steering 01

33
Explain the Fundamentals of Steering Theory 

Upload: kazmi-ashfaq

Post on 06-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 1/33

Explain theFundamentals of Steering

Theory 

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 2/33

CONSIDERATIONS OF SHIP

MANOEUVRABILITY

Maintaining a given course - directional &

dynamic stability Ship response to movement of the control

surfaces

Ability to turn completely within a specifieddistance

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 3/33

Functions and Requirements

of Steering Gear Systems

Directional Control Maneuverability

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 4/33

Manoeuvrability

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 5/33

Manoeuvrability

a. Ease of maintaining course (steering).Directional and dynamic stability.

b. The response to movements of the

rudders, either in initiating or terminating a

rate of change of heading.

c. Turn completely round within a givenspace.

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 6/33

Directional Control

Directional Control can be

achieved by:

• Rudders.

• Rudders and Bow Thrusters 

• Vertical Axis Propellers.

(eg Voith-Schneider propeller).

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 7/33

Rudders• Rudder is a servo system

• Hydrodynamic forces and moments on the hull

cause the ship to turn. 

Fitted aft to benefit from the increased watervelocity induced by the propellers.

• Streamlined form produces:

• Large lift force and minimum drag 

• Leading edge sections are designed to reduce

the variation of lift force with the angle of attack.

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 8/33

Steering Limitations

• Typically stalling will occur at an angle

between 35O - 45O.

•  Hence the limitations on the max turningangle (helm) of the rudder in most ships is

limited to 35O. 

•  This avoids stall, loss of speed and large

heel on turning.

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 9/33

HYDRODYNAMIC EFFECT 

• STABILISING OR DESTABILISING DESIGNS

STABILISING –  TENDS TO STEADY UP ON A NEW COURSE

WHEN EXTERNAL FORCES ACT UPON THE

HULL

DESTABILISING –  WILL NOT STEADY UP ON NEW COURSE

• BILGE KEEL & SHAPE OF HULL

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 10/33

Directional StabilityWhen under way,

• Hydrodynamic forces - stabilizing or

destabilizing effect.

A hull will not return to its initial coursewithout an external corrective force.

Directionally stable is when,

• Having suffered a disturbance from a straightpath it tends to take up a new straight line path.

• This moment acts around the point called the

centre of lateral resistance.

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 11/33

Action of Rudder in Turning a Ship

Ships

Head

G

T

J

FR

FH

XCentre of Turning Circle

 B

 y

V

E a

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 12/33

Action of Rudder in Turning a Ship

Ships

Head

G

T

J

FR 

FH

XCentre of Turning Circle

 B

 y

V

E a

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 13/33

Ships

Head

G

T

J

FR

FH

XCentre of Turning Circle

 B

 y

V

E a

Radial Force = (D V2 /R )

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 14/33

Linear Theory of Motion

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 15/33

Measurement of 

Manoeuvrability

-Dimensional Parameters

-Performance factors

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 16/33

Dimensional

Parameters

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 17/33

The Turning CircleApproach Course

Rudder Execute

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 18/33

Drift AngleApproach Course

Rudder Execute

DriftAngle

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 19/33

AdvanceApproach

Course

Rudder Execute

DriftAngle

Advance at 90o change of heading

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 20/33

TransferApproach

Course

Rudder Execute

DriftAngle

Advance at 90o change of heading

Transfer

at 90o

change

of 

heading

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 21/33

Tactical DiameterApproach

Course

Rudder Execute

DriftAngle

Advance at 90o change of heading

Transf er

Tactical

Diameter

at 180o 

change of 

heading

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 22/33

Diameter of Steady Turning CircleApproach

Course

Rudder Execute

DriftAngle

Advance at 90o change of heading

Transfer

Tactical

DiameterSteady

Turning

Radius

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 23/33

Performance Factors

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 24/33

Loss of speed - caused by increased drag,

normally at 90 O into the turn and be 40%

below the approach speed.

Angle of heel

Turning rate - rate of turn of ships head off 

the approach course. For Naval vessels thiscan be as much as 3 degrees/sec.

Performance Factors

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 25/33

Rudder Torque

T a A CP V2 sinq 

Where:

A = Rudder Area

CP = Centre of Pressure distance from rudderstock centre line. V2 = Velocity of Ship

q = Rudder angle measured from midships. 

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 26/33

Horsepower (max) a T x S

Where:

T = max torque

S = max speed

Rudder Horsepower

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 27/33

Factors affecting Ships

Response to Steering1. Shape of hull form.

2. Speed.

3. Direction of movement.

4. Number of rudders.

5. Rudder shape.

6. Position of rudder.

7. Rate of rudder movement.

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 28/33

STEERING SYSTEM

PERFORMANCE SPECIFICATIONS• Accuracy of control (max misallignment) +-

1%

• 35 deg port to 35 stbd in less than 30 sec

• Must not move max 3 deg beyond max

angle of helm : 38 deg for max helm order

of 35 deg

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 29/33

STEERING

INSTALLATIONS

• Consists of 

 –  Steering gear

• Mechanism to move the rudders to desired position

• Hydraulic actuators

 –  Steering control system

• Mechanical

• Electrical

• Hydraulic

• Combination of these

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 30/33

STEERING

INSTALLATIONS

• Is to be capable of moving, stopping and

holding the rudders at any angle within the

limits of operation

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 31/33

SYSTEM COMPONENTSRef Chapt 1.29

RUDDER SERVO AMPLIFIER

HYDRAULIC PUMPS AND CONTROL INTERFACE HYDRAULIC PUMP MOTORS

HYDRAULIC PUMP STARTERS

HYDRAULIC ACTUATORS

VALVES AND PIPEWORK

RUDDERS

RUDDER ANGLE FEEDBACK TRANSMITTER

S G G A

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 32/33

STEERING GEAR

DESIGN REQUIREMENTS

• VARIOUS CONTROL STATIONS

• AVAILABILITY

 –  LIFE SPAN

 –  99.9%

• EMERGENCY OPERATIONS

8/3/2019 Steering 01

http://slidepdf.com/reader/full/steering-01 33/33

STEERING GEAR

DESIGN REQUIREMENTS

• LOCKING DEVICE

 –  HYDRAULIC OR MECHANICAL

• LUBRICATION OF

 –  Rudder Bearings

 –  Actuator bearings