superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution...

94
Superstring theory and integration over the moduli space Kantaro Ohmori Hongo,The University of Tokyo Oct, 23rd, 2013 arXiv:1303.7299 [KO,Yuji Tachikawa] Todai/Riken joint workshop on Super Yang-Mills, solvable systems and related subjects

Upload: others

Post on 22-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Superstring theory and integration over

the moduli space

Kantaro Ohmori

Hongo,The University of Tokyo

Oct, 23rd, 2013

arXiv:1303.7299 [KO,Yuji Tachikawa]

Todai/Riken joint workshop on Super Yang-Mills,

solvable systems and related subjects

Page 2: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Section 1

introduction

Page 3: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Simplified history of the superstring theory

⇠70’s:Bosonic string theory! supersymmetrize

’84⇠:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’94⇠:2nd superstring revolution

) nonperturbative perspective

’12: “Superstring Perturbation Theory Revisited”

[E.Witten]:

Superstring perturbation theory and supergeometry

Page 4: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Simplified history of the superstring theory

⇠70’s:Bosonic string theory! supersymmetrize

’84⇠:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’94⇠:2nd superstring revolution

) nonperturbative perspective

’12: “Superstring Perturbation Theory Revisited”

[E.Witten]:

Superstring perturbation theory and supergeometry

Page 5: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Simplified history of the superstring theory

⇠70’s:Bosonic string theory! supersymmetrize

’84⇠:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’94⇠:2nd superstring revolution

) nonperturbative perspective

’12: “Superstring Perturbation Theory Revisited”

[E.Witten]:

Superstring perturbation theory and supergeometry

Page 6: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Simplified history of the superstring theory

⇠70’s:Bosonic string theory! supersymmetrize

’84⇠:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’94⇠:2nd superstring revolution

) nonperturbative perspective

’12: “Superstring Perturbation Theory Revisited”

[E.Witten]:

Superstring perturbation theory and supergeometry

Page 7: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Simplified history of the superstring theory

⇠70’s:Bosonic string theory! supersymmetrize

’84⇠:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’94⇠:2nd superstring revolution

) nonperturbative perspective

’12: “Superstring Perturbation Theory Revisited”

[E.Witten]:

Superstring perturbation theory and supergeometry

Page 8: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Simplified history of the superstring theory

⇠70’s:Bosonic string theory! supersymmetrize

’84⇠:1st superstring revolution

’86: ”Conformal Invariance, Supersymmetry, and

String Theory” [D.Friedan, E.Martinec, S.Shenker]

’94⇠:2nd superstring revolution

) nonperturbative perspective

’12: “Superstring Perturbation Theory Revisited”

[E.Witten]:

Superstring perturbation theory and supergeometry

Page 9: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Bosonic string theory

Action:S =

R⌃

d2zGij

@X i

¯@X j

) Riemann Surface = 2d surface + metric

Conformal symmetry) bc ghost

) A =

RMbos,g

dmdm̄F (m, m̄)

Page 10: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Bosonic string theory

Action:S =

R⌃

d2zGij

@X i

¯@X j

) Riemann Surface = 2d surface + metric

Conformal symmetry) bc ghost

) A =

RMbos,g

dmdm̄F (m, m̄)

Page 11: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Bosonic string theory

Action:S =

R⌃

d2zGij

@X i

¯@X j

) Riemann Surface = 2d surface + metric

Conformal symmetry) bc ghost

) A =

RMbos,g

dmdm̄F (m, m̄)

Page 12: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Bosonic string theory

Action:S =

R⌃

d2zGij

@X i

¯@X j

) Riemann Surface = 2d surface + metric

Conformal symmetry) bc ghost

) A =

RMbos,g

dmdm̄F (m, m̄)

Page 13: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Bosonic string theory

Action:S =

R⌃

d2zGij

@X i

¯@X j

) Riemann Surface = 2d surface + metric

Conformal symmetry) bc ghost

) A =

RMbos,g

dmdm̄F (m, m̄)

