space

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

TF = TF,spacetime,ghost + G+ + G−

Page 127: Superstring theory and integration over the moduli space

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

TF = TF,spacetime,ghost + G+ + G−

G± : U(1)R charge ±1

Page 128: Superstring theory and integration over the moduli space

Calculation of amplitudeAg =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

TF = TF,spacetime,ghost + G+ + G−

G± : U(1)R charge ±1A = A++ + A+− + A−+ + A−− + Aspacetime

A±±: U(1)R charge (±1,±1)⇐ Coupling A to N = (2, 2) supergravity:∫Σred

A±±χ∓χ∓ → χ = χ+ = χ−

Page 129: Superstring theory and integration over the moduli space

Saturation of η’s

Page 130: Superstring theory and integration over the moduli space

Saturation of η’s

Ag =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

Page 131: Superstring theory and integration over the moduli space

Saturation of η’s

Ag =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

nonzero contribution

⇒ 3g − 3χ and 3g − 3χ

Page 132: Superstring theory and integration over the moduli space

Saturation of η’s

Ag =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

nonzero contribution

⇒ 3g − 3η and 3g − 3η

dimΓ = 6g − 6|6g − 6⇒ saturation η’s

Page 133: Superstring theory and integration over the moduli space

Saturation of η’s

Ag =∫Γ

⟨∏2g−2i=1 Σ(xi)← U(1)R : (3g − 3,∓3g − 3)

×(spacetime)× (bc)×∏∆o

σ=1 δ(∫Σred

d2zβχσ)

∏∆o

τ=1 δ(∫Σred

d2zβχτ )

exp(− ∫Σred

(TFχ+ TFχ+ Aχχ))⟩m

nonzero contribution

⇒ 3g − 3η and 3g − 3η

dimΓ = 6g − 6|6g − 6⇒ saturation η’s

The correlation function does not depend of the

choice of χσ

Page 134: Superstring theory and integration over the moduli space

Conclusion

Page 135: Superstring theory and integration over the moduli space

Conclusion

Superstring amplitude cannot be represent as

integration overMbos in general

Page 136: Superstring theory and integration over the moduli space

Conclusion

Superstring amplitude cannot be represent as

integration overMbos in general

Special cases exist.

Page 137: Superstring theory and integration over the moduli space

Conclusion

Superstring amplitude cannot be represent as

integration overMbos in general

Special cases exist.

Amplitudes which is equivalent topological

amplitudes are the case.

Page 138: Superstring theory and integration over the moduli space

Prospects

Page 139: Superstring theory and integration over the moduli space

Prospects

More nontrivial example of calculation

[E.Witten, arXiv:1304.2832],[E.Witten, arXiv:1306.3621]

Page 140: Superstring theory and integration over the moduli space

Prospects

More nontrivial example of calculation

[E.Witten, arXiv:1304.2832],[E.Witten, arXiv:1306.3621]

Superstring field theory

Page 141: Superstring theory and integration over the moduli space

Prospects

More nontrivial example of calculation

[E.Witten, arXiv:1304.2832],[E.Witten, arXiv:1306.3621]

Superstring field theory

Another application of supergeometry

Page 142: Superstring theory and integration over the moduli space

End.

Page 143: Superstring theory and integration over the moduli space

Berkovits and Vafa embedding[N.Berkovits, C.Vafa ’94]

Worldsheet supersymmetric model equivalent to

bosonic string theory

⇒ Bosonic string : An (unstable) vacuum of

superstring theory

〈V1 · · ·Vn〉bos =⟨V′1 · · ·V′n

⟩super

⇔ ∫Mbos· · · = ∫

Msuper· · ·

Page 144: Superstring theory and integration over the moduli space

Supermoduli space of SRS with punctures

Page 145: Superstring theory and integration over the moduli space

Supermoduli space of SRS with punctures

even deformation:

H1(Σred,TΣred)+ positions of punctures

Page 146: Superstring theory and integration over the moduli space

Supermoduli space of SRS with punctures

even deformation:

H1(Σred,TΣred ⊗O(∑

NS pi +∑

R qi))

Page 147: Superstring theory and integration over the moduli space

Supermoduli space of SRS with punctures

even deformation:

H1(Σred,TΣred ⊗O(∑

NS pi +∑

R qi))

odd deformation:

H1(Σred,R⊗O(∑

NS pi))

R2 ≃ TΣred ⊗O(∑

R qi)

Page 148: Superstring theory and integration over the moduli space

Supermoduli space of SRS with punctures

even deformation:

H1(Σred,TΣred ⊗O(∑

NS pi +∑

R qi))

odd deformation:

H1(Σred,R⊗O(∑

NS pi))

R2 ≃ TΣred ⊗O(∑

R qi)

dimMsuper = ∆e|∆o

= 3g−3+nNS+nR|2g−2+nNS+nR/2 (g ≥ 2)

Page 149: Superstring theory and integration over the moduli space

Superconformal transformation

νf = f(z)(∂θ − θ∂z)

Vg = g(z)∂z + 1/2∂zgθ∂θ

Gn = νzn+1/2

Lm = −Vzm+1

Page 150: Superstring theory and integration over the moduli space

Superconformal transformation near R

vertex

νf = f(z)(∂θ − zθ∂z)

Vg = z(g(z)∂z + 1/2∂zgθ∂θ)

Gr = νzr

Lm = −Vzm

Page 151: Superstring theory and integration over the moduli space

Integration over odd variables

Page 152: Superstring theory and integration over the moduli space

Integration over odd variables

ηi:odd variable

Page 153: Superstring theory and integration over the moduli space

Integration over odd variables

ηi:odd variable

ηiηj = −ηjηi η2i = 0

Page 154: Superstring theory and integration over the moduli space

Integration over odd variables

ηi:odd variable

ηiηj = −ηjηi η2i = 0

f(η1, η2) = a + bη1 + cη2 + dη1η2

Page 155: Superstring theory and integration over the moduli space

Integration over odd variables

ηi:odd variable

ηiηj = −ηjηi η2i = 0

f(η1, η2) = a + bη1 + cη2 + dη1η2∫dη2dη1f(η1, η2) = d

Page 156: Superstring theory and integration over the moduli space

SRS with punctures

Page 157: Superstring theory and integration over the moduli space

SRS with punctures

NS puncture: (z0|θ0) ∈ Σ

θ : periodic around z0

Page 158: Superstring theory and integration over the moduli space

SRS with punctures

NS puncture: (z0|θ0) ∈ Σ

θ : periodic around z0

R puncture: {z = z1} ⊂ Σ : submanifold of Σ

Page 159: Superstring theory and integration over the moduli space

SRS with punctures

NS puncture: (z0|θ0) ∈ Σ

θ : periodic around z0

R puncture: {z = z1} ⊂ Σ : submanifold of Σ

D∗θ = ∂θ + (z− z1)θ∂z

Page 160: Superstring theory and integration over the moduli space

SRS with punctures

NS puncture: (z0|θ0) ∈ Σ

θ : periodic around z0

R puncture: {z = z1} ⊂ Σ : submanifold of Σ

D∗θ = ∂θ + (z− z1)θ∂z

θ′ =√z− z1θ ⇒ D∗θ =

√z(∂θ′ + θ′∂z)

θ′:antiperiodic around z1

Page 161: Superstring theory and integration over the moduli space

Subtlety for picture changing formalism

Page 162: Superstring theory and integration over the moduli space

Subtlety for picture changing formalism

Valid where [δ(pσ)] spans odd deformations

⇒ Coordinates given by picture changing formalism

is not global!

Page 163: Superstring theory and integration over the moduli space

Subtlety for picture changing formalism

Valid where [δ(pσ)] spans odd deformations

⇒ Coordinates given by picture changing formalism

is not global!

1 Δ{Y(q�),...,Y(q�)}

1 Δ{Y(q�),...,Y(q�)}

M super

{Y(p�),...,Y(p�)}1 Δ

{Y(p�),...,Y(p�)}

{Y(p�),...,Y(p�)}1 Δ

{Y(p�),...,Y(p�)}

1 Δ{Y(q�),...,Y(q�)}

1 Δ{Y(q�),...,Y(q�)}

Page 164: Superstring theory and integration over the moduli space

Subtlety for picture changing formalism

Valid where [δ(pσ)] spans odd deformations

⇒ Coordinates given by picture changing formalism

is not global!

1 Δ{Y(q�),...,Y(q�)}

1 Δ{Y(q�),...,Y(q�)}

M super

{Y(p�),...,Y(p�)}1 Δ

{Y(p�),...,Y(p�)}

{Y(p�),...,Y(p�)}1 Δ

{Y(p�),...,Y(p�)}

1 Δ{Y(q�),...,Y(q�)}

1 Δ{Y(q�),...,Y(q�)}

movement of PCOs⇒ BRST exact term⇔ exact

form on patches