summing amplifier revisited

Upload: david-turner

Post on 03-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Summing Amplifier Revisited

    1/25

    Lecture 5-1

    Summing Amplifier Revisited

    R4

    Superposition can be used to easily evaluate summing amplfiers with infiniteopen loop gain

    R1

    R2

    R3

    V1

    V2

    V3

  • 7/28/2019 Summing Amplifier Revisited

    2/25

    Lecture 5-2

    Summing Amplifier Revisited

    R4

    Can we solve for the summing amplifier gain the same way when the openloop gain is finite?

    R1

    R2

    R3

    V1

    V2

    V3

  • 7/28/2019 Summing Amplifier Revisited

    3/25

    Lecture 5-3

    Other Opamp Nonidealities

    The open loop gain is generally so large that we can neglect its impact on theclosed-loop circuit gain

    But a significant nonideality that we cannot ignore is the finite open-loopgain as a function of frequency

    Parasitic capacitance causes the gain to fall off at high frequency (cant makeH infinite for any amplifier!)

    The gain may be designed to change with frequency to enure stability ----compensation

  • 7/28/2019 Summing Amplifier Revisited

    4/25

    Lecture 5-4

    741 Opamp

    One of the most popular, general purpose opamps are the 741-type

    + SINVIN

    + -15VVC1

    + -15VVC2

    741OPAMP0

    +

    -

    +

    -

    VMOUT

    3.836 V

    +

    -

    VMIN

    0.000 pV

    frequency

    e-1 e0 e1 e2 e3 e4 e5 e6 e7

    -100dB

    0dB

    100 dB

    200dB

    DB(VMOUT/VMIN)

    frequencye-1 e0 e1 e2 e3 e4 e5 e6 e7

    -200

    -100

    0

    PH(VMOUT/VMIN)

  • 7/28/2019 Summing Amplifier Revisited

    5/25

    Lecture 5-5

    741 Opamp Example

    A gain of 10, or 20dB is possible at 10kHz:

    time0 2 4 6 8 10 e-4s

    -1

    0

    1V

    VMOUT VMIN

    + SINVIN

    +

    -

    VMOUT

    1.009 mV

    +

    -

    VMIN

    0.000 pV

    + -

    -15V

    VC8

    + 15VVC9

    741OPAMP12

    +

    -

    R15

    1E3

    R16

    10E3

  • 7/28/2019 Summing Amplifier Revisited

    6/25

    Lecture 5-6

    741 Opamp Example

    But not at 100kHz:

    + SINVIN

    +

    -

    VMOUT

    1.009 mV

    +

    -

    VMIN

    0.000 pV

    + -

    -15V

    VC8

    + 15VVC9

    741OPAMP12

    +

    -

    R15

    1E3

    R16

    10E3

    time0.0 0.2 0.4 0.6 0.8 1.0e-4s

    -1

    0

    1V

    VMOUT VMIN

  • 7/28/2019 Summing Amplifier Revisited

    7/25

    Lecture 5-7

    741 Opamp Example

    This decrease in gain is evident from a frequency domain analysis

    frequencye-1 e0 e1 e2 e3 e4 e5 e6 e7

    -40

    -30

    -20

    -10

    0

    10

    20

    DB(VMOUT/VMIN)

    frequencye-1 e0 e1 e2 e3 e4 e5 e6 e7

    0

    100

    200

    PH(VMOUT/VMIN)

    + SINVIN

    +

    -

    VMOUT

    1.009 mV

    +

    -

    VMIN

    0.000 pV

    + -

    -15V

    VC8

    + 15VVC9

    741OPAMP12

    +

    -

    R15

    1E3

    R16

    10E3

  • 7/28/2019 Summing Amplifier Revisited

    8/25

    Lecture 5-8

    Gain as a Function of Frequency

    Will the closed-loop gain (with feedback) will always be less than or equal tothe open loop gain as a function of frequency?