Page 14: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Superstring theory

Action:S =

R⌃

d2zd2✓ Gij

D✓X iD¯✓X

j

) Super Riemann Surface

= 2d surface + supermetric

= 2d surface + metric + gravitino

Superconformal symmetry

) BC (bc��) superghost) A =

RMsuper,g

dmd⌘dm̄d⌘̄F (m, m̄, ⌘, ⌘̄)

) A =

RMspin,g

dmdm̄F 0(m, m̄)

Page 15: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Superstring theory

Action:S =

R⌃

d2zd2✓ Gij

D✓X iD¯✓X

j

) Super Riemann Surface

= 2d surface + supermetric

= 2d surface + metric + gravitino

Superconformal symmetry

) BC (bc��) superghost) A =

RMsuper,g

dmd⌘dm̄d⌘̄F (m, m̄, ⌘, ⌘̄)

) A =

RMspin,g

dmdm̄F 0(m, m̄)

Page 16: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Superstring theory

Action:S =

R⌃

d2zd2✓ Gij

D✓X iD¯✓X

j

) Super Riemann Surface

= 2d surface + supermetric

= 2d surface + metric + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

) BC (bc��) superghost) A =

RMsuper,g

dmd⌘dm̄d⌘̄F (m, m̄, ⌘, ⌘̄)

) A =

RMspin,g

dmdm̄F 0(m, m̄)

Page 17: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Superstring theory

Action:S =

R⌃

d2zd2✓ Gij

D✓X iD¯✓X

j

) Super Riemann Surface

= 2d surface + supermetric

= 2d surface + metric + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

) BC (bc��) superghost

) A =

RMsuper,g

dmd⌘dm̄d⌘̄F (m, m̄, ⌘, ⌘̄)

) A =

RMspin,g

dmdm̄F 0(m, m̄)

Page 18: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Superstring theory

Action:S =

R⌃

d2zd2✓ Gij

D✓X iD¯✓X

j

) Super Riemann Surface

= 2d surface + supermetric

= 2d surface + metric + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

) BC (bc��) superghost) A =

RMsuper,g

dmd⌘dm̄d⌘̄F (m, m̄, ⌘, ⌘̄)

) A =

RMspin,g

dmdm̄F 0(m, m̄)

Page 19: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Superstring theory

Action:S =

R⌃

d2zd2✓ Gij

D✓X iD¯✓X

j

) Super Riemann Surface

= 2d surface + supermetric

= 2d surface + metric + gravitinoθ

θ θ

θθ

θ θθθ

Superconformal symmetry

) BC (bc��) superghost) A =

RMsuper,g

dmd⌘dm̄d⌘̄F (m, m̄, ⌘, ⌘̄)?) A =

RMspin,g

dmdm̄F 0(m, m̄)

Page 20: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

The bosonic and super moduli space

Msuper 6=Mspin⇥ odd direction

Msuper �Mspin

Global integration on Msuper

6) Global integration on Mspin

(preserving holomorphic factorization)

Page 21: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

The bosonic and super moduli space

Msuper 6=Mspin⇥ odd direction

Msuper �Mspin

Global integration on Msuper

6) Global integration on Mspin

(preserving holomorphic factorization)

Page 22: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

The work of [KO,Tachikawa]

Global integration on Msuper

6) Global integration on Mspin

We found special cases where

Global integration on Msuper

) Global integration on Mspin

Page 23: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

The work of [KO,Tachikawa]

Global integration on Msuper

6) Global integration on Mspin

We found special cases where

Global integration on Msuper

) Global integration on Mspin

Page 24: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

The work of [KO,Tachikawa]

Global integration on Msuper

6) Global integration on Mspin

We found special cases where

Global integration on Msuper

) Global integration on Mspin

Page 25: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

The work of [KO,Tachikawa] (2)

2 concrete examples

N = 0 ⇢ N = 1 embedding [N. Berkovits,C. Vafa

’94]

Topological amplitudes

[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Page 26: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

