superconducting qubits for analogue quantum...

44
Superconducting qubits for analogue quantum simulation Gerhard Kirchmair Workshop on Quantum Science and Quantum Technologies ICTP Trieste September 13 th 2017

Upload: others

Post on 13-Oct-2019

10 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Superconducting qubits for analogue quantum simulation

Gerhard Kirchmair

Workshop on Quantum Science and Quantum TechnologiesICTP Trieste

September 13th 2017

Page 2: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Experiments in Innsbruck on cQED

Quantum Magnetomechanic

Josephson Junction arrayresonators

Quantum Simulation using cQED

Page 3: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Outline

• Introduction to Circuit QED

– Cavities

– Qubits

– Coupling

• Analog quantum simulation of spin models

– 3D Transmons as Spins

– Simulating dipolar quantum magnetism

– First experiments

Page 4: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

cavity QED → circuit QED

optical photons⇓

microwave photons

atoms as two level systems⇓

nonlinear quantum circuitsoptical resonators

⇓microwave resonators

QIP, quantum optics, quantum measurement…

Many groups around the world: Yale University, UC Santa Barbara, ETH Zurich, TU Delft, Princeton, University of Chicago, Chalmers, Saclay, KIT Karlsruhe …

Page 5: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Cavities

Page 6: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Waveguide microwave resonator

~ 𝜆/2

𝐸

b

a

Observed Q’s > 106

Reagor et.al. Appl. Phys. Lett. 102, 192604 (2013)

Page 7: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Quantum Circuits

𝐶 → 𝑄 Φ ← 𝐿

𝐻 = 𝑄2

2 𝐶+ Φ

2

2 𝐿

𝑄 =ℏ

2 𝑍0𝑎 + 𝑎† Φ = 𝑖

ℏ 𝑍02

𝑎 − 𝑎†

𝐻 = ℏ𝜔0 𝑎†𝑎 +1

2

Φ

Energy

0

1

2

𝑍0 =𝐿

𝐶⟶ 1…100 Ω

𝜔0 =1

𝐿𝐶⟶ 4…10 𝐺𝐻𝑧

Around a resonance:

Classical drive

Quantum Harmonic Oscillator

Page 8: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Qubits – 3D Transmon

Page 9: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Josephson Junction

Superconductor(Al)

Superconductor (Al)

Insulating barrier1 nm

𝐻 = −𝐸𝑗 cos 𝜑

𝐻 = −𝐸𝑗 cos 𝜑 + 𝑄2

2 𝐶

Page 10: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Superconducting Qubits - Transmon

C

Transmon

𝐻 = −𝐸𝑗 cos 𝜑 + 𝑄2

2 𝐶Σ≈

Φ2

2 𝐿𝑗0+

𝑄2

2 𝐶Σ−

2𝑒

2 Φ4

24 𝐿𝑗0

Φ

Energy

0

1

2

𝜑 =2𝑒

ℏΦ

𝐻 = ℏ𝜔0 𝑏†𝑏 −

𝐸𝑐2

𝑏†𝑏2

Using the same replacement rules as for the Harmonic Oscillator

𝐻 = ℏ𝜔0

2𝜎𝑧

𝐸𝑐 = 300 𝑀𝐻𝑧 = 𝛼

𝜔0 = 5 − 10 𝐺𝐻𝑧

Koch et.al. Phys. Rev. A 76, 042319

Page 11: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Transmon coupled to a Resonators

𝐻𝑖𝑛𝑡 = ℏ𝑔(𝑎†𝜎− + 𝑎𝜎+)

LrCrCq

Cc

Ej

𝐸𝑏 𝐸𝑎

Jaynes Cummings Hamiltonian

driving, readout, interactions

𝐻 = ℏ𝜔𝑞2𝜎𝑧 + ℏ𝜔𝑟 𝑎

†𝑎

𝑔 = 50 − 250 MHz

Page 12: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Transmon - Transmon coupling

𝐻𝑖𝑛𝑡 = ℏ𝐽(𝜎+𝜎− + 𝜎−𝜎+)

