stwc bildblaetter ss2011.book

Upload: omran-rash

Post on 05-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    1/26

    UNIVERSITT STUTTGART

    INSTITUT FR NACHRICHTENBERTRAGUNG

    Prof. Dr.-Ing. J. Speidel

    www.inue.uni-stuttgart.de

    Supplementary Material

    for the LectureSpace-Time WirelessCommunications

    (to be enhanced during lecture)

    S T

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    2/26

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    3/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Overview

    1.)Multiple Input Multiple Output (MIMO) channel

    2.)Spatial multiplex, diversity, beamforming principles

    3.)Linear flat fading and frequency selective fading wireless MIMO channel

    4.)MIMO receiver: Zero Forcing, Minimum Mean Square Error (MMSE),Maximum Likelihood (ML)

    5.)MIMO channel capacity

    6.)Space-time coding methods

    7.)Convolutional coding, Turbo coding

    8.)Decoding principles, iterative receivers

    9.)Applications

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    4/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Literature

    [1] J. Speidel:Multiple Input Multiple Output (MIMO) - Drahtlose Nachrichtenbertragung hoherBitrate und Qualitt mit Mehrfachantennen. Telekommunikation Aktuell, vol. 59, issue 7-10/05,July-Oct. 2005, pp. 1-63.

    [2] B. Vucetic et al.: Space-Time Coding. John Wiley Publisher, 2003.

    [3] A. Paulraj et al.:Introduction to Space-Time Wireless Communications. Cambridge UniversityPress, 2003.

    [4] E. Larsson; P. Stoica: Space-Time Block Coding for Wireless Communications. Cambridge Uni-

    versity Press, 2003.

    [5] S. Alamouti:A simple transmit diversity technique for wireless communications. IEEE Transac-tions on Selected Areas of Communications, vol. 16, Oct. 1998.

    [6] V. Tarokh; N. Seshardi; A.R. Calderbank: Space-time codes for high data rates wireless commu-nications: Performance criterion and code construction. IEEE Transactions on InformationTheory, vol. 44, 1998.

    [7] J. Proakis: Digital Communications. Mc Graw-Hill Book Company, 4th edn. 2008.

    [8] E. Lee; D. Messerschmitt; J. Barry: Digital Communication. Springer, 2004.

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    5/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Reprint prohibited - all rights reserved 3

    Block diagram wireless MIMO transmission (details)

    rN k

    bandpass lowpasse

    j 0t

    g

    r t r k b n

    detector

    mapper

    impulseshaper

    Re

    u t s k

    ej0t

    sM k

    uM t

    g

    r1 t r1 k

    t0 kT+

    MIMO receiver

    bit sequence

    b n

    bit ratevB

    P

    S

    serial-parallelconverter

    a t

    symbol ratevs 1 T= rN t

    s1 k

    MIMO channel

    u1 t

    MIMO transmitter

    equivalent analog MIMO lowpass channel h t

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    6/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    complex time-variant impulse response, ( ; )

    Block diagram of wireless MIMO transmission (model)

    Definition

    MIMO Multiple Input Multiple Output : ,

    SISO Single Input Single Output :

    t0 kT+

    s1

    k

    s k

    sM k

    b n b n

    r1 k

    r k

    rN k

    h t r t

    r1 t

    rN t

    equivalent analogMIMO lowpass channel

    MIMO Tx MIMO Rx

    equivalent discrete-timeMIMO lowpass channel h m k

    h t 1 M = 1 N =

    M 1 N 1

    M 1= N 1=

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    7/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    MIMO noise vector

    a) Gaussian , real , zero mean , variance

    pdf

    b) complex Gaussian

    with property (1)

    statistically independent

    variance of

    of course, has zero mean

    c) random vector

    all as in b), i. e. zero mean, variance , pdf (2)

    all , statistically independent

    x 2

    p x 1

    2

    ---------------- e

    1

    2---

    x2

    2-------

    =

    n x jy+= n

    x y

    x y

    pnn p x p y

    1

    2----------------

    2 e

    1

    2---

    x2

    y2

    +

    2---------------------

    1

    22-------------- e

    1

    2---

    n

    n

    2-------------

    1

    n2

    --------- e

    n

    n

    n2

    -------------

    = = = =

    22 n2

    = n

    n

    n n1nN T

    =

    n n2

    n n

    pn n pn n 1=

    N

    1 n

    2-----------

    N

    e

    nH

    n

    n2---------

    1

    n2

    ----------- N

    e

    n2

    n2---------

    = = =(2)

    nH

    n n2

    =

    (1)

