stochastic numerics for the gas-phase synthesis of...

45
Stochastic numerics for the gas-phase synthesis of nanoparticles Shraddha Shekar 1 , Alastair J. Smith 1 , Markus Sander 1 , Markus Kraft 1 and Wolfgang Wagner 2 1 Department of Chemical Engineering and Biotechnology University of Cambridge 2 Weierstrass Institute for Applied Analysis and Stochastics, Berlin March 2011 CoMo GROUP March 2011 1 / 45

Upload: others

Post on 26-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Stochastic numerics for the gas-phase synthesis ofnanoparticles

Shraddha Shekar1, Alastair J. Smith1, Markus Sander1, Markus Kraft1

and Wolfgang Wagner2

1Department of Chemical Engineering and BiotechnologyUniversity of Cambridge

2Weierstrass Institute for Applied Analysis and Stochastics, Berlin

March 2011

CoMoGROUP March 2011 1 / 45

Page 2: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Outline

1 IntroductionMotivation

2 ModelType spaceParticle processesAlgorithm

3 Numerical study

4 Conclusion

CoMoGROUP March 2011 2 / 45

Page 3: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Motivation

What are nanoparticles? Why are they important?Particles sized between 1-100 nm.Both inorganic and organic nanoparticles find wide applications invarious fields.

Why model nanoparticle systems?To optimise industrial operations and to obtain products of highlyspecific properties for sensitive applications.To understand the molecular level properties that are difficult to beobserved experimentally.

CoMoGROUP March 2011 3 / 45

Page 4: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Motivation II

Salient features of the current model:Fully-coupled multidimensional stochastic population balance model.Describing various properties of nanoparticles at an unprecedentedlevel of detail.Tracking properties not only at macroscopic level but also at amolecular level.

CoMoGROUP March 2011 4 / 45

Page 5: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Applications of silica nanoparticles

Silica nanoparticles are amorphous and have Si:O = 1:2.

Their applications include:CatalysisBio-medical applicationsSupport material for functional nanoparticlesFillers/BindersOptics

CoMoGROUP March 2011 5 / 45

Page 6: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Physical system

To describe the system at a macroscopic level it is essential to understandit at a molecular level.

Precursor (TEOS) Flame reactor

P ≥ 1 atm

T ≈ 1100 - 1500 K

Silica nanoparticles

Indu

stria

l Sca

leM

olec

ular

Sca

le

Figure: Flame spray pyrolysis system

CoMoGROUP March 2011 6 / 45

Page 7: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Type space I

Each particle is represented as:

Pq = Pq(p1, . . . , pn(Pq),C).

Particle Pq consists of n(Pq) primary particles pi withi ∈ {1, . . . , n(Pq)} and q ∈ {1, . . . ,N}, where N is the total numberof particles in the system.

Si

O

O

O

OSi

O

OH

O

Si

Si

Si

Pq = Pq(p1,...,pn(Pq),C)

O Si

O

O

pi = pi(ηSi,ηO,ηOH)

HO

OH

HO

Figure: Type Space.CoMoGROUP March 2011 7 / 45

Page 8: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Type space II

Each primary particle pi is represented as:

pi = pi (ηSi, ηO, ηOH)

where ηx (ηx ∈ Z with ηx ≥ 0) is the number of chemical units oftype x ∈ {Si,O,OH}.

CoMoGROUP March 2011 8 / 45

Page 9: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Type space III

C is a lower diagonal matrix of dimension n(Pq)× n(Pq) storing thecommon surface between two primary particles:

C(Pq) =

0 · · · 0 · · · 0

C21. . . 0 · · · 0

.... . . . . . · · ·

...

Ci1 · · · Cij. . .

...... · · ·

... · · ·...

.

The element Cij of matrix C has the following property:

Cij =

{0, if pi and pj are non-neighbouring ,Cij > 0, if pi and pj are neighbouring.

