stt 459: actuarial models - michigan state...

263
STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department of Mathematics Department of Statistics and Probability C336 Wells Hall Michigan State University East Lansing MI 48823 [email protected] [email protected] Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 1 / 193

Upload: phungbao

Post on 07-Mar-2018

241 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

STT 459: Actuarial Models

Albert Cohen

Actuarial Sciences ProgramDepartment of Mathematics

Department of Statistics and ProbabilityC336 Wells Hall

Michigan State UniversityEast Lansing MI

[email protected]@stt.msu.edu

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 1 / 193

Page 2: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Copyright Acknowledgement

Some examples and theorem proofs in these slides, and on in class exampreparation slides, are taken from our textbook ”Loss Models: From Datato Decisions” 4th edition ,by Klugman, Panjer, and Wilmott.

Please note that Wiley owns the copyright for that material. Noportion of the Wiley textbook material may be reproduced in anypart or by any means without the permission of the publisher. Weare very thankful to the publisher for allowing posting of thesenotes on our class website.

Also, we will from time-to-time look at problems from releasedprevious Exams C by the SOA. All such questions belong incopyright to the Society of Actuaries, and we make no claim onthem. It is of course an honor to be able to present analysis of suchexamples here.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 2 / 193

Page 3: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Random Variables

Recall our notion of a sample space S = Ω, and attach to it a probabilitymeasure P and the set of possible events F .

In our previous experience, F = 2Ω.For now, we take this to be the case. We can define, on this ProbabilitySpace (Ω,F ,P) a Random Variable X as any function

X : Ω→ R (1)

Consider now the experiment of tossing 3 fair coins. Define the randomvariable Y = Number of heads that appear. Then

P[Y = 0] = P[(T ,T ,T )]P[Y = 1] = P[(T ,T ,H), (T ,H,T ), (H,T ,T )]P[Y = 2] = P[(T ,H,H), (H,T ,H), (H,H,T )]P[Y = 3] = P[(H,H,H)]

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 3 / 193

Page 4: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Random Variables

Recall our notion of a sample space S = Ω, and attach to it a probabilitymeasure P and the set of possible events F .In our previous experience, F = 2Ω.

For now, we take this to be the case. We can define, on this ProbabilitySpace (Ω,F ,P) a Random Variable X as any function

X : Ω→ R (1)

Consider now the experiment of tossing 3 fair coins. Define the randomvariable Y = Number of heads that appear. Then

P[Y = 0] = P[(T ,T ,T )]P[Y = 1] = P[(T ,T ,H), (T ,H,T ), (H,T ,T )]P[Y = 2] = P[(T ,H,H), (H,T ,H), (H,H,T )]P[Y = 3] = P[(H,H,H)]

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 3 / 193

Page 5: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Random Variables

Recall our notion of a sample space S = Ω, and attach to it a probabilitymeasure P and the set of possible events F .In our previous experience, F = 2Ω.For now, we take this to be the case. We can define, on this ProbabilitySpace (Ω,F ,P) a Random Variable X as any function

X : Ω→ R (1)

Consider now the experiment of tossing 3 fair coins. Define the randomvariable Y = Number of heads that appear. Then

P[Y = 0] = P[(T ,T ,T )]P[Y = 1] = P[(T ,T ,H), (T ,H,T ), (H,T ,T )]P[Y = 2] = P[(T ,H,H), (H,T ,H), (H,H,T )]P[Y = 3] = P[(H,H,H)]

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 3 / 193

Page 6: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Random Variables

Recall our notion of a sample space S = Ω, and attach to it a probabilitymeasure P and the set of possible events F .In our previous experience, F = 2Ω.For now, we take this to be the case. We can define, on this ProbabilitySpace (Ω,F ,P) a Random Variable X as any function

X : Ω→ R (1)

Consider now the experiment of tossing 3 fair coins. Define the randomvariable Y = Number of heads that appear. Then

P[Y = 0] = P[(T ,T ,T )]P[Y = 1] = P[(T ,T ,H), (T ,H,T ), (H,T ,T )]P[Y = 2] = P[(T ,H,H), (H,T ,H), (H,H,T )]P[Y = 3] = P[(H,H,H)]

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 3 / 193

Page 7: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Random Variables

Recall our notion of a sample space S = Ω, and attach to it a probabilitymeasure P and the set of possible events F .In our previous experience, F = 2Ω.For now, we take this to be the case. We can define, on this ProbabilitySpace (Ω,F ,P) a Random Variable X as any function

X : Ω→ R (1)

Consider now the experiment of tossing 3 fair coins. Define the randomvariable Y = Number of heads that appear. Then

P[Y = 0] = P[(T ,T ,T )]P[Y = 1] = P[(T ,T ,H), (T ,H,T ), (H,T ,T )]P[Y = 2] = P[(T ,H,H), (H,T ,H), (H,H,T )]P[Y = 3] = P[(H,H,H)]

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 3 / 193

Page 8: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Discrete Random Variables

Consider a random variable X that takes on a countable number of values,denoted by the set R ≡ x1, x2, .... For any a ∈ R, we define

p(a) = P[X = a]∞∑i=1

p(xi ) = 1(2)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 4 / 193

Page 9: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Expected Value

For a random variable X that takes on a countable number of values,define

E[X ] =∑xi∈R

xip(xi ) (3)

As an important example, consider an event A in our σ−field and definethe random variable

IA =

1, if A occurs

0, if A does not occur(4)

Then E[IA] = P[A].

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 5 / 193

Page 10: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Expected Value

For a random variable X that takes on a countable number of values,define

E[X ] =∑xi∈R

xip(xi ) (3)

As an important example, consider an event A in our σ−field and definethe random variable

IA =

1, if A occurs

0, if A does not occur(4)

Then E[IA] = P[A].

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 5 / 193

Page 11: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Expected Value

For a random variable X that takes on a countable number of values,define

E[X ] =∑xi∈R

xip(xi ) (3)

As an important example, consider an event A in our σ−field and definethe random variable

IA =

1, if A occurs

0, if A does not occur(4)

Then E[IA] = P[A].

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 5 / 193

Page 12: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Variance

If X is a random variable with mean µ = E[X ], then the variance Var(X )and standard deviation SD(X ) are defined as

Var(X ) = E[(X − µ)2

]

= E[X 2]− E[X ]2

SD(X ) =√

Var(X )

(5)

A useful identity is

Var(a · X + b) = a2 · Var(X ) (6)

Also notice that E[X 2] ≥ (E[X ])2. This is true regardless of thedistribution of X .

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 6 / 193

Page 13: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Variance

If X is a random variable with mean µ = E[X ], then the variance Var(X )and standard deviation SD(X ) are defined as

Var(X ) = E[(X − µ)2

]= E

[X 2]− E[X ]2

SD(X ) =√

Var(X )

(5)

A useful identity is

Var(a · X + b) = a2 · Var(X ) (6)

Also notice that E[X 2] ≥ (E[X ])2. This is true regardless of thedistribution of X .

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 6 / 193

Page 14: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Variance

If X is a random variable with mean µ = E[X ], then the variance Var(X )and standard deviation SD(X ) are defined as

Var(X ) = E[(X − µ)2

]= E

[X 2]− E[X ]2

SD(X ) =√

Var(X )

(5)

A useful identity is

Var(a · X + b) = a2 · Var(X ) (6)

Also notice that E[X 2] ≥ (E[X ])2. This is true regardless of thedistribution of X .

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 6 / 193

Page 15: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Bernoulli and Binomial Random Variables

Define a Bernoulli random variable X with R = 0, 1 and

p = p(1) = P [X = 1]

1− p = p(0) = P [X = 0](7)

This represents the outcome of 1 trial. Now, imagine this experiment iscarried out n times. Let Yn,p denote the outcome of this repeatedexperiment. We now have R = 0, 1, 2, .., n and

p(i) = P[Yn,p = i ] =

(n

i

)· pi · (1− p)n−i

E[Yn,p] = n · pVar(Yn,p) = n · p · (1− p)

(8)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 7 / 193

Page 16: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

The Poisson Random Variable

Recall our r.v. X with p(i) = e−λλi

i! . Straigthforward computation showsthat E[X ] = λ = Var(X )

X can in fact approximate Yn,p if λ = n · p, for large n.

As an example, consider an item that is produced by a certain machine.The probability that it will be defective is p = 0.1. The probability that, ina sample of 10, at most one item will be defective, is

P[Y10,0.1 ≤ 1] =

(10

0

)0.10 · 0.910 +

(10

1

)0.11 · 0.99

= 0.7361 ≈ 0.7358 = e−1 + e−1

= e−(10·0.1) · (10 · 0.1)0

1+ e−(10·0.1) · (10 · 0.1)1

1= P[X = 0] + P[X = 1]

(9)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 8 / 193

Page 17: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Other Discrete Probability Distributions

Geometric Random Variable: Number of trials required until success :P[X = n] = (1− p)n−1 · p

E[X ] = p · 1 + (1− p) · E[1 + X ]⇒ E[X ] = 1p

E[X 2] = p · 12 + (1− p) · E[(X + 1)2]⇒ E[X 2] = 2−pp2

Var(X ) = E[X 2]− (E[X ])2 = 1−pp2

Negative Binomial Random Variable: n trials needed for r successes :P[Xr ,p = n] =

(n−1r−1

)pr · (1− p)n−r

E[Xr ,p] = rp

E[X 2r ,p] = r

p ·(

r+1p − 1

)Var(Xr ,p) = E[X 2

r ,p]− (E[Xr ,p])2 = r ·(1−p)p2

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 9 / 193

Page 18: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Other Discrete Probability Distributions

Geometric Random Variable: Number of trials required until success :P[X = n] = (1− p)n−1 · p

E[X ] = p · 1 + (1− p) · E[1 + X ]⇒ E[X ] = 1p

E[X 2] = p · 12 + (1− p) · E[(X + 1)2]⇒ E[X 2] = 2−pp2

Var(X ) = E[X 2]− (E[X ])2 = 1−pp2

Negative Binomial Random Variable: n trials needed for r successes :P[Xr ,p = n] =

(n−1r−1

)pr · (1− p)n−r

E[Xr ,p] = rp

E[X 2r ,p] = r

p ·(

r+1p − 1

)Var(Xr ,p) = E[X 2

r ,p]− (E[Xr ,p])2 = r ·(1−p)p2

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 9 / 193

Page 19: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Other Discrete Probability Distributions

Geometric Random Variable: Number of trials required until success :P[X = n] = (1− p)n−1 · p

E[X ] = p · 1 + (1− p) · E[1 + X ]⇒ E[X ] = 1p

E[X 2] = p · 12 + (1− p) · E[(X + 1)2]⇒ E[X 2] = 2−pp2

Var(X ) = E[X 2]− (E[X ])2 = 1−pp2

Negative Binomial Random Variable: n trials needed for r successes :P[Xr ,p = n] =

(n−1r−1

)pr · (1− p)n−r

E[Xr ,p] = rp

E[X 2r ,p] = r

p ·(

r+1p − 1

)Var(Xr ,p) = E[X 2

r ,p]− (E[Xr ,p])2 = r ·(1−p)p2

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 9 / 193

Page 20: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Other Discrete Probability Distributions

Geometric Random Variable: Number of trials required until success :P[X = n] = (1− p)n−1 · p

E[X ] = p · 1 + (1− p) · E[1 + X ]⇒ E[X ] = 1p

E[X 2] = p · 12 + (1− p) · E[(X + 1)2]⇒ E[X 2] = 2−pp2

Var(X ) = E[X 2]− (E[X ])2 = 1−pp2

Negative Binomial Random Variable: n trials needed for r successes :P[Xr ,p = n] =

(n−1r−1

)pr · (1− p)n−r

E[Xr ,p] = rp

E[X 2r ,p] = r

p ·(

r+1p − 1

)Var(Xr ,p) = E[X 2

r ,p]− (E[Xr ,p])2 = r ·(1−p)p2

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 9 / 193

Page 21: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Other Discrete Probability Distributions

Geometric Random Variable: Number of trials required until success :P[X = n] = (1− p)n−1 · p

E[X ] = p · 1 + (1− p) · E[1 + X ]⇒ E[X ] = 1p

E[X 2] = p · 12 + (1− p) · E[(X + 1)2]⇒ E[X 2] = 2−pp2

Var(X ) = E[X 2]− (E[X ])2 = 1−pp2

Negative Binomial Random Variable: n trials needed for r successes :P[Xr ,p = n] =

(n−1r−1

)pr · (1− p)n−r

E[Xr ,p] = rp

E[X 2r ,p] = r

p ·(

r+1p − 1

)

Var(Xr ,p) = E[X 2r ,p]− (E[Xr ,p])2 = r ·(1−p)

p2

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 9 / 193

Page 22: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Other Discrete Probability Distributions

Geometric Random Variable: Number of trials required until success :P[X = n] = (1− p)n−1 · p

E[X ] = p · 1 + (1− p) · E[1 + X ]⇒ E[X ] = 1p

E[X 2] = p · 12 + (1− p) · E[(X + 1)2]⇒ E[X 2] = 2−pp2

Var(X ) = E[X 2]− (E[X ])2 = 1−pp2

Negative Binomial Random Variable: n trials needed for r successes :P[Xr ,p = n] =

(n−1r−1

)pr · (1− p)n−r

E[Xr ,p] = rp

E[X 2r ,p] = r

p ·(

r+1p − 1

)Var(Xr ,p) = E[X 2

r ,p]− (E[Xr ,p])2 = r ·(1−p)p2

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 9 / 193

Page 23: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Other Discrete Probability Distributions

Hypergeometric Random Variable: sample of size n chosen randomlyfrom population m white balls and N −m black balls. Let Zn,N,m

denote the number of white balls selected :

P[Zn,N,m = i ] =(m

i )(N−mn−i )

(Nn)

for i = 0, 1, .., n

E[Zn,N,m] = n·mN

E[Z 2n,N,m] = n·m

N ·(

(n−1)·(m−1)N−1 + 1

)Var(Zn,N,m) = E[Z 2

n,N,m]− (E[Zn,N,m])2 = n · mN ·(1− m

N

)·(

1− n−1N−1

)Zipf (Pareto) Distribution: Assume α > 0 and that

P[X = k] =

(∑∞l=1

1l1+α

)−1

k1+α . Then E[X ] =?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 10 / 193

Page 24: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Other Discrete Probability Distributions

Hypergeometric Random Variable: sample of size n chosen randomlyfrom population m white balls and N −m black balls. Let Zn,N,m

denote the number of white balls selected :

P[Zn,N,m = i ] =(m

i )(N−mn−i )

(Nn)

for i = 0, 1, .., n

E[Zn,N,m] = n·mN

E[Z 2n,N,m] = n·m

N ·(

(n−1)·(m−1)N−1 + 1

)Var(Zn,N,m) = E[Z 2

n,N,m]− (E[Zn,N,m])2 = n · mN ·(1− m

N

)·(

1− n−1N−1

)

Zipf (Pareto) Distribution: Assume α > 0 and that

P[X = k] =

(∑∞l=1

1l1+α

)−1

k1+α . Then E[X ] =?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 10 / 193

Page 25: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Other Discrete Probability Distributions

Hypergeometric Random Variable: sample of size n chosen randomlyfrom population m white balls and N −m black balls. Let Zn,N,m

denote the number of white balls selected :

P[Zn,N,m = i ] =(m

i )(N−mn−i )

(Nn)

for i = 0, 1, .., n

E[Zn,N,m] = n·mN

E[Z 2n,N,m] = n·m

N ·(

(n−1)·(m−1)N−1 + 1

)Var(Zn,N,m) = E[Z 2

n,N,m]− (E[Zn,N,m])2 = n · mN ·(1− m

N

)·(

1− n−1N−1

)Zipf (Pareto) Distribution: Assume α > 0 and that

P[X = k] =

(∑∞l=1

1l1+α

)−1

k1+α . Then E[X ] =?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 10 / 193

Page 26: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Expectation is Linear

For a collection of random variables Xini=1, we haveE [∑n

i=1 Xi ] =∑n

i=1 E[Xi ].

As an example, if n die are rolled, what is the expected value for the totalnumber of dots?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 11 / 193

Page 27: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Expectation is Linear

For a collection of random variables Xini=1, we haveE [∑n

i=1 Xi ] =∑n

i=1 E[Xi ].