The work of [KO,Tachikawa] (2)

2 concrete examples

N = 0 ⇢ N = 1 embedding [N. Berkovits,C. Vafa

’94]

Topological amplitudes

[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Page 27: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

The work of [KO,Tachikawa] (2)

2 concrete examples

N = 0 ⇢ N = 1 embedding [N. Berkovits,C. Vafa

’94]

Topological amplitudes

[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Page 28: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

The work of [KO,Tachikawa] (2)

2 concrete examples

N = 0 ⇢ N = 1 embedding [N. Berkovits,C. Vafa

’94]

Topological amplitudes

[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Page 29: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

1 introduction

2 Supergeometry and Superstring

3 Reduction to integration over bosonic moduli

Page 30: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM 3 (x

1

, · · · , xp

|✓1

, · · · , ✓q

)

✓i

✓j

= �✓j

✓i

x 0i

= fi

(x|✓)✓0µ = µ(x|✓)Mred = {(x

i

, · · · , xp

)} ,�! M

Page 31: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM 3 (x

1

, · · · , xp

|✓1

, · · · , ✓q

)

✓i

✓j

= �✓j

✓i

x 0i

= fi

(x|✓)✓0µ = µ(x|✓)Mred = {(x

i

, · · · , xp

)} ,�! M

Page 32: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM 3 (x

1

, · · · , xp

|✓1

, · · · , ✓q

)

✓i

✓j

= �✓j

✓i

x 0i

= fi

(x|✓)✓0µ = µ(x|✓)Mred = {(x

i

, · · · , xp

)} ,�! M

Page 33: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM 3 (x

1

, · · · , xp

|✓1

, · · · , ✓q

)

✓i

✓j

= �✓j

✓i

x 0i

= fi

(x|✓)✓0µ = µ(x|✓)

Mred = {(xi

, · · · , xp

)} ,�! M

Page 34: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermanifold

supermanifold = patched superspaces

M : supermanifold of dimension p|qM 3 (x

1

, · · · , xp

|✓1

, · · · , ✓q

)

✓i

✓j

= �✓j

✓i

x 0i

= fi

(x|✓)✓0µ = µ(x|✓)Mred = {(x

i

, · · · , xp

)} ,�! M

Page 35: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space Msuper

Space of deformations of SRS (Super Riemann

Surface)

even deformation: µz

2 H1

(⌃red,T⌃red)

odd deformation: �✓z̃

2 H1

(⌃red,T⌃

1/2red )

{��}: basis of gravitino b.g) � = ⌘���

dim Msuper = �

e

|�o

= 3g � 3|2g � 2 (g � 2)

Msuper,red 'Mspin

Page 36: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space Msuper

Space of deformations of SRS (Super Riemann

Surface)

even deformation: µz

2 H1

(⌃red,T⌃red)

odd deformation: �✓z̃

2 H1

(⌃red,T⌃

1/2red )

{��}: basis of gravitino b.g) � = ⌘���

dim Msuper = �

e

|�o

= 3g � 3|2g � 2 (g � 2)

Msuper,red 'Mspin

Page 37: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space Msuper

Space of deformations of SRS (Super Riemann

Surface)

even deformation: µz

2 H1

(⌃red,T⌃red)

odd deformation: �✓z̃

2 H1

(⌃red,T⌃

1/2red )

{��}: basis of gravitino b.g) � = ⌘���

dim Msuper = �

e

|�o

= 3g � 3|2g � 2 (g � 2)

Msuper,red 'Mspin

Page 38: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space Msuper

Space of deformations of SRS (Super Riemann

Surface)

even deformation: µz

2 H1

(⌃red,T⌃red)

odd deformation: �✓z̃

2 H1

(⌃red,T⌃

1/2red )

{��}: basis of gravitino b.g) � = ⌘���

dim Msuper = �

e

|�o

= 3g � 3|2g � 2 (g � 2)

