statistics measures of central tendency (averages

26
15.1 STATISTICS โ€“ MEASURES OF CENTRAL TENDENCY (AVERAGES) & DISPERSION DEFINITION OF CENTRAL TENDENCY / AVERAGES: Central tendency (tending to the central value), which helps for finding performance and comparison X 00-19 1 Minimum 20-39 3 Gradually increasing 40-59 7 Maximum 60-79 2 Gradually decreasing 80-99 1 Minimum X - (Any variable: Height, Weight, Marks, Profits, Wages, and so on) - Frequency, (Usually, repetitiveness, frequent happenings, number of times of occurrence) List of Formula Arithmetic Mean ( ) Geometric Mean () Harmonic Mean () Weighted Average X = โˆ‘ โˆ‘ G = ( 1 1 ร— 2 2 ร—โ€ฆร— ) 1 โˆ‘ Or = ( โˆ‘ โˆ‘ ) = โˆ‘ โˆ‘ Combined Mean x = 1 x 1 + 2 x 2 1 + 2 = ( 1 log 1 + 2 log 2 1 + 2 ) = 1 + 2 1 1 + 2 2

Upload: others

Post on 23-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

15.1

STATISTICS โ€“ MEASURES OF CENTRAL TENDENCY (AVERAGES) &

DISPERSION

DEFINITION OF CENTRAL TENDENCY / AVERAGES:

Central tendency (tending to the central value), which helps for finding performance and comparison

X ๐‘“

00-19 1 Minimum

20-39 3 Gradually increasing

40-59 7 Maximum

60-79 2 Gradually decreasing

80-99 1 Minimum

X - (Any variable: Height, Weight, Marks, Profits, Wages, and so on)

๐‘“ - Frequency, (Usually, repetitiveness, frequent happenings, number of times of occurrence)

List of Formula

Arithmetic Mean (๏ฟฝฬ…๏ฟฝ) Geometric Mean (๐‘ฎ๐‘ด) Harmonic Mean (๐‘ฏ๐‘ด)

Weighted Average

Xฬ… =โˆ‘ ๐‘ค๐‘‹

โˆ‘ ๐‘ค G = (๐‘‹1

๐‘ค1 ร— ๐‘‹2๐‘ค2 ร— โ€ฆ ร— ๐‘‹๐‘›

๐‘ค๐‘›)1

โˆ‘ ๐‘ค

Or ๐บ = ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘” (โˆ‘ ๐‘ค ๐‘™๐‘œ๐‘”๐‘‹

โˆ‘ ๐‘ค)

๐ป =โˆ‘ ๐‘ค

โˆ‘๐‘ค

๐‘‹

Combined Mean

xฬ… =๐‘›1xฬ…1 + ๐‘›2xฬ…2

๐‘›1 + ๐‘›2

๐บ = ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘” (๐‘›1 log ๐บ1 + ๐‘›2 log ๐บ2

๐‘›1 + ๐‘›2

) ๐ป =๐‘›1 + ๐‘›2๐‘›1

๐ป1+

๐‘›2

๐ป2

15.2

Measures of Central Tendency (Averages)

Mean Partition Values: (Arrange the items in ascending order)

Mode (๐‘ด๐’) Arithmetic

(usual cases)

(Direct Method)

Geometric

(Comparisons

โ€“ ratios,

Proportions and %)

Harmonic

(Two units together

E.g. speed =

distance / time

Median (๐‘ด๐’†) Fractiles (๐‘ญ๐’†)

Individual

Xฬ… =๐‘‹1 + ๐‘‹2 โ€ฆ ๐‘‹๐‘›

๐‘›

Xฬ… =โˆ‘ ๐‘‹๐‘–

๐‘๐‘–=1

๐‘›

xฬ… =โˆ‘ ๐‘‹

๐‘›

GM = (๐‘‹1. ๐‘‹2. โ€ฆ ๐‘‹๐‘›)1

๐‘›

๐’๐’“ ๐บ๐‘€ = ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘” (โˆ‘ ๐‘™๐‘œ๐‘” ๐‘‹

๐‘›)

๐ป๐‘€ =๐‘›

โˆ‘1

๐‘‹

If โ€˜nโ€™ is odd:

๐‘€๐‘’ = (๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

(i.e. the middle obs)

If โ€˜nโ€™ is even:

๐‘€๐‘’ =(

๐‘›

2)

๐‘กโ„Ž+ (

๐‘›

2+ 1)

๐‘กโ„Ž ๐‘œ๐‘๐‘ 

2

๐น๐‘’ =๐‘’(๐‘› + 1)

๐น

๐‘€๐‘œ = ๐‘š๐‘œ๐‘ ๐‘ก ๐‘ข๐‘ ๐‘ข๐‘Ž๐‘™

(๐‘™๐‘œ๐‘๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘š๐‘’๐‘กโ„Ž๐‘œ๐‘‘)

Discrete series

Xฬ… =โˆ‘ ๐‘“๐‘‹

โˆ‘ ๐‘“ =

โˆ‘ ๐‘“๐‘‹

๐‘

= (๐‘‹1๐‘“1 . ๐‘‹2

๐‘“2 . โ€ฆ ๐‘‹๐‘›๐‘“๐‘›)

1

๐‘

๐’๐’“ ๐บ = ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘” (โˆ‘ ๐‘“ ๐‘™๐‘œ๐‘” ๐‘‹

๐‘)

๐ป๐‘€ =๐‘›

โˆ‘๐‘“

๐‘‹

๐‘€๐‘’ = ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (๐ถ๐‘“ >๐‘ + 1

2) ๐น๐‘’ = ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (๐ถ๐‘“ >

๐‘’(๐‘ + 1)

๐น)

Regular frequency

๐‘€๐‘œ = ๐‘™๐‘œ๐‘๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘š๐‘’๐‘กโ„Ž๐‘œ๐‘‘

Irregular frequency

๐‘€๐‘œ = ๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘๐‘–๐‘›๐‘” ๐‘š๐‘’๐‘กโ„Ž๐‘œ๐‘‘

Continuous / Grouped Frequency / (Interpolation Method)

Xฬ… =โˆ‘ ๐‘“๐‘š

โˆ‘ ๐‘“ =

โˆ‘ ๐‘“๐‘š

๐‘

G = (๐‘š1๐‘“1 . ๐‘š2

๐‘“2 . โ€ฆ ๐‘š๐‘›๐‘“๐‘›)

1

๐‘

๐‘ถ๐’“ ๐บ = ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘” (โˆ‘ ๐‘“ ๐‘™๐‘œ๐‘” ๐‘š

๐‘)

๐ป๐‘€ =๐‘›

โˆ‘๐‘š

๐‘‹

๐‘€๐‘’ = ๐‘™1 + (

๐‘

2โˆ’ ๐‘๐‘™

๐‘๐‘ข โˆ’ ๐‘๐‘™) ร— ๐ถ

๐‘ถ๐’“ ๐‘™ +

๐‘

2โˆ’ ๐‘š

๐‘“ร— ๐‘

๐น๐‘’ = ๐‘™1 + (๐‘’

๐‘

๐นโˆ’ ๐‘๐‘™

๐‘๐‘ข โˆ’ ๐‘๐‘™) ร— ๐ถ

๐‘ถ๐’“ ๐‘™ +๐‘’

๐‘

๐นโˆ’ ๐‘š

๐‘“ร— ๐‘

๐‘€๐‘œ = ๐‘™1 + (๐‘“0 โˆ’ ๐‘“โˆ’1

2๐‘“0 โˆ’ ๐‘“โˆ’1 โˆ’ ๐‘“1) ร— ๐ถ

Note:

1. Indirect / Shortcut / Assumed Mean (A) Method: Deviation Method (๐‘‘ = ๐‘‹ โˆ’ ๐ด): Xฬ… = ๐ด +โˆ‘ ๐‘‘

๐‘› & Step-Deviation Method (๐‘‘ =

๐‘‹โˆ’๐ด

๐ถ): xฬ… = ๐ด +

โˆ‘ ๐‘‘

๐‘›ร— ๐ถ

2. Empirical relationship (thumb rule): If mode is ill-defined (๐‘–๐‘› ๐‘๐‘Ž๐‘ ๐‘’ ๐‘œ๐‘“ ๐‘š๐‘œ๐‘‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘™๐‘ฆ ๐‘ ๐‘˜๐‘’๐‘ค๐‘’๐‘‘ ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ข๐‘ก๐‘–๐‘œ๐‘›): Xฬ… โˆ’ ๐‘€๐‘œ = 3(Xฬ… โˆ’ ๐‘€๐‘’) ๐‘œ๐‘Ÿ ๐‘€๐‘œ = 3๐‘€๐‘’ โˆ’ 2Xฬ…

3. Fractiles: Quartiles (Q), Octiles (O), Deciles (D) and Percentiles (P)

15.3

Measures of Dispersion

Absolute Relative

(i) ๐‘๐š๐ง๐ ๐ž (๐‘) = ๐ฟ โˆ’ ๐‘† ๐‚๐จ๐ž๐Ÿ๐Ÿ๐ข๐œ๐ข๐ž๐ง๐ญ ๐จ๐Ÿ ๐ซ๐š๐ง๐ ๐ž(๐ถ๐‘œ ๐‘…) =

๐ฟ โˆ’ ๐‘†

๐ฟ + ๐‘†ร— 100

(ii) ๐๐ฎ๐š๐ซ๐ญ๐ข๐ฅ๐ž ๐ƒ๐ž๐ฏ๐ข๐š๐ญ๐ข๐จ๐ง (๐๐ƒ) =

๐‘„3 โˆ’ ๐‘„1

2

(Otherwise Semi inter quartile range)

๐ˆ๐ง๐ญ๐ž๐ซ ๐ช๐ฎ๐š๐ซ๐ญ๐ข๐ฅ๐ž ๐ซ๐š๐ง๐ ๐ž = ๐‘„3 โˆ’ ๐‘„1

Coefficient of Quartile Deviation (Co QD)