As an example, if n die are rolled, what is the expected value for the totalnumber of dots?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 11 / 193

Page 28: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

CDF

Recall that for an r.v. X , we define F (b) := P[X ≤ b]. It follows from thecontinuity property of probability measures that

If a < b then F (a) < F (b)

limb→∞ F (b) = 1

limb→−∞ F (b) = 0

limbn↓b F (bn) = F (b)

As an example,

P[X < b] = P[

limn→∞

X ≤ b − 1

n

]= lim

n→∞P[

X ≤ b − 1

n

]= lim

n→∞F

(b − 1

n

) (10)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 12 / 193

Page 29: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

CDF

Recall that for an r.v. X , we define F (b) := P[X ≤ b]. It follows from thecontinuity property of probability measures that

If a < b then F (a) < F (b)

limb→∞ F (b) = 1

limb→−∞ F (b) = 0

limbn↓b F (bn) = F (b)

As an example,

P[X < b] = P[

limn→∞

X ≤ b − 1

n

]= lim

n→∞P[

X ≤ b − 1

n

]= lim

n→∞F

(b − 1

n

) (10)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 12 / 193

Page 30: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Continuous Random Variables

Recall our notion of a sample space S = Ω, and attach to it a probabilitymeasure P and the set of possible events F .

If we take a random variable that can take on any real value, then we callit a continuous random variable if attached to it there is a non-negativefunction f : R→ R+ where

P[X ∈ B] =

∫B

f (x)dx (11)

for any measurable set B. We can consider all practical sets to bemeasurable. Of course, it follows from our definition that we must haveP[X ∈ R] =

∫∞−∞ f (x)dx = 1. For intervals [a, b] and (−∞, b], we have

P[a ≤ X ≤ b] =

∫ b

af (x)dx

P[X ≤ b] =

∫ b

−∞f (x)dx

(12)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 13 / 193

Page 31: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Continuous Random Variables

Recall our notion of a sample space S = Ω, and attach to it a probabilitymeasure P and the set of possible events F .If we take a random variable that can take on any real value, then we callit a continuous random variable if attached to it there is a non-negativefunction f : R→ R+ where

P[X ∈ B] =

∫B

f (x)dx (11)

for any measurable set B. We can consider all practical sets to bemeasurable. Of course, it follows from our definition that we must haveP[X ∈ R] =

∫∞−∞ f (x)dx = 1. For intervals [a, b] and (−∞, b], we have

P[a ≤ X ≤ b] =

∫ b

af (x)dx

P[X ≤ b] =

∫ b

−∞f (x)dx

(12)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 13 / 193

Page 32: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Continuous Random Variables

Recall our notion of a sample space S = Ω, and attach to it a probabilitymeasure P and the set of possible events F .If we take a random variable that can take on any real value, then we callit a continuous random variable if attached to it there is a non-negativefunction f : R→ R+ where

P[X ∈ B] =

∫B

f (x)dx (11)

for any measurable set B. We can consider all practical sets to bemeasurable. Of course, it follows from our definition that we must haveP[X ∈ R] =

∫∞−∞ f (x)dx = 1. For intervals [a, b] and (−∞, b], we have

P[a ≤ X ≤ b] =

∫ b

af (x)dx

P[X ≤ b] =

∫ b

−∞f (x)dx

(12)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 13 / 193

Page 33: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

Suppose that X is c.r.v. with probability density function

f (x) =

C · (2− x), if 0 < x < 2

0, otherwise .(13)

What is C ? Compute P[X > 1]

Answer: Since f is a density, we require

1 =

∫ ∞−∞

f (x)dx = C ·∫ 2

0(2− x)dx = C · 2⇒ C =

1

2

P[X > 1] =

∫ ∞1

f (x)dx =1

2·∫ 2

1(2− x)dx

=1

2·[

(2(2)− 1

2(22))− (2(1)− 1

2(12))

]=

1

4

(14)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 14 / 193

Page 34: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

Suppose that X is c.r.v. with probability density function

f (x) =

C · (2− x), if 0 < x < 2

0, otherwise .(13)

What is C ? Compute P[X > 1]Answer: Since f is a density, we require

1 =

∫ ∞−∞

f (x)dx = C ·∫ 2

0(2− x)dx = C · 2

⇒ C =1

2

P[X > 1] =

∫ ∞1

f (x)dx =1

2·∫ 2

1(2− x)dx

=1

2·[

(2(2)− 1

2(22))− (2(1)− 1

2(12))

]=

1

4

(14)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 14 / 193

Page 35: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

Suppose that X is c.r.v. with probability density function

f (x) =

C · (2− x), if 0 < x < 2

0, otherwise .(13)

What is C ? Compute P[X > 1]Answer: Since f is a density, we require

1 =

∫ ∞−∞

f (x)dx = C ·∫ 2

0(2− x)dx = C · 2⇒ C =

1

2

P[X > 1] =

∫ ∞1

f (x)dx =1

2·∫ 2

1(2− x)dx

=1

2·[

(2(2)− 1

2(22))− (2(1)− 1

2(12))

]=

1

4

(14)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 14 / 193

Page 36: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

Suppose that X is c.r.v. with probability density function

f (x) =

C · (2− x), if 0 < x < 2

0, otherwise .(13)

What is C ? Compute P[X > 1]Answer: Since f is a density, we require

1 =

∫ ∞−∞

f (x)dx = C ·∫ 2

0(2− x)dx = C · 2⇒ C =

1

2

P[X > 1] =

∫ ∞1

f (x)dx =1

2·∫ 2

1(2− x)dx

=1

2·[

(2(2)− 1

2(22))− (2(1)− 1

2(12))

]=

1

4

(14)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 14 / 193

Page 37: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

From c.d.f to p.d.f

Recall

F (y) = P[X ≤ y ] (15)

and so

P[

x − ∆x

2≤ X ≤ x +

∆x

2

]=

∫ x+ ∆x2

x−∆x2

f (u)du ≈ f (x)∆x . (16)

It follows that if Y = 2X , then

FY (x) := P[Y ≤ x ] = P[2X ≤ x ] = P[X ≤ 0.5x ]

= FX (0.5x)

fY (x) :=d

dxFY (x) =

d

dxFX (0.5x) = 0.5fX (0.5x).

(17)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 15 / 193

Page 38: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Expectations

Define E[X ] =∫∞−∞ x · f (x)dx for any c.r.v. X with p.d.f. X . For any real

valued function g , we can define the expectation of the transformed c.r.vY = g(X ) as

E[g(X )] =

∫ ∞−∞

g(x) · f (x)dx . (18)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 16 / 193

Page 39: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Expectations

The following Lemma is useful in many computations. The proof can beseen via an interchange (Fubini) of the order of integration.

Lemma

For any nonnegative random variable Y , we have E[Y ] =∫∞

0 P[Y > y ]dy .

Proof. ∫ ∞0

P[Y > y ]dy =

∫ ∞0

(∫ ∞y

fY (x)dx

)dy

=

∫ ∞0

(∫ x

0fY (x)dy

)dx

=

∫ ∞0

x · fY (x)dx = E[X ].

(19)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 17 / 193

Page 40: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Uniform Random Variables

If we define

f (x) :=

1

B − A, if A < x < B

0, otherwise(20)

then the distribution F is comptuted to be

F (x) =

0, if x ≤ A

x − A

B − A, if A < x < B

1, if x ≥ B

(21)

and so

E [X ] =

∫ ∞−∞

xf (x)dx =

∫ B

Ax · 1

B − A=

B + A

2

Var(X ) = E[X 2]−(

B + A

2

)2

=(B − A)2

12.

(22)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 18 / 193

Page 41: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Optimizing Under Uniform Uncertainty

A 1−unit long city block has a mailbox somewhere at a point U that isuniformly distributed over (0, 1). Determine the expected length of thesection of the block that contains an envelope store E , where 0 ≤ E ≤ 1.Also, for what value of E is this expected value maximized ?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 19 / 193

Page 42: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Optimizing Under Uniform Uncertainty

Take LE (U) as the length of the sub-block that contains the envelopestore E and note that

LE (U) =

1− U, if U < E

U, if U > E .(23)

It follows that

E [LE (U)] :=

∫ 1

0LE (u) · f (u)du =

∫ 1

0LE (u)du

=

∫ E

0(1− u)du +

∫ 1

Eudu =

1

2+ E (1− E )

max0≤E≤1

E [LE (U)] =1

2+

1

2

(1− 1

2

)=

3

4

(24)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 20 / 193

Page 43: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Normal Random Variables

We say that X is a Normal Random Variable with parameters µ, σ2 if

fX (x) =1√2πσ

e−(x−µ)2

2σ2 for −∞ < x <∞ (25)

Furthermore, we say that Z is a Standard Normal Random Variable if it isNormal with parameters µ = 0, σ = 1. Consider

z =x − µσ∫ ∞

−∞fX (x)dx =

∫ ∞−∞

1√2πσ

e−(x−µ)2

2σ2 dx

=

∫ ∞−∞

1√2π

e−(z)2

2 dz

=

∫ ∞−∞

fZ (z)dz

(26)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 21 / 193

Page 44: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Normal Random Variables

We user the notation X ∼ N(µ, σ2) and Z ∼ N(0, 1). By ourtransformation above, it can be seen that if Z ∼ N(0, 1), thenX = µ+ σ · Z ∼ N(µ, σ2). We can see this via

Φ(z) := FZ (z) = P[Z ≤ z ]

= P[

X − µσ

≤ x − µσ

]= P[X ≤ x ] =: FX (x)

1

σfZ

(x − µσ

)=

d

dxFZ (z)

=d

dxFX (x) = fX (x)

fZ (z) =1√2π

e−(z)2

2

(27)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 22 / 193

Page 45: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Normal Random Variables

We user the notation X ∼ N(µ, σ2) and Z ∼ N(0, 1). By ourtransformation above, it can be seen that if Z ∼ N(0, 1), thenX = µ+ σ · Z ∼ N(µ, σ2). We can see this via

Φ(z) := FZ (z) = P[Z ≤ z ]

= P[

X − µσ

≤ x − µσ

]= P[X ≤ x ] =: FX (x)

1

σfZ

(x − µσ

)=

d

dxFZ (z)

=d

dxFX (x) = fX (x)

fZ (z) =1√2π

e−(z)2

2

(27)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 22 / 193

Page 46: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Normal Random Variables

We user the notation X ∼ N(µ, σ2) and Z ∼ N(0, 1). By ourtransformation above, it can be seen that if Z ∼ N(0, 1), thenX = µ+ σ · Z ∼ N(µ, σ2). We can see this via

Φ(z) := FZ (z) = P[Z ≤ z ]

= P[

X − µσ

≤ x − µσ

]= P[X ≤ x ] =: FX (x)

1

σfZ

(x − µσ

)=

d

dxFZ (z)

=d

dxFX (x) = fX (x)

fZ (z) =1√2π

e−(z)2

2

(27)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 22 / 193

Page 47: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

DeMoivre-Laplace Limit Theorem

Theorem

If Sn is the number of successes that occur when n independent trials,each resulting in a success with probability p, are performed, then for anya < b, we have

limn→∞

P

[a ≤ Sn − n · p√

n · p · (1− p)≤ b

]= P[a ≤ Z ≤ b]

= Φ(b)− Φ(a)

(28)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 23 / 193

Page 48: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Exponential Random Variables

For any λ > 0, define the random variable X with p.d.f.

f (x) =

λe−λx , if x ≥ 0

0, if x < 0.(29)

Then, if x ≥ 0, we have F (x) =∫ x

0 λe−λydy = 1− e−λx .

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 24 / 193

Page 49: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Exponential Random Variables

Furthermore,using integration by parts, we also compute

E[X n] =

∫ ∞0

xnλe−λxdx

= 0 +

∫ ∞0

nxn−1e−λxdx

=n

λ

∫ ∞0

xn−1λe−λx

=n

λE[X n−1]

E[X 1] =1

λE[1] =

1

λ

E[X 2] =2

λE[X ] =

2

λ2

Var(X ) =1

λ2

(30)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 25 / 193

Page 50: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Exponential Random Variables

Furthermore,using integration by parts, we also compute

E[X n] =

∫ ∞0

xnλe−λxdx

= 0 +

∫ ∞0

nxn−1e−λxdx

=n

λ

∫ ∞0

xn−1λe−λx

=n

λE[X n−1]

E[X 1] =1

λE[1] =

1

λ

E[X 2] =2

λE[X ] =

2

λ2

Var(X ) =1

λ2

(30)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 25 / 193

Page 51: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Exponential Random Variables

Notice that X is a Memoryless random variable:

P[X > s + t | X > t] =P[X > s + t]

P[X > t]

=1− (1− e−λ(t+s))

1− (1− e−λt)

=e−λ(t+s)

e−λt

= e−λs = P[X > s]

(31)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 26 / 193

Page 52: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Hazard Rates

Define the Hazard Rate for any crv X as

λ(t) :=f (t)

1− F (t)=

ddt F (t)

1− F (t)(32)

It follows, by solution of the above differential equation, that anequivalent definition is

F (t) = 1− e−∫ t

0 λ(s)ds

F (0) = 1(33)

Crv’s may be defined via their Hazard rates. For example:

Rayleigh distributed random variable: λ(t) = a + btExponential distributed random variable: λ(t) = λ.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 27 / 193

Page 53: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Gamma Distribution

Consider a crv X with p.d.f.

f (x) =

λe−λx(λx)α−1

Γ(α), if x ≥ 0

0, if x < 0.

(34)

where the Gamma function Γ(α) is defined as∫∞

0 e−yyα−1dy . Integrationby parts shows that for α > 1

Γ(α) = (α− 1)Γ(α− 1)

Γ(n) = (n − 1)! for n ∈ N(35)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 28 / 193

Page 54: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Gamma Distribution

Consider a crv X with p.d.f.

f (x) =

λe−λx(λx)α−1

Γ(α), if x ≥ 0

0, if x < 0.

(34)

where the Gamma function Γ(α) is defined as∫∞

0 e−yyα−1dy . Integrationby parts shows that for α > 1

Γ(α) = (α− 1)Γ(α− 1)

Γ(n) = (n − 1)! for n ∈ N(35)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 28 / 193

Page 55: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Gamma Distribution

Assume that you are waiting for n events to occur, and that N(t) is thenumber of events that occur up to time t, which is assumed to be Poisson(λt) distributed. Let Tn denote the time at which the nth event occurs.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 29 / 193

Page 56: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Gamma Distribution

It follows that

F (t) = P[Tn ≤ t]

= P[N(t) ≥ n]

=∞∑j=n

P[N(t) = j ]

=∞∑j=n

e−λt(λt)j

j!

f (t) = F ′(t) =∞∑j=n

e−λt · j · (λt)j−1 · λj!

−∞∑j=n

λe−λt(λt)j

j!

=λe−λt(λt)n−1

(n − 1)!

(36)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 30 / 193

Page 57: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Weibull Distribution

Consider a crv X with p.d.f.

f (x) =

0, if x ≤ ν

β

α

(x − να

)β−1

e−( x−να )

β

, if x > ν(37)

The corresponding cdf is

F (x) =

0, if x ≤ ν

1− e−( x−να )

β

, if x > ν(38)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 31 / 193

Page 58: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Cauchy Distribution

Consider a crv θ ∼ U[−π

2 ,π2

], and a transformation to another random

variable X = tan (θ). Then

F (x) = P[X ≤ x ]

= P[tan (θ) ≤ x ]

= P[θ ≤ tan−1 (x)]

=1

π

(tan−1 (x)−

(−π

2

))=

1

2+

1

πtan−1 (x)

⇒ f (x) = F ′(x) =1

π

1

1 + x2

(39)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 32 / 193

Page 59: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Beta Distribution

Consider a crv X with p.d.f.

f (x) =

xa−1(1− x)b−1

B(a, b), if 0 < x < 1

0, otherwise.

(40)

where B(a, b) is defined as∫ 1

0 xa−1(1− x)b−1dx . It can be shown that

B(a, b) =Γ(a)Γ(b)

Γ(a + b)

E[X ] =a

a + b

Var(X ) =ab

(a + b)2(a + b + 1)

(41)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 33 / 193

Page 60: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Beta Distribution

Consider a crv X with p.d.f.

f (x) =

xa−1(1− x)b−1

B(a, b), if 0 < x < 1

0, otherwise.

(40)

where B(a, b) is defined as∫ 1

0 xa−1(1− x)b−1dx . It can be shown that

B(a, b) =Γ(a)Γ(b)

Γ(a + b)

E[X ] =a

a + b

Var(X ) =ab

(a + b)2(a + b + 1)

(41)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 33 / 193

Page 61: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Distribution of a Function of a Random Variable

Theorem

Let X be a continuous random variable with p.d.f. fX . Suppose that g(x)is a strictly monotonic, differentiable function of x. Then the randomvariable Y = g(X ) has a p.d.f. defined by

fY (y) =

fX[g−1(y)

]| d

dyg−1(y) |, if, for some x, y = g(x)

0, if, for all x, y 6= g(x)

(42)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 34 / 193

Page 62: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Distribution of a Function of a Random Variable

Proof.

Suppose that y = g(x) for some x . Then, with Y = g(X ),

fY (y) =d

dyFY (y)

=d

dyP[g(X ) ≤ y ]

=d

dyP[X ≤ g−1(y)]

=d

dyFX

(g−1(y)

)= fX

(g−1(y)

) d

dyg−1(y)

(43)

If y 6= g(x) for any x , then F (y) is either 0 or 1 ⇒ fY (y) = 0.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 35 / 193

Page 63: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Examples (Can we use the previous theorem?)