Cq1Ej1

𝐸𝑏

Cq2

Cc

Ej2

𝐸𝑎

Direct capacitive qubit-qubit interaction

𝐽 = 50 − 250 MHz

Page 13: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

3D Transmon coupled to a Resonator

~ mm

Large mode volume compensated by large “Dipolemoment” of the qubit

𝐸𝑞𝑢𝑏𝑖𝑡

𝐸𝑐𝑎𝑣

Observed Q’s up to 5 M 𝑇1 , 𝑇2 ≤ 100 𝜇𝑠

Page 14: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Superconducting qubits foranalog quantum simulation of spin models

Phys. Rev. B 92, 174507 (2015)

Viehmann et.al. Phys. Rev. Lett. 110, 030601 (2013) & NJP 15, 3 (2013)

Page 15: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Quantum Simulation

The problem: Simulating interacting quantum many-body systems on a classical computer is very hard.

The approach: Engineer a well controlled system that can be used as a quantum simulator for the system of interest.

…spins

…interactions

Page 16: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

The basic idea & some systems of interest…

2D spin lattice Open quantum systemsSpin chain physics

…spins …interactions

Page 17: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Finite Element modeling - HFSS

Eigenmodesof the system:

Phys. Rev. B 92, 174507 (2015)

Page 18: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Qubit – Qubit interaction

𝐽 𝑟, 𝜃1, 𝜃2 = 𝐽0𝑑𝑚2cos(𝜃1 − 𝜃2) − 3 cos 𝜃1 cos 𝜃2

𝑟3+ 𝐽𝑐𝑎𝑣

Page 19: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Interaction tunability

𝑬

• Qubit - Qubit angle and position• tailor interactions

• Qubit - Cavity angle• tailor readout & driving• measure correlations

Spin chain physics

Page 20: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Scaling the system

• Fine grained readout • Competition between short range dipole

and long range photonic interaction• Band engineering is possible• Inbuilt Purcell protection• Dissipative state engineering

Open quantum systems

Page 21: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

To do list – theory input

• How to best characterize these systems?

• What do we want to measure?

• How do we verify/validate our measurements

• How does it work in the open system case?

Page 22: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Simulating dipolar quantum magnetism

Page 23: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Model to simulate

Analogue Quantum Simulation with Superconducting qubits

In Collaboration with M. Dalmonte & D. Marcos & P. Zoller

𝐻 =

𝑖,𝑗

𝐽 𝜃1, 𝜃2

𝑟𝑖,𝑗3 𝑆𝑖

+𝑆𝑗− + ℎ. 𝑐. +

𝑖

ℎ𝑗𝑆𝑖𝑧

XY model on a ladder: Superfluid and Dimer phase

Page 24: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Static properties of the modelOrder parameter and

Bond Correlation

Disorder influence on the Bond Correlation

Bond order parameter shows formation of triplets for J2/J1=0.5

𝐷𝛼 =

𝑗=1

𝐿−1

𝐷𝑗𝛼 𝐷𝑗

𝛼 = −1 𝑗𝑆𝑗𝛼𝑆𝑗+1

𝛼 𝛼 = 𝑥, 𝑧 𝐵𝑧 = 𝐷𝐿/2𝑧

SF DP

CP

Page 25: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Adiabatic state preparation

System size: L = 6, 2J2 = J1 =2p 100 MHz,

Including disorder dh/J1=0.25

Page 26: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Experimental progress

Page 27: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Experimental progress - Qubits

Single qubit control, frequency tunable

T1≈ 40 µ𝑠, T2 ≤ 25 µ𝑠

Page 28: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Experimental progress - Qubits

Multiple qubits and interactions

𝐻𝑖𝑛𝑡 = ℏ𝐽(𝜎+𝜎− + 𝜎−𝜎+)

6.81

6.85

6.77Freq

uen

cy (

GH

z)

B-field (a.u.)