Msuper,red 'Mspin

Page 39: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space Msuper

Space of deformations of SRS (Super Riemann

Surface)

even deformation: µz

2 H1

(⌃red,T⌃red)

odd deformation: �✓z̃

2 H1

(⌃red,T⌃

1/2red )

{��}: basis of gravitino b.g) � = ⌘���

dim Msuper = �

e

|�o

= 3g � 3|2g � 2 (g � 2)

Msuper,red 'Mspin

Page 40: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space Msuper

Space of deformations of SRS (Super Riemann

Surface)

even deformation: µz

2 H1

(⌃red,T⌃red)

odd deformation: �✓z̃

2 H1

(⌃red,T⌃

1/2red )

{��}: basis of gravitino b.g) � = ⌘���

dim Msuper = �

e

|�o

= 3g � 3|2g � 2 (g � 2)

Msuper,red 'Mspin

Page 41: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space Msuper

Space of deformations of SRS (Super Riemann

Surface)

even deformation: µz

2 H1

(⌃red,T⌃red)

odd deformation: �✓z̃

2 H1

(⌃red,T⌃

1/2red )

{��}: basis of gravitino b.g) � = ⌘���

dim Msuper = �

e

|�o

= 3g � 3|2g � 2 (g � 2)

Msuper,red 'Mspin

Page 42: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space of SRS with punctures

nNS NS punctures and nR R punctures

dim Msuper = �

e

|�o

= 3g�3+nNS+nR|2g�2+nNS+nR/2 (g � 2)

Page 43: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space of SRS with punctures

nNS NS punctures and nR R punctures

dim Msuper = �

e

|�o

= 3g�3+nNS+nR|2g�2+nNS+nR/2 (g � 2)

Page 44: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli space of SRS with punctures

nNS NS punctures and nR R punctures

dim Msuper = �

e

|�o

= 3g�3+nNS+nR|2g�2+nNS+nR/2 (g � 2)

Page 45: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Coupling between gravitino and SCFT

S� =

1

2⇡

Rd2z�T

F

Se� =

1

2⇡

Rd2z e� eT

F

S�e� =

Rd2z�e�A

A / µ e µ (Flat background)

c.f. Dµ�†Dµ� 3 AµAµ�†�

Page 46: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Coupling between gravitino and SCFT

S� =

1

2⇡

Rd2z�T

F

Se� =

1

2⇡

Rd2z e� eT

F

S�e� =

Rd2z�e�A

A / µ e µ (Flat background)

c.f. Dµ�†Dµ� 3 AµAµ�†�

Page 47: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Coupling between gravitino and SCFT

S� =

1

2⇡

Rd2z�T

F

Se� =

1

2⇡

Rd2z e� eT

F

S�e� =

Rd2z�e�A

A / µ e µ (Flat background)

c.f. Dµ�†Dµ� 3 AµAµ�†�

Page 48: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Coupling between gravitino and SCFT

S� =

1

2⇡

Rd2z�T

F

Se� =

1

2⇡

Rd2z e� eT

F

S�e� =

Rd2z�e�A

A / µ e µ (Flat background)

c.f. Dµ�†Dµ� 3 AµAµ�†�

Page 49: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Coupling between gravitino and SCFT

S� =

1

2⇡

Rd2z�T

F

Se� =

1

2⇡

Rd2z e� eT

F

S�e� =

Rd2z�e�A

A / µ e µ (Flat background)

c.f. Dµ�†Dµ� 3 AµAµ�†�

Page 50: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Scattering amplitudes of superstring

Vi

: Vertex op. pic. number �1 (NS) or �1/2 (R)

AV,g =

RMsuper

dmd⌘dm̄d⌘̄ FV,g(m, ⌘, m̄, ⌘̄)

FV,g(m, ⌘, m̄, ⌘̄) =DQi

Vi

Q�

e

a=1

(

R⌃red

d2zbµa

)

Q�

e

b=1

(

R⌃red

d2z ebeµb

)

Q�

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�S� � Se� � S�e�)i

m

S� =

P�

o

�=1

⌘�2⇡

R⌃red

d2z��TF

We get result of FMS when �� = �(z � p�)and int. out. ⌘’s.