    (2)

    (3)

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    8/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Minimum mean squared error (MMSE) receiver

    Given:

    tx signal with autocorrelation matrix (1)

    noise with autocorrelation matrix (2)

    and statistically independent

    Error ; squared error (3a,b)

    MMSE: (4a,b)

    Result: (5)

    Proof of (5):

    Introduce error autocorrelation matrix (6)

    Then (7)

    With (3a):

    MIMO channel MMSE rx

    H W

    s H s

    n

    r y W r=

    H N M

    s Rss E ssH =

    n Rnn E nn

    H

    =

    s n

    e s y s W r= = e2

    eH

    e=

    J E eH

    e mi n W min Jarg= = =

    W RssHH

    H RssHH

    Rnn+ 1

    =

    Ree E eeH =

    J trRee trE eeH = = trA sum of main diagonal elements=

    J tr E s W r sH rHWH tr E ssH srHWH W rsH W rrHWH+ = =

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    9/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Eigenvalue decomposition of :

    (9)

    is called "square root" of

    diagonal matrix with eigenvalues of

    According to Lemma 1, decomposition (9) is always possible

    In (10), 2nd and 3rd term are artificially introduced and cancel out.

    With from (10)

    (11a)

    and with Lemma 2

    (11b)

    Due to (4a) for all also for , for which . Thus, the first term in(11b) is also . Consequently, results for

    =

    =

    = (10)

    -

    =

    =

    =

    Rrr

    Rrr UH U UH1 2 1 2 U 1 2 U

    H1 2 U AHA= = = =

    A Rrr

    diag 1 N = Rrr

    Rrr AH

    A andA1A I into (8) yields=

    J tr Rss RsrA1AW

    H W A

    HA

    H 1Rrs W A

    HAW

    H+

    tr Rss RsrA1

    AH

    1Rrs RsrA

    1A

    H 1Rrs+

    RsrA1 A WH W AH AH 1 Rrs W AHA WH+

    RsrH

    Rrs=

    J tr Rss RsrA1

    AH

    1Rrs W A

    HRsrA

    1 W AH RsrA

    1

    H+ =

    J tr Rss RsrA1

    AH

    1Rrs tr W A

    HRsrA

    1 W AH RsrA

    1

    H +=

    J 0 W W W AH RsrA1

    0=0 J min=

    tr W AH

    RsrA1

    W AH RsrA1

    H

    W AH RsrA1

    F2

    0= =

    W AH RsrA1

    0

    W AH

    RsrA1

    W RsrA1

    AH

    1Rsr A

    HA

    1RsrRrr

    1= =

    (9)

    1

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    10/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    As and are statistically independent, they are also uncorrelated, is of zero mean.

    Thus , (16)

    (16) into (13): (17)

    (16) into (15): (18)

    (17), (18) into (12): (19)

    and (5) is proven.

    Important case: ,

    From (5) follows after some manipulation

    ; (20)

    Lemma 3: Matrix inversion

    With Lemma 3 follows from (20)

    (21)

    Proof of (21):

    s n n

    Rsn 0= Rns 0=

    Rrr H RssHH

    Rnn+=

    Rsr RssHH

    =

    W RssHH

    H RssHH

    Rnn+ 1

    =

    Rss EsIM= Rnn n2

    IN=

    W HH

    H HH IN+

    1= n

    2Es=

    A BC D+

    1A

    1A

    1B C

    1D A

    1B+

    1D A

    1=

    W HH

    H IM+ 1

    HH=

    HH

    H HH IN+

    1H

    H IN HIMHH

    + 1

    = =

    A B C D

    H 1 1 H 1 1 H 1 H 1 H 1 H 1 1 H 1

    Lemma 3

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    11/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Proof of some statements of linear algebra

    Let be Hermiteian matrix with eigenvalues .

    A) is a quadratic form.

    for any (22)

    Proof: q. e. d.

    B) A matrix with property (22) is called positive semi-definite.

    (all are real)

    Proof:

    Let be the eigenvector associated to , i. e.

    (23)

    We calculate

    q. e. d.