CoMoGROUP March 2011 9 / 45

Page 10: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Particle processes

Particles are transformed by the following processes:InceptionSurface reactionCoagulationSinteringIntra-particle reaction

CoMoGROUP March 2011 10 / 45

Page 11: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Particle processes

Particles are transformed by the following processes:InceptionSurface reactionCoagulationSinteringIntra-particle reaction

CoMoGROUP March 2011 11 / 45

Page 12: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Inception

Two molecules in gas phase collide to form a particle consisting of oneprimary.

HO

Si

OH

OH

OH

HO

Si

OH

OH

HO+

HO

Si

OH

OH

OH

HO

Si

OH

OH

HO

HO

Si

OH

O

OH Si

OH

OH

HO-2 H2O

[monomers] [primary particle]

Figure: Inception of primary particles from gas-phase monomers.

An inception event increases the number of particles in the system

molecule + molecule→ PN(p1,C),

C = 0.

Initial state of primary p1 given by:

p1 = p1(ηSi = 2, ηO = 1, ηOH = 6),

CoMoGROUP March 2011 12 / 45

Page 13: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Inception rate

Inception rate for each particle (Pq) calculated using the freemolecular kernel:

Rinc(Pq) =12K fmNA

2C 2g ,

NA is Avogadro’s constant, Cg is the gas-phase concentration of theincepting species (Si(OH)4),

K fm = 4

√πkBTmg

(d2g ),

kB is the Boltzmann constant, T is the system temperature, mg anddg are the mass and diameter respectively of the gas-phase moleculeSi(OH)4.

CoMoGROUP March 2011 13 / 45

Page 14: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Particle processes

Particles are transformed by the following processes:InceptionSurface reactionCoagulationSinteringIntra-particle reaction

CoMoGROUP March 2011 14 / 45

Page 15: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Surface reaction

Dehydration reaction between gas-phase monomer and particlesurface:

O

Si

O

O

Si

HO

O

+Si(OH)4

-H2O

O

Si

O

O

Si

O

O

Si

OH

OH

HO

Figure: Surface reaction between a particle and a gas-phase molecule.

Surface reaction transforms particle as:

Pq + molecule→ Pq(p1, ., pi′, .., pn(Pq),C

′),

p′i → pi (ηSi + 1, ηO + 1, ηOH + 2).

CoMoGROUP March 2011 15 / 45

Page 16: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Particle rounding due to surface reaction

Surface reaction also alters the common surface (C→ C′).Net common surface area of pi changes due to volume addition:

∆s(pi ) = (v(pi′)− v(pi ))

2σdp(pi )

,

where σ is the surface smoothing factor (0 ≤ σ ≤ 2).C′ is given by:

C ′ij =

{0, if pi and pj are non-neighbouring ,Cij + ∆s(pi ), if pi and pj are neighbouring.

CoMoGROUP March 2011 16 / 45

Page 17: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Surface reaction rate

Surface reaction rate calculated using equation of Arrhenius form:

Rsurf(Pq) = Asurf exp(− Ea

RT

)ηOH(Pq)NACg,

Asurf is pre-exponential factor (obtained from collision theory),Ea is activation energy,ηOH(Pq) is the total number of –OH sites on particle Pq.

CoMoGROUP March 2011 17 / 45

Page 18: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Particle processes

Particles are transformed by the following processes:InceptionSurface reactionCoagulationSinteringIntra-particle reaction

CoMoGROUP March 2011 18 / 45

Page 19: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Coagulation

Two particles collide and stick to each other:

+

PqPr Ps

Figure: Coagulation between two particles.

Coagulation of particles Pq and Pr forms new particle Ps as:

Pq + Pr → Ps(p1, ..., pn(Pq), p(n(Pq)+1), ..., pn(Pq)+n(Pr ),C).

CoMoGROUP March 2011 19 / 45

Page 20: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Coagulation II

Primary pi from particle Pq and primary pj from Pr are assumed to bein point contact.The matrix C(Ps) is calculated as:

C(Ps) =

...C(Pq) · · · Cij · · ·

......

. . . Cji . . . C(Pr )...

and has dimension n(Ps)× n(Ps), where n(Ps) = n(Pq) + n(Pr ).