๐ถ๐‘œ ๐‘„๐ท =๐‘„3 โˆ’ ๐‘„1

๐‘„3 + ๐‘„1

ร— 100

(iii) Mean Deviation (MD) about A, (๐‘จ = Xฬ…, ๐‘€๐‘’ , ๐‘€๐‘œ) Coefficient of Mean Deviation (๐ถ๐‘œ ๐‘€๐ท๐ด)

๐ˆ๐ง๐๐ข๐ฏ๐ข๐๐ฎ๐š๐ฅ: M๐ท๐ด =

1

๐‘›โˆ‘|๐‘ฅ โˆ’ ๐ด| ๐ถ๐‘œ ๐‘€๐ท๐ด =

๐‘€๐ท๐ด

๐ดร— 100

๐ƒ๐ข๐ฌ๐œ๐ซ๐ž๐ญ๐ž: M๐ท๐ด =

1

๐‘โˆ‘ ๐‘“|๐‘ฅ โˆ’ ๐ด|

๐‚๐จ๐ง๐ญ๐ข๐ง๐ฎ๐จ๐ฎ๐ฌ: ๐‘€๐ท๐ด =

1

๐‘โˆ‘ ๐‘“|๐‘š โˆ’ ๐ด|

(iv) Standard Deviation (s) Coefficient of Variation (CV)

๐ˆ๐ง๐๐ข๐ฏ๐ข๐๐ฎ๐š๐ฅ: ๐‘  = โˆšโˆ‘(๐‘‹ โˆ’ Xฬ…)2

๐‘› ๐‘œ๐‘Ÿโˆš

โˆ‘ ๐‘‹2

๐‘›โˆ’ Xฬ…2

๐ถ๐‘‰ =๐‘ 

Xฬ…ร— 100

๐ƒ๐ข๐ฌ๐œ๐ซ๐ž๐ญ๐ž: ๐‘  = โˆšโˆ‘ ๐‘“(๐‘‹ โˆ’ Xฬ…)2

๐‘ ๐‘œ๐‘Ÿโˆš

โˆ‘ ๐‘“๐‘‹2

๐‘โˆ’ Xฬ…2

๐‚๐จ๐ง๐ญ๐ข๐ง๐ฎ๐จ๐ฎ๐ฌ: ๐‘  = โˆšโˆ‘ ๐‘“(๐‘š โˆ’ Xฬ…)2

๐‘ ๐‘œ๐‘Ÿ โˆš

โˆ‘ ๐‘“๐‘š2

๐‘โˆ’ Xฬ…2

๐‘‰๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘›๐‘๐‘’ = ๐‘ 2

Shortcut:

๐‘  = โˆšโˆ‘ ๐‘“๐‘‘2

๐‘โˆ’ (

โˆ‘ ๐‘“๐‘‘

๐‘)

2

๐‘Šโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘‘ = ๐‘‹ โˆ’ ๐ด (๐‘“๐‘œ๐‘Ÿ ๐‘–๐‘›๐‘‘๐‘–๐‘ฃ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘Ž๐‘›๐‘‘ ๐‘‘๐‘–๐‘ ๐‘๐‘Ÿ๐‘’๐‘ก๐‘’) & ๐‘‘ =๐‘š โˆ’ ๐ด

๐ถ ๐‘“๐‘œ๐‘Ÿ ๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘œ๐‘ข๐‘ 

Comparison

Absolute Measure Relative Measure

1 Dependent of unit Independent of unit

2 Not considered for comparison considered for comparison

3 Not much difficult compared to Relative measure Difficult to compute and comprehend.

15.4

INDIVIDUAL OBSERVATIONS

Question 1: From the Individual Observations: 3, 6, 48 & 24, find out the following

Measures of Averages Measures of Dispersion

Arithmetic Mean Absolute Measure Relative Measure

Geometric Mean Range Coefficient of Range

Harmonic Mean Quartile Deviation Coefficient of Quartile Deviation

Median Mean Deviation Coefficient of Mean Deviation

Fractiles (๐‘„1, ๐‘„3, ๐‘‚6, ๐ท7 & ๐‘ƒ75) Standard Deviation / Variation Coefficient of Variation

Mode

Answer:

Measures of Averages

Mean Formula Calculation Answer

AM Xฬ… =

โˆ‘ ๐‘‹

๐‘›

3 + 6 + 24 + 48

4

81

4

20.25

GM GM = (๐‘‹1 ร— ๐‘‹2 ร— โ€ฆ ร— ๐‘‹)1

๐‘› (3 ร— 6 ร— 24 ร— 48)1

4 (34. 44)1

4 12

HM ๐ป๐‘€ =๐‘›

โˆ‘1

๐‘‹

4

1

3+

1

6+

1

24+

1

48

4 ร— 48

16 + 8 + 2 + 1=

192

27

7.11

Note:

๐‘ฟ 3 6 24 48

๐ฅ๐จ๐  ๐‘ฟ 0.4771 0.7782 1.3802 1.6812

โˆ‘ log ๐‘‹ 4.3167

Formula Calculation Answer

GM ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘” (

โˆ‘ log ๐‘‹

๐‘›) ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘” (

4.3167

4)

11.94

Positional Average

Formula Calculations Answer

๐‘€๐‘’ ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  ๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 2.5๐‘กโ„Ž ๐‘œ๐‘๐‘ 

6 + 0.5(24 โ€“ 6) 15 2๐‘›๐‘‘ ๐‘œ๐‘๐‘  + 0.5 (3๐‘Ÿ๐‘‘ ๐‘œ๐‘๐‘  โ€“ 2๐‘›๐‘‘ ๐‘œ๐‘๐‘ )

๐‘„1 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  ๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 1.25๐‘กโ„Ž ๐‘œ๐‘๐‘ 

3 + 0.25(6 โ€“ 3) 3.75 1๐‘ ๐‘ก ๐‘œ๐‘๐‘  + 0.25 (2๐‘›๐‘‘ ๐‘œ๐‘๐‘  โ€“ 1๐‘ ๐‘ก ๐‘œ๐‘๐‘ )

๐‘„3 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (3(๐‘› + 1)

4)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 3.75๐‘กโ„Ž ๐‘œ๐‘๐‘ 

3๐‘Ÿ๐‘‘ ๐‘œ๐‘๐‘  + 0.75 (4๐‘กโ„Ž ๐‘œ๐‘๐‘  โ€“ 3๐‘Ÿ๐‘‘ ๐‘œ๐‘๐‘ )

24 + 0.75 (48 โ€“ 24)

๐Ÿ’๐Ÿ

๐‘ƒ75 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (75(๐‘› + 1)

100)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

๐‘‚6 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (6(๐‘› + 1)

8)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

๐‘ต๐’๐’•๐’†: ๐‘„3 = ๐‘‚6 = ๐‘ƒ75

15.5

๐ท7 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (7(๐‘› + 1)

10)

๐‘กโ„Ž

๐‘œ๐‘๐‘  ๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 3.5๐‘กโ„Ž ๐‘œ๐‘๐‘ 

24 + 0.5(48 โˆ’ 24) ๐Ÿ‘๐Ÿ” 3๐‘Ÿ๐‘‘ ๐‘œ๐‘๐‘  + 0.5 (4๐‘กโ„Ž ๐‘œ๐‘๐‘  โ€“ 3๐‘Ÿ๐‘‘ ๐‘œ๐‘๐‘ )

Mode

Mode is ill-defined (Since all the observation has equal appearance)

Hence, the empirical relation is used to arrive ๐‘€๐‘œ

Formula Calculations Answer

๐‘€๐‘œ ๐‘€๐‘’๐‘Ž๐‘› โˆ’ ๐‘€๐‘œ๐‘‘๐‘’ = 3(๐‘€๐‘’๐‘Ž๐‘› โˆ’ ๐‘€๐‘’๐‘‘๐‘–๐‘Ž๐‘›) 20.25 โˆ’ ๐‘€๐‘œ๐‘‘๐‘’ = 3(20.25 โ€“ 15) 4.5

Measures of Dispersion (Absolute and Relative)

Formula Calculation Answer

1 Range (R) ๐ฟ โ€“ ๐‘† 48 โ€“ 3 45

Co โ€“ efficient of Range ๐ฟ โˆ’ ๐‘†

๐ฟ + ๐‘† =

48โˆ’3

48+3 0.8823

2 Quartile Deviation (๐‘ธ๐‘ซ) ๐‘„3 โˆ’ ๐‘„1

2

42 โˆ’ 3.75

2

19.125

Coefficient of Quartile Deviation ๐‘„3 โˆ’ ๐‘„1

๐‘„3 + ๐‘„1

42 โˆ’ 3.75

42 + 3.75

0.84

3 Mean Deviation (๐‘€๐ทXฬ…) 1

๐‘›โˆ‘|๐‘‹ โˆ’ Xฬ…|

63

4

15.75

Co โ€“ efficient of MD ๐‘€๐ทXฬ…

๐‘€๐‘’๐‘Ž๐‘›

15.75

20.25

0.778

4 Standard Deviation (๐’”) โˆš

โˆ‘(๐‘‹ โˆ’ Xฬ…)2

๐‘› โˆš

1284.75

5

17.921

Or

โˆš

โˆ‘๐‘‹2

๐‘›โˆ’ (

โˆ‘๐‘‹

๐‘›)

2

โˆš2925

4โˆ’ (

81

4)

2

17.921

๐‘‰๐‘Ž๐‘Ÿ (๐‘‹) ๐‘†2 17.9212 321.16

๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘ก๐‘–๐‘œ๐‘›, ๐‘ฃ๐‘Ž๐‘Ÿ(๐‘ฅ) ๐‘ 

Xฬ…ร— 100

17.921

20.25ร— 100

88.49%

Working note

๐‘ฟ |๐‘ฟ โˆ’ ๏ฟฝฬ…๏ฟฝ| ๐‘ฟ โˆ’ ๐— (๐‘ฟ โˆ’ ๏ฟฝฬ…๏ฟฝ)๐Ÿ ๐‘ฟ๐Ÿ

3 17.25 17.25 297.5625 9

6 14.25 14.25 203.0625 36

24 3.75 -3.75 14.0625 576

48 27.25 -27.75 770.0625 2304

Total 63 1284.75 2925

15.6

Question 2: Find Median, ๐‘ธ๐Ÿ, ๐‘ธ๐Ÿ‘,๐‘ถ๐Ÿ”, ๐‘ซ๐Ÿ•, ๐‘ท๐Ÿ•๐Ÿ“ for the observations: 1, 3, 6, 24, 48.