    frequency

    e-1 e0 e1 e2 e3 e4 e5 e6 e7

    -100dB

    0dB

    100 dB

    200dB

    DB(VMOUT/VMIN)

    openloopgain

  • 7/28/2019 Summing Amplifier Revisited

    9/25

    Lecture 5-9

    Gain as a Function of Frequency

    We can assume that the close-loop response will follow the open loopcharacteristic beyond the frequency at which they intersect if the loadcapacitance and input terminal capacitances are small

    Why are the other capacitors a factor?

    frequency

    e-1 e0 e1 e2 e3 e4 e5 e6 e7

    -100dB

    0dB

    100 dB

    200dB

    DB(VMOUT/VMIN)

    frequencye-1 e0 e1 e2 e3 e4 e5 e6 e7

    -200

    -100

    0

    PH(VMOUT/VMIN)

    741 Open Loop Characteristics

  • 7/28/2019 Summing Amplifier Revisited

    10/25

    Lecture 5-10

    Gain as a Function of Frequency

    It is important that the open loop characteristic has a phase shift of less than180 (a change in gain of less than 40dB per decade) at the point ofintersection with the closed-loop characteristic --- why?

    frequency

    e-1 e0 e1 e2 e3 e4 e5 e6 e7

    -100dB

    0dB

    100 dB

    200dB

    DB(VMOUT/VMIN)

    frequencye-1 e0 e1 e2 e3 e4 e5 e6 e7

    -200

    -100

    0

    PH(VMOUT/VMIN)

    741 Open Loop Characteristics

  • 7/28/2019 Summing Amplifier Revisited

    11/25

    Lecture 5-11

    Stability

    R2

    R1

    vin

    If the open loop gain has a phase shift of 180, and we connect the opampwith negative feedback (which represents another phase shift of 180), thenthe total phase shift will be 360 which is like positive feedback

    vo

    s

    ( )A s

    ( )v

    1=

  • 7/28/2019 Summing Amplifier Revisited

    12/25

    Lecture 5-12

    Feedback

    The feedback can further complicate matters if it is also a function offrequency

    +

    _

    Vf

    Vo

    ViVS

    load

    ( )

    input

    Af

    ( ) A ( )1 ( )A ( )+-----------------------------------=

    A ( )

  • 7/28/2019 Summing Amplifier Revisited

    13/25

    Lecture 5-13

    Stability

    The circuit will be unstable with this positive feedback

    What causes the gain characteristic to exhibit these unwanted phase shifts?

    Stable

    Marginally Stable

    Unstable

    open-loop gain

    closed-loop gain

    f(Hz)

    gain(dB)

    (phase becomes 180 degreesat some frequency in this range)

  • 7/28/2019 Summing Amplifier Revisited

    14/25

    Lecture 5-14

    Internal Compensation

    Compensation capacitors are added to purposely place a low frequency(dominant) pole so that the change in gain will be 20dB/decade up until theunity gain frequency

    Why isnt the phase a concern beyond this frequency?

    f(Hz)

    gain(dB)

    Sacrifices gain for stability

    0

    20dB/decade

  • 7/28/2019 Summing Amplifier Revisited

    15/25

    Lecture 5-15

    Feedback

    Most feedback weve considered has no phase shift (resistors), socompensation will ensure stability

    However, frequency dependent feedback can pose a problem even forcompensated opamps

    +

    _

    Vf

    Vo

    ViVS

    load

    ( )

    input

    Af

    ( ) A ( )1 ( )A ( )+-----------------------------------=

    A ( )

  • 7/28/2019 Summing Amplifier Revisited

    16/25

    Lecture 5-16

    Modeling Gain as a Function of Frequency

    With compensation, the frequency response appears like a STC

    frequency

    e-1 e0 e1 e2 e3 e4 e5 e6 e7

    -100dB

    0dB

    100 dB

    200dB

    DB(VMOUT/VMIN)