Let X have p.d.f fX , and define Y = X 2, Z =| X |. Then

fY (y) =d

dyFY (y)

=d

dyP[X 2 ≤ y ]

=d

dyP[−√y ≤ X ≤ √y ]

=d

dy(FX (

√y)− FX (−√y))

=1

2√

y[fX (√

y) + fX (−√y)]

fZ (z) =d

dzP[−z ≤ X ≤ z ]

= fX (z) + fX (−z)

(44)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 36 / 193

Page 64: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Mixed Distributions

There are random variables X such that, for a countable number of pointsxi ,

P[X = xi ] = pi > 0∞∑i=0

pi ≤ 1.(45)

As an example, consider X such that

P[X = 0] =1

2

fX (x) =1

2e−x for x > 0.

(46)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 37 / 193

Page 65: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

HW

Please work through

2.2

2.3, 2.4, 2.5

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 38 / 193

Page 66: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Raw and Central Moments

Given a random variable X , we define the kth Raw Moment via,

µ′k := E[X k ] (47)

and the kth Central Moment via,

µk := E[(X − µ′1)k ]. (48)

HW: Compute the first 5 raw and central moments for a random variableX with fX (x) = λe−λx for all x ≥ 0.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 39 / 193

Page 67: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Variance, Skewness, and Kurtosis

Given a random variable X , we define

µ′1 := µ = Mean

µ2 = E[(X − µ′1)2] := σ2 = Varianceσ

µ:= Coefficient of Variation

γ1 :=µ3

σ3= Skewness

γ2 :=µ4

σ4= Kurtosis

(49)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 40 / 193

Page 68: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Excess Loss

Given a random variable X , a value u ∈ R, and a value d ∈ R withP[X > d ] > 0 we define

Y P := X − d = Excess Loss Variable

eX (d) := E[Y P | Y P > 0] = Mean Excess Loss Function

ekX (d) := E[(Y P)k | Y P > 0]

Y L := (X − d)+ = Left Censored and Shifted Variable

Y := X ∧ u = Limited Loss Variable

E[Y ] := Limited Expected Value.

(50)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 41 / 193

Page 69: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

HW

Please work through

3.2

3.3, 3.4, 3.5

3.6, 3.7, 3.11

3.14, 3.15, 3.16

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 42 / 193

Page 70: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Percentiles and Moment Generating Functions

Define (any number) πp as the 100pth percentile if it satisfies

F (π−p ) ≤ p ≤ F (πp). (51)

The 50th percentile is also called the median. For all z ∈ R, we define

MX (z) := E[ezX ] = Moment Generating Function

PX (z) := E[zX ] = Probability Generating Function(52)

for which these expectations exist. Note that MX (z) = PX (ez).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 43 / 193

Page 71: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Moment Generating Functions

Theorem

Let Sk = X1 + ...+ Xk , where the X are independent. Then, provided thefollowing exist:

MSk (z) = Πkj=1MXj

(z)

PSk (z) = Πkj=1PXj

(z)(53)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 44 / 193

Page 72: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

Consider a loss model where at time t > 0, the liability with a randomlyselected individual is distributed as

P[Xt ≥ x ] = e−xt for x ≥ 0, t > 0

P[X0 = 0] = 1.(54)

It follows that

MXt (z) = E[ezXt ] =

∫ ∞0

ezx fXt (x)dx =

∫ ∞0

ezx · − d

dx

(e−

xt

)dx

=

∫ ∞0

ezx1

te−

xt dx =

1

t

∫ ∞0

e−( 1t−z)xdx =

1

t

11t − z

=1

1− zt.

(55)

HW: For Sk(t) :=∑k

j=1 X jt , compute MSk (t)(z).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 45 / 193

Page 73: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

Consider a loss model where at time t > 0, the liability with a randomlyselected individual is distributed as

P[Xt ≥ x ] = e−xt for x ≥ 0, t > 0

P[X0 = 0] = 1.(54)

It follows that

MXt (z) = E[ezXt ] =

∫ ∞0

ezx fXt (x)dx =

∫ ∞0

ezx · − d

dx

(e−

xt

)dx

=

∫ ∞0

ezx1

te−

xt dx =

1

t

∫ ∞0

e−( 1t−z)xdx =

1

t

11t − z

=1

1− zt.

(55)

HW: For Sk(t) :=∑k

j=1 X jt , compute MSk (t)(z).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 45 / 193

Page 74: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

Consider a loss model where at time t > 0, the liability with a randomlyselected individual is distributed as

P[Xt ≥ x ] = e−xt for x ≥ 0, t > 0

P[X0 = 0] = 1.(54)

It follows that

MXt (z) = E[ezXt ] =

∫ ∞0

ezx fXt (x)dx =

∫ ∞0

ezx · − d

dx

(e−

xt

)dx

=

∫ ∞0

ezx1

te−

xt dx =

1

t

∫ ∞0

e−( 1t−z)xdx =

1

t

11t − z

=1

1− zt.

(55)

HW: For Sk(t) :=∑k

j=1 X jt , compute MSk (t)(z).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 45 / 193

Page 75: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

For a standard Normal random variable Z ∼ N(0, 1), we have

MZ (t) = E[etZ ] =

∫ ∞−∞

etz fZ (z)dx =

∫ ∞−∞

etz1√2π

e−12z2

dz

=

∫ ∞−∞

e12t2 1√

2πe−

12

(z−t)2dz = e

12t2.

(56)

Therefore, for Y = µ+ σZ ∼ N(µ, σ2), it follows that

MY (t) = E[et(µ+σZ)] = etµE[e(tσZ)] = etµe12

(tσ)2= etµ+ 1

2t2σ2

. (57)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 46 / 193

Page 76: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

Consider an i.i.d sequence Xini=1 such that all the Xi ∼ X , where for aparameter θ > 0,

fX (x) =1

θe−

xθ (58)

Define Sn := X1+...+Xnn , and so

E[Sn] = θ

Var[Sn] =θ2

n.

(59)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 47 / 193

Page 77: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

It follows that

MSn(t) = E[etSn ] =

[E[e

tnX]]n

=[MX

( t

n

)]n=

[1

1− tθn

]n

∴ limn→∞

MSn(t) = lim

n→∞

[1

1− tθn

]n= etθ

∴ PSn⇒ PS := N(θ, 0).

(60)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 48 / 193

Page 78: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example

Furthermore, define

Zn :=Sn − E[Sn]√

Var[Sn]=√

n · Sn − θθ

. (61)

It follows that

MZn(t) = E[etZn ] = E[et√n· Sn−θ

θ

]= e−t

√nE[et√n· Sn

θ

]= e−t

√nMSn

(t√

n

θ

)= e−t

√n

[1

1− t√n

]n→ e

12t2

∴ PZn ⇒ PZ := N(0, 1).

(62)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 49 / 193

Page 79: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

HW

Please work through

3.21

3.23

3.24

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 50 / 193

Page 80: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Heavy Tails

Consider a pair of random variables (X1,X2) with E[X1] = E[X2], andrecall the notation

Si (x) := P[Xi > x ] = 1− Fi (x). (63)

It can be shown via L’Hopital’s rule that

limx→∞

S1(x)

S2(x)= lim

x→∞

f1(x)

f2(x). (64)

If limx→∞S1(x)S2(x) =∞, then we say that X1 has a heavier tail than X2,

based on limiting tail behavior.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 51 / 193

Page 81: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Heavy Tails

Individually, for a random variable X if

d

du(eX (u)) > 0 (65)

we say that X has a heavy tail based on mean excess loss function.

Often, the standard for comparison is the exponential distribution todetermine a heavy tail: X is heavier tailed than any exponentialdistribution if for all λ > 0,

limx→∞

eλxP[X > x ] =∞. (66)

HW: Please work through

3.25

3.29

3.30

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 52 / 193

Page 82: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Parametric Distributions

A Parametric Distribution is determined by a set of parameters. Asubset of set of parametric distributions, known as Scale Distributions, isdetermined by scale parameters. In this case, the r.v. X that is linked tothe parametric distribution FX (x) can be transformed by scalarmultiplication into Y = cX , and the resulting distribution FY (y) = FX

( yc

)is in the same class of distributions.

For example, if X ∼ exp(λ) then FX = 1− e−λX . Then,

FY (y) = 1− e−λcy and so Y ∼ exp(λc ).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 53 / 193

Page 83: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Discrete Mixture Distributions

A random variable X is k-point mixture of (X1, ..,Xk) if

FX (x) = a1FX1(x) + ...+ akFXk(x)

1 =k∑

n=1

an.(67)

For example, let Θ be another random variable, with

ai = P[Θ = i ]

1 = P[X = Xi | Θ = i ]

FXi(x) = P[Xi ≤ x ] = P[X ≤ x | Θ = i ].

(68)

It follows that

P[X ≤ x ] =k∑

i=1

P[X ≤ x | Θ = i ]P[Θ = i ] =k∑

i=1

aiFXi(x). (69)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 54 / 193

Page 84: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Discrete Mixture Distributions

A random variable X is variable-component mixture of (X1, ..,XN) if Ncan be any positive integer, with

FX (x) = a1FX1(x) + ...+ aNFXN(x)

1 =N∑

n=1

an.(70)

For example, let Θ, Θ be random variables, with

p = P[Θ = 0] = 1− P[Θ = 1]

pi = P[Θ = i ].(71)

It follows that

P[X ≤ x ] = pFX0(x) + (1− p)FX1(x)

P[X ≤ x ] =N∑i=1

aiFXi(x).

(72)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 55 / 193

Page 85: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Discrete Mixture Distributions

A Data-Dependent Distribution is at least as complex as the datathat produced it. As the number of data points increases, so does thenumber of parameters.

An Empirical Model is associate with a discrete model that assignsequal probability 1

n to each of the n data points.

HW: 4.1, 4.2, 4.5, 4.7, 4.10.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 56 / 193

Page 86: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Raising To A Power

Let X be a random variable, and Y = X γ its transformation. Then wedefine

Y =

Transformed : γ > 0Inverse : γ = −1Inverse Transformed : γ < 0, γ 6= −1.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 57 / 193

Page 87: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Gamma and Transformed Gamma Distribution

Recall our definitions

Γ(α) =

∫ ∞0

tα−1e−tdt

Γ(α; x) =

∫ x0 tα−1e−tdt

Γ(α).

(73)

If X ∼ Gamma(α), the distribution we use is Γ(x ;α) to transform X intoY = X γ .

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 58 / 193

Page 88: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Transformed Exponential Distribution

If SX (x) = e−x , then assuming γ > 0

Y =

Transformed : SY (y) = e−y

γ

Inverse Transformed : SY (y) = e−y−γ

Weibull : SY (y) = e−( θy

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 59 / 193

Page 89: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Mixing

Define X | Λ as a conditional random variable, andSX |Λ(x | λ) = 1− FX |Λ(x | λ) as its conditional survival (probability)function.

Theorem

Define fΛ(λ) as the density of our parameter Λ, and fX (x) as theunconditional density for our random variable X . Then

fX (x) =

∫R

fX |Λ(x | λ)fΛ(λ)dλ

FX (x) =

∫R

FX |Λ(x | λ)fΛ(λ)dλ

µ′k = E[X k ] = E[E[X k | Λ]

]µ2 = Var[X ] = E [Var[X | Λ]] + Var [E[X | Λ]] .

(74)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 60 / 193

Page 90: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Mixing

Theorem

If X | Λ ∼ exp(Λ) and Λ ∼ Gamma, then X ∼ Pareto.

Proof.

By our previous theorem,

fX (x) =

∫R

fX |Λ(x | λ)fΛ(λ)dλ

=

∫ ∞λ=0

λe−λxλα−1e−θλθα

Γ(α)dλ

=θα

Γ(α)

∫ ∞λ=0

λαe−λ(x+θ)dλ =θα

Γ(α)

Γ(α + 1)

(x + θ)α+1.

(75)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 61 / 193

Page 91: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Mixing

Theorem

If X | Λ ∼ N (Θ, σ) and Θ ∼ N(µ, α), then X ∼ N(µ, σ + α).

Proof.

By our previous theorem, and by definining σ = σασ+α and µ = σµ+αx

σ+α ,

fX (x) =

∫R

fX |Θ(x | θ)fΘ(θ)dθ =

∫ ∞θ=−∞

1√2πσ

e−(x−θ)2

2σ1√2πα

e−(θ−µ)2

2α dθ

=1√

2π(σ + α)e− (x−µ)2

2(σ+α)

∫ ∞θ=−∞

1√2πσ

e−(θ−µ)2

2σ dθ

=1√

2π(σ + α)e− (x−µ)2

2(σ+α) .

(76)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 62 / 193

Page 92: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Frailty

A Fraility random variable Λ > 0 is one where the hazard rate is, for aknown function a(x),

µX |Λ = Λ · a(x). (77)

It follows that for A(x) :=∫ x

0 a(s)ds,

SX |Λ(x | λ) = e−λ·A(x)

SX (x) = E[e−Λ·A(x)

]= MΛ[−A(x)]

(78)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 63 / 193

Page 93: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Frailty

For example, consider an exponential mixture (i.e. A(x) = x) and that ourparameter is uniformly distributed: Λ ∼ U[0, L].Then

SX (x) =

∫ ∞0

SX |Λ(x | λ) · fΛ(λ)dλ

=

∫ L

0e−λx · 1

Ldλ

=1

Lx· (1− e−Lx).

(79)

HW: 5.7.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 64 / 193

Page 94: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Splicing

A k-component spliced distribution has density

fX (x) =k∑

n=1

ak fk(x)1(cn−1,cn) (80)

HW: Can you splice together an exponential and a Pareto distribution?Give an example if you can!

HW:

5.1,5.3,5.6,5.9,5.12

5.13,5.14,5.20

Limiting Distributions: 5.10

5.21,5.22,5.26

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 65 / 193

Page 95: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Linear Exponential Family

A random variable X has a linear exponential density if

f (x ; θ) =p(x)er(θ)x

q(θ). (81)

For example, if X ∼ N(θ, σ), then

f (x ; θ) =1√

2πσ2e−

12σ2 (x−θ)2

=

[1√

2πσ2e−

x2

2σ2

] [eθσ2 x]

eθ2

2σ2

.

(82)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 66 / 193

Page 96: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Linear Exponential Family

∴ ln [f (x ; θ)] = ln [p(x)] + r(θ)x − ln q(θ)

⇒ ∂f

∂θ=[r ′(θ)x − q′(θ)

q(θ)

]f (x ; θ)

⇒ 0 =∂

∂θ[1] =

∂θ

[ ∫ x=∞

x=−∞f (x ; θ)dx

]=

∫ x=∞

x=−∞

∂f

∂θdx =

∫ x=∞

x=−∞

[r ′(θ)x − q′(θ)

q(θ)

]f (x ; θ)dx

= r ′(θ)E[X ]− q′(θ)

q(θ).

⇒ E[X ] =q′(θ)

r ′(θ)q(θ)=: µ(θ)

⇒ Var[X ] =µ′(θ)

r ′(θ)(Proof: Left as an exercise!).

(83)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 67 / 193

Page 97: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Linear Exponential Family

∴ ln [f (x ; θ)] = ln [p(x)] + r(θ)x − ln q(θ)

⇒ ∂f

∂θ=[r ′(θ)x − q′(θ)

q(θ)

]f (x ; θ)

⇒ 0 =∂

∂θ[1] =

∂θ

[ ∫ x=∞

x=−∞f (x ; θ)dx

]=

∫ x=∞

x=−∞

∂f

∂θdx =

∫ x=∞

x=−∞

[r ′(θ)x − q′(θ)

q(θ)

]f (x ; θ)dx

= r ′(θ)E[X ]− q′(θ)

q(θ).

⇒ E[X ] =q′(θ)

r ′(θ)q(θ)=: µ(θ)

⇒ Var[X ] =µ′(θ)

r ′(θ)(Proof: Left as an exercise!).

(83)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 67 / 193

Page 98: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Linear Exponential Family

∴ ln [f (x ; θ)] = ln [p(x)] + r(θ)x − ln q(θ)

⇒ ∂f

∂θ=[r ′(θ)x − q′(θ)

q(θ)

]f (x ; θ)

⇒ 0 =∂

∂θ[1] =

∂θ

[ ∫ x=∞

x=−∞f (x ; θ)dx

]=

∫ x=∞

x=−∞

∂f

∂θdx =

∫ x=∞

x=−∞

[r ′(θ)x − q′(θ)

q(θ)

]f (x ; θ)dx

= r ′(θ)E[X ]− q′(θ)

q(θ).

⇒ E[X ] =q′(θ)

r ′(θ)q(θ)=: µ(θ)

⇒ Var[X ] =µ′(θ)

r ′(θ)(Proof: Left as an exercise!).