Answer:

Positional Average

Formula Calculations Answer

๐‘€๐‘’ ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (

๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  ๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 3๐‘Ÿ๐‘‘ ๐‘œ๐‘๐‘  6 + 0.5(24 โ€“ 6) 6

๐‘„1 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (

๐‘› + 1

4)

๐‘กโ„Ž

๐‘œ๐‘๐‘  ๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 1.5๐‘กโ„Ž ๐‘œ๐‘๐‘  1 + 0.5(3 โ€“ 1) 2

1๐‘ ๐‘ก ๐‘œ๐‘๐‘  + 0.5 (2๐‘›๐‘‘ ๐‘œ๐‘๐‘  โ€“ 1๐‘ ๐‘ก ๐‘œ๐‘๐‘ )

๐‘„3 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (

3(๐‘› + 1)

4)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 4.5๐‘กโ„Ž ๐‘œ๐‘๐‘ 

4๐‘กโ„Ž ๐‘œ๐‘๐‘  + 0.5 (5๐‘กโ„Ž ๐‘œ๐‘๐‘  โ€“ 4๐‘กโ„Ž ๐‘œ๐‘๐‘ )

24 + 0.5 (48 โ€“ 24)

36 ๐‘ƒ75

๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (75(๐‘› + 1)

100)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

๐‘‚6 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (

6(๐‘› + 1)

8)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

๐‘ต๐’๐’•๐’†: ๐‘„3 = ๐‘‚6 = ๐‘ƒ75

๐ท7 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (

7(๐‘› + 1)

10)

๐‘กโ„Ž

๐‘œ๐‘๐‘  ๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 4.2๐‘กโ„Ž ๐‘œ๐‘๐‘  24 + 0.2(48 โˆ’ 24) ๐Ÿ๐Ÿ–. ๐Ÿ–

4๐‘กโ„Ž ๐‘œ๐‘๐‘  + 0.2 (5๐‘กโ„Ž ๐‘œ๐‘๐‘  โ€“ 4๐‘กโ„Ž ๐‘œ๐‘๐‘ )

Question 3: Discrete Frequency Distribution

x 10 11 12 13 14 15 16 17 18 19

f 8 15 20 100 98 95 90 75 50 30

Answer:

Measures of Averages

Formula Calculation Answer

1 Arithmetic Mean(xฬ…) โˆ‘๐‘“๐‘‹

๐‘

8727

581 15.02

2 Geometric Mean(๐บ๐‘€) Antilog (โˆ‘ ๐‘“ log ๐‘‹

๐‘) Antilog (

682.4203

581) 14.95

3 Harmonic Mean (๐ป๐‘€) ๐‘

โˆ‘๐‘“

๐‘‹

581

39.25 14.802

Working Note:

๐‘ฟ ๐’‡ ๐’‡๐‘ฟ ๐ฅ๐จ๐  ๐‘ฟ ๐’‡ ๐ฅ๐จ๐  ๐‘ฟ ๐’‡

๐‘ฟ

10 8 80 1.0000 8.0000 0.800

11 15 165 1.0414 15.6210 1.360

12 20 240 1.0792 21.5840 1.670

13 100 1300 1.1139 111.3900 7.690

15.7

14 98 1372 1.1461 112.3178 7.000

15 95 1425 1.1761 111.7295 6.330

16 90 1440 1.2041 108.3690 5.625

17 75 1275 1.2304 92.2800 4.411

18 50 900 1.2553 62.7650 2.780

19 30 570 1.2788 38.364 1.578

Total 581 8727 682.4203 39.25

Positional Average

Formula Calculations Answer Working Notes

๐‘€๐‘’ ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (๐‘ + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  ๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 291๐‘ ๐‘ก ๐‘œ๐‘๐‘ 

(๐‘–. ๐‘’. ๐‘๐‘“ > 291) 15

๐‘ฟ ๐‘“ ๐‘๐‘“

10 8 8

11 15 23

12 20 43

13 100 143

14 98 241

15 95 336

16 90 426

17 75 501

18 50 551

19 30 581

๐‘„1 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (1(๐‘ + 1)

4)

๐‘กโ„Ž

๐‘œ๐‘๐‘  ๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 145.5๐‘กโ„Ž ๐‘œ๐‘๐‘ 

(๐‘–. ๐‘’. ๐‘๐‘“ > 145.5) 14

๐‘„3 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (3(๐‘ + 1)

4)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 436.5๐‘กโ„Ž ๐‘œ๐‘๐‘ 

(๐‘–. ๐‘’. ๐‘๐‘“ > 436.5)

17

๐‘ƒ75 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (75(๐‘ + 1)

100)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

๐‘‚6 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (6(๐‘ + 1)

8)

๐‘กโ„Ž

๐‘œ๐‘๐‘ 

๐‘ต๐’๐’•๐’†: ๐‘„3 = ๐‘‚6 = ๐‘ƒ75

๐ท7 ๐‘ ๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ (7(๐‘ + 1)

10)

๐‘กโ„Ž

๐‘œ๐‘๐‘  ๐‘†๐‘–๐‘ง๐‘’ ๐‘œ๐‘“ 407.4๐‘กโ„Ž ๐‘œ๐‘๐‘ 

๐Ÿ๐Ÿ” (๐‘–. ๐‘’. ๐‘๐‘“ > 407.4)

Mode: Since there is a sudden increase in frequency from 20 to 100, we obtain mode by Grouping

Table

Grouping Table The highest frequency total in each of the six

columns of the grouping table is identified and

analyzed (Tally marks)

Total

Tally

Mark

(1) (2) (3) (4) (5) (6)

๐‘ฟ ๐’‡ (1) (2) (3) (4) (5) (6)

10 8 23

43

0

11 15 35

135

0

12 20 120

218

0

13 100 198

293

| | | 3

14 98 193

283

| | | | 4

15 95 185

260

| | | | 4

16 90 165

215

| | 2

17 75 125

155

| 1

18 50 80

0

19 30 0

15.8

Explanation to column

(๐Ÿ) Original Frequency

(๐Ÿ) grouping in โ€œtwoโ€™s

(๐Ÿ‘) Leaving the first and grouping the

rest in โ€œtwoโ€™sโ€

(๐Ÿ’) grouping in โ€œthreeโ€™sโ€

(๐Ÿ“) Leaving the first and grouping in

โ€œthreeโ€™sโ€

(๐Ÿ”) Leaving the first & second and

grouping in โ€œthreeโ€™sโ€

Mode

Mode is ill-defined or bi-modal

(Since โ€œ14โ€ and โ€œ15โ€ occur equal number of times)

Hence, the empirical relation is used to arrive ๐‘€๐‘œ

๐‘€๐‘œ ๐‘€๐‘’๐‘Ž๐‘› โˆ’ ๐‘€๐‘œ๐‘‘๐‘’ = 3(๐‘€๐‘’๐‘Ž๐‘› โˆ’ ๐‘€๐‘’๐‘‘๐‘–๐‘Ž๐‘›)

15.02 โˆ’ ๐‘€๐‘œ๐‘‘๐‘’ = 3(15.02 โ€“ 15)

14.96

Points to Ponder:

Under Location Method, Mode = 13 (as the highest frequency is 100)

Under Grouping Method, Mode is ill- defined.

But, Under Empirical Relationship, Mode = 14.96, which brings the issues an accuracy

Measures of Dispersion

Formula Calculation Answer

1 Range (R) ๐ฟ โˆ’ ๐‘† 19 โˆ’ 10 10

Co โ€“ efficient of Range ๐ฟ โˆ’ ๐‘†

๐ฟ + ๐‘†

19 โˆ’ 10

19 + 10 0.31

2 Quartile Deviation (๐‘ธ๐‘ซ) ๐‘„3 โˆ’ ๐‘„1

2

17 โˆ’ 14

2 1.5

Coefficient of Quartile Deviation ๐‘„3 โˆ’ ๐‘„1

๐‘„3 + ๐‘„1

17 โˆ’ 14

17 + 14 0.0967

3 Mean Deviation (๐‘€๐ทXฬ…) 1

๐‘โˆ‘|๐‘‹ โˆ’ Xฬ…|

969.82

58.1 1.669

Co โ€“ efficient of MD ๐‘€๐ทXฬ…

๐‘€๐‘’๐‘Ž๐‘›

1.669

15.02 0.111133

4 Standard Deviation (๐’”) โˆšโˆ‘ ๐‘“(๐‘‹ โˆ’ Xฬ…)2

๐‘ โˆš

2204.7628

581 3.80

๐‘‰๐‘Ž๐‘Ÿ (๐‘‹) ๐‘ 2 3.802 14.44

๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘ก๐‘–๐‘œ๐‘›, ๐‘ฃ๐‘Ž๐‘Ÿ(๐‘‹) ๐‘ 

xฬ…ร— 100

3.80

15.02ร— 100 25.29%

15.9

Working Note:

for MD For SD

๐‘ฟ ๐’‡ |๐‘ฟ โˆ’ ๏ฟฝฬ…๏ฟฝ| ๐’‡|๐‘ฟ โˆ’ ๐—| (๐‘ฟ โˆ’ ๏ฟฝฬ…๏ฟฝ) ๐’‡(๐‘ฟ โˆ’ ๏ฟฝฬ…๏ฟฝ)๐Ÿ