Page 51: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Scattering amplitudes of superstring

Vi

: Vertex op. pic. number �1 (NS) or �1/2 (R)

AV,g =

RMsuper

dmd⌘dm̄d⌘̄ FV,g(m, ⌘, m̄, ⌘̄)

FV,g(m, ⌘, m̄, ⌘̄) =DQi

Vi

Q�

e

a=1

(

R⌃red

d2zbµa

)

Q�

e

b=1

(

R⌃red

d2z ebeµb

)

Q�

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�S� � Se� � S�e�)i

m

S� =

P�

o

�=1

⌘�2⇡

R⌃red

d2z��TF

We get result of FMS when �� = �(z � p�)and int. out. ⌘’s.

Page 52: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Scattering amplitudes of superstring

Vi

: Vertex op. pic. number �1 (NS) or �1/2 (R)

AV,g =

RMsuper

dmd⌘dm̄d⌘̄ FV,g(m, ⌘, m̄, ⌘̄)

FV,g(m, ⌘, m̄, ⌘̄) =DQi

Vi

Q�

e

a=1

(

R⌃red

d2zbµa

)

Q�

e

b=1

(

R⌃red

d2z ebeµb

)

Q�

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�S� � Se� � S�e�)i

m

S� =

P�

o

�=1

⌘�2⇡

R⌃red

d2z��TF

We get result of FMS when �� = �(z � p�)and int. out. ⌘’s.

Page 53: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Scattering amplitudes of superstring

Vi

: Vertex op. pic. number �1 (NS) or �1/2 (R)

AV,g =

RMsuper

dmd⌘dm̄d⌘̄ FV,g(m, ⌘, m̄, ⌘̄)

FV,g(m, ⌘, m̄, ⌘̄) =DQi

Vi

Q�

e

a=1

(

R⌃red

d2zbµa

)

Q�

e

b=1

(

R⌃red

d2z ebeµb

)

Q�

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�S� � Se� � S�e�)i

m

S� =

P�

o

�=1

⌘�2⇡

R⌃red

d2z��TF

We get result of FMS when �� = �(z � p�)and int. out. ⌘’s.

Page 54: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Scattering amplitudes of superstring

Vi

: Vertex op. pic. number �1 (NS) or �1/2 (R)

AV,g =

RMsuper

dmd⌘dm̄d⌘̄ FV,g(m, ⌘, m̄, ⌘̄)

FV,g(m, ⌘, m̄, ⌘̄) =DQi

Vi

Q�

e

a=1

(

R⌃red

d2zbµa

)

Q�

e

b=1

(

R⌃red

d2z ebeµb

)

Q�

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�S� � Se� � S�e�)i

m

S� =

P�

o

�=1

⌘�2⇡

R⌃red

d2z��TF

We get result of FMS when �� = �(z � p�)and int. out. ⌘’s.

Page 55: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Scattering amplitudes of superstring

Vi

: Vertex op. pic. number �1 (NS) or �1/2 (R)

AV,g =

RMsuper

dmd⌘dm̄d⌘̄ FV,g(m, ⌘, m̄, ⌘̄)

FV,g(m, ⌘, m̄, ⌘̄) =DQi

Vi

Q�

e

a=1

(

R⌃red

d2zbµa

)

Q�

e

b=1

(

R⌃red

d2z ebeµb

)

Q�

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�S� � Se� � S�e�)i

m

S� =

P�

o

�=1

⌘�2⇡

R⌃red

d2z��TF

We get result of FMS when �� = �(z � p�)and int. out. ⌘’s.