    ; (24)

    Q N N 1 N =

    Q aaH

    =

    zH

    Qz

    zH

    Qz 0 z 0

    zH

    Qz zH

    aaH

    z zH

    a zH

    a H

    zH

    a2

    0= = =

    Q

    Q with property (22) 0 1 N =

    u Q u u=

    uH

    Q u uH u u

    Hu u

    20= = =

    (23) (22)

    0

    Rrr E rrH = Rrr

    HE rr

    H H

    E rrH Rrr= = =

    0

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    12/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    (27)

    As , , and we conclude q. e. d.

    Note, that (25) holds also for non-normalized vectors, i. e.

    If the eigenvectors are normalized, i. e. , then they are orthonormal.

    Matrix of orthonormal eigenvectors

    (28)

    due to orthonormality of (29)

    with property (29) is called an unitary matrix. As can be seen column vectors

    of an unitary matrix are orthogonal and normalized. (30)

    Then (31)

    (32)

    From (31): =

    =

    With (29) = (33)

    Q u2 2 u2=

    1 u1 H

    u2 Q u1 H

    = u2 u1H

    QH

    u2 u1H

    Q u2= =

    u1H

    = u22(27)

    1 0 2 0 1 2 u1H

    u2 0=

    1u1H 2u2 0= 1 2 0

    u u 2 1=

    U u1 uN =

    U1

    UH

    = u

    U

    UH

    QU =

    diag 1 N =

    UH

    Q U 1

    Q UH

    1U 1

    Q UUH

    1

    u1H

    u2 2

    u1H

    u2=

    (23)

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    13/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Singular Value Decomposition (SVD):

    SVD Lemma:

    Given the matrix

    An eigenvalue decomposition of does not always exist. In this case an SVD is feasible.

    (1)

    is called SVD of , where

    (2)

    and , are unitary matrices, i. e.

    , (3a,b)

    are called singular values of . (4)

    are the positive (non-zero) eigenvalues of the Hermiteian matrix

    (5)

    where *) (6)

    and (7)

    The remaining eigenvalues of are zero.

    The eigenvalue decomposition of is

    H CN M

    H

    H UD VH

    =

    H

    D

    1 00

    0 P0 0

    RN M=

    U CN N V CM M

    U1

    UH

    = V1

    VH

    =

    1 P = H 1 P =

    QN H HH

    CN N=

    rankH rankQN P= =

    P min M N

    P 1 N += QNQN

    H

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    14/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    One method to find is the eigenvalue decomposition of as follows

    (10)

    with (11)

    and (12)

    Note,

    Thus, is the matrix of eigenvectors with respect to the eigenvalues of .

    SVD (1) exists for all cases and . (13)

    Proof of SVD Lemma:

    a) Proof of(1) - (9):

    (8) exists with (9), (6) and (7).

    With and (5) follows from (8)

    ; (14a)

    We decompose

    (14b)

    V QM

    VH

    QMV M=

    QM HH

    H CM M=

    M1 0

    P0

    0 0

    RM M=

    rankQM rankQN P= =

    V 1 M QM

    M N M N

    QN QNH

    is Hermiteian =

    V VH

    IM=(3b)

    UH

    H V VH

    HH

    U N= A CN M

    N =1 0

    00

    1 00

    0 DDH

    =

    A= A

    H

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    15/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Comparing (14a) and (14b) we conclude

    (15)

    From (15)

    and (1) is proven.

    Note, that the only requirement on is (unitary).

    b) We now prove, that can be obtained by eigenvalue decomposition of as outlined

    by (10) - (12).

    From (1) follows using Hermiteian operation

    (16)

    Multiplying (1) and (16) results in

    (17)

    With and in (14b) follows

    (18)

    with in (12)

    Comparing and we conclude that and have the same non-

    zero eigenvalues . Of course, the remaining eigenvalues are zero. Note, that in general

    the total number and of eigenvalues is different for and , respectively. Also the

    associated matrices and of eigenvectors are different in general.

    UH

    HV D=

    H UD VH

    =

    V CM M V 1 VH=

    V QM HH

    H=

    HH

    V DH

    UH

    =

    HH

    H V DH

    UH

    UD VH

    V DH

    DVH

    = =

    DH

    D

    DH

    D M=

    M

    N M QN H HH= QM H

    HH=

    1 P N M QN QM

    U V

    IN=(3a)

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    16/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    MIMO channel capacity

    Derivation of

    Given (1)

    Eigenvalue decomposition of yields

    ; (2)

    (2) --> (1) (3)

    Matrix calculus:

    , also (4)

    (4) --> (3)

    q. e. d.

