super per pdf - msc...

90
Superelement Application Static and Dynamic Aeroelasticity Presented By: Fausto Gill Di Vincenzo 04-06-2012

Upload: others

Post on 10-Mar-2020

9 views

Category:

Documents


1 download

TRANSCRIPT

Superelement Application

Static and Dynamic Aeroelasticity

Presented By: Fausto Gill Di Vincenzo04-06-2012

Objective

Superelements in Static - Dynamic - Aeroelastic Solutions

• Static Aeroelasticity

Trim Analysis (Sol144)

6/5/2012 2

• Structural Dynamics

Modal Analysis (Sol103)

• Dynamic Aeroelasticity

Gust Response Analysis (Sol146)

Topics Discussed

• Defining a Superelement Strategy

• Defining a Splining Strategy

6/5/2012 3

• Static and Dynamic Reduction Approaches

• Structural and Aero Monitor Point

UAV Model Specification

• Units SI - MKS

• Wing Area 0.948 m2

• Full Span 2.36 m

UAV - Yakovlev Yak 112 Airworld

6/5/2012 4

• Full Span 2.36 m

• Chord 0.402 m

• Weight134.394 N

• Cruise Velocity 25 m/s

Structural Model

The UAV structural model consists of:

Plate for Fuselage, Wings, Fin, Rudder, Tail, Elevator, Spar

Beam for Wing Braces

Lumped mass for Engine System

6/5/2012 5

Side View

Front View Ortho View

Static Aeroelasticity Sol144

UAV in Trimmed Level Flight

Flight condition

M=0.1 Sea Level

Straight and level case under 1g loading

6/5/2012 6

Straight and level case under 1g loading

Flight velocity 35 m/s ���� q=750.3 Pa

Free Trim Variables:

Angle of Attack

Elevator Angle

Longitudinal Trim - Boundary Conditions

• Nodes which lie on the XZ symmetry plane are constrained to move in that plane

1. Symmetry Condition

Constrained DOFs: T2 R1 R3

Constrained DOFs: 246 $ Displacement Constraints of Load Set : Symmetry ConditionSPC1 3 246 82316 82317 82423 82444 82445 82446

NASTRAN input deck

6/5/2012 7

2. Constraint on Longitudinal Motion

GRID 9999

• Node 9999 (Mass center) is allowed to:Translate in Z-direction - Rotate about the Y-axis

Constrained DOFs: 1246

Constrained DOFs: T1 T2 R1 R3

$ Displacement Constraints of Load Set : Longitudinal MotionSPC1 1 1246 9999

SPC1 3 246 82316 82317 82423 82444 82445 8244682448 83132 83133 83134 83135 83294 83299 83300…..

NASTRAN input deck

Lifting Surface - Flight Loads

1

2

4

3

Left Wing lifting surface

$ ----- Wing_Left ------

CAERO1

SPAN DIVISION

CHORD DIVISION

Name

6/5/2012 8

Wing: 30 Panels span wise 30 Panels chord wise

Stabilizer: 10 Panels span wise 10 Panels chord wise

Elevator: 10 Panels span wise 10 Panels chord wise

CAERO1 CAERO1

Lifting Surfaces

CAERO1

CAERO1

CAERO1

CAERO1

$ ----- Wing_Left ------

CAERO1,300000,5000,,30,30,,,1,

,.35039,-.14,.188351,.402,.35039,-1.325,.188351,.402

NASTRAN input deck

Lifting SurfacesWing

StabilizerElevator

Corner Points

Aero Mesh

Aerodynamic Control Surface - Flight Loads

Hinge Line

AESURF

Hinge

6/5/2012 9

ElevatorControl Surface

Boxes

AESURF,505,ELEV,100,1000

,0.10,0.09

AELIST ,1000,600001,THRU,600099,700000,THRU,700099

$

CORD2R,100,0,1.628,0.,0.034,1.628,0.,1.

,10.,0.,0.034

NASTRAN input deck

Control SurfaceAero Boxes which lie on the Control Surface

Hinge

Groups of Nodes ready for Splining

Spar

Trailing edge

Trailing edge

Wings

Spar

6/5/2012 10

Horizontal Stabilizer (Left side view)

Leading and trailing edge Leading and trailing edge

Elevator (Left side view)

Spar

Aero -Structure Coupling - Flight Loads

Structural Nodes for Splining

Aero Boxes

Spline for the Right WingSPLINE1

NAME

$ ---------- Aero Component Right Wing

CAERO1,200000,5000,,30,30,,,1

,.35039,.14,.188351,.402,.35039,1.325,.188351,.402

$ ------ Spline_Wing_Right

SPLINE1,2000,200000,200001,200899,26,0.

$ ----------- Node for splining

SET1,26,82438,82717,82716,82708,82712,82711,82697

,82706,82705,82698,82701,82673,82487,82515,82513

,82511,82509,82507,82505,82503,82501,82499,82497,82494

6/5/2012 11

NASTRAN input deck

STRUCTURAL NODES

AERODYNAMIC BOXES

Lifting Surface

Structural Nodes

AEROELASTIC TRIM VARIABLES

No Superelement Case -Trim Variables in .f06

The UAV is flying with a positive incidence of abou t 2.78 degree and a negative elevator angle of about 2.35 degree

ID LABEL TYPE TRIM STATUS VALUE OF UX

INTERCEPT RIGID BODY FIXED 1.000000E+00

505 ELEV CONTROL SURFACE FREE -4.104785E-02 RADIANS

681 ANGLEA RIGID BODY FREE 4.846353E-02 RADIANS

682 PITCH RIGID BODY FIXED 0.000000E+00 NONDIMEN. RATE

683 URDD3 RIGID BODY FIXED 1.000000E+00 LOAD FACTOR

684 URDD5 RIGID BODY FIXED 0.000000E+00 RAD/S/S PER G

6/5/2012 12

No Superelement Results Overview – Structural

Deformed Structural MeshMax Wing Tip Deflection: 4.85E-03 (m)

6/5/2012 13

Scale interpretation: Model scale

Undeformed Structural Mesh

ANGLE OF ATTACK = 2.776756 DEGREES

ELEV = -2.353 DEGREES

No Superelement Results Overview – Aerodynamic

Deformed Aerodynamic Mesh

Max Wing Tip Deflection: 4.85E-03 (m)

6/5/2012 14

Scale interpretation: Model scale

Undeformed Aerodynamic Mesh

ANGLE OF ATTACK = 2.776756 DEGREES

ELEV = -2.353 DEGREES

1st Superelement “Wings” (Static Condensation)

1) Wings Superelement’s Elements

“Wing” Elements Group

ALL ELEMENTS that belong to the “Wings” Superelement

SUPERELEMENT

ELEMENT GROUP

6/5/2012 15

2) Wings Superelement’s External Nodes (Right wing view)