10 8 5 .02 40.16 -5 .02 201.6032

11 15 4.02 60.30 -4.02 242.4060

12 20 3.02 68.40 -3.02 182.4080

13 100 2.02 202.00 -2.02 81.6080

14 98 1.02 99.96 -1.02 101.9592

15 95 0.02 1.90 -0.02 0.0380

16 90 0.98 88.20 0.98 86.4360

17 75 1.98 143.50 1.98 294.0300

18 50 2.98 1.49 2.98 444.0200

19 36 3.98 119.40 3.98 570.2544

โˆ‘ 581 969.82 2204.7628

Question 4: Continuous Frequency Distribution:

Marks 01-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Number of Students 3 7 13 17 12 10 8 8 6 6

Also verify the empirical relation

Answer:

Measures of Averages

Formula Calculation Answer

A.M. (Direct Method) โˆ‘ ๐‘“๐‘š

๐‘

4375

90

48.61

A.M. (Short cut -Method) ๐ด + โˆ‘ ๐‘“๐‘‘

๐‘ร— ๐‘ (A=45.5) 45.5 +

28

90ร— 10

48.61

๐ด + โˆ‘ ๐‘“๐‘‘

๐‘ร— ๐‘ (A = 55.5) 55.5 +

โˆ’620

90ร— 10

48.61

Geometric Mean, GM ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘” (

โˆ‘ ๐‘“ log ๐‘š

๐‘) ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘”

150.5439

90

47.07

Harmonic Mean, HM ๐‘

โˆ‘๐‘“

๐‘š

90

2.7905

32.25

15.10

Working Note:

Marks

(Class boundaries)

๐’Ž ๐’‡ ๐’‡๐’Ž ๐’… =

๐’Ž โˆ’ ๐Ÿ’๐Ÿ“. ๐Ÿ“

๐Ÿ๐ŸŽ

๐’‡๐’… ๐ฅ๐จ๐  ๐’Ž ๐’‡ ๐ฅ๐จ๐  ๐’Ž ๐’‡

๐’Ž

0.5 โ€“ 10.5 5.5 3 16.5 -4 -12 0.7404 2.2212 0.5454

10.5 โ€“ 20.5 15.5 7 108.5 -3 -21 1.903 13.3210 0.4516

20.5 โ€“ 30.5 25.5 13 331.5 -2 -26 1.4065 18.2845 0.5098

30.5 โ€“ 40. 5 35.5 17 603.5 -1 -17 1.5502 26.3534 0.4789

40.5 โ€“ 50.5 45.5 12 546.0 0 0 1.6580 19.8960 0.2637

50.5 โ€“ 60.5 55.5 10 555.0 1 10 1.7443 17.4430 0.1801

60.5 โ€“ 70.5 65.5 8 524.0 2 16 1.8162 14.5296 0.1221

70.5 โ€“ 80.5 75.5 8 604.0 3 24 1.8779 15.0232 0.1060

80.5 โ€“ 90.5 85.5 6 513.0 4 24 1.9320 11.5920 0.0701

90.5 โ€“ 100.5 95.5 6 573.0 5 30 1.9800 11.8800 0.0628

Total 90 4375.0 28 150.5439 2.7905

Positional Average and Mode

Formula Calculation Answer

Working Note

๐‘€๐‘’ ๐‘™ +

๐‘

2โˆ’ ๐‘š

๐‘“ร— ๐‘ 40.5 +

45 โˆ’ 40

12ร— 10 44.67

๐‘ฟ ๐’‡ ๐’„๐’‡

0.5โ€“10.5 3 3

10.5โ€“20.5 7 10

20.5โ€“30.5 13 23

30.5โ€“40. 5 17 40

40.5โ€“50.5 12 52

50.5โ€“60.5 10 62

60.5โ€“70.5 8 70

70.5โ€“80.5 8 78

80.5โ€“90.5 6 84

90.5โ€“100.5 6 90

๐‘„1 ๐‘™ +

1๐‘

4โˆ’ ๐‘š

๐‘“ร— ๐‘ 20.5 +

22.5 โˆ’ 10

13ร— 10 30.12

๐‘„3 ๐‘™ +

3๐‘

4โˆ’ ๐‘š

๐‘“ร— ๐‘

60.5 +67.5 โˆ’ 62

8ร— 10 67.38 ๐‘‚6 ๐‘™ +

6๐‘

8โˆ’ ๐‘š

๐‘“ร— ๐‘

๐‘ƒ75 ๐‘™ +

75๐‘

100โˆ’ ๐‘š

๐‘“ร— ๐‘

๐‘‚3 = ๐‘‚6 = ๐‘ƒ75 = 67.38

๐ท7 ๐‘™ +

7๐‘

10โˆ’ ๐‘š

๐‘“ร— ๐‘ 60.5 +

63 โˆ’ 62

8 ร— 10 61.75

๐‘€๐‘œ ๐‘™1 + (๐‘“0 โˆ’ ๐‘“โˆ’1

2๐‘“0 โˆ’ ๐‘“โˆ’1 โˆ’ ๐‘“1

) ร— ๐ถ 30.5 + (17 โˆ’ 13

2 ร— 17 โˆ’ 13 โˆ’ 12) ร— 10 34.94

๐‘ด๐’ ๐’„๐’๐’‚๐’”๐’” ๐’Š๐’” (๐Ÿ‘๐ŸŽ. ๐Ÿ“ โˆ’ ๐Ÿ’๐ŸŽ. ๐Ÿ“), since 17 is the highest frequency

Graphical Method: Ogive Curves for Positional Average:

Marks Number

of Students

Less than ogive curve More than ogive curve

UCL < cf LCL >cf

15.11

0.5 โ€“ 10.5 3 10.5 3 0.5 90 (= โˆ‘๐‘“)

10.5 โ€“ 20.5 7 20.5 10 10.5 87

20.5 โ€“ 30.5 13 30.5 23 20.5 80

30.5 โ€“ 40. 5 17 40. 5 40 30.5 67

40.5 โ€“ 50.5 12 50.5 52 40.5 50

50.5 โ€“ 60.5 10 60.5 62 50.5 38

60.5 โ€“ 70.5 8 70.5 70 60.5 28

70.5 โ€“ 80.5 8 80.5 78 70.5 20

80.5 โ€“ 90.5 6 90.5 84 80.5 12

90.5 โ€“ 100.5 6 100.5 90 (= โˆ‘๐‘“) 90.5 6

Verification of Empirical relation:

Mean โ€“ Mode = 3 (Mean - Median)

(i.e.,) 48.61 โ€“ 34.94 = 3 (48.61 โ€“ 44.67)

13.67 = 3 ( 4.006)

13.67 = 12.18, which is not true

Graphical Method

๐‘€๐‘œ = 35 (๐บ๐‘Ÿ๐‘Ž๐‘โ„Ž๐‘–๐‘๐‘Ž๐‘™ ๐‘€๐‘’๐‘กโ„Ž๐‘œ๐‘‘)

๐‘„1 = 30, ๐‘„3 = 45 & ๐‘„3 = 67

15.12

Measures of Dispersion

Formula Calculation Answer

1 Range (R) ๐ฟ โ€“ ๐‘† 100 โˆ’ 1 99

Other-way 100.5 โˆ’ 0.5 100

Co โ€“ efficient of Range ๐ฟ โˆ’ ๐‘†

๐ฟ + ๐‘†

100 โˆ’ 1

100 + 1 0.98

2 Quartile Deviation (๐‘ธ๐‘ซ) ๐‘„3 โˆ’ ๐‘„1

2

67.38 โˆ’ 30.12

2 18.63

Coefficient of Quartile Deviation ๐‘„3 โˆ’ ๐‘„1

๐‘„3 + ๐‘„1

67.38 โˆ’ 30.12

67.38 + 30.12 0.38

3 Mean Deviation (๐‘€๐ทXฬ…) 1

๐‘โˆ‘|๐‘š โˆ’ Xฬ…|

1843.54

90 20.48

Co โ€“ efficient of MD ๐‘€๐ทXฬ…

๐‘€๐‘’๐‘Ž๐‘›

20.48

48.61 0.42

4 Standard Deviation (๐’”) โˆšโˆ‘ ๐‘“(๐‘š โˆ’ Xฬ…)2

๐‘ โˆš

53128.89

90 24.29

๐‘‰๐‘Ž๐‘Ÿ (๐‘‹) ๐‘†2 (24.29)2 590.49

๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘ก๐‘–๐‘œ๐‘›, ๐‘ฃ๐‘Ž๐‘Ÿ(๐‘‹) ๐‘ 

Xฬ…ร— 100

24.29

48.61ร— 100 25.29%

Working Notes

Marks

(Class boundaries) ๐’Ž ๐’‡ |๐’Ž โˆ’ ๐—| f|๐’Ž โˆ’ ๏ฟฝฬ…๏ฟฝ| (๐‘ฟ โˆ’ ๐—)๐Ÿ f (๐‘ฟ โˆ’ ๐—)๐Ÿ

0.5 โ€“ 10.5 5.5 3 43.11 129.33 1858.4701 5575.4163

10.5 โ€“ 20.5 15.5 7 33.11 231.77 1096.2721 7673.9047

20.5 โ€“ 30.5 25.5 13 23.11 300.43 534.0721 6942.9373

30.5 โ€“ 40. 5 35.5 17 13.11 222.87 171.8721 2921.8252

40.5 โ€“ 50.5 45.5 12 3.11 37.32 9.6721 116.0652

50.5 โ€“ 60.5 55.5 10 6.89 68.90 47.4733 474.7210

60.5 โ€“ 70.5 65.5 8 16.89 135.12 285.2721 2282.1768

70.5 โ€“ 80.5 75.5 8 26.89 215.12 723.0721 5784.5768

80.5 โ€“ 90.5 85.5 6 36.89 221.34 1360.8721 8165.2326

90.5 โ€“ 100.5 95.5 6 46.89 281.34 2198.6721 13192.0326

Total 90 1843.54 53128.889

15.13

PROPERTIES: (A) MEASURES OF AVERAGES / CENTRAL TENDENCY

Arithmetic Mean

Property 1: If all the observations assumed by a variable are constants, say k, then the AM is also k.