    Derivation of

    C ld IN H HHES

    n2

    ------+=

    C ld IN NES

    n2

    ------+=

    H HH

    UH

    H HH

    U NP 0

    0 0N N = = P diag 1 P =

    C ld IN UHH HHU ES

    n2

    ------+=

    IM AB+ IN BA+ A M N B N M = M N=

    C = ld IN H HH

    U UHES

    n2

    ------+

    = ld IN H HHES

    n2

    ------+

    C ld IM HH

    HES

    n2

    ------+=

    IN

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    17/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Reprint prohibited - all rights reserved 15

    Max. channel capacity in bit/channel use

    Prerequisites: with full rank, no fading, . Total tx mean power .

    MIMO

    Remark

    for large SNR

    MIMO larger than forN=M

    MIMO same asN=M

    SISO

    SIMOlarger than for SISOgain of for large SNR

    MISO same as SISO

    Cmax

    NM

    rxtx

    M N= Nld 1Estot

    n2

    ----------+ N

    ldEstot

    n2

    ----------

    M N Mld 1 NM-----

    Estot

    n2

    ----------+

    M N Nld 1 Estotn

    2----------+

    M N 1= = ld 1Estot

    n2

    ----------+

    M 1=

    N 1ld 1 NE

    stot

    n2

    ----------+ ldN

    N 1=

    M 1ld 1

    Estot

    n2

    ----------+

    H h 1= 1 N ; 1 M = = Estot

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    18/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Orthogonal space-time block code matrices

    a) For real symbols , tx antennas, spatial code rate 1

    b) For complex symbols , tx antennas, spatial code rate 1/2

    c) For complex symbols , tx antennas, spatial code rate 1: Alamouti ST code

    S

    s k M 4=

    S

    s1 s2 s3 s4

    s2

    s1

    s4

    s3

    s3 s4 s1 s2

    s4 s3 s2 s1

    =

    s k M 3=

    S

    s1 s2 s3 s4 s1* s2* s3* s4*

    s2 s1 s4 s3 s2* s1

    * s4* s3

    *

    s3 s4 s1 s2 s3* s4

    * s1* s2

    *

    =

    s k M 2=

    Ss1 s2

    *

    s2 s1*

    =

    space

    time

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    19/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Reprint prohibited - all rights reserved 17

    Space-Time Trellis Coding

    Input-output relation given by state transition diagram or trellis diagram (which includes time axis)

    Example: Transmit delay diversity with M=2 antennas

    c k b n

    s1

    k c k =

    4 PS K

    Tc k 1

    s2

    k c k 1 =

    state machine

    c1c2

    c3 c4

    Im c k

    Re c k c k c1 c4 =

    state 1

    state 2

    state 3

    state 4

    Trellis Diagram

    transitions areindicated by

    c c

    input outputof state machine

    c1 c1

    c4 c4

    c2 c2

    c3 c3 12

    3 4

    k

    c2 c

    1

    c1 c4

    c

    4

    c

    1

    c 1

    c 4

    c

    4c

    2

    not all transitions

    are plotted

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    20/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Vertical Encoding (VE)

    V-BLAST Vertical-Bell Labs Layered Architecture for Space-Time Coding

    c k b'' n' b' n'

    bitsequence

    temporalencoder

    b n demux

    bitsequence

    spatialdemux

    symbolsequence

    bitsequence

    1 :M

    interleaver QAM-mapper

    1

    M

    c k c k L-1+

    vector symbolsequence

    c k M 1+ c k L-1-M+1+

    y1

    mux

    1

    ZF/MMSE-

    receiver

    QAM-

    demapperdecision

    device

    de-

    interleaver

    temporal

    decoder

    1

    1

    r1

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    21/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Reprint prohibited - all rights reserved 19

    Horizontal Encoding (HE)