External Nodes which correspond to SET1 of SPLINE (Superelement 0)

Fuselage Interface Nodes (Superelement 0)

Boundary Nodes

$ Wing

SESET 1 82327 THRU 82374

SESET 1 82437 82439 82483 82484 82485 82486

SESET 1 82488 82490 82491 82492 82493 82495 82496

ALL NODES which are external to the SUPERELEMENT are to be specified

ALL NODES internal to the SUPERELEMENT

External and Interface Nodes

NAME

STATIC CONDENSATION

EXTERNAL NODES

2nd Superelement “Wings” (Static Condensation)

1) Wings Superelement’s Elements

“Wing” Elements Group

ALL ELEMENTS that belong to the “Wings” Superelement

SUPERELEMENT

ELEMENT GROUP

6/5/2012 16

2) Wings Superelement’s External Nodes (Right wing view)

Fuselage Interface Nodes (Superelement 0)

Boundary Nodes

$ Wing interface

SESET 1 82327 THRU 82374

SESET 1 82437 82439 82483 82484 82485 82486

SESET 1 82488 82490 82491 82492 82493 82495 82496

ALL NODES internal to the SUPERELEMENT

NAME

ALL NODES which are external to the SUPERELEMENT are not needed to be specified

Interface Nodes

STATIC CONDENSATION

EXTERNAL NODES

Superelement Cases - Trim Variables in .f06• No Superelement Case

1°°°° Wings Superelement – External & Interface

Superelement 1Superelement 0

Superelement 1

ELEV CONTROL SURFACE FREE -4.104785E-02 RADIANS

ANGLEA RIGID BODY FREE 4.846353E-02 RADIANS

ANGLE OF ATTACK = 2.776756 DEGREES

2°°°° Wings Superelement – Interface Nodes

6/5/2012 17

Nodes

ELEV CONTROL SURFACE FREE -4.105078E-02 RADIANS

ANGLEA RIGID BODY FREE 4.846611E-02 RADIANS

ANGLE OF ATTACK = 2.776904 DEGREES

ELEV CONTROL SURFACE FREE -4.118340E-02 RADIANS

ANGLEA RIGID BODY FREE 4.858012E-02 RADIANS

ANGLE OF ATTACK = 6.488278E-02 RADIANS (2.783436 DEGREES )

Superelement 0 - Residual Superelement 0 - Residual

Nodes

NODES FOR SPLINING CAN BE INTERNAL TO THE SUPERELEM ENT!

1st Superelement Results Overview – Structural

Deformed Structural Mesh

Max Wing Tip Deflection: 4.85E-03 (m)

6/5/2012 18

Scale interpretation: Model scale

Undeformed Structural Mesh

ANGLE OF ATTACK = 2.776904 DEGREES

ELEV = -2.353 DEGREES

Max wing tip deflection as the case of standard sol ution (without Superelement)

1st Superelement Results Overview – Aerodynamic

Deformed Aerodynamic Mesh

Max Wing Tip Deflection: 4.85E-03 (m)

ELEV = -2.353 DEGREES

6/5/2012 19

Scale interpretation: Model scale

Undeformed Aerodynamic Mesh

ANGLE OF ATTACK = 2.783436 DEGREES

Max wing tip deflection as the case of standard sol ution (without Superelement)

2nd Superelement Results Overview – Structural

Deformed Structural MeshMax Wing Tip Deflection: 4.35E-03 (m)

No Superelement Analysis 4.85E-03 (m)

6/5/2012 20

Scale interpretation: Model scale

Undeformed Structural Mesh

ANGLE OF ATTACK = 2.783436 DEGREES

ELEV = -2.360 DEGREES

Max wing tip deflection value is closed to that of standard solution (without superelement)

2nd Superelement Results Overview – Aerodynamic

Deformed Aerodynamic Mesh

Max Wing Tip Deflection: 4.35E-03 (m)

No Superelement Analysis 4.85E-03 (m)

6/5/2012 21

Scale interpretation: Model scale

Undeformed Aerodynamic Mesh

ANGLE OF ATTACK = 2.783436 DEGREES ELEV = -2.360 DEGREES

Max wing tip deflection value is closed to that of standard solution (without superelement)

Fin & Rudder Superelement (Static Condensation)

1) Superelement’s Elements

FinRudder

SUPERELEMENT

NAME

ALL ELEMENTS that belong to the Superelement

ELEMENT GROUP

6/5/2012 22

2) Superelement’s External Nodes

$ Fin_Rudder

SESET 1 101171 THRU 101189

SESET 1 101252 THRU 101267

SESET 1 101269 THRU 101284

ALL NODES which are external to the SUPERELEMENT are not needed to be specified

Fuselage Interface Nodes

Elements Group

Boundary Nodes

ALL NODES internal to the SUPERELEMENT

Interface nodes

ELEMENT GROUP

Stabilizer & Elevator Superelement (Static Condensation)

1) Superelement’s Elements

Elements Group

NAME

SUPERELEMENT

ALL ELEMENTS that belong to the Superelement

Stabilizer

Elevator

ELEMENT GROUP

6/5/2012 23

2) Superelement’s External Nodes

$ Stab_Elev

SESET 1 101171 THRU 101189

SESET 1 101252 THRU 101267

SESET 1 101269 THRU 101284

ALL NODES which are external to the SUPERELEMENT are not needed to be specified

Fuselage Interface Nodes

Elements Group

Boundary Nodes

ALL NODES internal to the SUPERELEMENT

Interface nodes

ELEMENT GROUP

3rd Superelement “Lifting Surfaces” (Static Condensation)

Superelement 0Superelement 1

Wings

Fin_Rudder

Stab_Elev

Fuselage

Only Fuselage Interface Nodes

Superelement 1 “lifting Surfacases” Superelement 0 R esidual

6/5/2012 24

Superelement 1

Superelement Assembly

$ Wings

SESET 1 82327 THRU 82422

SESET 1 82437 82438 82439

…..

$ Fin_Rudder

SESET 1 101171 THRU 101189

SESET 1 101252 THRU 101267

…..

$ Stab_Elev

SESET 1 102161 THRU 102238

SESET 1 102240 THRU 102261

…..

Nodes internal to the Superelement 1

Only Fuselage Interface Nodes

Comparision - Trim Variables in .f06

Superelement 0 - ResidualSuperelement 0 - Residual

Trim Variables

1) No Superelement 2) “Lifting Surfaces” Superelement

6/5/2012 25

ELEV CONTROL SURFACE FREE -3.972963E-02 RADIANS

ANGLEA RIGID BODY FREE 4.858172E-02 RADIANS

ANGLE OF ATTACK = 2.783528 DEGREES

Trim Variables

ELEV CONTROL SURFACE FREE -4.104785E-02 RADIANS

ANGLEA RIGID BODY FREE 4.846353E-02 RADIANS

ANGLE OF ATTACK = 2.776756 DEGREES

Max Wing Tip Deflection: 4.85E-03 (m) Max Wing Tip Deflection: 4.35E-03 (m)

Good results have been achieved!