CoMoGROUP March 2011 20 / 45

Page 21: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Coagulation rate

Coagulation rate between Pq and Pr calculated using transitioncoagulation kernel:

K tr(Pq,Pr ) =K sf(Pq,Pr )K fm(Pq,Pr )

K sf(Pq,Pr ) + K fm(Pq,Pr ),

where the slip-flow kernel is:

K sf(Pq,Pr ) =2kBT3µ

(1 + 1.257Kn(Pq)

dc(Pq)+

1 + 1.257Kn(Pr )

dc(Pr )

)× (dc(Pq) + dc(Pr )) ,

and the free molecular collision kernel is:

K fm(Pq,Pr ) = 2.2

√πkBT

2

(1

m(Pq)+

1m(Pr )

) 12

(dc(Pq) + dc(Pr ))2

CoMoGROUP March 2011 21 / 45

Page 22: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Particle processes

Particles are transformed by the following processes:InceptionSurface reactionCoagulationSinteringIntra-particle reaction

CoMoGROUP March 2011 22 / 45

Page 23: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Sintering

Sintering described using viscous-flow model.

pipj

pipj pk

No Sintering Partial Sintering Complete Sintering

Figure: Evolution of sintering process with time.

Sintering between pi and pj of a single particle Pq calculated on aprimary particle-level.

CoMoGROUP March 2011 23 / 45

Page 24: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Sintering level

Sintering level defined to represent degree of sintering between pi andpj :

s(pi , pj) =

Ssph(pi ,pj )Cij

− 213

1− 213

.

Ssph(pi , pj) is the surface area of a sphere with the same volume asthe two primaries.Pq conditionally changes depending on the sintering level s(pi , pj).Two types are defined depending upon a threshold (95%):

Partial sintering s(pi , pj) < 0.95Complete sintering s(pi , pj) ≥ 0.95

CoMoGROUP March 2011 24 / 45

Page 25: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Partial sintering

Surface areas of primaries are reduced by a finite amount.–OH sites at contact surface react to form Si–O–Si bonds:

SiO

O

OOH

Si

SiSi

Si

O

O

OHO

Si

SiSi

OH HO

-2H2O

OHOH

OH OHOH

HO

OH

OHOH OH

OH OH

OH

OH

OH

OH

OH

OH

OHOH OH

OH

OH

SiO

O

OO

Si

SiSi

Si

O

O

O

Si

SiSi

O

OHOH

OH OHOH

HO

OH

OHOH OH

OH OH

OH

OH

OH

OH

OH

OH

OHOH OH

OH

OH

pi

pj

pi

pjReactions at particle neck

Figure: Dehydration reaction due to sintering.

CoMoGROUP March 2011 25 / 45

Page 26: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Partial sintering II

Surface density of –OH sites assumed constant throughout sintering.The change in the internal variables of primaries pi and pj given by:

∆ηOH(pi ) = ∆ηOH(pj) = ρs(Pq)∆Cij/2,

∆ηO(pi ) = ∆ηO(pj) = −0.5×∆ηOH(pi ),

∆ηSi(pi ) = ∆ηSi(pj) = 0.

CoMoGROUP March 2011 26 / 45

Page 27: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Partial sintering III

Particle continuously transforms due to partial sintering as:

Pq(p1, . . . , pn(Pq),C)→ Pq(p1, .., p′i , p′j , .., pn(Pq),C

′)

where,p′i = pi (ηSi, ηO −∆ηO(pi ), ηOH −∆ηOH(pi )),

p′j = pj(ηSi, ηO −∆ηO(pj), ηOH −∆ηOH(pj)).

Element of C′ given by:

C ′ij = Cij −∆t

τ(pi , pj)(Cij − Ssph(pi , pj)) ,

where ∆t is a time interval.