    H-BLAST Horizontal Bell Labs Layered Architecture for Space-Time Coding

    cM

    k b''M n'' b'M n'' bM

    n' M

    c1 k b''1 n'' b'1 n'' b1 n'

    bitsequence

    temporalencoder

    b n demux

    bitsequence

    interleaverQAM

    mapper

    symbolsequence

    c1 k

    cM

    k

    c1 k L-1+

    cM

    k L-1+

    vector symbolsequence

    antenna 1

    antennaM

    Transmitter

    1 :M

    1

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    22/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Reprint prohibited - all rights reserved 20

    One solution for H-BLAST receiver

    Note:rx is rather simple, because it can operate just in temporal direction ("horizontally"), except for ZF or MMSE part, which operates in space direction.

    cM k cM k bM n'' b' M n'' bM n' M

    1

    1 1

    MN

    c1 k c1 k b'' 1 n'' b1' n'' b1 n'

    ZF orMMSEreceiver

    QAMdemapper

    QAMdecisiondevice

    de-interleaver

    temporaldecoder mux

    b n

    estimates

    M: 1

    r1 k

    rN k

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    23/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    The Q-Function

    , where variance of with

    , where

    (erf: error function; erfc: error function complement)

    Q 12

    ---------- e

    1

    2--- u

    2

    du ; Q 1 Q =

    =

    Q 1 ; Q 0 12--- ; Q 0===

    P X Q ---

    = 2 X p x 12

    --------------- e

    1

    2---

    x

    ---

    2

    =

    P A X B Q A---

    Q B---

    =

    Q 1

    2--- 1 erf

    2-------

    1

    2---erfc

    2-------

    = = erf z

    2

    ------- eu

    2

    du0

    z

    =

    erfc z 1 erf z =

    1

    103

    4

    Q

    1--------------- 1

    1------

    e1

    2--- 2

    1

    2--- e

    1

    2--- 2

    1

    2 --------------- e

    1

    2--- 2

    Chernov bound

    0.1

    0.01

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    24/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Reprint prohibited - all rights reserved 22

    Bit error ratio (BER) as a function of SNR for MxN MIMO system, with ZF receiver, 4-PSK,

    Gray mapping. Encoded with convolutional code or uncoded.

    Bit error ratio (BER) as a function of SNR for 4x4 MIMO system with ZF receiver, 4-PSK,

    Gray mapping. Parallel detection or sequential detection with interferencecancellation (SAL). Encoded with convolutional code or uncoded.

    Bit error ratio (BER) as a function of SNR for 6x6 MIMO system. ZF or MMSE receiver, 16-QAM,

    Gray mapping, parallel detection. Encoded with convolutional code or uncoded.

    SAL (Symbolauslschung) meansordered successive interference cancellation (OSIC)

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    25/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Reprint prohibited - all rights reserved 23

    Iterative V-BLAST receiver

    Bit error ratio (BER) as a function of SNR for 6x6 V-BLAST MIMO system with regular

    16-QAM, Gray mapping, convolutional encoding and iterative V-BLAST receiver.

    Bit error ratio (BER) as a function of SNR for 6x6 V-BLAST MIMO system

    with convolutional encoding, Anti-Gray mapping, and iterative V-BLAST MMSE receiver.A1 regular 16-QAM, A2 is non-regular 16-QAM.

    Non-regular 16-QAM

  • 7/31/2019 STWC Bildblaetter SS2011.Book

    26/26

    INSTITUT FR NACHRICHTENBERTRAGUNG UNIVERSITTProf. Dr.-Ing. Joachim Speidel STUTTGART

    Space-Time Wireless Communications

    Reprint prohibited - all rights reserved 24

    Ergodic MIMO channel capacity for a 4x4 MIMO system as a function of transmit

    correlation coefficient, no receive correlation. Exponential correlation matrix model,

    uncorrelated fading. Large transmit correlation coefficients have a catastrophic impact.

    Ergodic capacity for a 4x4 MIMO system as a function of SNR and

    various transmit correlation coefficients. Receive correlation 0,5.

    Exponential correlation model, uncorrelated fading.

    Relative water-filling gain for a 4x4 MIMO system as a function of SNR

    and various transmit correlation coefficients, receive correlation 0.7.

    Exponential correlation matrix model, uncorrelated fading.

    Bit error ratio (BER) as a function of SNR for uncorrelated MIMO channel

    with T=4 transmit and R receive antennas. Rank of channel matrix is L=4.

    The slope of the asymptotics depend on R, which is clearly visible.

    T - number or tx antennas

    R - number of rx antennas