First Remarks

• Nodes for splining can be internal to the Superelement

• Static reduction leads to results which are in very good accordance

6/5/2012 26

• Static reduction leads to results which are in very good accordance

with standard solution (No Superelement)

Monitor Points

• Monitor points allow to obtain load resultants of t he loads on specified regions of the aircraft.

• Regions can be defined on the structural or the aerodynamic mesh.

6/5/2012 27

aerodynamic mesh.

• MSC Nastran automatically defines structural and aerodynamic monitor points for the overall vehicle and all control surfaces.

S T R U C T U R A L M O N I T O R P O I N T I N T E G R A T E D L O A D S

CONFIGURATION = AEROSG2D XY-SYMMETRY = ASYMMETRIC XZ-SYMMETRY = ASYMMETRIC

MACH = 1.000000E-01 Q = 7.503125E+02

CONTROLLER STATE:

ELEV = -4.1048E-02 ANGLEA = 4.8464E-02 URDD3 = 1.0000E+00

MONITOR POINT NAME = AEROSG2D COMPONENT = CLASS = COEFFICIENT

LABEL = Full Vehicle Integrated Loads

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST . INERTIAL RIGID APPLIED REST. APPLIED

No superelement - Structural Monitor Point: Overall Vehicle

---- ------------- ------------- ------------- ------------- -------------

CX 0.000000E+00 0.000000E+00 3.127046E-07 0.000000E+00 0.000000E+00

CY 0.000000E+00 0.000000E+00 -7.362922E-14 0.000000E+00 0.000000E+00

CZ 1.298636E+02 1.343940E+02 1.343940E+02 0.000000E+00 0.000000E+00

CMX 5.987279E-04 5.199102E-04 -1.023993E-02 0.000000E+00 0.000000E+00

CMY -6.996499E+01 -7.492868E+01 -7.492868E+01 0.000000E+00 0.000000E+00

CMZ 0.000000E+00 0.000000E+00 2.810946E-11 0.000000E+00 0.000000E+00

6/5/2012 28

Inertia LoadsAerodynamic Loads on Rigid Aircraft

Aerodynamic Loads on Elastic Aircraft (Rigid Loads + Flexible Increments)

A E R O D Y N A M I C M O N I T O R P O I N T I N T E G R A T E D L O A D S

CONFIGURATION = AEROSG2D XY-SYMMETRY = ASYMMETRIC XZ-SYMMETRY = ASYMMETRIC

MACH = 1.000000E-01 Q = 7.503125E+02

CONTROLLER STATE:

ELEV = -4.1048E-02 ANGLEA = 4.8464E-02 URDD3 = 1.0000E+00

MONITOR POINT NAME = AEROSG2D COMPONENT = CLASS = COEFFICIENT

LABEL = Full Vehicle Integrated Loads

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST .

No superelement - Aero Monitor Point: Overall Vehicle

---- ------------- -------------

CX 0.000000E+00 0.000000E+00

CY 0.000000E+00 0.000000E+00

CZ 1.298636E+02 1.343940E+02

CMX 5.987279E-04 5.199102E-04

CMY -6.996499E+01 -7.492868E+01

CMZ 0.000000E+00 0.000000E+00

6/5/2012 29

Aerodynamic Loads on Rigid Aircraft

Aerodynamic Loads on Elastic Aircraft (Rigid Loads + Flexible Increments)

There are no Inertia Loads.

The same value evaluated by structural monitor point

S T R U C T U R A L M O N I T O R P O I N T I N T E G R A T E D L O A D S

CONFIGURATION = AEROSG2D XY-SYMMETRY = ASYMMETRIC XZ-SYMMETRY = ASYMMETRIC

MACH = 1.000000E-01 Q = 7.503125E+02

CONTROLLER STATE:

ELEV = -4.1048E-02 ANGLEA = 4.8464E-02 URDD3 = 1.0000E+00

MONITOR POINT NAME = AEROSG2D COMPONENT = CLASS = COEFFICIENT

LABEL = Full Vehicle Integrated Loads

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST . INERTIAL RIGID APPLIED REST. APPLIED

---- ------------- ------------- ------------- ------------- -------------

1st Superelement - Structural Monitor Point: Overall Vehicle

CX 6.683551E-14 6.781938E-14 2.624707E-07 0.000000E+00 0.000000E+00

CY 1.225743E-14 1.244884E-14 -2.847522E-13 0.000000E+00 0.000000E+00

CZ 1.298701E+02 1.343940E+02 1.343940E+02 0.000000E+00 0.000000E+00

CMX 5.987707E-04 6.439218E-03 -1.023993E-02 0.000000E+00 0.000000E+00

CMY -6.996815E+01 -7.492868E+01 -7.492868E+01 0.000000E+00 0.000000E+00

CMZ 7.287032E-14 7.394231E-14 2.539035E-11 0.000000E+00 0.000000E+00

6/5/2012 30

Inertia LoadsAerodynamic Loads on Rigid Aircraft

Aerodynamic Loads on Elastic Aircraft (Rigid Loads + Flexible Increments)

A E R O D Y N A M I C M O N I T O R P O I N T I N T E G R A T E D L O A D S

CONFIGURATION = AEROSG2D XY-SYMMETRY = ASYMMETRIC XZ-SYMMETRY = ASYMMETRIC

MACH = 1.000000E-01 Q = 7.503125E+02

CONTROLLER STATE:

ELEV = -4.1051E-02 ANGLEA = 4.8466E-02 URDD3 = 1.0000E+00

MONITOR POINT NAME = AEROSG2D COMPONENT = CLASS = COEFFICIENT

LABEL = Full Vehicle Integrated Loads

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST.

1st superelement - Aero Monitor Point: Overall Vehicle

---- ------------- -------------

CX 0.000000E+00 0.000000E+00

CY 0.000000E+00 0.000000E+00

CZ 1.298701E+02 1.343940E+02

CMX 5.987707E-04 6.439218E-03

CMY -6.996815E+01 -7.492868E+01

CMZ 0.000000E+00 0.000000E+00

6/5/2012 31

Aerodynamic Loads on Rigid Aircraft

Aerodynamic Loads on Elastic Aircraft (Rigid Loads + Flexible Increments)

There are no Inertia Loads.