(83)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 67 / 193

Page 99: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Linear Exponential Family

∴ ln [f (x ; θ)] = ln [p(x)] + r(θ)x − ln q(θ)

⇒ ∂f

∂θ=[r ′(θ)x − q′(θ)

q(θ)

]f (x ; θ)

⇒ 0 =∂

∂θ[1] =

∂θ

[ ∫ x=∞

x=−∞f (x ; θ)dx

]=

∫ x=∞

x=−∞

∂f

∂θdx =

∫ x=∞

x=−∞

[r ′(θ)x − q′(θ)

q(θ)

]f (x ; θ)dx

= r ′(θ)E[X ]− q′(θ)

q(θ).

⇒ E[X ] =q′(θ)

r ′(θ)q(θ)=: µ(θ)

⇒ Var[X ] =µ′(θ)

r ′(θ)(Proof: Left as an exercise!).

(83)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 67 / 193

Page 100: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Counting Distributions

Let N be a discrete random variable with

P[N = k] := pk ≥ 0. (84)

It follows that

P(z) = PN(z) = E[zN ] :=∞∑k=0

pkzk

P(m)(z) =dm

dzmE[zN ] = E

[ dm

dzm(zN)

]= E

[N(N − 1) · .. · (N −m + 1)zN−m

]=∞∑

k=m

k(k − 1) · ... · (k −m + 1)zk−mpk .

∴ P(m)(0) = m!pm.

(85)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 68 / 193

Page 101: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Poisson Distributions

For example, consider the Poisson distribution with pk = e−λλk

k! for allk ≥ 0. We can compute

P(z) = PN(z) = E[zN ] :=∞∑k=0

e−λλk

k!zk

=∞∑k=0

e−λ(λz)k

k!

= e−λ∞∑k=0

(λz)k

k!= e−λeλz

= eλ(z−1).

(86)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 69 / 193

Page 102: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Poisson Distributions

Theorem

If Njnj=1 is a sequence of i.i.d. Poisson random variables with respective

parameters λjnj=1, then

N := N1 + ...+ Nn ∼ Poisson(λ1 + ...+ λn). (87)

Proof.

PN(z) = Πnj=1PNj

(z) = Πnj=1eλj (z−1) = e(

∑nj=1 λj)(z−1). (88)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 70 / 193

Page 103: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Poisson Distributions

Theorem

If Njnj=1 is a sequence of i.i.d. Poisson random variables with respective

parameters λjnj=1, then

N := N1 + ...+ Nn ∼ Poisson(λ1 + ...+ λn). (87)

Proof.

PN(z) = Πnj=1PNj

(z) = Πnj=1eλj (z−1) = e(

∑nj=1 λj)(z−1). (88)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 70 / 193

Page 104: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Poisson Distributions : Parameter Uncertainty

Theorem

Assume Λ has a density fΛ(λ), and P[N = k | Λ = λ] = e−λλk

k! .Then

pk = P[N = k] =

∫ ∞0

e−λλk

k!fΛ(λ)dλ =

1

k!E[Λke−Λ]. (89)

For example, if fΛ(λ) = λα−1e−λθ

θαΓ(α) , then

pk =1

k!

∫ ∞0

e−λλkλα−1e−

λθ

θαΓ(α)dλ =

1

k!

1

θαΓ(α)

∫ ∞0

e−λ(1+ 1θ

)λk+α−1dλ

=Γ(k + α)

k!Γ(α)

θk

(1 + θ)k+α.

(90)

HW: Compute pk if Λ ∼ Exp(λ).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 71 / 193

Page 105: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Poisson Distributions : Parameter Uncertainty

Theorem

Assume Λ has a density fΛ(λ), and P[N = k | Λ = λ] = e−λλk

k! .Then

pk = P[N = k] =

∫ ∞0

e−λλk

k!fΛ(λ)dλ =

1

k!E[Λke−Λ]. (89)

For example, if fΛ(λ) = λα−1e−λθ

θαΓ(α) , then

pk =1

k!

∫ ∞0

e−λλkλα−1e−

λθ

θαΓ(α)dλ =

1

k!

1

θαΓ(α)

∫ ∞0

e−λ(1+ 1θ

)λk+α−1dλ

=Γ(k + α)

k!Γ(α)

θk

(1 + θ)k+α.

(90)HW: Compute pk if Λ ∼ Exp(λ).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 71 / 193

Page 106: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Binomial Distributions Revisited

Define X and N such that for a sequence Xjnj=1 with each of theXj ∼ X and

p = P[X = 1] = 1− P[X = 0]

N = N1 + ...+ Nn.(91)

It follows that

PX (z) = (1− p)z0 + pz1 = 1− p + pz

⇒ PN(z) = [1− p + pz ]n

⇒ P[N = k] =m!

(m − k)!k!pk(1− p)m−k .

(92)

We can also show that

E[N] = np

Var[N] = np(1− p).(93)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 72 / 193

Page 107: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Binomial Distributions Revisited

Define X and N such that for a sequence Xjnj=1 with each of theXj ∼ X and

p = P[X = 1] = 1− P[X = 0]

N = N1 + ...+ Nn.(91)

It follows that

PX (z) = (1− p)z0 + pz1 = 1− p + pz

⇒ PN(z) = [1− p + pz ]n

⇒ P[N = k] =m!

(m − k)!k!pk(1− p)m−k .

(92)

We can also show that

E[N] = np

Var[N] = np(1− p).(93)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 72 / 193

Page 108: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Binomial Distributions Revisited

Define X and N such that for a sequence Xjnj=1 with each of theXj ∼ X and

p = P[X = 1] = 1− P[X = 0]

N = N1 + ...+ Nn.(91)

It follows that

PX (z) = (1− p)z0 + pz1 = 1− p + pz

⇒ PN(z) = [1− p + pz ]n

⇒ P[N = k] =m!

(m − k)!k!pk(1− p)m−k .

(92)

We can also show that

E[N] = np

Var[N] = np(1− p).(93)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 72 / 193

Page 109: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class

A discrete random variable N is a member of the (a, b, 0) class if , forpk = P[N = k] and all k ∈ 1, 2, 3...,

pk

pk−1= a +

b

k. (94)

It follows that

kpk = akpk−1 + bpk−1 = a(k − 1)pk−1 + (a + b)pk−1

⇒∞∑k=1

kpk = a∞∑k=1

(k − 1)pk−1 + (a + b)∞∑k=1

pk−1

∴ E[N] = aE[N] + (a + b) · 1 =a + b

1− a.

(95)

HW: Ex. 6.1, 6.2.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 73 / 193

Page 110: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class

A discrete random variable N is a member of the (a, b, 0) class if , forpk = P[N = k] and all k ∈ 1, 2, 3...,

pk

pk−1= a +

b

k. (94)

It follows that

kpk = akpk−1 + bpk−1 = a(k − 1)pk−1 + (a + b)pk−1

⇒∞∑k=1

kpk = a∞∑k=1

(k − 1)pk−1 + (a + b)∞∑k=1

pk−1

∴ E[N] = aE[N] + (a + b) · 1 =a + b

1− a.

(95)

HW: Ex. 6.1, 6.2.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 73 / 193

Page 111: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class

A discrete random variable N is a member of the (a, b, 0) class if , forpk = P[N = k] and all k ∈ 1, 2, 3...,

pk

pk−1= a +

b

k. (94)

It follows that

kpk = akpk−1 + bpk−1 = a(k − 1)pk−1 + (a + b)pk−1

⇒∞∑k=1

kpk = a∞∑k=1

(k − 1)pk−1 + (a + b)∞∑k=1

pk−1

∴ E[N] = aE[N] + (a + b) · 1 =a + b

1− a.

(95)

HW: Ex. 6.1, 6.2.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 73 / 193

Page 112: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Fitting to data

By definition, if we take succesive probabilities (frequencies) of observeddata, and we know that the data is drawn from an (a, b, 0)-classdistribution, then it must be that for yk := k pk

pk−1,

yk = ak + b. (96)

For example, if we observe f total data points, and fk are the total numberof observed points with property k , then

pk =fkf⇒ yk = k

fkfk−1

. (97)

To fit, plot yk against k, and fit for a and b.HW: Read on the (a, b, 1) class, read pages 90− 94, and complete Ex.6.4, 6.6.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 74 / 193

Page 113: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Fitting to data

According to results by Sundt and Jewell, and extended in Hess,Liewald, and Schmidt, the three distributions in this class are

Distribution a b p0 pk

Poisson 0 λ e−λ e−λ λk

k!

Negative Binomial 1− p (1− p)(r − 1) pr Γ(r+k)k!Γ(r) pr (1− p)k

Binomial − p1−p (n + 1) p

1−p (1− p)n(nk

)pk(1− p)n−k

We can use this table to match empirically observed data with anappropriate distribution.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 75 / 193

Page 114: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Finan - Example 28.1

Let N be a member of C (a, b, 0) satisfying the recursive probabilities

kpk

pk−1=

3

4k + 3. (98)

Identify the distribution N.

Answer:As a > 0, b > 0, it follows that N is a negative binomial distribution.Furthermore,

3

4= a = 1− p

3 = b = (1− p)(r − 1) =3

4(r − 1)

⇒ (p, r) = (0.25, 5).

(99)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 76 / 193

Page 115: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Finan - Example 28.1

Let N be a member of C (a, b, 0) satisfying the recursive probabilities

kpk

pk−1=

3

4k + 3. (98)

Identify the distribution N.

Answer:As a > 0, b > 0, it follows that N is a negative binomial distribution.Furthermore,

3

4= a = 1− p

3 = b = (1− p)(r − 1) =3

4(r − 1)

⇒ (p, r) = (0.25, 5).

(99)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 76 / 193

Page 116: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Finan - Example 28.2

The distribution of accidents for 84 randomly selected policies is as follows:

Number of Accidents Number of Policies

0 32

1 26

2 12

3 7

4 4

5 2

6 1

Identify the frequency model that best represents these data

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 77 / 193

Page 117: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Finan - Example 28.2

The distribution of accidents for 84 randomly selected policies, and theiradjusted frequency ratios, are as follows:

Number of Accidents Number of Policies k pkpk−1

1 26 0.8125

2 12 0.9231

3 7 1.75

4 4 2.2857

5 2 2.5

6 1 3

Best fit line is 0.462969k + 0.25816, hence a negative binomialdistribution. Check out Wolfram Alpha’s computation by entering ”linearregression (1, 0.8125), (2, 0.9231), (3, 1.75), (4, 2.2857), (5, 2.5), (6, 3)” inthe search bar.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 78 / 193

Page 118: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Finan - Example 28.2

The distribution of accidents for 84 randomly selected policies, and theiradjusted frequency ratios, are as follows:

Number of Accidents Number of Policies k pkpk−1

1 26 0.8125

2 12 0.9231

3 7 1.75

4 4 2.2857

5 2 2.5

6 1 3

Best fit line is 0.462969k + 0.25816, hence a negative binomialdistribution. Check out Wolfram Alpha’s computation by entering ”linearregression (1, 0.8125), (2, 0.9231), (3, 1.75), (4, 2.2857), (5, 2.5), (6, 3)” inthe search bar.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 78 / 193

Page 119: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Interpretation

Consider now the distribution of accidents for randomly selected policies isas follows:

Number of Accidents Number of Policies

0 400

1 200

2 50

3 8

4 1

Identify the frequency model that best represents these data

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 79 / 193

Page 120: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Interpretation

The distribution of accidents for 84 randomly selected policies, and theiradjusted frequency ratios, are as follows:

Number of Accidents Number of Policies k pkpk−1

1 200 1 · 200400

2 50 2 · 50200

3 8 3 · 850

4 1 4 · 18

Best fit line is −0.002k + 0.5. Is this a Binomial or Poisson distribution?Check out Wolfram Alpha’s computation by entering ”linear regression(1, 1 · 200

400 ), (2, 2 · 50200 ), (3, 3 · 8

50 ), (4, 4 · 18 )” in the search bar.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 80 / 193

Page 121: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

(a, b, 0) class: Interpretation

The distribution of accidents for 84 randomly selected policies, and theiradjusted frequency ratios, are as follows:

Number of Accidents Number of Policies k pkpk−1

1 200 1 · 200400

2 50 2 · 50200

3 8 3 · 850

4 1 4 · 18

Best fit line is −0.002k + 0.5. Is this a Binomial or Poisson distribution?Check out Wolfram Alpha’s computation by entering ”linear regression(1, 1 · 200

400 ), (2, 2 · 50200 ), (3, 3 · 8

50 ), (4, 4 · 18 )” in the search bar.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 80 / 193

Page 122: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Multiple Exposures to Risk

A bank, insurance company, hedge fund, or pension sponsor among otherentities is charged with navitgating the risks borne by their endeavor. Inorder to mitigate and price such risks, one must first set out to identifytheir various forms.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 81 / 193

Page 123: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Multiple Exposures to Risk

A few known variants include

Market Risk.

Interest Rate Risk.

FX Risk.

Liquidity Risk.

Credit Risk.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 82 / 193

Page 124: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Market Risk

Exposure to capital markets.

Can affect both assets and liabilities.

Examples include equities and other financial instruments.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 83 / 193

Page 125: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Interest Rate Risk

Exposure to changes in short rate.

Underestimating volatility of short rate evolution (shocks to economy.)

Exposure to changes in yield curve and term structure.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 84 / 193

Page 126: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

FX Risk

Inability to predict or affect foreign government domestic policy(prime rate) and foreign policy (devaluation.)

Can lead to inability to properly hedge financial instruments held inforeign countries.

Foreign interest rate fluctuation can lead to possible shortfalls thatbanks may wish to immunize their portfolio against. Currencyfluctuation also leads to daily operational risk, and should factor intoplanning.

For example, should a band tour Europe or America this summer ?Click here for an insightful article by Neil Shah in the Wall StreetJournal TM, with comment from the manager of a very prominentrock band

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 85 / 193

Page 127: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Liquidity Risk

Exposure to depressed prices in return for expedited sale (liquidation)of assets.

Also affects strategies that hedge long term contracts with short termassets.

Banks are also prone to this in the form of bank runs.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 86 / 193

Page 128: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Credit Risk

This also falls under Default Risk, where one is exposed to(counterparty) default on contracts that exchange cash flows.

Correlated with Market Risk, although different opinions on how so.

For life insurance companies, a life (x) can be seen as a default risk ifthat person outlives the present value of their retirement annuity.Also known as Longevity (Mortality) Risk.

This happens, for example, when pension sponsors overestimate themortality of the insured population. Reinsurance can be bought, butsuch reinsurers are also susceptible to the previously defined risks,depending on their asset and liability portfolio.As an example, please refer to the paper by Tsai, Tzeng, and Wang onHedging Longevity Risk When Interest Rates Are Uncertain

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 87 / 193

Page 129: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Credit Risk

This also falls under Default Risk, where one is exposed to(counterparty) default on contracts that exchange cash flows.

Correlated with Market Risk, although different opinions on how so.

For life insurance companies, a life (x) can be seen as a default risk ifthat person outlives the present value of their retirement annuity.Also known as Longevity (Mortality) Risk.

This happens, for example, when pension sponsors overestimate themortality of the insured population. Reinsurance can be bought, butsuch reinsurers are also susceptible to the previously defined risks,depending on their asset and liability portfolio.As an example, please refer to the paper by Tsai, Tzeng, and Wang onHedging Longevity Risk When Interest Rates Are Uncertain

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 87 / 193

Page 130: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Credit Risk

Complicated to measure and perhaps even define:

Risk = P[Default]?Risk = E[Loss | Default]?or...Risk = E[Loss] = E[Loss | Default]× P[Default]?However, does E[Loss | Default] relate in some fashion to P[Default] ?In an adverse economy mired in recession, perhaps so. In fact,Frye inhis paper ”Collateral Damage” (2000) argues that the same factorsthat increase default rates can also decrease the value of loan collateral.Click here for a review of Structural Models for Credit Riskpublishedby the SOA.

Clearly, regulators, counterparties, clearinghouses, and shareholders wouldlike a precise definition of the risk involved with an entity’s business. Onepossible definition is the capital a business entity should hold. So what todo?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 88 / 193

Page 131: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Credit Risk

Complicated to measure and perhaps even define:

Risk = P[Default]?Risk = E[Loss | Default]?

or...Risk = E[Loss] = E[Loss | Default]× P[Default]?However, does E[Loss | Default] relate in some fashion to P[Default] ?In an adverse economy mired in recession, perhaps so. In fact,Frye inhis paper ”Collateral Damage” (2000) argues that the same factorsthat increase default rates can also decrease the value of loan collateral.Click here for a review of Structural Models for Credit Riskpublishedby the SOA.