    741 Open Loop Characteristics

    A s( )A

    o

    1 s b

    +----------------------=

  • 7/28/2019 Summing Amplifier Revisited

    17/25

    Lecture 5-17

    Unity Gain Bandwidth

    We can easily solve for the frequency, t, at which the gain is 0dB

    frequency

    e-1 e0 e1 e2 e3 e4 e5 e6 e7

    -100dB

    0dB

    100 dB

    200dB

    DB(VMOUT/VMIN)

    741 Open Loop Characteristics

  • 7/28/2019 Summing Amplifier Revisited

    18/25

    Lecture 5-18

    Frequency Dependence of Gain

    R2

    R1

    vin

    Using these expressions for gain as a function of frequency we canapproximate the inverting amplifier circuit gain as a function of frequency

    Vo

    Vi

    ------

    R2

    R1------

    1

    1R

    2

    R1

    ------+

    A s

    ( )

    ---------------------+

    -------------------------------=

    A s( )A

    o

    1 s b

    +----------------------=

    Vo

    Vi

    ------

    R2

    R1------Ao

    Ao

    1R

    2

    R1------+

    s

    b

    ------- 1R

    2

    R1------+

    + +

    ----------------------------------------------------------------------=

  • 7/28/2019 Summing Amplifier Revisited

    19/25

    Lecture 5-19

    Frequency Dependence of Gain

    VoV

    i

    ------

    R2

    R1

    ------Ao

    Ao

    1R

    2

    R1

    ------+ s

    b

    ------- 1R

    2

    R1

    ------+

    + +

    ----------------------------------------------------------------------=

    We can assume that the closed-loop gain is much smaller than the dc openloop gain

  • 7/28/2019 Summing Amplifier Revisited

    20/25

    Lecture 5-20

    Frequency Dependence of Gain

    Does this result seem correct?

  • 7/28/2019 Summing Amplifier Revisited

    21/25

    Lecture 5-21

    Opamp Macromodels

    We can model the frequency dependence of the gain using a macromodel forthe opamp

    Internal structure of an opamp:

    vo

    vid1

    2+

    _

    +

    _

    Gm

    C (compensation capacitor)

    +1

    DifferentialInput Trans-conductance

    Amplifier

    VoltageAmplifier

    Unity-GainBuffer

    Well build all of these transistor level components later in the course

  • 7/28/2019 Summing Amplifier Revisited

    22/25

    Lecture 5-22

    Opamp Macromodels

    We can model the first two stages (the last is trivial) using controlled sources,Rs and Cs:

    vo

    1

    2

    +

    _

    C

    Gmvid Ro1 Ri2

    +

    _

    vi2

    vi2

    vo

    1

    2

    +

    _

    C

    Gmvid

    R

    +

    _v

    i2

    vi2

    Which we can simplify by combining the parallel Rs

    vid+

    _

    vid+

    _

  • 7/28/2019 Summing Amplifier Revisited

    23/25

    Lecture 5-23

    Opamp Macromodel

    This circuit has the same STC form as a compensated opamp

    vo

    1

    2

    +

    _

    C

    Gmvid

    R

    +

    _v

    i2

    vi2vid

    +

    _

  • 7/28/2019 Summing Amplifier Revisited

    24/25

    Lecture 5-24

    Opamp Macromodel

    1

    2

    C(1+)Gmvid

    R

    +

    _

    vi2vid

    +

    _

  • 7/28/2019 Summing Amplifier Revisited

    25/25

    Lecture 5-25

    Opamp Macromodel

    The parameters for a 741 macromodel are:

    frequency

    e-1 e0 e1 e2 e3 e4 e5 e6 e7

    -100dB

    0dB

    100 dB

    200dB

    DB(VMOUT/VMIN)

    741 Open Loop Characteristics

    Gm

    0.19mA

    volt----------= R

    o16.7M=R

    i24M= 529= C 30pF=

    frequency

    e-1 e0 e1 e2 e3 e4 e5 e6 e7

    DB(VMOUT/VMIN)-100dB

    0dB

    100 dB

    200dB

    Macromodel