Illustration: Consider 2, 2, 2

Property Calculation Answer

Xฬ… =๐‘˜ + ๐‘˜ + โ‹ฏ + ๐‘˜

๐‘›= ๐‘˜

2 + 2 + 2

3 2

Property 2: (a) The algebraic sum of deviations of a set of observations from their AM is zero. And

(b) the sum of the square of the deviation taken from the Mean (Xฬ…) is always minimum compared to

the deviations taken from any other Assumed Mean (๐ด)

Illustration: Consider (X): 2, 3, 4

Property Formula Calculation Answer

Xฬ… = โˆ‘ ๐‘‹ 2 + 3 + 4

3 3

(a) โˆ‘(๐‘‹ โˆ’ Xฬ…) = 0

โˆ‘ ๐‘“(๐‘‹ โˆ’ Xฬ…) = 0 โˆ‘(๐‘‹ โˆ’ Xฬ…) (2 โˆ’ 3) + (3 โˆ’ 3) + (4 โˆ’ 3) 0

(b) โˆ‘(๐‘‹ โˆ’ Xฬ…)2 โ‰ค โˆ‘(๐‘‹ โˆ’ ๐ด)2

โˆ‘(๐‘‹ โˆ’ Xฬ…)2 (2 โˆ’ 3)2 + (3 โˆ’ 3)2 + (4 โˆ’ 3)2 2

โˆ‘(๐‘‹ โˆ’ ๐ด)2

๐‘Šโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ด = 4

(2 โˆ’ 4)2 + (3 โˆ’ 4)2 + (4 โˆ’ 4)2 5

Property 3: AM is affected due to a change of origin (+/โˆ’) and / or scale (ร—/รท)

i.e., If ๐‘ฆ = ๐‘Ž + ๐‘๐‘ฅ, then the AM of y is given by yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ (where a is change of origin and b is change

of scale)

Illustration: Consider (๐‘‹) = 2, 3, 4,

Formula Calculation Answer ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐’€

๐’= ๐’‚ + ๐’ƒ๐’™

1 ๐‘ฟ = ๐Ÿ, ๐Ÿ‘, ๐Ÿ’, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘ฟ

๐’

๐Ÿ + ๐Ÿ‘ + ๐Ÿ’

๐Ÿ‘ 3

2 ๐‘Œ = 4, 5, 6, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

4 + 5 + 6

3 5

Change of Origin (๐‘Ž = 2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ + 2 yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ 2 + 1 ร—3 5

3 ๐‘Œ = 0, 1, 2, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

0 + 1 + 2

3 1

Change of Origin (๐‘Ž = โˆ’2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ โˆ’ 2 yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ โˆ’2 + 1 ร—3 1

4 ๐‘Œ = 4, 6, 8, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

4 + 6 + 8

3 6

Change of Scale (๐‘ = 2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ ร— 2 yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ 0 + 2 ร—3 6

15.14

5 ๐‘Œ = 1, 1.5, 2, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

1 + 1.5 + 2

3 1.5

Change of Scale (๐‘ =1

2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ ร—1

2 yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ 0 +

1

2ร—3 1.5

6 ๐‘Œ = 7, 9, 11, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

7 + 9 + 11

3 9 Change of Origin and

change of scale

(๐‘Ž = 3)&(๐‘ = 2) ๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = 3 + 2 ร— ๐‘‹ yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ 3 + 2 ร—3 9

Property 4: If there are two groups containing ๐‘›1 and ๐‘›2 observations and ๏ฟฝฬ…๏ฟฝ1 and ๏ฟฝฬ…๏ฟฝ2 as the respective

arithmetic means, then the combined AM is given by (๏ฟฝฬ…๏ฟฝ12) =๐‘›1๏ฟฝฬ…๏ฟฝฬ…1+๐‘›2๏ฟฝฬ…๏ฟฝฬ…2

๐‘›1+๐‘›2

Illustration Combined mean Calculation Answer

Group 1 Group II

๐‘›1 = 5 ๐‘›2 = 15

๏ฟฝฬ…๏ฟฝ1 = 9 ๏ฟฝฬ…๏ฟฝ2 = 5

๏ฟฝฬ…๏ฟฝ12 =๐‘›1๏ฟฝฬ…๏ฟฝ1 + ๐‘›2๏ฟฝฬ…๏ฟฝ2

๐‘›1 + ๐‘›2

(5 ร— 9) + (15 ร— 5)

5 + 15 6

Points to Ponder:

1 In the case of โ€œnโ€ number of groups, Combined mean (๏ฟฝฬ…๏ฟฝ1โ€ฆ๐‘›) =โˆ‘๐‘›๐‘–๏ฟฝฬ…๏ฟฝฬ…๐‘–

โˆ‘๐‘›๐‘–

2 If sizes of the group are same, then the combined Mean is the average of the group means

Explanation: If ๐‘›1= ๐‘›2 =n, then ๏ฟฝฬ…๏ฟฝ1+2 =๐‘›๏ฟฝฬ…๏ฟฝฬ…1+๐‘›๏ฟฝฬ…๏ฟฝฬ…2

๐‘›+๐‘›=

๐‘›(๏ฟฝฬ…๏ฟฝฬ…1+๏ฟฝฬ…๏ฟฝฬ…2)

2๐‘›=

๏ฟฝฬ…๏ฟฝฬ…1+ ๏ฟฝฬ…๏ฟฝฬ…2

2

Illustration

Formula Calculation Answer

1 ๐‘‹1 = 2, 3, 4, ๏ฟฝฬ…๏ฟฝ1 =โˆ‘ ๐‘‹1

๐‘›

2 + 3 + 4

3 3

2 ๐‘‹2 = 4, 5, 6, ๏ฟฝฬ…๏ฟฝ2 =โˆ‘ ๐‘‹2

๐‘›

4 + 5 + 6

3 5

3 ๏ฟฝฬ…๏ฟฝ1+2 =๐‘›๏ฟฝฬ…๏ฟฝ1 + ๐‘›๏ฟฝฬ…๏ฟฝ2

๐‘› + ๐‘›

3 ร— 3 + 3 ร— 5

3 + 3 4

๏ฟฝฬ…๏ฟฝ1+2 =๐‘›(๏ฟฝฬ…๏ฟฝ1 + ๏ฟฝฬ…๏ฟฝ2)

2๐‘›

3(3 + 5)

2 ร— 3 4

๏ฟฝฬ…๏ฟฝ1+2 =๏ฟฝฬ…๏ฟฝ1 + ๏ฟฝฬ…๏ฟฝ2

2

3 + 5

2 4

3 If the averages are same, then the combined mean is the average itself

Explanation: If ๏ฟฝฬ…๏ฟฝ1 = ๏ฟฝฬ…๏ฟฝ2 = ๏ฟฝฬ…๏ฟฝ12

๏ฟฝฬ…๏ฟฝ12 =๐‘›1๏ฟฝฬ…๏ฟฝ + ๐‘›2๏ฟฝฬ…๏ฟฝ

๐‘›1 + ๐‘›2

=๏ฟฝฬ…๏ฟฝ(๐‘›1 + ๐‘›2)

๐‘›1 + ๐‘›2

Illustration

Formula Calculation Answer

1 ๐‘‹1 = 2, 3, 4, ๏ฟฝฬ…๏ฟฝ1 =โˆ‘ ๐‘‹1

๐‘›

2 + 3 + 4

3 3

2 ๐‘‹2 = 4, 2, ๏ฟฝฬ…๏ฟฝ2 =โˆ‘ ๐‘‹2

๐‘›

4 + 2

2 3

15.15

3 ๏ฟฝฬ…๏ฟฝ1+2 =๐‘›๏ฟฝฬ…๏ฟฝ1 + ๐‘›๏ฟฝฬ…๏ฟฝ2

๐‘› + ๐‘›

3 ร— 3 + 2 ร— 3

3 + 2 3

๏ฟฝฬ…๏ฟฝ(๐‘›1 + ๐‘›2)

๐‘›1 + ๐‘›2

3(3 + 2)

2 + 3 3

๏ฟฝฬ…๏ฟฝ1+2 = ๏ฟฝฬ…๏ฟฝ1 = ๏ฟฝฬ…๏ฟฝ2 3

Geometric Mean

Property 1: Transformation in terms of log function

๐บ๐‘€ = ๐ด๐‘›๐‘ก๐‘–๐‘™๐‘œ๐‘” (1

๐‘›โˆ‘ ๐‘™๐‘œ๐‘” ๐‘ฅ) ๐‘‚๐‘Ÿ ๐‘™๐‘œ๐‘” ๐บ๐‘€ =

1

๐‘›โˆ‘ ๐‘™๐‘œ๐‘” ๐‘ฅ

Property 2: If all the observations assumed by a variable are constants, say ๐‘˜ > 0, then the GM of the

observations is also K.

Property Illustration Calculation Answer

(๐‘˜ ร— ๐‘˜ ร— โ€ฆ .ร— ๐‘˜)1 ๐‘›โ„ = ๐‘˜ Consider: 2, 2, 2 = (2 ร— 2 ร— 2)1 3โ„ 2

Property 3: GM of the product of two variables is the product of their GMโ€˜s.

Property 4: GM of the ratio of two variables is the ratio of the GMโ€™s of the two variables.