Clearly, regulators, counterparties, clearinghouses, and shareholders wouldlike a precise definition of the risk involved with an entity’s business. Onepossible definition is the capital a business entity should hold. So what todo?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 88 / 193

Page 132: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Credit Risk

Complicated to measure and perhaps even define:

Risk = P[Default]?Risk = E[Loss | Default]?or...Risk = E[Loss] = E[Loss | Default]× P[Default]?

However, does E[Loss | Default] relate in some fashion to P[Default] ?In an adverse economy mired in recession, perhaps so. In fact,Frye inhis paper ”Collateral Damage” (2000) argues that the same factorsthat increase default rates can also decrease the value of loan collateral.Click here for a review of Structural Models for Credit Riskpublishedby the SOA.

Clearly, regulators, counterparties, clearinghouses, and shareholders wouldlike a precise definition of the risk involved with an entity’s business. Onepossible definition is the capital a business entity should hold. So what todo?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 88 / 193

Page 133: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Credit Risk

Complicated to measure and perhaps even define:

Risk = P[Default]?Risk = E[Loss | Default]?or...Risk = E[Loss] = E[Loss | Default]× P[Default]?However, does E[Loss | Default] relate in some fashion to P[Default] ?

In an adverse economy mired in recession, perhaps so. In fact,Frye inhis paper ”Collateral Damage” (2000) argues that the same factorsthat increase default rates can also decrease the value of loan collateral.Click here for a review of Structural Models for Credit Riskpublishedby the SOA.

Clearly, regulators, counterparties, clearinghouses, and shareholders wouldlike a precise definition of the risk involved with an entity’s business. Onepossible definition is the capital a business entity should hold. So what todo?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 88 / 193

Page 134: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Credit Risk

Complicated to measure and perhaps even define:

Risk = P[Default]?Risk = E[Loss | Default]?or...Risk = E[Loss] = E[Loss | Default]× P[Default]?However, does E[Loss | Default] relate in some fashion to P[Default] ?In an adverse economy mired in recession, perhaps so. In fact,Frye inhis paper ”Collateral Damage” (2000) argues that the same factorsthat increase default rates can also decrease the value of loan collateral.Click here for a review of Structural Models for Credit Riskpublishedby the SOA.

Clearly, regulators, counterparties, clearinghouses, and shareholders wouldlike a precise definition of the risk involved with an entity’s business. Onepossible definition is the capital a business entity should hold. So what todo?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 88 / 193

Page 135: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Credit Risk

Complicated to measure and perhaps even define:

Risk = P[Default]?Risk = E[Loss | Default]?or...Risk = E[Loss] = E[Loss | Default]× P[Default]?However, does E[Loss | Default] relate in some fashion to P[Default] ?In an adverse economy mired in recession, perhaps so. In fact,Frye inhis paper ”Collateral Damage” (2000) argues that the same factorsthat increase default rates can also decrease the value of loan collateral.Click here for a review of Structural Models for Credit Riskpublishedby the SOA.

Clearly, regulators, counterparties, clearinghouses, and shareholders wouldlike a precise definition of the risk involved with an entity’s business. Onepossible definition is the capital a business entity should hold. So what todo?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 88 / 193

Page 136: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Stochastic Actuarial Reserving (Ko and Shiu)

Fix a probability space(

Ω,F ,P)

and a standard Brownian motion W

that lives on this space.

Consider now a term contact with term T and let α denote themanagement charges factor along with β representing the policyholder’sparticipation factor.

Furthermore, assume mean and standard deviation parameters (µ, σ)respectively and the corresponding Geometric Brownian Mutual Fund Asset

St = S0eµt+σWt . (100)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 89 / 193

Page 137: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Stochastic Actuarial Reserving (Ko and Shiu)

Using this as the model of the asset returns upon which premiums areinvested, the policyholder wishes to purchase a contract that pays amaturity benefit credited at a rate of return which is the greater of

the customer’s risk discount rate r , where r < µ or

the participation rate of the stock index returns of S .

Symbolically, for a current premium P invested in the , the contractpayout value at maturity is

V (T ) = (1− α)P max

erT , 1 + β

(ST

S0− 1)

. (101)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 90 / 193

Page 138: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Stochastic Actuarial Reserving (Ko and Shiu)

Assume that the policyholder is able to fully participate in the returns fromthe fund (i.e. β = 1.)Then

V (T ) = (1− α)PST

S0+ (1− α)P max

erT −

(ST

S0

), 0

:= V1(T ) + V2(T ).

(102)

Here, V1(T ) is the net premium, or payoff, for investing in the index fundand V2(T ) is the guaranteed option payoff if the index fundunder-performs relative to the risk discount rate r .

How does one reserve to meet the obligations of V2(T ).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 91 / 193

Page 139: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Stochastic Actuarial Reserving (Ko and Shiu)

One can see that the probability of a payout, that V2(T ) 6= 0 is for large T

P[V2(T ) 6= 0] = P[rT > µT + σWT ] = Φ( r − µ

σ

√T)≈ 0. (103)

Since it is a low probability event that we have to prepare for a payoutV2(T ) and since we can directly replicate the payoff V1(T ) by initially

purchasing (1−α)PS0

units of the index fund, an actuary may be tempted tonot reserve for the uncertain portion of the guarantee, V2(T ), if thecontract has a relatively long term T .

Is this a wise decision?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 92 / 193

Page 140: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Stochastic Actuarial Reserving (Ko and Shiu)

One can see that the probability of a payout, that V2(T ) 6= 0 is for large T

P[V2(T ) 6= 0] = P[rT > µT + σWT ] = Φ( r − µ

σ

√T)≈ 0. (103)

Since it is a low probability event that we have to prepare for a payoutV2(T ) and since we can directly replicate the payoff V1(T ) by initially

purchasing (1−α)PS0

units of the index fund, an actuary may be tempted tonot reserve for the uncertain portion of the guarantee, V2(T ), if thecontract has a relatively long term T .

Is this a wise decision?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 92 / 193

Page 141: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Stochastic Actuarial Reserving (Ko and Shiu)

One can see that the probability of a payout, that V2(T ) 6= 0 is for large T

P[V2(T ) 6= 0] = P[rT > µT + σWT ] = Φ( r − µ

σ

√T)≈ 0. (103)

Since it is a low probability event that we have to prepare for a payoutV2(T ) and since we can directly replicate the payoff V1(T ) by initially

purchasing (1−α)PS0

units of the index fund, an actuary may be tempted tonot reserve for the uncertain portion of the guarantee, V2(T ), if thecontract has a relatively long term T .

Is this a wise decision?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 92 / 193

Page 142: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Return Measures

A bank, insurance company, hedge fund, or pension sponsor can have theirefficiency measured by how they return profits over a time horizon.For example, if the value of a portfolio at time t is denoted by X (t), thenreturns are measured at times t0, t1, t2, ..., tn and the Loss in period(tk−1, tk) is

L[X ](tk) := − (X (tk)− X (tk−1)) (104)

and the Loss Distribution is

r [X ](tk) := − lnX (tk)

X (tk−1)(105)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 93 / 193

Page 143: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Return Over Benchmark

Comparing to a benchmark rB(t) for returns, a manager can be rated via

RoB :=1

tn − t0

n∑k=1

(r [X ](tk)− rB(tk)) (106)

as well as the deviation away from the benchmark returns:

Dev :=

√√√√ 1

tn − t0

n∑k=1

(r [X ](tk)− rB(tk))2 (107)

Notice that RoB is a linear measure.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 94 / 193

Page 144: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Sharpe Ratio

Recall from (financial) economics that there is a measure of return vs risk,known as the Sharpe Ratio. This measures the reward gained versus therisk ventured to return the gains won.

If α is the realized return on anasset over a risk free rate r , then for a standard deviation σ of the returnson the asset we have the informational measure

Sharpe Ratio :=α− r

σ(108)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 95 / 193

Page 145: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Sharpe Ratio

Recall from (financial) economics that there is a measure of return vs risk,known as the Sharpe Ratio. This measures the reward gained versus therisk ventured to return the gains won. If α is the realized return on anasset over a risk free rate r , then for a standard deviation σ of the returnson the asset we have the informational measure

Sharpe Ratio :=α− r

σ(108)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 95 / 193

Page 146: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Sharpe Ratio

Going back to our periodic returns, we can enact a similar measure ofperformance via

S :=1

tn−t0

∑nk=1 (r [X ](tk)− rB(tk))√

1tn−t0

∑nk=1 (r [X ](tk)− rB(tk))2

(109)

The numerical values of S can be used to rank manager performance, butas with any models there are criticisms. First off is the usefulness of thedenominator as a risk measure.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 96 / 193

Page 147: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Risk Measures

Define a probability space (Ω,F ,P). Define the set A ⊂ L0(Ω,F ,P) ofpossible risks, where

X ,Y ∈ A ⇒ X + Y ∈ A.

X ∈ A ⇒ αX ∈ A for all α ∈ [0, 1].

X ∈ A ⇒ X + a ∈ A for all a ∈ R.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 97 / 193

Page 148: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Risk Measures

A risk measure ρ : A → R ∪ ∞ may be required to satisfy some of thefollowing properties:

Law Invariance: ∀X ,Y ∈ A, x ∈ R,P[X ≤ x ] = P[Y ≤ x ]⇒ ρ[X ] = ρ[Y ] .

Monotonicity: ∀X ,Y ∈ A, P[X ≤ Y ] = 1⇒ ρ[X ] ≤ ρ[Y ].

Subadditivity: ∀X ,Y ∈ A, ρ[X + Y ] ≤ ρ[X ] + ρ[Y ].

Positive Homogeneity: ∀X ∈ A, α ≥ 0, ρ[αX ] = αρ[X ].

Translation Invariance: ∀X ∈ A, a ∈ R, ρ[X + a] = ρ[X ] + a.

Convexity: ∀X ,Y ∈ A, λ ∈ [0, 1],ρ[λX + (1− λ)Y ] ≤ λρ[X ] + (1− λ)ρ[Y ]

A risk measure that satisfies Monotonicity, Subadditivity, PositiveHomogeneity, and Translation Invariance is said to be Coherent.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 98 / 193

Page 149: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Risk Measures

A risk measure ρ : A → R ∪ ∞ may be required to satisfy some of thefollowing properties:

Law Invariance: ∀X ,Y ∈ A, x ∈ R,P[X ≤ x ] = P[Y ≤ x ]⇒ ρ[X ] = ρ[Y ] .

Monotonicity: ∀X ,Y ∈ A, P[X ≤ Y ] = 1⇒ ρ[X ] ≤ ρ[Y ].

Subadditivity: ∀X ,Y ∈ A, ρ[X + Y ] ≤ ρ[X ] + ρ[Y ].

Positive Homogeneity: ∀X ∈ A, α ≥ 0, ρ[αX ] = αρ[X ].

Translation Invariance: ∀X ∈ A, a ∈ R, ρ[X + a] = ρ[X ] + a.

Convexity: ∀X ,Y ∈ A, λ ∈ [0, 1],ρ[λX + (1− λ)Y ] ≤ λρ[X ] + (1− λ)ρ[Y ]

A risk measure that satisfies Monotonicity, Subadditivity, PositiveHomogeneity, and Translation Invariance is said to be Coherent.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 98 / 193

Page 150: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Risk Measures

Note that Translation Invariance ⇒ ρ[X − ρ[X ]

]= 0.

In the insurance field, ρ[X ] is seen as the solvency capital requiredby a regulating agency for a company exposed to loss (risk) X .

The capital is a requirement imposed on the firm so that the surplusof assets over liabilities for the company is at least ρ[X ].

ρ[X ] should be chosen to ensure that X > ρ[X ] is a sufficiently rareevent.

Regulators should, and do, take into consideration the costs incurredby a company that is required to hold excessive solvency capital.Hence, a balance must be sought between solvency and onerouscapital requirements. The choice of ρ should be decided upon withthese thoughts in mind.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 99 / 193

Page 151: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Premium Principles vs Risk Measures

Companies or individuals who wish to exchange a future liability foran up-front payment seek out willing partners. They find them in theinsurance industry.

However, insurance firms pricing the risk of being liable for a futurepayment is coupled must also meet the demands of regulators toremain solvent.

One of the most common methods is the Expected Value PremiumPrinciple (EPP) which returns ρ[X ] = E[X ].

However, such a principle doesn’t take into account possible (large)deviations from the average loss. Some corrections:

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 100 / 193

Page 152: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Premium Principles vs Risk Measures

Companies or individuals who wish to exchange a future liability foran up-front payment seek out willing partners. They find them in theinsurance industry.

However, insurance firms pricing the risk of being liable for a futurepayment is coupled must also meet the demands of regulators toremain solvent.

One of the most common methods is the Expected Value PremiumPrinciple (EPP) which returns ρ[X ] = E[X ].

However, such a principle doesn’t take into account possible (large)deviations from the average loss. Some corrections:

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 100 / 193

Page 153: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Premium Principles vs Risk Measures

EPP with loading: ρ[X ] = (1 + α)E[X ] for some α > 0.

Standard Deviation Premium Principle: ρ[X ] = E[X ] + α√

V [X ]for some α ≥ 0.

Variance Premium Principle: ρ[X ] = E[X ] + αV [X ] for someα ≥ 0.

Dutch Premium Principle: ρ[X ] = E[X ] + θE[(X − αE [X ])+] forsome α ≥ 1, θ ∈ [0, 1].

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 101 / 193

Page 154: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Value at Risk

Let X ∈ L0(Ω,F ,P) and α ∈ [0, 1]. Define

VaRα[X ] := Qα[X ] = inf x | P[X ≤ x ] ≥ α (110)

The VaR is the amount of cash a company requires to set the probabilityof the company becoming insolvent equal to α. The Basel Committee onBanking has in the past set VaR as a measure to set capital requirements.VaR is also used in the Portfolio Premium Pricing Principle in actuarialsettings.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 102 / 193

Page 155: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example: Value at Risk

Consider now the distribution of Losses for accident claims from randomlyselected policies is as follows:

Claim Amount L Number of Policies Probability

0 400 0.607

100 200 0.303

200 50 0.076

500 8 0.012

1000 1 0.002

Compute the Value at Risk for the 90%, 95% and 99% levels.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 103 / 193

Page 156: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example: Value at Risk

Consider now the distribution of Losses for accident claims from randomlyselected policies is as follows:

Claim Amount L P[L ≤ x ]

1000 1

500 0.998

200 0.986

100 0.910

0 0.607

It follows that

(VaR0.90[L],VaR0.95[L],VaR0.99[L]) = (100, 200, 500). (111)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 104 / 193

Page 157: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Why Choose VaR as a Risk Measure?

Consider that a firm is allowed to penalize for the cost of capital by apre-determined factor 0 < ε ≤ 1.

Define the (penalized) Expected Shortfall via

ESε(ρ[X ]) := E[(X − ρ[X ])+

]+ ερ[X ] (112)

Question: What capital u = ρ[X ] level solves

minu∈R+

ESε(u)? (113)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 105 / 193

Page 158: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Why Choose VaR as a Risk Measure?

Consider that a firm is allowed to penalize for the cost of capital by apre-determined factor 0 < ε ≤ 1.

Define the (penalized) Expected Shortfall via

ESε(ρ[X ]) := E[(X − ρ[X ])+

]+ ερ[X ] (112)

Question: What capital u = ρ[X ] level solves

minu∈R+

ESε(u)? (113)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 105 / 193

Page 159: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Why Choose VaR as a Risk Measure?

Consider that a firm is allowed to penalize for the cost of capital by apre-determined factor 0 < ε ≤ 1.

Define the (penalized) Expected Shortfall via

ESε(ρ[X ]) := E[(X − ρ[X ])+

]+ ερ[X ] (112)

Question: What capital u = ρ[X ] level solves

minu∈R+

ESε(u)? (113)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 105 / 193

Page 160: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

VaR as Minimal Capital Requirement (DGK [2003])

Theorem

The smallest capital ρ[X ] that solves

minu∈R+

ESε(u) (114)

is given by ρ[X ] = Q1−ε[X ].

There is a nice geometric proof for this, given by the authors.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 106 / 193

Page 161: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

VaR as a Minimal Capital Requirement (DGK [2003])

Proof.

(Sketch:) Assume that X has a smooth distribution. The critical point isobtained via

0 =d

du

(E[(X − u)+] + εu

)=

d

du

(∫ ∞0

P[(X − u)+ > x ]dx + εu)

=d

du

(∫ ∞u

P[X > x ]dx + εu)

=d

du

(∫ ∞u

(1− FX (x))dx + εu)

= FX (u)− 1 + ε

→ ρ[X ] = u = F−1X (1− ε) = Q1−ε[X ].

(115)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 107 / 193

Page 162: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

VaR as a Minimal Capital Requirement (DGK [2003])

Proof.