Page 56: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Integration over a supermanifold

E = {(m|⌘1

, ⌘2

)}/ ⇠m ⇠ m + ⌧ + ⌘

1

⌘2

⇠ m + 1

RE

(a + b⌘1

⌘2

)dmdmd⌘1

d⌘2

= b=⌧ +

p�1a/2

⌘1

⌘2

mixed with m

Page 57: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Integration over a supermanifold

E = {(m|⌘1

, ⌘2

)}/ ⇠m ⇠ m + ⌧ + ⌘

1

⌘2

⇠ m + 1

RE

(a + b⌘1

⌘2

)dmdmd⌘1

d⌘2

= b=⌧ +

p�1a/2

⌘1

⌘2

mixed with m

Page 58: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Integration over a supermanifold

E = {(m|⌘1

, ⌘2

)}/ ⇠m ⇠ m + ⌧ + ⌘

1

⌘2

⇠ m + 1

RE

(a + b⌘1

⌘2

)dmdmd⌘1

d⌘2

= b=⌧ +

p�1a/2

⌘1

⌘2

mixed with m

Page 59: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Integration over a supermanifold

E = {(m|⌘1

, ⌘2

)}/ ⇠m ⇠ m + ⌧ + ⌘

1

⌘2

⇠ m + 1

RE

(a + b⌘1

⌘2

)dmdmd⌘1

d⌘2

= b=⌧ +

p�1a/2

⌘1

⌘2

mixed with m

Page 60: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Projectedness of supermanifolds

M :projected,an atlas in which x 0 = f (x) for all gluing

) naive integrations with ⌘’s are allowed

, p : M ! Mred existsRM

! =

RMred

p⇤(!)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

Page 61: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Projectedness of supermanifolds

M :projected,an atlas in which x 0 = f (x) for all gluing

) naive integrations with ⌘’s are allowed

, p : M ! Mred existsRM

! =

RMred

p⇤(!)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

Page 62: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Projectedness of supermanifolds

M :projected,an atlas in which x 0 = f (x) for all gluing

) naive integrations with ⌘’s are allowed

, p : M ! Mred exists

RM

! =

RMred

p⇤(!)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

Page 63: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Projectedness of supermanifolds

M :projected,an atlas in which x 0 = f (x) for all gluing

) naive integrations with ⌘’s are allowed

, p : M ! Mred existsRM

! =

RMred

p⇤(!)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

Page 64: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Projectedness of supermanifolds

M :projected,an atlas in which x 0 = f (x) for all gluing

) naive integrations with ⌘’s are allowed

, p : M ! Mred existsRM

! =

RMred

p⇤(!)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

Page 65: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Projectedness of supermanifolds

M :projected,an atlas in which x 0 = f (x) for all gluing

) naive integrations with ⌘’s are allowed

, p : M ! Mred existsRM

! =

RMred

p⇤(!)

All supermanifolds are projected in smooth sense.

Complex supermanifolds are not projected in

holomorphic sense in general.

Page 66: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red 'Mspin i : Mspin ,�!Msuper

p : Msuper !Mspin does not exists.

(g � 5, non-holomorphic one exists)

Global integration on Msuper

6) Global integration on Mspin

(preserving holomorphic factorization)

Page 67: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red 'Mspin i : Mspin ,�!Msuper

p : Msuper !Mspin does not exists.

(g � 5, non-holomorphic one exists)

Global integration on Msuper

6) Global integration on Mspin

(preserving holomorphic factorization)

Page 68: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red 'Mspin i : Mspin ,�!Msuper

p : Msuper !Mspin does not exists.

(g � 5, non-holomorphic one exists)

Global integration on Msuper

6) Global integration on Mspin

(preserving holomorphic factorization)

Page 69: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Supermoduli Space is not projected[R.Donagi, E.Witten, arXiv:1304.7798]

Msuper,red 'Mspin i : Mspin ,�!Msuper

p : Msuper !Mspin does not exists.