Illustration Formula Calculation Answer

๐‘‹ = 3, 6, 12 GM = (๐‘‹1 ร— ๐‘‹2 ร— โ€ฆ ร— ๐‘‹)1

๐‘› (3 ร— 6 ร— 12)1 3โ„ 6

๐‘Œ = 1, 2, 4 (1 ร— 2 ร— 4)1 3โ„ 2

๐‘ = 3, 12, 48 (3 ร— 12 ร— 48)1 3โ„ 12

Property 3 Being ๐‘ = ๐‘‹ ร— ๐‘Œ GM๐‘ = GM๐‘‹ ร— GM๐‘Œ 6 ร— 2 12

๐‘ = 3

1,6

2,12

4 (3 ร— 3 ร— 3)1 3โ„ 3

Property 4 Being ๐‘ =๐‘‹

๐‘Œ ๐บ๐‘€๐‘ง =

GM๐‘‹

GM๐‘Œ

6

2 3

Harmonic Mean:

Property 1: If all the observations taken by a variable are constants, say k, then the HM of the

observations is also k.

Property Illustration Calculation Answer

๐‘›1

๐‘˜+

1

๐‘˜+ โ€ฆ . +

1

๐‘˜

= ๐‘˜ ๐‘‹ = 2, 2, 2 31

2+

1

2+

1

2

2

Property 2: If there are two groups containing ๐’๐Ÿ and ๐’๐Ÿ observations and ๐‘ฟ๐Ÿ and ๐‘ฟ๐Ÿ as the

respective Harmonic Means, then the combined HM is given by (๏ฟฝฬ…๏ฟฝ๐Ÿ๐Ÿ) = ๐’๐Ÿ+๐’๐Ÿ๐’๐Ÿ๏ฟฝฬ…๏ฟฝ๐Ÿ

+ ๐’๐Ÿ๏ฟฝฬ…๏ฟฝ๐Ÿ

Illustration Combined H.M. Calculation Answer

Group 1 Group II ๏ฟฝฬ…๏ฟฝ๐Ÿ๐Ÿ =๐‘›1 + ๐‘›2๐‘›1

๏ฟฝฬ…๏ฟฝฬ…1+

๐‘›2

๏ฟฝฬ…๏ฟฝฬ…2

15 + 1015

3+

10

2

3.125

15.16

๐‘›1 = 15 ๐‘›2 = 10

๏ฟฝฬ…๏ฟฝ1 = 3 ๏ฟฝฬ…๏ฟฝ2 = 2

Median:

Property 1: If x and y are two variables, to be related by ๐‘Œ = ๐‘Ž + ๐‘๐‘‹ for any two constants a and b,

then the median of y is given by ๐‘Œ๐‘€๐‘’= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘’

(i.e., Median is affected due to a change of origin (+/โˆ’) and / or scale (ร—/รท))

Illustration: Consider (๐‘‹) = 2, 3, 4,

Formula Calculation Answer ๐’€๐‘ด๐’†= ๐’‚ + ๐’ƒ๐‘ฟ๐‘ด๐’†

1 ๐‘‹ = 2, 3, 4, ๏ฟฝฬ…๏ฟฝ๐‘€๐‘’= (

๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  (3 + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  3

2 ๐‘Œ = 4, 5, 6, ๏ฟฝฬ…๏ฟฝ๐‘€๐‘’= (

๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  (3 + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  5 Change of Origin (๐‘Ž = 2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ + 2 ๐‘Œ๐‘€๐‘’= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘’

2 + 1 ร—3 5

3 ๐‘Œ = 0, 1, 2, ๏ฟฝฬ…๏ฟฝ๐‘€๐‘’= (

๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  (3 + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  1 Change of Origin (๐‘Ž = โˆ’2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ โˆ’ 2 ๐‘Œ๐‘€๐‘’= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘’

โˆ’2 + 1 ร—3 1

4 ๐‘Œ = 4, 6, 8, ๏ฟฝฬ…๏ฟฝ๐‘€๐‘’= (

๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  (3 + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  6 Change of Scale (๐‘ = 2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ ร— 2 ๐‘Œ๐‘€๐‘’= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘’

0 + 2 ร—3 6

5 ๐‘Œ = 1, 1.5, 2, ๏ฟฝฬ…๏ฟฝ๐‘€๐‘’= (

๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  (3 + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  1.5

Change of Scale (๐‘ =1

2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ ร—1

2 ๐‘Œ๐‘€๐‘’

= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘’ 0 +

1

2ร—3 1.5

6 ๐‘Œ = 7, 9, 11, ๏ฟฝฬ…๏ฟฝ๐‘€๐‘’= (

๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  (3 + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  9 Change of Origin and

change of scale

(๐‘Ž = 3)&(๐‘ = 2) ๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = 3 + 2 ร— ๐‘‹ ๐‘Œ๐‘€๐‘’= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘’

3 + 2 ร—3 9

Property 2: For a set of observations, the sum of absolute deviations is minimum when the deviations

are taken from the median.

Illustration: Consider (X): 0.5, 3, 4

Calculation Answer Property

๐‘€๐‘’ = (๐‘› + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  (3 + 1

2)

๐‘กโ„Ž

๐‘œ๐‘๐‘  3

๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘‹

๐‘›

0.5 + 3 + 4

3 2.5

(a) โˆ‘ |๐‘‹ โˆ’ Xฬ…| |0.5 โˆ’ 2.5| + |3 โˆ’ 2.5| + |4 โˆ’ 2.5| 4

(๐‘) < (๐‘Ž)

(b) โˆ‘ |๐‘‹ โˆ’ ๐‘€๐‘’| |0.5 โˆ’ 3| + |3 โˆ’ 3| + |4 โˆ’ 3| 3.5

15.17

Mode:

Property 1: If ๐‘Œ = ๐‘Ž + ๐‘๐‘‹, then ๐‘Œ๐‘€๐‘œ= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘œ

(i.e., Mode is affected due to a change of origin (+/โˆ’) and / or scale (ร—/รท))

Illustration: Consider (๐‘‹) = 2, 3, 3, 4

Formula Calculation Answer ๐’€๐‘ด๐’= ๐’‚ + ๐’ƒ๐‘ฟ๐‘ด๐’

1 ๐‘‹ = 2, 3, 3, 4, Most usual 3

2 ๐‘Œ = 4, 5, 5, 6, 5 Change of Origin (๐‘Ž = 2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ + 2 ๐‘Œ๐‘€๐‘œ= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘œ

2 + 1 ร—3 5

3 ๐‘Œ = 0, 1, 1, 2, Most usual 1 Change of Origin (๐‘Ž = โˆ’2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ โˆ’ 2 ๐‘Œ๐‘€๐‘œ= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘œ

โˆ’2 + 1 ร—3 1

4 ๐‘Œ = 4, 6, 6, 8, Most usual 6 Change of Scale (๐‘ = 2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ ร— 2 ๐‘Œ๐‘€๐‘’= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘’

0 + 2 ร—3 6

5 ๐‘Œ = 1, 1.5, 1.5, 2, Most usual 1.5

Change of Scale (๐‘ =1

2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ ร—1

2 ๐‘Œ๐‘€๐‘œ

= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘œ 0 +

1

2ร—3 1.5

6 ๐‘Œ = 7, 9, 9, 11, Most usual 9 Change of Origin and

change of scale

(๐‘Ž = 3)&(๐‘ = 2) ๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = 3 + 2 ร— ๐‘‹ ๐‘Œ๐‘€๐‘œ

= ๐‘Ž + ๐‘๐‘‹๐‘€๐‘œ 3 + 2 ร—3 9

(B) MEASURES OF DISPERSION: PROPERTY

Property Measure / Explanation

1 All the observations assumed by a variable are constant,

then measure of dispersion = 0

Range (R) = 0

Mean Deviation (MD) = 0

Standard Deviation (s) = 0

Illustration: Consider (๐‘ฟ): 2, 2, 2

Formula Calculation Answer

๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘ฟ

๐’

2 + 2 + 2

3 2

Range = L โ€“ S 2 โˆ’ 2

0 ๐‘€๐ทXฬ… =

1

๐‘›โˆ‘|๐‘‹ โˆ’ Xฬ…|

|2 โˆ’ 2| + |2 โˆ’ 2| + |2 โˆ’ 2|

3

๐‘†๐ท = โˆšโˆ‘(๐‘‹ โˆ’ Xฬ…)2

๐‘› โˆšโˆ‘

(๐‘‹ โˆ’ 2)2

3

2 Affected due to change of Scale, but not of origin ๐‘…๐‘ฆ = 0 + |๐‘| ร— ๐‘…๐‘ฅ

๐‘€๐ทyฬ… = 0 + |๐‘| ร— MDxฬ…

๐‘ ๐‘ฆ = 0 + |๐‘| ร— ๐‘ ๐‘ฅฬ…

3 Mean deviation takes its minimum value ๐‘€๐ท๐‘€๐‘’=

1

๐‘›โˆ‘|๐‘‹ โˆ’ ๐‘€๐‘’| is minimum

15.18

when A = Median

4 Combined SD ๐‘ 12 = โˆš

๐‘›1๐‘†12 + ๐‘›2๐‘†2

2 + ๐‘›1๐‘‘12 + ๐‘›2๐‘‘2

2

๐‘›1 + ๐‘›2

where ๐‘‘1 = ๏ฟฝฬ…๏ฟฝ1 โˆ’ ๏ฟฝฬ…๏ฟฝ12 and ๐‘‘2 = ๏ฟฝฬ…๏ฟฝ2 โˆ’ ๏ฟฝฬ…๏ฟฝ12

Note: If ๏ฟฝฬ…๏ฟฝ1 = ๏ฟฝฬ…๏ฟฝ2 , then ๏ฟฝฬ…๏ฟฝ1 = ๏ฟฝฬ…๏ฟฝ2 = ๏ฟฝฬ…๏ฟฝ12

Then ๐‘‘1 = 0 & ๐‘‘2 = 0

โˆด ๐‘ 12 = โˆš๐‘›1๐‘†1

2 + ๐‘›2๐‘†22

๐‘›1 + ๐‘›2

Illustration Calculation Answer

Group I Group II

๐‘›1 = 5 ๐‘›2 = 15

๏ฟฝฬ…๏ฟฝ1 = 9 ๏ฟฝฬ…๏ฟฝ2 = 5

๐‘ 1 = 0.8 ๐‘ 2 = 0.5

๏ฟฝฬ…๏ฟฝ12 = 6

๐‘ 12 = โˆš5 ร— (0.8)2 + (15 ร— (0.5)2) + (5 ร— 32) + (15 ร— (โˆ’1)2)