(Sketch:) Assume that X has a smooth distribution. The critical point isobtained via

0 =d

du

(E[(X − u)+] + εu

)=

d

du

(∫ ∞0

P[(X − u)+ > x ]dx + εu)

=d

du

(∫ ∞u

P[X > x ]dx + εu)

=d

du

(∫ ∞u

(1− FX (x))dx + εu)

= FX (u)− 1 + ε

→ ρ[X ] = u = F−1X (1− ε) = Q1−ε[X ].

(115)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 107 / 193

Page 163: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Value at Risk

Note that VaRα[X − VaRα[X ]

]= 0

This implies that the risk of holding an asset with uncertain outcomeX can be neutralized by holding a reserve amount VaRα[X ].

But VaR doesn’t account for how big the loss for the company in theevent of insolvency.

And regarding diversification..See Example 3.14 in our textbook andexample on page 19 of Hardy Study Note

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 108 / 193

Page 164: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Value at Risk and Solvency II

From the European Commission FAQ on Solvency II:

”The aim of a solvency regime is to ensure the financial soundness ofinsurance undertakings, and in particular to ensure that they cansurvive difficult periods. This is to protect policyholders (consumers,businesses) and the stability of the financial system as a whole. ”

” ..insurers must have available resources sufficient to cover both aMinimum Capital Requirement (MCR) and a Solvency CapitalRequirement (SCR). The SCR is based on a Value-at-Risk measurecalibrated to a 99.5% confidence level over a 1-year time horizon.The SCR covers all risks that an insurer faces (e.g. insurance, market,credit and operational risk) and will take full account of any riskmitigation techniques applied by the insurer (e.g. reinsurance andsecuritisation).. ”

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 109 / 193

Page 165: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Some other (related) Risk Measures

The quantile measure VaR doesn’t give us information on the tail behaviorof X beyond Qp[X ]. One way to account for this is to define

TVaRp[X ] :=1

1− p

∫ 1

pQq[X ]dq. (116)

Furthermore, in the tail region, we can also determine how much the lossX exceeds Qp[X ], on average, by

CTEp[X ] := E[X | X > Qp[X ]]. (117)

Finally, regulators are interested in the average shortfall

ESFp[X ] := E[(X − Qp[X ])+]. (118)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 110 / 193

Page 166: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Equivalence of Risk Measures [DGK (2006)]

Theorem

TVaRp[X ] = Qp[X ] +1

1− pESFp[X ] (119)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 111 / 193

Page 167: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Equivalence of Risk Measures [DGK (2006)]

Proof.

Under the transformation x → q, where x = F−1X (q) = Qq[X ] and

(q, dq) =(

FX (x), fX (x)dx)

ESFp[X ] =

∫ ∞−∞

(x − Qp[X ])+fX (x)dx

=

∫ 1

0(Qq[X ]− Qp[X ])+dq

=

∫ 1

pQq[X ]dq − (1− p)Qp[X ]

⇒ TVaRp[X ] =1

1− p

∫ 1

pQq[X ]dq =

ESFp[X ]

1− p+ Qp[X ].

(120)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 112 / 193

Page 168: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Equivalence of Risk Measures [DGK (2006)]

Proof.

Under the transformation x → q, where x = F−1X (q) = Qq[X ] and

(q, dq) =(

FX (x), fX (x)dx)

ESFp[X ] =

∫ ∞−∞

(x − Qp[X ])+fX (x)dx

=

∫ 1

0(Qq[X ]− Qp[X ])+dq

=

∫ 1

pQq[X ]dq − (1− p)Qp[X ]

⇒ TVaRp[X ] =1

1− p

∫ 1

pQq[X ]dq =

ESFp[X ]

1− p+ Qp[X ].

(120)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 112 / 193

Page 169: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Equivalence of Risk Measures [DGK (2006)]

Proof.

Under the transformation x → q, where x = F−1X (q) = Qq[X ] and

(q, dq) =(

FX (x), fX (x)dx)

ESFp[X ] =

∫ ∞−∞

(x − Qp[X ])+fX (x)dx

=

∫ 1

0(Qq[X ]− Qp[X ])+dq

=

∫ 1

pQq[X ]dq − (1− p)Qp[X ]

⇒ TVaRp[X ] =1

1− p

∫ 1

pQq[X ]dq =

ESFp[X ]

1− p+ Qp[X ].

(120)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 112 / 193

Page 170: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Equivalence of Risk Measures: Some Points

Note that if E[X ] <∞ and if FX is continuous, then

limp→0

TVaRp[X ] = E[X ]

TVaRp[X ] = CTEp[X ](121)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 113 / 193

Page 171: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Normally Distributed Risk

For an X ∼ N(µ, σ2), it can be shown for 0 < p < 1 that

Qp[X ] = µ+ σΦ−1(p)

CTEp[X ] = E[X | X > Qp[X ]] =1

1− p

∫ ∞Qp

1√2πσ

ye−(y−µ)2

2σ dy

=1

1− p

∫ ∞Qp−µσ

µ+ σz√2πσ

e−z2

2 dz

1− p

∫ ∞Φ−1(p)

e−z2

2

√2πσ

dz +σ

1− p

∫ ∞Φ−1(p)

ze−z2

2

√2πσ

dz

= µ+σ

1− pφ(Φ−1(p))

E[(X − ρ[X ])+] = σφ(ρ[X ]− µ

σ

)− (ρ[X ]− µ)

[1− Φ

(ρ[X ]− µσ

)]ESFp[X ] = σφ

(Φ−1(p)

)− σ(1− p)Φ−1(p)

(122)Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 114 / 193

Page 172: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Lognormally Distributed Risk

For a ln X ∼ N(µ, σ2), it can be shown for 0 < p < 1 that

Qp[X ] = eµ+σΦ−1(p)

E[(X − ρ[X ])+] = eµ+σ2

2 Φ

(σ +

µ− ln ρ[X ]

σ

)− ρ[X ]Φ

(µ− ln ρ[X ]

σ

)

ESFp[X ] = eµ+σ2

2 Φ

(σ − Φ−1(p)

)− eµ+σΦ−1(p)(1− p)

CTEp[X ] = eµ+σ2

2

Φ

(σ − Φ−1(p)

)1− p

(123)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 115 / 193

Page 173: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Pareto Distributed Risk

If SX (x) =(

θθ+x

)α, then

Qp[X ] = θ[(1− p)−1α − 1]

CTEp[X ] = Qp[X ] +Qp[X ] + θ

α− 1.

(124)

HW:

Compute ESFp[X ].

3.31, 3.32, 3.35, 3.36.

Show that CTEp[X ] is, in general, not subadditive.

How about ESFp[X ] - is it subadditive ?

How about ρ[X ] := E[X ] - is it subadditive ?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 116 / 193

Page 174: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

HW: CTEp[X ]

Consider again the empirically observed distribution of Losses for accidentclaims from randomly selected policies is as follows:

Claim Amount L Probability

0 0.607

100 0.303

200 0.076

500 0.012

1000 0.002

Compute the CTEp[X ] for p ∈ 0.90, 0.95, 0.99. Consult the HardyStudy Note for cases where the VaR levels Qp = Qp+ε for some ε > 0.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 117 / 193

Page 175: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Thoughts on CTEp[X ]

CTEp[X ] ≥ Qp[X ], making it more preferable in the eyes of aregulator who always desires higher solvency capital.

CTEp[X ] is used for equity-linked life contingent insurance in Canada.

Minimum Capital Test For Federally Regulated Property and CasualtyInsurance Companies report from the Government of Canada:”..(u)nder the MCT, regulatory capital requirements for various risksare set directly at a pre-determined target confidence level. OSFI haselected 99% of the expected shortfall (conditional tail expectation orCTE 99%) over a one-year time horizon as a target confidence level”,with the footnote ”As an alternative, a value at risk (VaR) at99.5% confidence level or expert judgement was used when it was notpractical to use the CTE approach.”

CTEp is not the only non-subadditive measure, apparently..

What to do? Is there a ”better” property than sub-additivity?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 118 / 193

Page 176: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Distortion Risk Measures

Recalling actuarial terminology, for the loss distributionF : R+ → [0, 1], define the Survival Function

S(x) = 1− F (x). (125)

Define the Distortion Function g : [0, 1]→ [0, 1] withg(0) = 0, g(1) = 1, and g increasing.Define the Distortion Risk Measure that inflates the probability oflarge losses via

ρg [X ] =

∫ ∞0

g(S(x))dx

= Eg [X ].

(126)

Theorem

DVTGKV (2004) If g is also concave, then for any losses X ,Y ∈ A,

P[(X ,Y ) ∈ R2+] = 1⇒ ρg [X + Y ] ≤ ρg [X ] + ρg [Y ]. (127)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 119 / 193

Page 177: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Distortion Risk Measures

HW Are CTEp[X ],ESFp[X ],TTVaRp[X ] and Qp[X ] Distortion RiskMeasures ? Proof or counterexamples..

Hint: Tryg(x) = 1x≥1−p

g(x) = min

x

1− p, 1

(128)

and use the relationships obtained for the above risk measures.What about probability masses?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 120 / 193

Page 178: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Proportional Hazard Transform

For α ≥ 1, define

g(s) = s1α (129)

If X ∼ Pareto(γ, θ), then E[X ] = θγ−1 and (assuming γ > α,)

S(x) = P[X > x ] =( θ

θ + x

)γg(S(x)) =

( θ

θ + x

) γα

⇒ ρg [X ] =

∫ ∞0

( θ

θ + x

) γα

dx

γα − 1

(130)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 121 / 193

Page 179: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Proportional Hazard Transform

For α ≥ 1, define

g(s) = s1α (131)

If X ∼ exp(λ), then E[X ] = 1λ and (assuming γ > α,)

S(x) = P[X > x ] = e−λx

g(S(x)) = e−λαx

⇒ ρg [X ] =

∫ ∞0

e−λαxdx

λ

(132)

HW: How about if X ∼ N(µ.σ2)?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 122 / 193

Page 180: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Dual Power Transform

Define g(s) = 1− (1− s)N . Note that if N ∈ N, then for N i.i.d. copies ofX : i.e. X1,X2, ..,XN it follows that

g(S(x)) = 1− (1− S(x))N = P[max X1,X2, ..,XN > x ]

∴ ρg [X ] =

∫ ∞0

g(S(x))dx = E[max X1,X2, ..,XN].(133)

HW: Compute ρg [X ] for X ∼ exp(λ). Use (λ,N) = (0.1, 10) andwhatever numerical tools you feel comfortable with.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 123 / 193

Page 181: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

The Wang Transform

Wang, in A Universal Framework for Pricing Financial and Insurance(2002) presents the following idea: Define λ ∈ R and a distortion functiong such that

g(S(x)) = Φ(

Φ−1(S(x)) + λ). (134)

Then there is a universal pricing method based on this transform forfinancial assets or liabilities over a time horizon [0,T ]. In this distortionmeasure, λ is the market price of risk, reflecting the level of systematicrisk.

HW: Consider an X ∼ N(µ, σ2). How does the Wang Transform acton X ? Specifically, compute ρg [X ]!

HW: Consider an X ∼ LN(µ, σ2). How does the Wang Transformact on X ? Specifically, compute ρg [X ]. How does ρg [X ] relate to thequantile measure Qp[X ] in this case?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 124 / 193

Page 182: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Spectral Risk Measure

Assume a non-negative, non-increasing, right-continuous, integrablefunction γ : [0, 1]→ R+ such that∫ 1

0γ(p)dp = 1 (135)

and the corresponding risk measure

ργ [X ] :=

∫ 1

0γ(p)Qp[X ]dp. (136)

Then ργ [X ] is a Spectral Risk Measure.

HW: Consider X ∼ exp(λ), and γ(p) = 2p. Compute ργ [X ].

Is Expected Shortfall a Spectral Risk Measure? How about Value atRisk? How about just Expected Value?

Are Distortion and Spectral Risk Measures related? Check outTheorem 3.1 here for a nice connection.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 125 / 193

Page 183: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Regulators, Economic Capital, and Expected Shortfall

In the case of choosing an adequate capital requirement, a regulator ischarged with making the event X > ρ[X ] ”unlikely.” A selection processcan entail first choosing the a shortfall measure M, where M satisfies

ρ1[X ] ≤ ρ2[X ]⇒ M

[(X − ρ1[X ])+

]≥ M

[(X − ρ2[X ])+

]. (137)

This reflects the view of the view of the regulator that an increase ofsolvency capital implies a reduction of the shortfall risk that M measures.

A choice of a monotonic M is enough to guarantee the above condition.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 126 / 193

Page 184: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Regulators, Economic Capital, and Expected Shortfall

Note that this condition relates the view of the regulator thatincreasing regulatory capital decreases the likelihood of insolvency.

As mentioned earlier, this view must compete with the cost of holdingexcess capital.

Given the choice of regulatory measure M, the optimal solutionu = ρ[X ] solves

minu∈R+

(E[M[(X − u)+]

]+ εu

). (138)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 127 / 193

Page 185: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Regulators, Economic Capital, and Expected Shortfall

It was also shown earlier that for M[x ] = x , the optimal solvencycapital is ρ[X ] = Q1−ε[X ].

It follows from our Equivalence Of Risk Measures Theorem that theminimized expected penalized shortfall using this capital is also themeasure

minu∈R+

(E[(X − u)+

]+ εu

)= εTVaR1−ε[X ]. (139)

From the view of a company that must self-determine the optimalsolvency capital, the problem mentioned above is also known asdetermining the economic capital required.

Please refer to Economic Capital Allocation Derived From RiskMeasures [DGK (2003)] for more on economic capital from anactuarial perspective.

Great overall review paper is Risk Measures and Comonotonicity: AReview [DGK (2006)]

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 128 / 193

Page 186: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Representation Theorem for Coherent Measures

The original authors Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.(1999) Coherent measures of risk, Mathematical Finance 9(3), 203-228.state and prove the foundational theorem:

Theorem

For a finite set of outcomes, ρ is a coherent risk measure if and only if ∃ afamily P of probability measures on the set of outcomes such that

ρ[X ] = supEQ[X ] : Q ∈ P

. (140)

To see how this relates to the margin system SPAN (Standard PortfolioAnalysis of Risk) developed by the Chicago Mercantile Exchange, pleaselook through Section 3.1 here and the references within.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 129 / 193

Page 187: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

An estimator is a quantity, rule, or formula that estimates properties of aset of values. For example, if our set is A = x1, x2, ..., xn, then acommon estimator is

x :=

∑nj=1 xj

n. (141)

A single estimate that results in a value for a an unknown parameter θ iscalled a point estimator θ. Such an estimator is called unbiased if

bias(θ) := E[θ − θ] = 0. (142)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 130 / 193

Page 188: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example 46.1 (Finan)

A population consists of the values 1, 3, 5, and 9. We want to estimate themean of the population µ. A random sample of two values from thispopulation is taken without replacement, and the mean of the sample µ isused as an estimator of the population mean µ.

Find the probability distribution of µ

Is µ an unbiased estimator?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 131 / 193

Page 189: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example 46.1 (Finan)

We find that there are six possible outcomes for this experiment,consisting of 6 pairs of values drawn:

S = 1, 3 , 1, 5 , 1, 9 , 3, 5 , 3, 9 , 5, 9 . (143)

Each of these pairs is equally likely, and so we assign probability 16 to each

of the possible values of µ:

µ ∈ 2, 3, 4, 5, 6, 7 . (144)

and so it follows that

µ =1 + 3 + 5 + 9

4= 4.5

E[µ] =1

6(2 + 3 + 4 + 5 + 6 + 7) = 4.5

∴ bias(θ) = E[µ− µ] = 0.

(145)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 132 / 193

Page 190: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Asymptotically Unbiased and Consistent Estimators

If, as the sample size increases, the bias vanishes we say that the estimatorθn is asymptotically unbiased if forall θ :

limn→∞

E[θn − θ] = 0. (146)

If, for all δ > 0,

limn→∞

P[| θn − θ |> δ] = 0 (147)

then θn is a consistent estimator.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 133 / 193

Page 191: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Theorem

Theorem

If limn→∞ E[θn − θ] = 0 = limn→∞Var[θn], then θn is consistent.

Proof.

Fix a δ > 0. By Markov’s Inequality,

0 ≤ P[|θn − θ| > δ] ≤ E[(θn − θ)2]

δ2=

E[(

(θn − E[θn]) + (E[θn]− θ))2]

δ2

=Var[θn]− 2E[θn − θ] · E[θn − E[θn]] + E[(E[θn]− θ)2]

δ2→ 0.

(148)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 134 / 193

Page 192: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

HW: Asymptotically Unbiased and Consistent Estimators

Assume that X1, ...,Xn are i.i.d., and for all i ∈ 1, 2, ..n, Xi ∼ exp(λ).

Are there any values λ > 0 such that

λn = max X1, ..,Xnλn = min X1, ..,Xn

(149)

as estimators of E[X ] = 1λ are Asymptotically Unbiased? Consistent?