The same value evaluated by structural monitor point

Structural Monitor Points – External Loads FLDS

Monitor Point Location

MONPNT1 (Sol144 & Sol146)

Right Wing – Spar & Trailing Edge Load Contribution

Name

Nodes which correspond to the SET1 of the Spline. External to the superelement

MONPNT1 Ala_dx Carico sull'ala destra

35 al_dx 0 0. 0.0 0.

AECOMP al_dx SET1 50

SET1 50 82327 82352 82354 82356 82358 82360 82362

82364 82366 82368 82370 82372 82487 82494 82497

. . . . .

6/5/2012 32

Nodes Selection

Nodes for Load calculation are the same specified i n the SET1 card for spline interpolation

External to the superelement

Load Components to be monitored

Nodes GROUP

Structural Monitor Point Report in .f061) No Superelement

MONITOR POINT NAME = ALA_DX COMPONENT = AL_DX CLASS = GENERAL

LABEL = CARICO SULL'ALA DESTRA

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST . INERTIAL RIGID APPLIED REST. APPLIED

CZ 5.875282E+01 5.968761E+01 1.662966E+00 0.000000E+00 0.000000E+00

CMY -2.594139E+01 -2.634859E+01 -8.931566E-01 0.000000E+00 0.000000E+00

MONITOR POINT NAME = ALA_DX COMPONENT = AL_DX CLASS = GENERAL

LABEL = CARICO SULL'ALA DESTRA

2) 1st Superelement Wings – External & Interface Nodes

Superelement 0

MONITOR POINT NAME = ALA_DX COMPONENT = AL_DX CLASS = GENERAL

LABEL = CARICO SULL'ALA DESTRA

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST . INERTIAL RIGID APPLIED REST. APPLIED

CZ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

CMY 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

LABEL = CARICO SULL'ALA DESTRA

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST. INERTIAL RIGID APPLIED REST. APPLIED

CZ 5.875594E+01 5.969053E+01 1.662966E+00 0.000000E+00 0.000000E+00

CMY -2.594277E+01 -2.634987E+01 -6.877269E+00 0.000000E+00 0.000000E+00

3) 2nd Superelement Wings – Interface Nodes

IT IS NOT POSSIBLE TO MONITOR INTEGRATED LOAD ON NO DES INTERNAL TO THE SUPERELEMENT!

Superelement 0

Superelement 0

Right Wing Load Summation – Flight LoadsNote the Fz terms sum to 59.687, the same as the Structural Monitor point calculation earlier in the “ No Superelement ” case.

Rigid Aerodynamic Loads

Load Summation

STRUCTURAL COMPONENT (NODES)

Right Wing Contribution

Nodes which correspond to the SET1 of the Spline. External to the superelement

LABEL = CARICO SULL'ALA DESTRA

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST. INERTIAL RIGID APPLIED REST. APPLIED

CZ 5.875282E+01 5.968761E+01 1.662966E+00 0.000000E+00 0.000000E+00

Elastic Increments

Rigid Aerodynamic Loads + Elastic Increments = 5.968779E+01

STRUCTURAL RESULT CASE

RIGID

ELASTIC INCREMENT

Aero Monitor Points – External Loads FLDS

Monitor Point

MONPNT1 (Sol144 & Sol146)

Right Wing Lifting Surface

Panels which contribute to the load calculation

CAERO1_200000

Name

6/5/2012 35

MONPNT1 ALA_DX CARICO SULL’ALA DESTRA

35 ALA_D 0.0 0.0 0.0

AECOMP ALA_D AELIST 26

AELIST 26 200000 THRU 200899

Monitor Point Location

CAERO1 Boxes

Load Components to be monitored

Aero Boxes which contribute to the load calculation

CAERO1 COMPONENT

Aero Monitor Point Report in .f06

MONITOR POINT NAME = ALA_DX COMPONENT = ALA_D CLASS = GENERAL

LABEL = CARICO SULL’ALA DESTRA

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST .

CZ 5.875282E+01 5.968761E+01

CMY -2.594139E+01 -2.634859E+01

MONITOR POINT NAME = ALA_DX COMPONENT = ALA_D CLASS = GENERAL

LABEL = CARICO SULL’ALA DESTRA

Superelement 0

1) No Superelement

2) 1st Superelement Wings – External & Interface Nodes

The same values evaluated earlier by structural monitor point

MONITOR POINT NAME = ALA_DX COMPONENT = ALA_D CLASS = GENERAL

LABEL = CARICO SULL’ALA DESTRA

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST .

CZ 5.889306E+01 5.969118E+01

CMY -2.600328E+01 -2.635522E+01

LABEL = CARICO SULL’ALA DESTRA

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST .

CZ 5.875594E+01 5.969053E+01

CMY -2.594277E+01 -2.634987E+01

IT IS ALWAYS POSSIBLE TO MONITOR INTEGRATED LOAD ON AERODYNAMIC PANELS!

Superelement 0

Superelement 0

3) 2nd Superelement Wings – Interface Nodes

The same values evaluated earlier by structural monitor point

Right Wing Load Summation – Flight LoadsNote the Fz terms sum to about 59.687, the same as the Aero and Structural Monitor Point calculation earlier in the “ No Superelement ” case.

Rigid Aerodynamic Loads

Load Summation

Aerodynamic Component (Boxes)

Aero boxes which contribute to the load calculation

LABEL = CARICO ESTERNO DELL'ALA DESTRA

CP = 0 X = 0.00000E+00 Y = 0.00000E+00 Z = 0.00000E+00 CD = 0

AXIS RIGID AIR ELASTIC REST.

CZ 5.875282E+01 5.968761E+01

Elastic Increments

Rigid Aerodynamic Loads + Elastic Increments = 5.968779+E01

Aerodynamic Result Case

RIGID

ELASTIC INCREMENT

Sol144 - Remarks

1. The Static Reduction is a right approach in Static Aeroelasticity

2. All structural lifting surfaces can be condensed into Superelements

3. Structural Nodes specified in SET1 cards of the SPLINE cards can be

internal to Superelementsinternal to Superelements

4. Structural monitor points cannot refer to Nodes internal to the

Superelement

5. To get all the external integrated load applied to a lifting surface the

nodes defined in the SET1 card for splining must be all the same

external nodes which belong to that component

6. The aero monitor point can be defined wherever

Dynamic Aeroelasticity Sol146

Flight condition

M=0.07

Flight Velocity: Cruise Velocity of 25 m/s at sea l evel

Discrete Gust Response Analysis

6/5/2012 39

Flight Velocity: Cruise Velocity of 25 m/s at sea l evel

Output Results:

Aeroelastic Transfer Matrix

Acceleration of the Structure

Gust Description - Frequency Domain

Excitation

0.4

0.6

0.8

1

1.2

Am

plitu

de

6/5/2012 40

0

0.2

0.4

0 20 40 60 80 100 120 140 160 180 200

Frequency [Hz]

Aeroelastic Transfer MatrixGust

Aeroelastic System

No Superelemen - Results Overview

3.00E-03

3.50E-03

4.00E-03

4.50E-03

Mag

nitu

de [m

/Hz]

Aeroelastic Transfer Matrix – First Component

H1

•The first component of the Aeroelastic Transfer Matr ix shows the structural modes coupling due to the aerodynamic effects

Coupled Structural Modes

18.94 Hz

6/5/2012 41

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

26.4 Hz

15.04 Hz

10.73 Hz

No Superelemen - Results Overview

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

Mag

nitu

de [m

/Hz]

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

Mag

nitu

de [m

/Hz]

H2 H3

Aeroelastic Transfer Matrix Components

6/5/2012 42

0.00E+000.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

0.00E+00

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

H4 H5

1st Superelement “Wings” – Static Condensation

$ Wing

SESET 1 82327 THRU 82374

SESET 1 82437 82439 82483 82484 82485 82486

SESET 1 82488 82490 82491 82492 82493 82495 82496

Superelement 1 Superelement 0

NASTRAN input deck

1st Superelement “Wings” - Modal Analysis Overview

External and Interface NodesR E A L E I G E N V A L U E S

MODE CYCLES

NO SUPERELEMENT

1 1 3.948215E-05

2 2 1.768777E-05

3 3 3.037204E-05

4 4 5.694758E-05

5 5 1.195745E-04

6 6 1.734103E-04

7 7 1.073926E+01

8 8 1.505410E+01

9 9 1.895002E+01

R E A L E I G E N V A L U E S

MODE CYCLES

1st WING SUPERELEMENT

1 1 -4.300867E-05

2 2 -8.839101E-06

3 3 1.596211E-05

4 4 6.547200E-05

5 5 1.347224E-04

6 6 1.670944E-04

7 7 1.073913E+01

8 8 1.504033E+01

9 9 1.894949E+01 RESIDUAL

Natural frequencies

6/5/2012 44

9 9 1.895002E+01

10 10 2.428340E+01

11 11 2.649138E+01

12 12 3.537149E+01

13 13 3.603078E+01

14 14 4.236832E+01

15 15 4.377310E+01

16 16 4.697501E+01

17 17 4.954739E+01

18 18 5.051571E+01

19 19 5.381120E+01

20 20 5.604532E+01

21 21 6.583861E+01

22 22 6.772128E+01

23 23 7.153716E+01

24 24 7.217680E+01

25 25 8.437875E+01

9 9 1.894949E+01

10 10 2.428296E+01

11 11 2.648470E+01

12 12 3.534196E+01

13 13 3.602198E+01

14 14 4.236403E+01

15 15 4.371443E+01

16 16 4.695639E+01

17 17 4.943520E+01

18 18 5.050455E+01

19 19 5.380775E+01

20 20 5.603796E+01

21 21 6.583691E+01

22 22 6.766547E+01

23 23 7.150035E+01

24 24 7.212115E+01

25 25 8.352567E+01

There is a very slight difference between natural frequencies

• Static reduction can well describe the dynamic behaviour of the structure in term of natural frequencies and mode shapes

Static Condensation

Same mode shapes

Dynamic local behaviour of the condensed components is taken into account

RESIDUAL

H1

3.50E-03

4.00E-03

4.50E-03

1st Superelement “Wings” Results Overview

Coupled Structural Modes

• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

External and Interface NodesAeroelastic Transfer Matrix – First Component

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No SuperelementSuperelement

6/5/2012 45

Static Condensation

Residual

Superelement

1st Superelement “Wings” Results Overview• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

Aeroelastic Transfer Matrix – Second ComponentExternal and Interface Nodes

H2

1.00E+00

1.20E+00

Mag

nitu

de [m

/Hz]

6/5/2012 46

Static Condensation

Residual

Superelement

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No SuperelementSuperelement

H3

2.00E-01

2.50E-01

Mag

nitu

de [m

/Hz]

1st Superelement “Wings” Results Overview• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

Aeroelastic Transfer Matrix – Third ComponentExternal and Interface Nodes

0.00E+00

5.00E-02

1.00E-01

1.50E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz] No Superelement

Superelement

6/5/2012 47

Static Condensation

Residual

Superelement

H4

1.20E+00

1.40E+00

1.60E+00

Mag

nitu

de [m

/Hz]

1st Superelement “Wings” Results Overview• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

Aeroelastic Transfer Matrix – Fourth ComponentExternal and Interface Nodes

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz] No Superelement

Superelement

6/5/2012 48

Static Condensation

Residual

Superelement

1st Superelement “Wings” Results Overview• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

Aeroelastic Transfer Matrix – Fifth ComponentExternal and Interface Nodes

H5

2.50E-01

3.00E-01

6/5/2012 49

Static Condensation

Residual

Superelement

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz] No Superelement

Superelement

1st Superelement “Wings” Results Overview• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

Aeroelastic Transfer Matrix – Eleventh Component

H11

2.50E-01

3.00E-01

Mag

nitu

de [m

/Hz]

External and Interface Nodes

6/5/2012 50

Static Condensation

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No Superelement

Superelement

Residual

Superelement

1st Superelement “Wings” Results Overview

Wing Tip Acceleration

2.00E+03

2.50E+03

Mag

nitu

de [m

/s^2

/Hz]

• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

Tip Node

Acceleration of the Structure

6/5/2012

0.00E+00

5.00E+02

1.00E+03

1.50E+03

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/s^2

/Hz]

No SuperelementSuperelement

Static Condensation

1st Superelement “Wings” Results Overview

Stabilizer Tip Acceleration

1.20E+03

1.40E+03

1.60E+03

1.80E+03

Mag

nitu

de [m

/s^2

/Hz]

• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

Tip Node

Acceleration of the Structure

6/5/2012

0.00E+00

2.00E+02

4.00E+02

6.00E+02

8.00E+02

1.00E+03

1.20E+03

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/s^2

/Hz]

No SuperelementSuperelement

Static Condensation

1st Superelement “Wings” Results Overview

Fin Tip Acceleration

6.00E+02

7.00E+02

8.00E+02

Mag

nitu

de [m

/s^2

/Hz]

• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

Tip Node

Acceleration of the Structure

6/5/2012

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/s^2

/Hz]

No Superelement

Superelement

Static Condensation

1st Superelement “Wings” Results Overview

C.G. Acceleration

2.00E+02

2.50E+02

Mag

nitu

de [m

/s^2

/Hz]

• Note that the Aeroelastic Response of the system is very closed to the case without Superelement

C.G. Node

Acceleration of the Structure

6/5/2012

0.00E+00

5.00E+01

1.00E+02

1.50E+02

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/s^2

/Hz]

No Superelement

Superelement

Static Condensation Static reduction leads to right results!