CoMoGROUP March 2011 27 / 45

Page 28: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Complete sintering

pi and pj replaced by new primary p′′k .Particle transforms due to complete sintering as:

Pq(p1, . . . , pn(Pq),C)→ Pq(p1, .., p′′k , .., pn(Pq),C′′),

where new primary:

p′′k = p′′k (ηSi(pi ) + ηSi(pj), ηO(pi ) + ηO(pj), ηOH(pi ) + ηOH(pj)) .

CoMoGROUP March 2011 28 / 45

Page 29: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Complete sintering II

C is changed by removing columns and rows i and j and adding newcolumn and row k :

C′′ =

0 · · · 0 · · · 0...

. . ....

......

C ′′k1 · · · 0 · · · 0...

......

. . ....

C(n(Pq)−1)1 · · · C ′′(n(Pq)−1)k · · · 0

.

CoMoGROUP March 2011 29 / 45

Page 30: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Sintering rate

Sintering rate between pi and pj equivalent to rate of change of theircommon surface ∆Cij in time ∆t:

∆Cij

∆t= − 1

τ(pi , pj)(Cij − Ssph(pi , pj)),

Ssph(pi , pj) is the surface area of a sphere with the same volume asthe two primaries.

CoMoGROUP March 2011 30 / 45

Page 31: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Characteristic sintering time

Characteristic sintering time of pi and pj is:

τ(pi , pj) = As × dp(pi , pj)× exp(

Es

T

(1− dp,crit

dp(pi , pj)

)),

where dp(pi , pj) is the minimum diameter of pi and pj , andAs, Es and dp,crit are sintering parameters.

CoMoGROUP March 2011 31 / 45

Page 32: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Particle processes

Particles are transformed by the following processes:InceptionSurface reactionCoagulationSinteringIntra-particle reaction

CoMoGROUP March 2011 32 / 45

Page 33: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Intra-particle reaction

Reaction of two adjacent –OH sites on one particle:

OSi

OH

O

OSi

HO

O

O

Si

OSi

O

O

OSi

O

OSi

- H2O

Figure: Intra-particle reaction.

Intra-particle reaction transforms particle as:

Pq(p1, .., pi , .., pn(Pq),C)→ Pq(p1, .., p′i , .., pn(Pq),C),

wherep′i → pi (ηSi, ηO + 1, ηOH − 2).

CoMoGROUP March 2011 33 / 45

Page 34: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Intra-particle reaction rate

Deduce rate of intra-particle reaction from surface reaction rate andavergae sintering rate such that Si/O ratio of 1/2 is attained:

Rint(Pq) = Asurf exp(− Ea

RT

)ηOH(Pq)NACg

−ρs(Pq)

2

n(Pq)∑i ,j=1

Cij − Ssph(pi , pj)

τ(pi , pj)

,where ρs(Pq) = ηOH(Pq)/S(Pq) is the surface density of active sites.

CoMoGROUP March 2011 34 / 45

Page 35: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Algorithm

Input: State of the system Q0 at initial time t0 and final time tf .Output: State of the system Q at final time tf .t ←− t0,Q ←− Q0;while t < tf do

Calculate an exponentially distributed waiting time τ with parameter;

Rtot(Q) = Rinc(Q) + Rcoag(Q) + Rsurf(Q) + Rint(Q).

Choose a process m according to the probability

P(m) =Rm(Q)

Rtot(Q),

where Rm is the rate of the process m ∈ {inc, coag, surf, int};Perform process m;Update sintering level of all particles;Increment t ←− t + τ ;

endCoMoGROUP March 2011 35 / 45

Page 36: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Numerical study

For a given property of the system ξ calculated using Nspcomputational particles and L number of independent runs, theempirical mean is:

µ(Nsp,L)1 (t) =

1L

L∑l=1

ξ(Nsp,l)(t).

The empirical variance is:

µ(Nsp,L)2 (t) =

1L

L∑l=1

ξ(Nsp,l)(t)2 − µ(Nsp,L)1 (t)

2.

CoMoGROUP March 2011 36 / 45

Page 37: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Confidence interval

The confidence interval IP within which there is a probability P offinding the true solution is then given by:

IP =[µ(Nsp,L)1 (t)− cP , µ

(Nsp,L)1 (t) + cP

].

cP = aP

õ(Nsp,L)2 (t)

L.