If not, can we multiply them by scaling functions of n to get thesedesired properties?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 135 / 193

Page 193: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Mean-Squared Error (MSE)

The mean-squared error associated with an estimator θ is

MSE(θ) = E[(θ − θ)2] = Var[θ] + bias2(θ). (150)

If two unbiased estimators θ1, θ2 are such that MSE (θ1) < MSE (θ2),then we say that θ1 is more efficient than θ2.

If θ1 is more efficient that any other unbiased estimator θ, then wesay that θ1 is a uniformly minimum variance unbiased estimator.

HW:

Find MSE(λ) for the previous HW problem.

HW: Practice problems 46.1− 46.4, 46.7 in Finan.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 136 / 193

Page 194: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example: Estimator for Uniform Random Variable

Assume that X1, ...,Xn are i.i.d., and for all i ∈ 1, 2, ..n, Xi ∼ U(0, L).Define Ln as an estimator of L such that

Ln = max X1, ..,Xn . (151)

Is Ln Asymptotically Unbiased? Consistent? Asympotically zero -MSE?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 137 / 193

Page 195: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example: Estimator for Uniform Random Variable

By definition, if we set FLn(y) := P[Ln ≤ y ], then

FLn(y) =

(y

L

)nfLn(y) =

nyn−1

Ln.

(152)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 138 / 193

Page 196: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Example: Estimator for Uniform Random Variable

It follows that

Var[Ln] + bias2(Ln) = MSE(Ln)

= E[(Ln − L)2] =

∫ L

0(y − L)2 nyn−1

Lndy

=n

Ln

∫ L

0(y 2 − 2Ly + L2)yn−1dy

=3L2

(n + 1)(n + 2)→ 0.

(153)

So not only is Ln asympotically zero -MSE, but also Var[Ln]→ 0 andbias(Ln)→ 0 and so Ln is consistent by our previous theorem.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 139 / 193

Page 197: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Method of Moments and Matching Percentile

For a random variable X with parameters θ1, ..., θp, defineθ = (θ1, ..., θp) and

F (x | θ) = E[1X≤x | θ]

µ′k(θ) = E[X k | θ]

µ′k =1

n

n∑i=1

(xi )k

(154)

for a sequence of realizations X1 = x1 , ..., Xn = xn.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 140 / 193

Page 198: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Method of Moments and Matching Percentile

A method-of-moments estimate of the vector θ is any solution to thesystem of p equations

µ′k(θ) = µ′k . (155)

The smoothed empirical estimate of the 100g th percentile is obtained byarranging the observed values x1, ..., xn from smallest to largest:

x1, ..., xn →

x(1), ..., x(n)

(156)

and finding the integer p such that pn+1 ≤ g ≤ p+1

n+1 .

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 141 / 193

Page 199: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Method of Moments and Matching Percentile

From this, we define

ˆVaRg [X ] := [p + 1− (n + 1)g ]x(p) + [(n + 1)g − p]x(p+1). (157)

and the method of matching percentiles corresponds to matching

F ( ˆVaRgk [X ] | θ) = gk ∀k ∈ 1, ..., p (158)

and a set of arbitrarily chosen percentiles g1, ..., gp.

See Examples 58.5 and 58.8 in Finan for an application of matchingpercentiles.

See Examples 58.7 and 58.10 in Finan for an application of method ofmoments.

HW: Practice problems 58.6− 58.10 in Finan.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 142 / 193

Page 200: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #1

You are given:

Losses X follow a Losses follow a loglogistic distribution withcumulative distribution function characterized by parameters (θ, γ):

FX (x) =

(xθ

)γ1 +

(xθ

)γ , ∀x ≥ 1 (159)

A random sample of losses is

Sample Losses = 10, 35, 80, 86, 90, 120, 158, 180, 200, 210, 1500 .(160)

Calculate the estimate of θ by percentile matching, using the 40th and80th empirically smoothed percentile estimates.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 143 / 193

Page 201: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #1

The 40th percentile is the .4(12) = 4.8th smallest observation. Byinterpolation, it is .2(86) + .8(90) = 89.2. The 80th percentile is the.8(12) = 9.6th smallest observation. By interpolation it is.4(200) + .6(210) = 206. The equations to solve are

0.4 =

(89.2θ

)γ1 +

(89.2θ

)γ0.8 =

(206θ

)γ1 +

(206θ

)γ⇒ (γ, θ) = (2.1407, 107.08).

(161)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 144 / 193

Page 202: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #19

You are given:

A sample x1, x2, , x10 is drawn from a distribution with probabilitydensity function (with θ > σ):

fX (x) =1

2

(1

θe−

xθ +

1

σe−

), ∀x ∈ (0,∞) (162)

Summed values10∑i=1

xi = 150

10∑i=1

x2i = 5000.

(163)

Estimate θ by matching the first two sample moments to thecorresponding population quantities.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 145 / 193

Page 203: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #19

By definition of exponential distributions, we obtain the pair of equations:

150

10= E[X ] =

1

2(θ + σ)

5000

10= E[X 2] =

1

2(2θ2 + 2σ2)

⇒ (θ, σ) = (20, 10).

(164)

The solution can be found via

30 = θ + σ ⇒ σ = 30− θ500 = θ2 + σ2 = θ2 + (30− θ)2 = 2θ2 − 60θ + 900

⇒ θ ∈ 10, 20 .(165)

We choose θ = 20 to fix σ = 10.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 146 / 193

Page 204: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Two-sided Uniform Interval Estimation

Define the empirically observed quantities

X :=1

n

n∑k=1

xk

X 2 :=1

n

n∑k=1

x2k

(166)

for a sequence of n observed values X1 = x1, ...,Xn = xn . Assume thatthe Xini=1 are i.i.d. and drawn from a population X ∼ U[a, b]. Use

method of moments to determine a, b in terms of X ,X 2.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 147 / 193

Page 205: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Two-sided Uniform Interval Estimation

By definition,

E[X ] =a + b

2

E[X 2] =a2 + b2 + ab

3.

(167)

Estimation via matching of the first two moments:

X =a + b

2

X 2 =a2 + b2 + ab

3.

(168)

Algebra leads to

(a, b) =

(X −

√3

√X 2 − X

2,X +

√3

√X 2 − X

2). (169)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 148 / 193

Page 206: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Maximum Likelihood Estimation for Complete Data

Assume again a probability space (Ω,F ,P), where a subset Aini=1 of Fis contained within Ω, and

∪ni=1Ai ⊆ Ω. (170)

Here, the Ai represent observations obtained from an experimentconsisting of a sequence of i.i.d. random variables Xini=1, pulled from acommon distribution F (· | θ).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 149 / 193

Page 207: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Maximum Likelihood Estimation for Complete Data

The idea now is to use information obtained by the outcomes observedXi ∈ Ai. In fact, we determined that the likelihood function

L(θ) := Πni=1P[Xi ∈ Ai | θ] (171)

should be maximized, due to our observation that this independentsequence of events has occurred!

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 150 / 193

Page 208: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Maximum Likelihood Estimation for Complete Data

For ease of computation, we may wish to maximize the log-likelihoodfunction

l(θ) := ln [L(θ)] =n∑

i=1

ln (P[Xi ∈ Ai | θ]). (172)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 151 / 193

Page 209: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #4

You are given:

Losses X follow a Single-parameter Pareto distribution with densityfunction characterized by a parameter α ∈ (0,∞)

fX (x) =α

xα+1, ∀x > 1 (173)

A random sample of size five produced three losses with values 3, 6and 14, and two losses exceeding 25.

Determine the maximum likelihood estimate of α.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 152 / 193

Page 210: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #4

By definition, SX (x) = 1xα and so

L(α) = fX (3)fX (6)fX (14)SX (25)2 =α

3α+1

α

6α+1

α

14α+1

1

252α

=1

252

α3

157500α

l(α) = ln [L(α)] = 3 lnα− α ln (157500)− ln (252)

⇒ l ′(α) =3

α− ln (157500)

⇒ α =3

ln (157500)= 0.2507.

(174)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 153 / 193

Page 211: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #44

You are given:

Losses X follow an exponential distribution with mean θ

A random sample of 20 losses is distributed as follows:

Loss Range Frequency

[0,1000] 7

(1000,2000] 6

(2000,∞) 7

Determine the maximum likelihood estimate of θ.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 154 / 193

Page 212: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #44

Our loss function is, for p := e−1000θ ,

L(θ) = F (1000)7[F (2000)− F (1000)]6[1− F (2000)]7

=(

1− e−1000θ

)7 (e−

1000θ − e−

2000θ

)6 (e−

2000θ

)7

L(p) = (1− p)7(p − p2)6(p2)7 = p20(1− p)13

l(p) = 20 ln p + 13 ln (1− p)

l ′(p) =20

p− 13

1− p= 0

⇒ p =20

33= 1− e−

10001996.90

⇒ θ = 1996.90.

(175)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 155 / 193

Page 213: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Maximum Likelihood Estimation for Complete Data

See Examples 59.1− 59.5 in Finan for an application of maximumlikelohood estimators to loss models.

HW: Practice problems 59.2− 59.7 in Finan.

HW: Read Section 60 in Finan on Maximum Likelihood Estimationfor Incomplete Data.

HW: Read Section 67 in Finan on Estimation of Class (a, b, 0).

HW: Practice problems 67.2.2− 67.4 in Finan.

Note: Take-home final exam may have problems very similar in scopeto those above!

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 156 / 193

Page 214: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

Assume now that there is a history of claims X1, ...,Xn, all with acommon risk parameter Θ such that the Xk | Θnk=1 are i.i.d.

Furthermore, based on the history we have observed, we would like to useit to estimate the (common) expected loss

µ(Θ) := E[Xn+1 | Θ]. (176)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 157 / 193

Page 215: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

The question to ask is how Credible the data X1, ...,Xn is. As a riskmanager, there is the option to charge the book or manual premium

µ := E[µ(Θ)] (177)

or charge the weighted average premium for some sequence of weightsβ1, ..., βn:

X :=n∑

k=1

βkXk . (178)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 158 / 193

Page 216: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

As in the section on risk measures, we seek a metric Z for the credibilityof the observed claims X1, ...,Xn so far.

This value Z should depend on everything, and measure the likelihoodthat the observed data reflects reality, and should be used for premiumsover the assumed average µ:

Z : (Θ,X1, ...,Xn)→ [0, 1]. (179)

The balance reached between history and assumed µ results in an optimalpremium at time n + 1:

Pn+1 = (1− Z )µ+ Z X . (180)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 159 / 193

Page 217: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Limited Fluctuation Credibility

A risk manager may be tempted to give full credibility, Z = 1, toobserved data. In order to justify this, there must be some stability to theobserved data.

By assigning equal weight to the observed claims, αk := 1n , we seek to

determine whether, by the Central Limit Theorem

p ≤ P[∣∣∣∣ X − µµ

∣∣∣∣ ≤ r

]= P

[∣∣∣∣∣ X − µσ√n

∣∣∣∣∣ ≤ rµ√

n

σ

]≈ 2Φ

(rµ√

n

σ

)−1 (181)

for company-determined values of r and p, and assumed parameters(µ, σ2) = (E[Xj ],Var[Xj ]).

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 160 / 193

Page 218: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Limited Fluctuation Credibility

Hence, the question of full-credibility now reduces to a large enoughnumber of exposure units:

rµ√

n

σ≥ Φ−1

(1 + p

2

)=: yp. (182)

Rewritten in terms of n, the inequality is now

n ≥ λ0

µ

)2

λ0 :=(yp

r

)2.

(183)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 161 / 193

Page 219: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Limited Fluctuation Credibility: Aggregate Claims

Consider now the joint sequence (Ni ,Xi )ni=1, where Ni is the totalnumber of claims in year i , and Xi is the total loss in year i .

Assume that the Xi and Ni are independent of each other, and that theNi ∼ Poisson(λ) are i.i.d. as well as Xi independent with commondistribution FX .

Let Yij denote the j th claim in year i . Assume that the Yij are i.i.d. withmean θY and variance σ2

Y . It follows that

Xi =

Ni∑j=1

Yij . (184)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 162 / 193

Page 220: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Limited Fluctuation Credibility: Aggregate Claims

Based on this set-up, the independence of the claim frequency and claimsize leads to

E[Xi ] = E[Ni ] · E[Yij ] = λθY

Var[Xi ] = Var[Ni ] · E[Yij ]2 + E[Ni ] ·Var[Yij ]

= λ(θ2Y + σ2

Y ).

(185)

It follows that for full credibility, we need

n ≥ λ0

σ2Xi

E[Xi ]2= λ0

θ2Y + σ2

Y

λθ2Y

(186)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 163 / 193

Page 221: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #2

You are given:

The number of claims has a Poisson distribution.

Claim sizes Yij have a Pareto distribution with common values(θY , σ

2Y ) = (0.10, 0.015).

The number of claims and claim sizes are independent.

The observed pure premium should be within 2% of the expectedpure premium 90% of the time.

Determine the expected number of claims needed for full credibility.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 164 / 193

Page 222: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #2

The expected number of claims is equal to λn. From the informationprovided, r = 0.02 and y0.90 = 1.645, and so for full credibility, we require

λn ≥ λ ·

(λ0

σ2Xi

E[Xi ]2

)

= λ0θ2Y + σ2

Y

θ2Y

=

(1.645

0.02

)2(1 +

0.0152

0.102

)= 16913.

(187)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 165 / 193

Page 223: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Greatest Accuracy Credibility

One way of determining Z ∈ (0, 1) is by optimizing over all linear functionsof past data:

minα1,...αn

E

(µ(Θ)−

[µ(1−

n∑k=1

αk) +n∑

k=1

αkXk

])2 . (188)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 166 / 193

Page 224: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Greatest Accuracy Credibility

Using Hilbert space theory, Shiu and Sing show the optimal weights to be

αk =

E[(µ−µ(Θ))2]E[(Xk−µ(Θ))2]

1 +∑n

j=1E[(µ−µ(Θ))2]E[(Xj−µ(Θ))2]

=

Var[µ(Θ)]E[Var[Xk |Θ]]

1 +∑n

j=1Var[µ(Θ)]

E[Var[Xj |Θ]]

1− Z = 1−n∑

k=1

αk =1

1 +∑n

j=1E[(µ−µ(Θ))2]E[(Xj−µ(Θ))2]

=1

1 +∑n

j=1Var[µ(Θ)]

E[Var[Xj |Θ]]

(189)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 167 / 193

Page 225: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Buhlmanns k−factor

From the previous slide, we have

Z =

∑nj=1

Var[µ(Θ)]E[Var[Xj |Θ]]

1 +∑n

j=1Var[µ(Θ)]

E[Var[Xj |Θ]]

. (190)

If, however, we have a common value k such that, for all j ∈ 1, ..., n,

1

k:=

Var[µ(Θ)]

E[Var[Xj | Θ]](191)

then

Z =n 1k

1 + n 1k

=n

n + k. (192)

This common value k is known as Buhlmanns k−factor. Notice that ifn→∞, then Z → 1.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 168 / 193

Page 226: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Buhlmanns k−factor

Furthermore, we have that for constant β := E[Var[Xk | Θ]],

βk :=

1E[Var[Xk |Θ]]∑nj=1

1E[Var[Xj |Θ]]

=1

n(193)

and so we can write

Pn+1 = (1− Z )µ+ Z

(X1 + ...+ Xn

n

). (194)

In this setting, we can extend to number of claims or other observedvariables V1, ...,Vn and say that our Buhlmann Credible Estimate forVn+1 is

Vn+1 = (1− Z )µV + Z

(V1 + ...+ Vn

n

). (195)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 169 / 193

Page 227: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Compound Poisson Process

Assume the existence of a claim count random variable such thatN ∼ Poisson(λ).

Assume that the claim sizes X1,X2, .. to be i.i.d. copies of arandom variable X .

Assume that X , X1,X2, .. are independent of N.

Based on these assumptions, define the aggregate claim Y | N such that

Y | N :=N∑

k=1

Xk . (196)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 170 / 193

Page 228: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Compound Poisson Process

By the Tower Property of Conditional Expectations, and the fact that N isPoisson-distributed, we have

E[Y ] = E[E[Y | N]] = E[NE[X ]] = E[N]E[X ].

Var[Y ] = E[Var[Y | N]] + Var [E[Y | N]]

= E[NVar[X ]] + Var [NE[X ]]

= E[N]Var[X ] + Var [N]E[X ]2

= E[N]Var[X ] + E [N]E[X ]2

= E[N]E[X 2]

(197)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 171 / 193

Page 229: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #8

You are given:

Claim counts follow a Poisson distribution with mean θ.

Claim sizes follow an exponential distribution with mean 10θ .

Claim counts and claim sizes are independent, given θ.