Component Mode Synthesis is not needed!

3rd Superelement “Lifting Surfaces” – Static Condensation

Superelement 1 Superelement 0

6/5/2012

Superelement 1

$ Wings

SESET 1 82327 THRU 82422

SESET 1 82437 82438 82439

…..

$ Fin_Rudder

SESET 1 101171 THRU 101189

SESET 1 101252 THRU 101267

…..

$ Stab_Elev

SESET 1 102161 THRU 102238

SESET 1 102240 THRU 102261

…..

NASTRAN input deck

3rd Superelement “Lifting Surfaces” - Modal Analysis Overview

Fuselage Interface NodesR E A L E I G E N V A L U E S

MODE CYCLES

NO SUPERELEMENT

1 1 3.948215E-05

2 2 1.768777E-05

3 3 3.037204E-05

4 4 5.694758E-05

5 5 1.195745E-04

6 6 1.734103E-04

7 7 1.073926E+01

8 8 1.505410E+01

9 9 1.895002E+01

R E A L E I G E N V A L U E S

MODE CYCLES

3rd SUPERELEMENT

1 1 4.017557E-05

2 2 9.820390E-06

3 3 1.789221E-05

4 4 5.872621E-05

5 5 1.227134E-04

6 6 1.965592E-04

7 7 1.304591E+01

8 8 1.600991E+01

9 9 1.982308E+01 RESIDUAL

Natural frequencies

6/5/2012 56

9 9 1.895002E+01

10 10 2.428340E+01

11 11 2.649138E+01

12 12 3.537149E+01

13 13 3.603078E+01

14 14 4.236832E+01

15 15 4.377310E+01

16 16 4.697501E+01

17 17 4.954739E+01

18 18 5.051571E+01

19 19 5.381120E+01

20 20 5.604532E+01

21 21 6.583861E+01

22 22 6.772128E+01

23 23 7.153716E+01

24 24 7.217680E+01

25 25 8.437875E+01

9 9 1.982308E+01

10 10 2.900024E+01

11 11 3.589103E+01

12 12 3.835177E+01

13 13 3.851378E+01

14 14 4.559263E+01

15 15 4.762119E+01

16 16 5.289471E+01

17 17 5.398215E+01

18 18 5.622513E+01

19 19 5.639172E+01

20 20 6.814482E+01

21 21 7.185811E+01

22 22 7.269415E+01

23 23 8.861211E+01

24 24 8.873950E+01

25 25 1.029499E+02

Difference between natural frequencies becomes important

• Static condensation does not manage to describe the dynamic behaviour of the structure in term of natur al frequencies and mode shapes

Static Condensation

Mode shapes are the same no longer

Dynamic behaviour of the condensed components has been lost

RESIDUAL

3rd Superelement “Lifting Surfaces” - Modal Analysis Overview

First Mode First Mode

Static Condensation

6/5/2012 57

Second Mode Second Mode

SuperelementNo Superelement

No Superelement Superelement

3rd Superelement “Lifting Surfaces” Modal Analysis Overview

Third Mode Third Mode

Static Condensation

6/5/2012 58

Fourth Mode Fourth Mode

No Superelement

No Superelement

Superelement

Superelement

3rd Superelement “Lifting Surfaces” Modal Analysis Overview

Fifth Mode Fifth Mode

Static Condensation

6/5/2012 59

Sixth Mode Sixth Mode

No Superelement

No Superelement

Superelement

Superelement

3rd Superelement “Lifting Surfaces” - Results Overview

Aeroelastic Transfer Matrix – First Component

Coupled Structural Modes

• Note that the Aeroelastic Response of the system di ffers from the case without Superelement

Fuselage Interface Nodes

H1 H1

7.00E-03

8.00E-03

6/5/2012 60

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No SuperelementSuperelement

Static Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Results Overview

Aeroelastic Transfer Matrix – Second Component

H2

1.20E+00

1.40E+00

Fuselage Interface Nodes

• Note that the Aeroelastic Response of the system di ffers from the case without Superelement

6/5/2012 61

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No Superelement

Superelement

Static Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Results Overview

Aeroelastic Transfer Matrix – Third Component

Coupled Structural ModesH1 H3

2.50E-01

3.00E-01

Fuselage Interface Nodes

• Note that the Aeroelastic Response of the system di ffers from the case without Superelement

6/5/2012 62

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No SuperelementSuperelement

Static Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Results Overview

Aeroelastic Transfer Matrix – Fourth Component

Coupled Structural ModesH1 H4

1.40E+00

1.60E+00

Fuselage Interface Nodes

• Note that the Aeroelastic Response of the system di ffers from the case without Superelement

6/5/2012 63

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No Superelement

Superelement

Static Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Results Overview

Aeroelastic Transfer Matrix – Fifth Component

H5

2.50E-01

3.00E-01

Fuselage Interface Nodes

• Note that the Aeroelastic Response of the system di ffers from the case without Superelement

6/5/2012 64

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No SuperelementSuperelement

Static Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Results Overview

Aeroelastic Transfer Matrix – Eleventh Component

H11

1.20E+00

1.40E+00

1.60E+00

Mag

nitu

de [m

/Hz]

Fuselage Interface Nodes

Residual

• Note that the Aeroelastic Response of the system di ffers from the case without Superelement

6/5/2012 65

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No Superelement

Superelement

Static Condensation

Residual

Superelement

Static reduction leads to wrong results!

Component Mode Synthesis is now needed!

3rd Superelement CMS “Lifting Surfaces” - Modal Analysis Overview

Fuselage Interface Nodes

SUPERELEMENT 0

R E A L E I G E N V A L U E S

MODE CYCLES

NO SUPERELEMENT

1 1 3.948215E-05

2 2 1.768777E-05

3 3 3.037204E-05

4 4 5.694758E-05

5 5 1.195745E-04

6 6 1.734103E-04

7 7 1.073926E+01

8 8 1.505410E+01

Residual

SUPERELEMENT 1

R E A L E I G E N V A L U E S

MODE CYCLES

3rd SUPERELEMENT CMS

1 1 1.794222E+01

2 2 2.579604E+01

3 3 2.918906E+01

4 4 4.155257E+01

5 5 4.155281E+01

6 6 6.509718E+01

7 7 8.038791E+01

8 8 8.777626E+01

SUPERELEMENT 0

R E A L E I G E N V A L U E S

MODE CYCLES

3rd SUPERELEMENT CMS

1 1 1.631105E-04

2 2 3.300453E-05

3 3 1.490898E-05

4 4 2.980423E-05

5 5 4.774083E-05

6 6 6.684066E-05

7 7 1.073205E+01

8 8 1.553893E+01

Natural frequencies

6/5/2012 66

9 9 1.895002E+01

10 10 2.428340E+01

11 11 2.649138E+01

12 12 3.537149E+01

13 13 3.603078E+01

14 14 4.236832E+01

15 15 4.377310E+01

16 16 4.697501E+01

17 17 4.954739E+01

Natural frequencies come back to be very closed

• Dynamic reduction allows to describe the dynamic behaviour of the structure in term of natural frequencies and mode shapes