5 + 15

๐‘‘1 = ๏ฟฝฬ…๏ฟฝ1 - ๏ฟฝฬ…๏ฟฝ12 = 9 โ€“ 6 = 3

๐‘‘2 = ๏ฟฝฬ…๏ฟฝ2 โˆ’ ๏ฟฝฬ…๏ฟฝ12 = 5 โˆ’ 6 = โˆ’1

1.83

Problem for SD under Change of scale and origin

Formula Calculation Answer ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐’€

๐’= ๐’‚ + ๐’ƒ๐’™

1 ๐‘ฟ = ๐Ÿ, ๐Ÿ‘, ๐Ÿ’, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘ฟ

๐’

๐Ÿ + ๐Ÿ‘ + ๐Ÿ’

๐Ÿ‘ 3

๐‘…๐‘‹ = ๐ฟ โˆ’ ๐‘† 4 โˆ’ 2 2

๐‘€๐ทxฬ… =โˆ‘|๐‘‹ โˆ’ Xฬ…|

๐‘›

โˆ‘|๐‘‹ โˆ’ 3|

3

2

3

๐‘ ๐‘‹ = โˆšโˆ‘(๐‘‹ โˆ’ Xฬ… )2

๐‘› โˆš

โˆ‘(๐‘‹ โˆ’ 3)2

3 0.82

2 ๐‘Œ = 4, 5, 6, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

4 + 5 + 6

3 5

Change of Origin (๐‘Ž = 2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ + 2 yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ 2 + 1 ร—3 5

๐‘…๐‘Œ = ๐ฟ โˆ’ ๐‘† 6โˆ’4 2

๐‘€๐ทYฬ… =โˆ‘|๐‘Œ โˆ’ Yฬ…|

๐‘›

โˆ‘|๐‘Œ โˆ’ 5|

3

2

3

๐‘ ๐‘Œ = โˆšโˆ‘(๐‘Œ โˆ’ Yฬ… )2

๐‘› โˆš

โˆ‘(๐‘Œ โˆ’ 3)2

3 0.82

3 ๐‘Œ = 0, 1, 2, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

0 + 1 + 2

3 1

Change of Origin (๐‘Ž = โˆ’2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ โˆ’ 2 yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ โˆ’2 + 1 ร—3 1

๐‘…๐‘Œ = ๐ฟ โˆ’ ๐‘† 2 โˆ’ 0 2

๐‘€๐ทYฬ… =โˆ‘|๐‘Œ โˆ’ Yฬ…|

๐‘›

โˆ‘|๐‘Œ โˆ’ 1|

3

2

3

15.19

๐‘ ๐‘Œ = โˆšโˆ‘(๐‘Œ โˆ’ Yฬ… )2

๐‘› โˆš

โˆ‘(๐‘Œ โˆ’ 1)2

3 0.82

4 ๐‘Œ = 4, 6, 8, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

4 + 6 + 8

3 6

Change of Scale (๐‘ = 2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ ร— 2 yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ 0 + 2 ร—3 6

๐‘…๐‘Œ = ๐ฟ โˆ’ ๐‘† 8 โˆ’ 4 4

๐‘€๐ทYฬ… =โˆ‘|๐‘Œ โˆ’ Yฬ…|

๐‘›

โˆ‘|๐‘Œ โˆ’ 6|

3

4

3

๐‘ ๐‘Œ = โˆšโˆ‘(๐‘Œ โˆ’ Yฬ… )2

๐‘› โˆš

โˆ‘(๐‘Œ โˆ’ 6)2

3 1.64

5 ๐‘Œ = 1, 1.5, 2, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

1 + 1.5 + 2

3 1.5

Change of Scale (๐‘ =1

2)

๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = ๐‘‹ ร—1

2 yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ 0 +

1

2ร—3 1.5

๐‘…๐‘Œ = ๐ฟ โˆ’ ๐‘† 2 โˆ’ 1 1

๐‘€๐ทYฬ… =โˆ‘|๐‘Œ โˆ’ Yฬ…|

๐‘›

โˆ‘|๐‘Œ โˆ’ 1.5|

3

1

3

๐‘ ๐‘Œ = โˆšโˆ‘(๐‘Œ โˆ’ Yฬ… )2

๐‘› โˆš

โˆ‘(๐‘Œ โˆ’ 1.5)2

3 0.41

6 ๐‘Œ = 7, 9, 11, ๏ฟฝฬ…๏ฟฝ =โˆ‘ ๐‘Œ

๐‘›

7 + 9 + 11

3 9 Change of Origin and

change of scale

(๐‘Ž = 3)&(๐‘ = 2) ๐ต๐‘’๐‘–๐‘›๐‘” ๐‘Œ = 3 + 2 ร— ๐‘‹ yฬ… = ๐‘Ž + ๐‘๏ฟฝฬ…๏ฟฝ 3 + 2 ร—3 9

๐‘…๐‘‹ = ๐ฟ โˆ’ ๐‘† 11 โˆ’ 7 4

๐‘€๐ทxฬ… =โˆ‘|๐‘‹ โˆ’ Xฬ…|

๐‘›

โˆ‘|๐‘‹ โˆ’ 9|

3

4

3

๐‘ ๐‘‹ = โˆšโˆ‘(๐‘‹ โˆ’ Xฬ… )2

๐‘› โˆš

โˆ‘(๐‘‹ โˆ’ 9)2

3 0.41

Coefficient of Variation (CV): ๐ถ๐‘‰ =๐‘ 

๏ฟฝฬ…๏ฟฝฬ…ร— 100

Illustration Calculation Comparison

Group 1 Group II

๏ฟฝฬ…๏ฟฝ1 = 9 ๏ฟฝฬ…๏ฟฝ2 = 5

๐‘ 1 = 0.8 ๐‘ 2 = 0.5

๏ฟฝฬ…๏ฟฝ12 = 6

๐ถ๐‘‰(๐ผ) =0.8

9 ร— 100 = 8.88%

๐ถ๐‘‰(๐ผ๐ผ) =0.5

5ร— 100 = 10%

๐ถ๐‘‰(๐ผ) = 8.88% < ๐ถ๐‘‰(๐ผ๐ผ) = 10%

More Stable

More Consistent

Less Variable

Less Dispersed

Less Stable

Less Consistent

More Variable

More Dispersed

EXTRA PROBLEMS

Comparison between Arithmetic Mean and Geometric Mean

Question 1: Find the average rate of return.

15.20

Year 1 2 3

Rate of Return (r %) 10% 60% 20%

Answer: The average rate of return

Formula Calculation Answer

GM G = (๐‘‹1 ร— ๐‘‹2 ร— โ€ฆ ร— ๐‘‹๐‘›)1

๐‘› (1.10 ร— 1.60 ร— 1.20)1 3โ„ 1.283 ๐‘œ๐‘Ÿ 128.3% ๐‘œ๐‘Ÿ 28.3%

AM Xฬ… =

โˆ‘ ๐‘‹

๐‘›

1.10 + 1.60 + 1.20

3

1.3 ๐‘œ๐‘Ÿ 130% ๐‘œ๐‘Ÿ 30%

which is not possible

Comparison between Arithmetic Mean and Harmonic Mean

Question 2: An aeroplane covered a distance of 800 miles with four different speeds of 100, 200, 300

and 400 m/p.h for the first, second, third and fourth quarter of the distance. Find the average speed in

miles per hour.

Answer: The average speed is given by the H.M. of the given set of data.

Formula Calculation Answer

H M ๐ป๐‘€ =๐‘›

โˆ‘1

๐‘‹

41

100+

1

200+

1

300+

1

400

192 m/p.h

AM Xฬ… =

โˆ‘ ๐‘‹

๐‘›

100 + 200 + 300 + 400

4

250 m/p.h,

which is not true

Combined Mean

Question 3: Two groups of students reported mean weights of 160 kg and 150 kg respectively. Find

out, when the weight of both the groups together be 155 kg?

Answer:

Given Data Formula Calculation Answer

Group I Group II

Number ๐‘1 ๐‘2

Mean (kg.) Xฬ…1 = 160 Xฬ…2 = 150

Combined Mean: Xฬ…12 = 155kg

Xฬ…12 =๐‘1Xฬ…1 + ๐‘2๏ฟฝฬ…๏ฟฝ2

๐‘1 + ๐‘2

155 =160๐‘1 + 150๐‘2

๐‘1 + ๐‘2

155๐‘1 + 155๐‘2 = 160๐‘1 + 150๐‘2

๐‘1 = ๐‘2

Question 4: Show that for any two numbers a and b, standard deviation is given by |๐‘Žโˆ’๐‘|

2

Answer: For two numbers a and b, AM is given by Xฬ… =๐‘Ž+๐‘

2

The variance is =โˆ‘(๐‘‹๐‘– โˆ’ Xฬ…)2

2

=(๐‘Ž โˆ’

๐‘Ž+๐‘

2)

2

+ (๐‘ โˆ’ ๐‘Ž+๐‘

2)

2

2=

(๐‘Žโˆ’๐‘)

4

2

+ (๐‘Žโˆ’๐‘)2

4

2=

(๐‘Ž โˆ’ ๐‘)2

4 โŸน ๐‘  =

|๐‘Ž โˆ’ ๐‘|

4

(The absolute sign is taken, as SD cannot be negative).

Question 5: Prove that for the first n natural numbers, ๐‘–๐‘  โˆš๐‘›2โˆ’ 1

12 .