We use aP = 3.29 which corresponds to P = 0.999(99.9%)

CoMoGROUP March 2011 37 / 45

Page 38: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Error

The error e is:

e(Nsp,L)(t) =∣∣∣µ(Nsp,L)

1 (t)− ζ∞(t)∣∣∣ ,

ζ∞(t) is an approximation for the true solution which is obtained froma "high-precision calculation" with a very large number of particles.The average error over the entire simulation time is:

e(Nsp, L) =1M

M∑j=1

e(Nsp,L)(tj),

where the M time steps tj are equidistant.

CoMoGROUP March 2011 38 / 45

Page 39: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

M0

The zeroth moment is the particle number density:

M0(t) =N(t)

Vsmpl

1.5 2 2.5 3 3.5 4 4.5 57.5

8

8.5

9

9.5

log(Nsp)

log(e

)(c

m−

3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.810

8

109

1010

1011

1012

Time (s)

M0

(cm

−3)

M0

Nsp

=64, L=256

Nsp

=512, L=128

Nsp

=16384, L=4

High Precision Solution

Figure: Convergence of zeroth moment (Nsp × L = 65536). Solid line indicatesslope of -1.

.CoMoGROUP March 2011 39 / 45

Page 40: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Volume

The average particle volume:

V (t) =1

N(t)Σ

N(t)q=1 V (Pq(t))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

1

2

3

4

5

6

7x 10

−9

Time (s)

Volu

me

(cm

3)

1.5 2 2.5 3 3.5 4 4.5 5−18.8

−18.6

−18.4

−18.2

−18

−17.8

−17.6

log(Nsp)

log(e

)(c

m3)

Average Volume

Nsp

=64, L=256

Nsp

=512, L=128

Nsp

=16384, L=4

High Precision Solution

Figure: Convergence of average volume (Nsp × L = 65536). Solid line indicatesslope of -1.

.CoMoGROUP March 2011 40 / 45

Page 41: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Collision diameter

The average collision diameter of a particle:

Dc(t) =1

N(t)Σ

N(t)q=1 dc(Pq(t))

0 0.2 0.4 0.6 0.80

10

20

30

40

50

60

70

80

Time (s)

Collis

ion

Dia

met

er(n

m)

1.5 2 2.5 3 3.5 4 4.5 5−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

log(Nsp)

log(e

)(n

m)

Average Collision Diameter

Nsp

=64, L=256

Nsp

=512, L=128

Nsp

=16384, L=4

High Precision Solution

Figure: Convergence of average average collision diameter (Nsp × L = 65536).Solid line indicates slope of -1.

.CoMoGROUP March 2011 41 / 45

Page 42: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Computational time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

10

20

30

40

50

60

70

80

Time (s)C

ollis

ion

Dia

met

er(n

m)

101

102

103

104

105

100

101

102

103

Nsp

Com

puta

tionalT

ime

(s)

Nsp

=64, L=256

Nsp

=512, L=128

Nsp

=163824, L=4

High Precision Solution

Nsp

=64

Nsp

=512

Nsp

=163824

High Precision Solution

Figure: Computational time for different Nsp.

CoMoGROUP March 2011 42 / 45

Page 43: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Computer-generated TEM

Figure: TEM images generated by projecting particles onto a plane. Experimentalvalues from Seto et al. (1995).

CoMoGROUP March 2011 43 / 45

Page 44: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Conclusion

Description of a detailed population balance model.Numerical studies performed.Demonstrated feasibility of using first-principles to model complexnanoparticle synthesis processes.

CoMoGROUP March 2011 44 / 45

Page 45: Stochastic numerics for the gas-phase synthesis of ......Stochasticnumericsforthegas-phasesynthesisof nanoparticles ShraddhaShekar1,AlastairJ.Smith1,MarkusSander1,MarkusKraft1 andWolfgangWagner2

Thank You!

CoMoGROUP March 2011 45 / 45