2 J𝐽 ≈ 70 MHz

Page 29: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Qubit measurements & state preparation

• During the simulation:

𝜔𝑖 = 𝜔𝑗 ∀ 𝑖, 𝑗

• We want to measure:𝜎𝑖𝑚⨂𝜎𝑗

𝑚

• We want to be able to bring excitations into the system

fast flux tunability necessary

Page 30: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Tuning fields with a Magnetic Hose

Long-distance Transfer and Routing of Static Magnetic FieldsPhys. Rev. Let. 112, 253901(2014)

SC steel

Page 31: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Experimental progress - Magnetic Hose

𝑇1 ≥ 15 µ𝑠

Purcell limited

𝑇2 < 15 µ𝑠

depends on flux bias

Page 32: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Experimental progress - Magnetic Hose

readoutflux pulse

50ns

p pulse t

Trise < 50 ns

Not perfectly compensated

Page 33: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Experimental progress – Waveguides

High Q Stripline resonators for waveguides

AIP Advances 7, 085118 (2017)

Page 34: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Experimental progress - Waveguides Waveguides with resonators and qubits

Qubits Resonators

Page 35: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

• 3D Transmons behave like dipoles

Conclusion

• Circuit QED

• Simulate models on 1D and 2D lattices

• Work in progress

LrCrCq

Cc

Ej

Page 36: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

OscarGargiulo

Phani R.Muppalla

ChristianSchneider

DavidZöpfl

StefanOleschko

MichaelSchmidt

AlekseiSharafiev

Quantum Circuits Group Innsbruck – April 2017

Page 37: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum
Page 38: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Quantum Circuits

𝐶 → 𝑄 Φ ← 𝐿

𝐻 = 𝑄2

2 𝐶+ Φ

2

2 𝐿

Around a resonance:

𝐻 = 𝑝 2

2 𝑚+𝑚𝜔2 𝑥 2

2

x

energy in magnetic field potential energy

energy in electric field kinetic energy

Lagrangian

Page 39: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Resonators and CavitiesCoplanar Waveguide Resonators

𝐸

Ground PlaneMicrowaves in

out

Page 40: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Why interfaces matter… dirt happens

Increase spacing decreases energy on surfacesincreases Q

Gao et al. 2008 (Caltech)O’Connell et al. 2008 (UCSB)Wang et al. 2009 (UCSB)

tech. solution:

+ + --

E d

a-Al2O3

Nb

“participation ratio” = fraction of energy stored in material

even a thin (few nanometer) surface layer will store ≈ 1/1000 of the energy

If surface loss tangent is poor ( tand ≈ 10-2) would limit Q ≈ 105

as shown in:

Bruno et al. 2015 (Delft)

Page 41: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Circuit model explanation

J < 0

J > 0

Page 42: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Josephson Junction

Superconductor(Al)

Superconductor (Al)

Insulating barrier1 nm

Josephson relations: 𝐼 𝜑 = 𝐼𝑐 sin𝜑 𝜑 =2𝑒

ℏ𝑉(𝑡)

𝐸 = −𝐸𝑗 cos 𝜑 ≈ 𝐸𝑗𝜑2

2−𝐸𝑗

𝜑4

12+⋯

𝜑 =2𝑒

ℏΦ = 2𝜋

Φ

Φ0

𝐸 =Φ 2

2 𝐿

Ψ𝐴

Ψ𝐵

𝑉𝑗𝑗 =ℏ

2𝑒

1

𝐼𝑐 cos𝜑 𝐼𝑉𝐿 = 𝐿 𝐼

Regular inductance Josephson Junction

Page 43: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Josephson Junction

Superconductor(Al)

Superconductor (Al)

Insulating barrier1 nm

500nm

Junction fabrication:• thin film deposition• Shadow bridge technique

Page 44: Superconducting qubits for analogue quantum simulationindico.ictp.it/event/8232/session/2/contribution/47/material/slides/0.pdf · simulation Gerhard Kirchmair Workshop on Quantum

Charge Qubit Coherence

# O

pe

rati

on

en

0.1

104

103

1

Koh

ären

z Ze

it (

ns)

10

106

105

100

Nakamura (NEC)

Charge Echo(NEC)

Sweet Spot(Saclay, Yale)

Transmon(Yale, ETH)

3D Transmon(Yale, IBM, Delft)

Improved3D Transmon

(Yale, IBM,Delft)Fluxonium

(Yale)

Jahr

3D Fluxonium(Yale)