(g � 5, non-holomorphic one exists)

Global integration on Msuper

6) Global integration on Mspin

(preserving holomorphic factorization)

Page 70: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Section 3

Reduction to integration over bosonic

moduli

Page 71: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Reduction condition

Global integration on Msuper

) Global integration on Mspin in special cases

F (m, m̄, ⌘, ⌘̄) = G(m, m̄)

Qall ⌘i

⌘̄i

(saturations of ⌘’s)

mixing of m and ⌘ (m0 = m + ⌘1

⌘2

) does not

changes F

F does not depend on the locations of picture

changing operators

Page 72: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Reduction condition

Global integration on Msuper

) Global integration on Mspin in special cases

F (m, m̄, ⌘, ⌘̄) = G(m, m̄)

Qall ⌘i

⌘̄i

(saturations of ⌘’s)

mixing of m and ⌘ (m0 = m + ⌘1

⌘2

) does not

changes F

F does not depend on the locations of picture

changing operators

Page 73: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Reduction condition

Global integration on Msuper

) Global integration on Mspin in special cases

F (m, m̄, ⌘, ⌘̄) = G(m, m̄)

Qall ⌘i

⌘̄i

(saturations of ⌘’s)

mixing of m and ⌘ (m0 = m + ⌘1

⌘2

) does not

changes F

F does not depend on the locations of picture

changing operators

Page 74: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Reduction condition

Global integration on Msuper

) Global integration on Mspin in special cases

F (m, m̄, ⌘, ⌘̄) = G(m, m̄)

Qall ⌘i

⌘̄i

(saturations of ⌘’s)

mixing of m and ⌘ (m0 = m + ⌘1

⌘2

) does not

changes F

F does not depend on the locations of picture

changing operators

Page 75: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Topological amplitudes in string theory[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Type II string on CY (N = (2, 2)SCFT) ⇥R1,3

) 4d N = 2 supergravity model

F-term of 4d e↵ective field theory is related to

topological string.

Page 76: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Topological amplitudes in string theory[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Type II string on CY (N = (2, 2)SCFT) ⇥R1,3

) 4d N = 2 supergravity model

F-term of 4d e↵ective field theory is related to

topological string.

Page 77: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Topological amplitudes in string theory[I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor ’94]

[M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa ’94]

Type II string on CY (N = (2, 2)SCFT) ⇥R1,3

) 4d N = 2 supergravity model

F-term of 4d e↵ective field theory is related to

topological string.

Page 78: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Reduction to topological string

Type II string on CY(6d) ⇥R1,3

) 4d N = 2 supergravity model

Ag

: zero momenta limit of g loop amplitude of

2g � 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag

=

RMsuper

· · ·A

g

= (g !)2Fg

=

RMbos

· · ·

Page 79: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Reduction to topological string

Type II string on CY(6d) ⇥R1,3

) 4d N = 2 supergravity model

Ag

: zero momenta limit of g loop amplitude of

2g � 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag

=

RMsuper

· · ·A

g

= (g !)2Fg

=

RMbos

· · ·

Page 80: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Reduction to topological string

Type II string on CY(6d) ⇥R1,3

) 4d N = 2 supergravity model

Ag

: zero momenta limit of g loop amplitude of

2g � 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag

=

RMsuper

· · ·

Ag

= (g !)2Fg

=

RMbos

· · ·

Page 81: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Reduction to topological string

Type II string on CY(6d) ⇥R1,3

) 4d N = 2 supergravity model

Ag

: zero momenta limit of g loop amplitude of

2g � 2 graviphotons (RR) and 2 gravitons (NSNS)

Ag

=

RMsuper

· · ·A

g

= (g !)2Fg

=

RMbos

· · ·

Page 82: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Vertex operators

Graviphoton: VT

= ⌃⇥ spacetime⇥ (ghost)

⌃ = exp(ip3

2

(H(z)⌥ eH(z))) H : U(1)

R

boson

⌃ : U(1)

R

charge (3/2,⌥ 3/2)

Graviton: VR

=

R⌃red

spacetime,ghost

Page 83: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Vertex operators

Graviphoton: VT

= ⌃⇥ spacetime⇥ (ghost)

⌃ = exp(ip3

2

(H(z)⌥ eH(z))) H : U(1)

R

boson

⌃ : U(1)

R

charge (3/2,⌥ 3/2)