The prior distribution has probability density function

fΘ(θ) =5

θ6for θ > 1. (198)

Calculate Buhlmanns k−factor for aggregate losses.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 172 / 193

Page 230: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #8

Define N as the Poisson claim count variable, X as the claim size variable,and Y as the aggregate loss variable. It follows that

µ(θ) = E[Y | Θ = θ] = E[N | Θ = θ] · E[X | Θ = θ] = θ · 10θ = 10θ2.

v(θ) = Var[Y | Θ = θ] = E[N | Θ = θ] · E[X 2 | Θ = θ] = 200θ3.(199)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 173 / 193

Page 231: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #8

To compute k , we need

µ = E[µ(Θ)] =

∫ ∞1

10θ2 · 5

θ6dθ =

50

3

Var[µ(Θ)] = Var[10Θ2] =

∫ ∞1

(10θ2 − 50

3

)2

fΘ(θ)dθ

=11111

50= 222.22

E[v(Θ)] =

∫ ∞1

200θ3 · fΘ(θ)dθ = 500

⇒ k =E[v(Θ)]

Var[µ(Θ)]=

500

222.22= 2.25.

(200)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 174 / 193

Page 232: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Bayesian Parameter Estimation

Another way to use previously observed data to estimate future claims andlosses is via Bayesian Parameter Estimation. In this approach, weassume that we wish to estimate X using observed data by firstconditioning the parameter distribution on observed data :

E[Xn+1 | X1, ...,Xn] =

∫θ∈R

E[Xn+1 | θ]fΘ(θ | X1, ...,Xn)dθ. (201)

Question: Is there a connection between Bayesian Parameter Estimationand Credibility Theory?

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 175 / 193

Page 233: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #45

You are given:

The size X of a claim is uniformly distributed on the interval [0, θ]

The prior distribution has probability density function

fΘ(θ) =500

θ2for θ > 500. (202)

Two claims, x1 = 400 and x2 = 600, are observed. You calculate theposterior distribution as:

fΘ(θ | X1 = 400,X2 = 600) = 3

(6003

θ4

)for θ > 600. (203)

Calculate the Bayesian premium E[X3 | X1 = x1,X2 = x2].

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 176 / 193

Page 234: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

SOA Exam C Practice Question #45

As X ∼ U[0, θ], we have E[X | Θ] = 12 Θ. It follows that

E[X3 | X1 = 400,X2 = 600] =

∫θ∈R

E[X3 | θ]fΘ(θ | X1 = 400,X2 = 600)dθ

=

∫ ∞600

1

2θ · 3

(6003

θ4

)dθ

= 36003

2

∫ ∞600

1

θ3dθ

= 36003

2

1

2 · 6002= 450.

(204)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 177 / 193

Page 235: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

Recall that if we take a sequence of i.i.d. (independent, identicallydistributed) random variables X1,X2, ...,Xn, called a random sample,with common mean and variance:

E[Xi ] = µ

Var[Xi ] = σ2(205)

then

E

[X1+X2+...+Xn

n − µσ√n

]= 0

Var

(X1+X2+...+Xn

n − µσ√n

)= 1

(206)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 178 / 193

Page 236: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

Recall that if we take a sequence of i.i.d. (independent, identicallydistributed) random variables X1,X2, ...,Xn, called a random sample,with common mean and variance:

E[Xi ] = µ

Var[Xi ] = σ2(205)

then

E

[X1+X2+...+Xn

n − µσ√n

]= 0

Var

(X1+X2+...+Xn

n − µσ√n

)= 1

(206)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 178 / 193

Page 237: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

If the random sample comes from a Normal population, then by theprevious slide, we know

X1+X2+...+Xnn − µσ√n

∼ N(0, 1) (207)

This implies we can use our Observed Sample Mean X1+X2+...+Xnn to

estimate the Population Sample Mean µ as long as we know σ a priori:

P

[−zα

2≤

X1+X2+...+Xnn − µσ√n

≤ zα2

]= P

[−zα

2≤ Z ≤ zα

2

]= Φ

(zα

2

)− Φ

(−zα

2

)= 1− α

(208)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 179 / 193

Page 238: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

If the random sample comes from a Normal population, then by theprevious slide, we know

X1+X2+...+Xnn − µσ√n

∼ N(0, 1) (207)

This implies we can use our Observed Sample Mean X1+X2+...+Xnn to

estimate the Population Sample Mean µ as long as we know σ a priori:

P

[−zα

2≤

X1+X2+...+Xnn − µσ√n

≤ zα2

]= P

[−zα

2≤ Z ≤ zα

2

]= Φ

(zα

2

)− Φ

(−zα

2

)= 1− α

(208)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 179 / 193

Page 239: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

In fact, we can tune the accuracy of our prediction by how small wechoose α > 0 and how large n of a sample we take. Symbolically, if weobserve our sample mean to be x , then we are 100 · (1− α)% that

µ ∈(

x − zα2

σ√n, x + zα

2

σ√n

)

Some values:

100 · (1− α)% α2 zα

2

90% 0.05 1.645

95% 0.025 1.960

99% 0.005 2.576

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 180 / 193

Page 240: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Introduction

In fact, we can tune the accuracy of our prediction by how small wechoose α > 0 and how large n of a sample we take. Symbolically, if weobserve our sample mean to be x , then we are 100 · (1− α)% that

µ ∈(

x − zα2

σ√n, x + zα

2

σ√n

)Some values:

100 · (1− α)% α2 zα

2

90% 0.05 1.645

95% 0.025 1.960

99% 0.005 2.576

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 180 / 193

Page 241: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Interval Width

In general, a confidence interval with width n observations and100 · (1− α)% certainty has a total width

w = 2zα2· σ√

n. (209)

Inverting this for n, we derive the number n observations required for agiven width w , confidence level 100 · (1− α)%, and known deviation σ tobe

n =(

2zα2· σ

w

)2. (210)

For example, if α = 0.05, σ = 25,w = 10, then n =(2 · 1.96 · 25

10

)2= 96.

Notice that n ∝ 1w2 .

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 181 / 193

Page 242: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Interval Width

In general, a confidence interval with width n observations and100 · (1− α)% certainty has a total width

w = 2zα2· σ√

n. (209)

Inverting this for n, we derive the number n observations required for agiven width w , confidence level 100 · (1− α)%, and known deviation σ tobe

n =(

2zα2· σ

w

)2. (210)

For example, if α = 0.05, σ = 25,w = 10, then n =(2 · 1.96 · 25

10

)2= 96.

Notice that n ∝ 1w2 .

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 181 / 193

Page 243: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Interval Width

In general, a confidence interval with width n observations and100 · (1− α)% certainty has a total width

w = 2zα2· σ√

n. (209)

Inverting this for n, we derive the number n observations required for agiven width w , confidence level 100 · (1− α)%, and known deviation σ tobe

n =(

2zα2· σ

w

)2. (210)

For example, if α = 0.05, σ = 25,w = 10, then n =(2 · 1.96 · 25

10

)2= 96.

Notice that n ∝ 1w2 .

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 181 / 193

Page 244: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Unknown σ

In most cases, one can safely assume that we are also estimating theVariance of the population along with the population mean. By the CLT,we know that for any random sample with mean µ and variance σ2,

P

[−zα

2≤

X1+X2+...+Xnn − µσ√n

≤ zα2

]→ 1− α. (211)

If we work only from observed data, then we recall that our SampleMean-Variance pair (X ,S2) has the form

S2 =n∑

i=1

(Xi − X

)2

n − 1

X =X1 + X2 + ...Xn

n

(212)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 182 / 193

Page 245: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Unknown σ

In most cases, one can safely assume that we are also estimating theVariance of the population along with the population mean. By the CLT,we know that for any random sample with mean µ and variance σ2,

P

[−zα

2≤

X1+X2+...+Xnn − µσ√n

≤ zα2

]→ 1− α. (211)

If we work only from observed data, then we recall that our SampleMean-Variance pair (X ,S2) has the form

S2 =n∑

i=1

(Xi − X

)2

n − 1

X =X1 + X2 + ...Xn

n

(212)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 182 / 193

Page 246: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

If we work only from observed data, we can use our modified version ofthe CLT:

Theorem

P

[−zα

2≤ X − µ

S√n

≤ zα2

]→ 1− α. (213)

The speed of convergence depends on the underlying populationdistribution, of course. As a general rule of thumb, when using onlyobserved data, one can consider the above limit achieved if n ≥ 40.

As a computational consideration, recall that

S2 =n∑

i=1

(Xi − X

)2

n − 1

=1

n − 1

n∑i=1

X 2i −

1

n · (n − 1)

(n∑

i=1

Xi

)2

(214)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 183 / 193

Page 247: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

If we work only from observed data, we can use our modified version ofthe CLT:

Theorem

P

[−zα

2≤ X − µ

S√n

≤ zα2

]→ 1− α. (213)

The speed of convergence depends on the underlying populationdistribution, of course. As a general rule of thumb, when using onlyobserved data, one can consider the above limit achieved if n ≥ 40.

As a computational consideration, recall that

S2 =n∑

i=1

(Xi − X

)2

n − 1=

1

n − 1

n∑i=1

X 2i −

1

n · (n − 1)

(n∑

i=1

Xi

)2

(214)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 183 / 193

Page 248: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Bionomial Distribution - Polling ?

Imagine now that we are polling a group of people whose answer is eitheryes or no. Assign the value 1 for an answer of yes, 0 for the answer no.Define Xi to be the numerical value of the i th respondent’s answer, and

p :=

∑ni=1 Xi

n(215)

the sample proportion of positive respondents. The question remains : howgood of an estimation of the total population positive proportion p is p ?.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 184 / 193

Page 249: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Bionomial Distribution - Polling ?

Luckily, we have seen this Binomial random variable before, and we knowthat given a population proportion p of a yes answer, we have

E[p] := E

[1

n

n∑i=1

Xi

]= p

Var(p) := Var

(1

n

n∑i=1

Xi

)=

p · (1− p)

n

= σ2p

= E[S2] ............... Really ?

(216)

It follows that for large n , we can make the approximation

p − p

σp∼ N(0, 1). (217)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 185 / 193

Page 250: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Bionomial Distribution - Polling ?

Luckily, we have seen this Binomial random variable before, and we knowthat given a population proportion p of a yes answer, we have

E[p] := E

[1

n

n∑i=1

Xi

]= p

Var(p) := Var

(1

n

n∑i=1

Xi

)=

p · (1− p)

n

= σ2p = E[S2]

............... Really ?

(216)

It follows that for large n , we can make the approximation

p − p

σp∼ N(0, 1). (217)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 185 / 193

Page 251: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Bionomial Distribution - Polling ?

Luckily, we have seen this Binomial random variable before, and we knowthat given a population proportion p of a yes answer, we have

E[p] := E

[1

n

n∑i=1

Xi

]= p

Var(p) := Var

(1

n

n∑i=1

Xi

)=

p · (1− p)

n

= σ2p = E[S2] ............... Really ?

(216)

It follows that for large n , we can make the approximation

p − p

σp∼ N(0, 1). (217)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 185 / 193

Page 252: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Bionomial Distribution - Polling ?

Luckily, we have seen this Binomial random variable before, and we knowthat given a population proportion p of a yes answer, we have

E[p] := E

[1

n

n∑i=1

Xi

]= p

Var(p) := Var

(1

n

n∑i=1

Xi

)=

p · (1− p)

n

= σ2p = E[S2] ............... Really ?

(216)

It follows that for large n , we can make the approximation

p − p

σp∼ N(0, 1). (217)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 185 / 193

Page 253: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Bionomial Distribution - Polling ?

Formally, the modified CLT tells us that

P

−zα2≤ p − p√

p·(1−p)√n

≤ zα2

→ 1− α. (218)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 186 / 193

Page 254: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Bionomial Distribution - Polling ?

This can be inverted to say that for large n,

P [p− ≤ p ≤ p+] ≈ 1− α

p− =p +

z2α2n − zα

2

√pqn +

z2α2

4n2

1 +z2α2n

p+ =p +

z2α2n + zα

2

√pqn +

z2α2

4n2

1 +z2α2n

(219)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 187 / 193

Page 255: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

One sided Confidence Bounds

Since

P

[X1+X2+...+Xn

n − µS√n

≤ zα

]→ 1− α

P

[X1+X2+...+Xn

n − µS√n

≥ −zα

]→ 1− α

(220)

we say that

µ < x + zαs√n

is a Large Sample Upper Confidence Bound for µ

µ > x − zαs√n

is a Large Sample Lower Confidence Bound for µ.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 188 / 193

Page 256: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

T-distributions

If the population of interest is normal, then X1,X2, ...,Xn constitutes anormal random sample with both µ, σ unknown.

Since we need σ to estimate µ, we do the next best thing and substitute Sfor σ, as before.

Tn−1 :=

(1n

∑ni=1 Xi

)− µ

S√n

fTn−1(x) =1√

(n − 1)π

Γ(n2 )

Γ(n−12 )

1(1 + x2

n−1

) n2

→ 1√2π

e−x2

2 =: fZ (x)

E[Tn−1] = 0

Var(Tn−1) =n − 1

n − 3

(221)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 189 / 193

Page 257: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

T-distributions

If the population of interest is normal, then X1,X2, ...,Xn constitutes anormal random sample with both µ, σ unknown.Since we need σ to estimate µ, we do the next best thing and substitute Sfor σ, as before.

Tn−1 :=

(1n

∑ni=1 Xi

)− µ

S√n

fTn−1(x) =1√

(n − 1)π

Γ(n2 )

Γ(n−12 )

1(1 + x2

n−1

) n2

→ 1√2π

e−x2

2 =: fZ (x)

E[Tn−1] = 0

Var(Tn−1) =n − 1

n − 3

(221)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 189 / 193

Page 258: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

T-distributions

If the population of interest is normal, then X1,X2, ...,Xn constitutes anormal random sample with both µ, σ unknown.Since we need σ to estimate µ, we do the next best thing and substitute Sfor σ, as before.

Tn−1 :=

(1n

∑ni=1 Xi

)− µ

S√n

fTn−1(x) =1√

(n − 1)π

Γ(n2 )

Γ(n−12 )

1(1 + x2

n−1

) n2

→ 1√2π

e−x2

2 =: fZ (x)

E[Tn−1] = 0

Var(Tn−1) =n − 1

n − 3

(221)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 189 / 193

Page 259: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

T-distributions

If the population of interest is normal, then X1,X2, ...,Xn constitutes anormal random sample with both µ, σ unknown.Since we need σ to estimate µ, we do the next best thing and substitute Sfor σ, as before.

Tn−1 :=

(1n

∑ni=1 Xi

)− µ

S√n

fTn−1(x) =1√

(n − 1)π

Γ(n2 )

Γ(n−12 )

1(1 + x2

n−1

) n2

→ 1√2π

e−x2

2 =: fZ (x)

E[Tn−1] = 0

Var(Tn−1) =n − 1

n − 3

(221)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 189 / 193

Page 260: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

T-distributions

Define tα,n−1 to satisfy

P[Tn−1 ≥ tα,n−1] = α (222)

It follows that

P[−tα2,n−1 ≤ Tn−1 ≤ tα

2,n−1] = 1− α (223)

and the corresponding two-sided and one-sided confidence intervals can bederived.

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 190 / 193

Page 261: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Prediction Intervals

Given a normal random sample X1,X2, ...,Xn, we want to predict the next,independent value Xn+1. One very tempting predictor is the historical, orsample, average X := 1

n

∑ni=1 of the previous n values. The residual error

attached with this prediction is X − Xn+1, and we can compute

E[X − Xn+1] = µ− µ = 0

Var(X − Xn+1

)= Var

(X)

+ Var(Xn+1)

=σ2

n+ σ2 = σ2 ·

(1 +

1

n

) (224)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 191 / 193

Page 262: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Prediction Intervals

With the above information, it follows that

X − Xn+1√(σ2 ·

(1 + 1

n

)) ∼ N(0, 1)

X − Xn+1√(S2 ·

(1 + 1

n

)) ∼ Tn−1

(225)

and we say that if the sample mean is x , and sample deviation is s, thenthe prediction interval for a single observation from a normal populationis

P

[∣∣∣Xn+1 − x∣∣∣ ≤ tα

2,n−1 · s ·

√1 +

1

n

]= 1− α (226)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 192 / 193

Page 263: STT 459: Actuarial Models - Michigan State Universityusers.math.msu.edu/users/albert/lossmodels.pdf · STT 459: Actuarial Models Albert Cohen Actuarial Sciences Program Department

Confidence Intervals for Variance

Given a normal random sample X1,X2, ...,Xn, we see that

n − 1

σ2S2 =

∑ni=1(xi − X )2

σ2(227)

has a chi-squared (χ2n−1) distribution with n − 1 degrees of freedom.

Because S2 is always positive, and because the chi-squared distribution isasymmetric, we compute the confidence interval

P[χ2

1−α2,n−1 <

n − 1

σ2S2 < χ2

α2,n−1

]= 1− α

where P[χ2n−1 > χ2

α,n−1]]

= α

(228)

Albert Cohen (MSU) STT 459: Actuarial Models MSU Spring 2015 193 / 193