Dynamic Condensation Mode shapes are the same again

Dynamic behaviour of the condensed components has b een recovered

9 9 9.196155E+01

10 10 9.967816E+01

11 11 1.071270E+02

12 12 1.071277E+02

13 13 1.166911E+02

14 14 1.245230E+02

15 15 1.252671E+02

16 16 1.252675E+02

17 17 1.324726E+02

9 9 1.868491E+01

10 10 2.329265E+01

11 11 2.574743E+01

12 12 3.514360E+01

13 13 3.563356E+01

14 14 4.123258E+01

15 15 4.463055E+01

16 16 4.696016E+01

17 17 5.013186E+01

Superelement

3rd Superelement CMS “Lifting Surfaces” - Modal Analysis Overview

First Mode First ModeDynamic Condensation

6/5/2012 67

Superelement CMSNo Superelement

No Superelement Superelement CMS

Second Mode Second Mode

3rd Superelement “Lifting Surfaces” Modal Analysis Overview

Third Mode Third ModeDynamic Condensation

6/5/2012 68

Superelement CMSNo Superelement

No Superelement Superelement CMS

Fourth Mode Fourth Mode

3rd Superelement “Lifting Surfaces” Modal Analysis Overview

Fifth Mode Fifth ModeDynamic Condensation

6/5/2012 69

Sixth Mode Sixth Mode

Superelement CMSNo Superelement

No Superelement Superelement CMS

3rd Superelement “Lifting Surfaces” – Results Overview

Fuselage Interface NodesH1

4.50E-03

Aeroelastic Transfer Matrix – First Component

• Note that the Aeroelastic Response of the System is very closed to the case without Superelement

6/5/2012 70

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No Superelement

Superelement CMS

Dynamic Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Dynamic Condensation

H2

1.20E+00

Fuselage Interface NodesAeroelastic Transfer Matrix – Second Component

• Note that the Aeroelastic Response of the System is very closed to the case without Superelement

6/5/2012 71

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No Superelement

Superelement CMS

Dynamic Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Dynamic Condensation

H3

3.00E-01

Fuselage Interface NodesAeroelastic Transfer Matrix – Third Component

• Note that the Aeroelastic Response of the System is very closed to the case without Superelement

6/5/2012 72

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No Superelement

Superelement CMS

Dynamic Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Dynamic Condensation

H4

1.60E+00

Fuselage Interface NodesAeroelastic Transfer Matrix – Forth Component

• Note that the Aeroelastic Response of the System is very closed to the case without Superelement

6/5/2012 73

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No Superelement

Superelement CMS

Dynamic Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Dynamic Condensation

H5

3.00E-01

Fuselage Interface NodesAeroelastic Transfer Matrix – Fifth Component

• Note that the Aeroelastic Response of the System is very closed to the case without Superelement

6/5/2012 74

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No SuperelementSuperelement CMS

Dynamic Condensation

Residual

Superelement

3rd Superelement “Lifting Surfaces” - Dynamic Condensation

H11

3.00E-01

Fuselage Interface NodesAeroelastic Transfer Matrix – Eleventh Component

• Note that the Aeroelastic Response of the System is very closed to the case without Superelement

6/5/2012 75

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Freq [Hz]

Mag

nitu

de [m

/Hz]

No Superelement

Superelement CMS

Dynamic Condensation

Residual

Superelement

1st Superelement “Wings” Results Overview

Tip NodeWing Tip Acceleration

No SuperelementStatic SuperelementSuperelement CMS

Superelement

Acceleration of the structure

Comparison

Mag

nitu

de [m

/s2 /

Hz]

6/5/2012

Static vs. Dynamic Condensation

Residual

Mag

nitu

de [m

/s

[Hz]

1st Superelement “Wings” Results Overview

Tip Node

No SuperelementStatic SuperelementSuperelement CMS

Stabilizer Tip Acceleration

Superelement

Comparison

Acceleration of the structure

Mag

nitu

de [m

/s2 /

Hz]

6/5/2012

Residual

Static vs. Dynamic Condensation

Mag

nitu

de [m

/s

[Hz]

1st Superelement “Wings” Results Overview

Tip Node

No SuperelementStatic SuperelementSuperelement CMS

Fin Tip Acceleration

Superelement

Comparison

Acceleration of the structure

Mag

nitu

de [m

/s2 /

Hz]

6/5/2012

Residual

Static vs. Dynamic Condensation

Mag

nitu

de [m

/s

[Hz]

1st Superelement “Wings” Results Overview

C.G. Node

No SuperelementStatic SuperelementSuperelement CMS

C.G. Acceleration

Superelement

Comparison

Acceleration of the structure

Mag

nitu

de [m

/s2 /

Hz]

6/5/2012

Residual

Static vs. Dynamic Condensation

Static reduction is not enough for this Superelemen t model!

Component Mode Synthesis leads to right results!

Mag

nitu

de [m

/s

[Hz]

Dynamic Aeroelasticity Sol146

Discrete Gust Response Analysis

Flight condition

M=0.07

Flight Velocity: Cruise Velocity of 25 m/s at sea l evel

6/5/2012 80

Flight Velocity: Cruise Velocity of 25 m/s at sea l evel

Output Results:

Time History of the Response of the UAV

Gust Description – Time Domain

EASA CS 23.333 Flight Envelope

s = Distance penetrated into gust

C = Mean geometric chord of wing

Ude = Derived gust velocity

Gust Envelope

Shape of the gust

The aeroplane is assumed to be subjected to symmetrical vertical gusts in level flight.