Graviton: VR

=

R⌃red

spacetime,ghost

Page 84: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Vertex operators

Graviphoton: VT

= ⌃⇥ spacetime⇥ (ghost)

⌃ = exp(ip3

2

(H(z)⌥ eH(z))) H : U(1)

R

boson

⌃ : U(1)

R

charge (3/2,⌥ 3/2)

Graviton: VR

=

R⌃red

spacetime,ghost

Page 85: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Saturation of ⌘’s

Ag

=

R DQ2g�2i=1

⌃(xi

) U(1)

R

: (3g � 3,⌥3g � 3)

⇥(spacetime)⇥ (bc)⇥Q

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�

R⌃red

(TF

�+

eTF

e�+ Ae��))E

m

nonzero contribution

) 3g � 3 and 3g � 3eThere are only 3g � 3 ⌘ and 3g � 3

e⌘The correlation function does not depend of the

choice of ��

Page 86: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Saturation of ⌘’s

Ag

=

R DQ2g�2i=1

⌃(xi

) U(1)

R

: (3g � 3,⌥3g � 3)

⇥(spacetime)⇥ (bc)⇥Q

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�

R⌃red

(TF

�+

eTF

e�+ Ae��))E

m

nonzero contribution

) 3g � 3 and 3g � 3eThere are only 3g � 3 ⌘ and 3g � 3

e⌘The correlation function does not depend of the

choice of ��

Page 87: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Saturation of ⌘’s

Ag

=

R DQ2g�2i=1

⌃(xi

) U(1)

R

: (3g � 3,⌥3g � 3)

⇥(spacetime)⇥ (bc)⇥Q

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�

R⌃red

(TF

�+

eTF

e�+ Ae��))E

m

nonzero contribution

) 3g � 3� and 3g � 3

e�

There are only 3g � 3 ⌘ and 3g � 3

e⌘The correlation function does not depend of the

choice of ��

Page 88: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Saturation of ⌘’s

Ag

=

R DQ2g�2i=1

⌃(xi

) U(1)

R

: (3g � 3,⌥3g � 3)

⇥(spacetime)⇥ (bc)⇥Q

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�

R⌃red

(TF

�+

eTF

e�+ Ae��))E

m

nonzero contribution

) 3g � 3⌘ and 3g � 3

e⌘There are only 3g � 3 ⌘ and 3g � 3

e⌘

The correlation function does not depend of the

choice of ��

Page 89: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Saturation of ⌘’s

Ag

=

R DQ2g�2i=1

⌃(xi

) U(1)

R

: (3g � 3,⌥3g � 3)

⇥(spacetime)⇥ (bc)⇥Q

o

�=1

�(R⌃red

d2z���)Qe

o

⌧=1

�(R⌃red

d2z e� e�⌧ )exp(�

R⌃red

(TF

�+

eTF

e�+ Ae��))E

m

nonzero contribution

) 3g � 3⌘ and 3g � 3

e⌘There are only 3g � 3 ⌘ and 3g � 3

e⌘The correlation function does not depend of the

choice of ��

Page 90: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Conclusion

Superstring amplitude cannot be represent as

integration over Mspin in general

Special cases exist.

Amplitudes which is equivalent topological

amplitudes are the case.

Page 91: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Conclusion

Superstring amplitude cannot be represent as

integration over Mspin in general

Special cases exist.

Amplitudes which is equivalent topological

amplitudes are the case.

Page 92: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Conclusion

Superstring amplitude cannot be represent as

integration over Mspin in general

Special cases exist.

Amplitudes which is equivalent topological

amplitudes are the case.

Page 93: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

Conclusion

Superstring amplitude cannot be represent as

integration over Mspin in general

Special cases exist.

Amplitudes which is equivalent topological

amplitudes are the case.

Page 94: Superstring theory and integration over the moduli space · ’84⇠:1st superstring revolution ’86: ”Conformal Invariance, Supersymmetry, and String Theory” [D.Friedan, E.Martinec,

End.