Answer: for the first n natural numbers AM is given by

15.21

Xฬ… =1 + 2 + โ€ฆ โ€ฆ โ€ฆ + ๐‘›

๐‘›=

๐‘›(๐‘› + 1)

2๐‘›=

๐‘› + 1

2

โˆด ๐‘†๐ท = โˆšโˆ‘ ๐‘‹๐‘–

2

๐‘›โˆ’ Xฬ…2 = โˆš

12 + 22 + 32 โ€ฆ โ€ฆ . . +๐‘›2

๐‘›โˆ’ (

๐‘› + 1

2)

2

โˆš๐‘›(๐‘› + 1)(2๐‘› + 1)

6๐‘›โˆ’ (

๐‘› + 1

2)

2

= โˆš(๐‘› + 1)(2๐‘› + 1)

6โˆ’ (

๐‘› + 1

2)

2

โˆš(๐‘› + 1)(2๐‘› + 1)

6โˆ’

๐‘› + 1

2ร—

๐‘› + 1

2= โˆš(๐‘› + 1) (

(2๐‘› + 1)

6โˆ’

๐‘› + 1

4)

โˆš(๐‘› + 1)(4๐‘› + 2 โˆ’ 3๐‘› โˆ’ 3)

12= โˆš

๐‘›2 โˆ’ 1

12

Thus, SD of first n natural numbers is SD = โˆš๐‘›2 โˆ’ 1

12

15.22

COMPARISON BETWEEN MEASURES OF CENTRAL TENDENCY N

o

Mea

sure

s

Ari

thm

etic

Mea

n

Geo

met

ric

Mea

n

Har

mo

nic

Mea

n

Med

ian

Mo

de

Ran

ge

Qu

arti

le

Dev

iati

on

Mea

n

Dev

iati

on

Sta

nd

ard

Dev

iati

on

1 Well defined Yes Yes Yes Yes

No (when the

number of

observations is

small, then use

Empirical

Relationship)

Yes Yes A may be

Xฬ…, ๐‘€๐‘’, ๐‘€๐‘œ Yes

2 Easy to calculate &

simple to understand Yes No No Yes

Location Method,

but not Grouping

method

Yes Yes Yes No

3 Based on all the

items Yes

Yes (but able

to find only

for Positive

Values)

Yes

(ONLY

positive

values

and no

โ€œ0โ€)

No No No No Yes Yes

4

capable of further

mathematical

treatment

Yes

Yes (Useful

for

calculation of

Index

Numbers)

Yes

Yes (but only in

Mean Deviation,

no combined

Median)

No

No (But in case

of Quality

control and stock

market

fluctuations)

No

No (Useful for

Economists and

Businessmen and

in public reports)

Yes

5 Good basis for

comparison Yes Not much Yes

6 Necessary for

arrange of data No No No Yes No ------Not on Discussion-----

7 Affected by extreme

values Yes

Yes (Not

much

compared to

Yes No No Yes No Less than SD Yes

15.23

AM)

8

Not Precise โ€“ Mis-

leading impressions

(E.g. Average

number of persons is

1.5 which is not

possible)

No

No No

Yes (except

when Median

lies in between

two values)

Yes (except on

continuous series) ------Not on Discussion-----

9 Location (Inspection)

Method No No No

Yes (on

arrangement) Yes ------Not on Discussion-----

10 Graphical Method Yes (using Ogive

Curves) ------Not on Discussion-----

11

Calculated in the

case of open end

class intervals

No No No Yes Yes No Yes Based on โ€œAโ€ No

12

Affected by

sampling

fluctuations

No

(least) No No Yes Yes Yes Yes Yes

Less

affected

13

Affected by Change

of origin Yes Yes Yes Yes Yes No No No No

Affected by Change

of Scale Yes Yes Yes Yes Yes Yes Yes Yes Yes

15.24

Explanations to Formulae:

1. Geometric Mean

Logarithmic formulae of Geometric Mean

Individual Observation Discrete Continuous

GM = โˆš๐‘ฅ1 ร— ๐‘ฅ2 ร— โ€ฆ .ร— ๐‘ฅ๐‘›๐‘›

log ๐บ. ๐‘€ = log โˆš๐‘ฅ1 ร— ๐‘ฅ2 ร— โ€ฆ .ร— ๐‘ฅ๐‘›๐‘›

= 1

๐‘›log(๐‘ฅ1 ร— ๐‘ฅ2 ร—. . .ร— ๐‘ฅ๐‘›)

= 1

๐‘›(log ๐‘ฅ1 + log ๐‘ฅ2 + โ€ฆ . log ๐‘ฅ๐‘›)

= 1

๐‘›โˆ‘ log ๐‘ฅ

GM = Anti log (1

๐‘›โˆ‘ log ๐‘ฅ)

GM = โˆš๐‘ฅ1๐‘“1 ร— ๐‘ฅ2

๐‘“2 ร— โ€ฆ . ๐‘ฅ๐‘›๐‘“๐‘›

๐‘

log ๐บ. ๐‘€ = log โˆš๐‘ฅ1๐‘“1 ร— ๐‘ฅ2

๐‘“2 ร— โ€ฆ . ๐‘ฅ๐‘›๐‘“๐‘›

๐‘

= 1

๐‘[(log ๐‘ฅ1

๐‘“1 ร— ๐‘ฅ2๐‘“2 ร— โ€ฆ . ๐‘ฅ๐‘›

๐‘“๐‘›)]

= 1

๐‘[log ๐‘ฅ1

๐‘“1 + log ๐‘ฅ2๐‘“2 + โ€ฆ . log ๐‘ฅ๐‘›

๐‘“๐‘›]

= 1

๐‘[๐‘“1 log ๐‘ฅ1 + ๐‘“2 log ๐‘ฅ2 + โ‹ฏ ๐‘“๐‘› log ๐‘ฅ๐‘›]

= 1

๐‘โˆ‘ ๐‘“ log ๐‘ฅ

GM = Antilog 1

๐‘โˆ‘ ๐‘“ log ๐‘ฅ

GM = โˆš

๐‘š1๐‘“1 ร— ๐‘š2

๐‘“2 ร—

โ€ฆ .ร— ๐‘š๐‘›๐‘“๐‘›

๐‘

log ๐บ. ๐‘€ = log โˆš

๐‘š1๐‘“1 ร— ๐‘š2

๐‘“2 ร—

โ€ฆ ร— ๐‘š๐‘›๐‘“๐‘›

๐‘

= 1

๐‘[(log ๐‘š1

๐‘“1 ร— ๐‘š2๐‘“2 ร— โ€ฆ ร— ๐‘š๐‘›

๐‘“๐‘›)]

= 1

๐‘[log ๐‘š1

๐‘“1 + log ๐‘š2๐‘“2 + โ€ฆ . log ๐‘š๐‘›

๐‘“๐‘›]

= 1

๐‘[๐‘“1 log ๐‘š1 + ๐‘“2 log ๐‘š2 + โ‹ฏ ๐‘“๐‘› log ๐‘š๐‘›]

= 1

๐‘โˆ‘ ๐‘“ log ๐‘š

GM = Antilog

1

๐‘โˆ‘ ๐‘“ log ๐‘š

15.25

Standard Deviation:

๐‘  = โˆšโˆ‘(๐‘‹ โˆ’ Xฬ…)2

๐‘›

โˆ‘(๐‘‹ โˆ’ Xฬ…)2 = โˆ‘[๐‘‹2 โˆ’ 2๐‘‹Xฬ… + Xฬ…2]

โˆ‘(๐‘‹ โˆ’ Xฬ…)2 = โˆ‘ ๐‘‹2 โˆ’ โˆ‘(2๐‘‹Xฬ…) + โˆ‘ Xฬ…2

โˆ‘(๐‘‹ โˆ’ Xฬ…)2 = โˆ‘ ๐‘‹2 โˆ’ 2Xฬ… โˆ‘ ๐‘‹ + ๐‘›Xฬ…2

โˆ‘(๐‘‹ โˆ’ Xฬ…)2 = โˆ‘ ๐‘‹2 โˆ’ 2โˆ‘ ๐‘‹

๐‘›โˆ‘ ๐‘‹ + ๐‘›.

โˆ‘ ๐‘‹

๐‘›.โˆ‘ ๐‘‹

๐‘›

โˆ‘(๐‘‹ โˆ’ Xฬ…)2 = โˆ‘ ๐‘‹2 โˆ’ 2(โˆ‘ ๐‘‹)2

๐‘›+

(โˆ‘ ๐‘‹)2

๐‘›

โˆ‘(๐‘‹ โˆ’ Xฬ…)2 = โˆ‘ ๐‘‹2 โˆ’ 2(โˆ‘ ๐‘‹)2

๐‘›+

(โˆ‘ ๐‘‹)2

๐‘›

โˆ‘(๐‘‹ โˆ’ Xฬ…)2 = โˆ‘ ๐‘‹2 โˆ’(โˆ‘ ๐‘‹)2

๐‘›(2 โˆ’ 1)

โˆ‘(๐‘‹ โˆ’ Xฬ…)2

๐‘›=

โˆ‘ ๐‘‹2 โˆ’(โˆ‘ ๐‘‹)2

๐‘›

๐‘›

โˆ‘(๐‘‹ โˆ’ Xฬ…)2

๐‘›=

๐‘› โˆ‘ ๐‘‹2โˆ’(โˆ‘ ๐‘‹)2

๐‘›

๐‘›=

โˆ‘ ๐‘‹2

๐‘›โˆ’ (

โˆ‘ ๐‘‹

๐‘›)

2

=โˆ‘ ๐‘‹2

๐‘›โˆ’ Xฬ…2

15.26

Graphical Method

Weighted Average:

1. Calculate goodwill using weighted average method:

Profit 20,000 10,000 (7000)

Weight 3 2 1

Missing Frequency:

1. Given N = 581 and Mean = 15. Find the missing frequencies.

x 10 11 12 13 14 15 16 17 18 19

f 8 15 x 100 98 95 y 75 50 30

2. Given Mean = 47, Median = 45, Mode = 35 and N= 90. Find the missing frequencies.

Marks 01-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Number of Students 3 7 x 17 12 y 8 8 6 6