Gust Profile

6/5/2012 81

Gust Profile

0

1

2

3

4

5

6

7

8

9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (s)

Vel

ocity

(m

/s) • UAV Flight Velocity 25 m/s

• Ude 15.24 m/s

3rd Superelement “Wings” Results Overview

• The aeroelastic transient response of the center of mass is quite the same

C.G. Node

C.G. Acceleration

4

6No SuperelementSuperelement

Time History of a node located at the UAV center of mass

No Component Mode Synthesis

6/5/2012

-6

-4

-2

0

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

Acc

eler

atio

n [g

]

0.6 0.8 1

Static reduction allows to identify the global dyna mic behaviour

Static Condensation

3rd Superelement “Wings” Results Overview

Wing Tip Acceleration

4

6No SuperelementSuperelement

Tip Node

Time History of a node internal to the Superelement at wing tip station

• The aeroelastic transient response at wing tip stat ion is different from the case without Superelement

No Component Mode Synthesis

Static Condensation

6/5/2012

-6

-4

-2

0

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

Acc

eler

atio

n [g

]

0.6 0.8 1

Local dynamic information has been lost

3rd Superelement “Wings” Results Overview

• The aeroelastic transient response of the center of mass is quite the same

C.G. Node

C.G. Acceleration

4

6No SuperelementSuperelement

Time History of a node located at the UAV center of mass

Component Mode Synthesis

6/5/2012

-6

-4

-2

0

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

Acc

eler

atio

n [g

]

0.6 0.8 1 Dynamic Condensation

Dynamic reduction allows to identify the global dyn amic behaviour

Wing Tip Acceleration

4

6No SuperelementSuperelement

3rd Superelement “Wings” Results Overview

Tip Node

Time History of a node internal to the Superelement at wing tip station

• The aeroelastic transient response at wing tip stat ion is very closed to that of the case without Superelement

Component Mode Synthesis

-6

-4

-2

0

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

Acc

eler

atio

n [g

]

Dynamic Condensation

6/5/2012

Local dynamic information has been recoverd

Structural Monitor Point Report in .f06

MONPNT1 ALA_DX CARICO SULL’ALA DESTRA

35 al_dx 0 0. 0.0 0.

AECOMP al_dx SET1 50

SET1 50 82327 82352 82354 82356 82358 82360 82362

82364 82366 82368 82370 82372 82487 82494 82497

. . . . .

Right Wing – Spar & Trailing Edge Contribution

S T R U C T U R A L M O N I T O R P O I N T I N T E G R A T E D L O A D S (MONPNT1)

Nodes which correspond to the SET1 of the Spline. External to the superelement

1st Superelement “Wings”

Comparison

Static Condensation

6/5/2012

S T R U C T U R A L M O N I T O R P O I N T I N T E G R A T E D L O A D S (MONPNT1)

MONITOR POINT NAME = ALA_DX COMPONENT = CZ GENERAL SUBCASE NO. 1

LABEL = CARICO SULL'ALA DESTRA

CP = 0 X = 0.000000E+00 Y = 0.000000E+00 Z = 0.000000E+00 CD = 0

TIME STEP INERTIAL EXTERNAL FLEXIBLE GUST TOTAL TOTAL

INCREMENT AERO

------------ ------------ ------------ ------------ ------------ ------------ ------------

0.000000E+00 1.267999E-03 0.000000E+00 -1.808554E-02 -1.246362E-02 -3.054916E-02 -2.928116E-02

3.906200E-03 5.357304E-04 0.000000E+00 -1.933023E-02 -3.076063E-03 -2.240629E-02 -2.187056E-02

7.812400E-03 2.174442E-04 0.000000E+00 -2.068536E-02 1.105762E-03 -1.957960E-02 -1.936216E-02

1.171860E-02 1.723985E-03 0.000000E+00 -2.014938E-02 -2.099671E-02 -4.114609E-02 -3.942211E-02

1.562480E-02 -2.402667E-04 0.000000E+00 -2.242267E-02 6.203582E-03 -1.621908E-02 -1.645935E-02

Residual

Superelement

Structural Monitor Point – Results Overview

Total Aero

0.00E+00

1.00E+02

2.00E+02

3.00E+02

Aer

o Lo

ad [N

]

Superelement

No Superelement

Right Wing – Spar & Trailing Edge Contribution

Comparison

1st Superelement “Wings”

6/5/2012

-3.00E+02

-2.00E+02

-1.00E+02

0.00E+00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

Aer

o Lo

ad [N

]

Static Condensation

0.6 0.8 1

Static Condensation allows to obtain results compar able with standard solution

Residual

Superelement

Aero Monitor Point Report in .f06No Component Mode Synthesis

A E R O D Y N A M I C M O N I T O R P O I N T I N T E G R A T E D L O A D S (MONPNT1)

MONPNT1 ALA_DX CARICO SULL’ALA DESTRA

35 ALA_D 0.0 0.0 0.0

AECOMP ALA_D AELIST 26

AELIST 26 200000 THRU 200899

Right Wing Lifting SurfacePanels which contribute to the load calculation

Comparison

3rd Superelement “Lifting Surfaces”

Static Condensation

6/5/2012

MONITOR POINT NAME = ALA_DX COMPONENT = CZ GENERAL SUBCASE NO. 1

LABEL = CARICO SULL’ALA DESTRA

CP = 0 X = 0.000000E+00 Y = 0.000000E+00 Z = 0.000000E+00 CD = 0

TIME STEP FLEXIBLE GUST TOTAL

INCREMENT AERO

------------ ------------ ------------ ------------

0.000000E+00 -1.808554E-02 -1.246362E-02 -3.054916E-02

3.906200E-03 -1.933023E-02 -3.076063E-03 -2.240629E-02

7.812400E-03 -2.068536E-02 1.105762E-03 -1.957960E-02

1.171860E-02 -2.014938E-02 -2.099671E-02 -4.114609E-02

1.562480E-02 -2.242267E-02 6.203582E-03 -1.621908E-02

1.953100E-02 -2.210352E-02 -1.676958E-02 -3.887310E-02

Aero Monitor Point – Results Overview

Total Aero

1.00E+02

2.00E+02

3.00E+02

Aer

o Lo

ad [

N]

No Superelement

Superelement

Right Wing Lifting Surface

Comparison

3rd Superelement “Lifting Surfaces”

6/5/2012

Static Condensation allows to obtain results compar able with standard solution

-3.00E+02

-2.00E+02

-1.00E+02

0.00E+00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

Aer

o Lo

ad [

N]

Static Condensation 0.6 0.8 1

Sol146 - Remarks

1. Depending on the Superelement definition (SESET1 cards) Static

Reduction could not be the right approach for the aeroelastic system

identification

2. Component Mode Synthesis is the right approach to take into account

the dynamic contribution of the Superelement

3. All structural lifting surfaces can be condensed into Superelements3. All structural lifting surfaces can be condensed into Superelements

4. Structural Nodes specified in SET1 cards of the SPLINE cards can be

internal to Superelements

5. Structural monitor points cannot refer to Nodes internal to the

Superelement

6. To get all the external integrated load applied to a lifting surface, the

nodes defined in the SET1 card for splining must be all the same

external nodes which belong to that component

7. The aero monitor point can be defined wherever